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Some results related to finiteness properties of groups
for families of subgroups

TIMM VON PUTTKAMER

XIAOLEI WU

Let EG be the classifying space of G for the family of virtually cyclic subgroups.
We show that an Artin group admits a finite model for EG if and only if it is virtually
cyclic. This solves a conjecture of Juan-Pineda and Leary and a question of Lück,
Reich, Rognes and Varisco for Artin groups. We then study conjugacy growth of
CAT(0) groups and show that if a CAT(0) group contains a free abelian group of rank
two, its conjugacy growth is strictly faster than linear. This also yields an alternative
proof for the fact that a CAT(0) cube group admits a finite model for EG if and only if
it is virtually cyclic. Our last result deals with the homotopy type of the quotient space
BG DEG=G. We show, for a poly-Z–group G, that BG is homotopy equivalent to
a finite CW–complex if and only if G is cyclic.

20B07, 20J05

1 Introduction

We continue our study [20; 21] of finiteness properties of classifying spaces for families
of subgroups. Given a discrete group G, a family F of subgroups of G is a set
of subgroups of G which is closed under conjugation and taking subgroups. The
classifying space EF .G/ is a G–CW–complex characterized by the following property:
the fixed-point set EF .G/

H is contractible for any H 2F and empty otherwise. Recall
that a G–CW–complex X is said to be finite (resp. of finite type) if it has finitely many
orbits of cells (resp. finitely many orbits of cells in each dimension). We abbreviate
EF .G/ by EG for F D VCyc the family of virtually cyclic subgroups, EG for
F D F in the family of finite subgroups and EG for F the family consisting only
of the trivial subgroup. In [11, Conjecture 1], Juan-Pineda and Leary formulated the
following conjecture:

Conjecture A [11, Juan-Pineda and Leary] Let G be a group admitting a finite
model for EG. Then G is virtually cyclic.
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This conjecture has been proven for a rather large class of groups; see Groves and
Wilson [7], Kochloukova, Martínez-Pérez and Nucinkis [12] and our [20; 21] (see also
Theorem 2.10 and the remark thereafter for a summary). Note that a group G admits a
model for EG with a finite 0–skeleton if and only if the following property holds:

(BVC) G has a finite set of virtually cyclic subgroups fV1; V2; : : : ; Vng such that
every virtually cyclic subgroup of G is conjugate to a subgroup of some Vi .

Following Groves and Wilson, we shall call this property BVC. So far almost all of the
proofs of Conjecture A boil down to verifying whether a given group has BVC. Our
first theorem extends the existing results to Artin groups.

Theorem B An Artin group has BVC if and only if it is virtually cyclic.

For the proof, we used a weaker property compared to BVC, namely bVCyc (see
Definition 2.7 and remarks below it). It is a related notion designed to be closed under
forming quotients; see Lemma 2.8. Let Cyc be the family of cyclic subgroups. A
related question of Lück, Reich, Rognes and Varisco asks: is it true that a group G has
a model of finite type for ECycG if and only if G is finite, cyclic or infinite dihedral?
By [20, Lemma 3.2 and Corollary 3.10], our result also answers their question for Artin
groups.

In [20], we established some connection between the BVC property and the conjugacy
growth invariant. In particular, we showed [20, Corollary 2.5] that if a semihyperbolic
group has BVC, then it has at most linear conjugacy growth. But we could not
determine exactly when a semihyperbolic group has at most linear conjugacy growth
[21, Remark 2.6]. Instead we give a partial answer to this question here.

Theorem C Let G be a CAT (0) group containing Z2 as a subgroup; then the conju-
gacy growth of G is strictly faster than linear. If G is a CAT (0) cube group, then it
has at most linear conjugacy growth if and only it is virtually cyclic.

Given a group G and a family of subgroups F of G we also study the finiteness
properties of the classifying space BF .G/D EF .G/=G. The following question goes
back to [11, Remark 17] and motivated our study:

Question D Suppose BG is homotopy equivalent to a finite CW–complex. Is BG
necessarily contractible?
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In contrast to Question D, in the case of the family of finite subgroups, Leary and
Nucinkis [15] showed that every connected finite CW–complex is homotopy equivalent
to BG for some group G. In fact, Januszkiewicz and Świątkowski [10, Theorem M]
further proved that one can take this group to be hyperbolic. On the other hand, Juan-
Pineda and Leary showed that if G is hyperbolic, then BG is homotopy equivalent to
a finite CW–complex if and only if G is virtually cyclic [11, Corollary 16]. We extend
their result to the following:

Theorem E Suppose G is an abelian group or a poly-Z–group. Then BG is homo-
topy equivalent to a finite CW–complex if and only if G is locally virtually cyclic.

Since the torsion elements in a finitely generated nilpotent group form a finite normal
subgroup and the quotient by this normal subgroup is a poly-Z–group, we have the
following:

Corollary F Suppose G is a finitely generated nilpotent group. Then BG is homotopy
equivalent to a finite CW–complex if and only if G is virtually cyclic.

Parts of this paper have previously appeared in the first author’s thesis.

Acknowledgements Von Puttkamer was supported by an IMPRS scholarship of the
Max Planck Society. Wu was partially supported by Prof. Wolfgang Lück’s ERC
Advanced Grant “KL2MG-interactions” (no. 662400). Part of this work was carried
out when Wu was a postdoc at the Max Planck Institute for Mathematics in Bonn. We
also want to thank Pieter Moree for drawing our attention to results of Paul Bernays
and himself.

2 Review on groups admitting a finite model for EG and
property bF

In this section we first review some properties and results on groups admitting a finite
model for EG. Most of this material is taken directly from [20, Section 1].

We summarize the properties of groups admitting a finite model for EG as follows:

Proposition 2.1 Let G be a group admitting a finite model for EG ; then:

(a) G has BVC.
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(b) G admits a finite model for EG.

(c) For every finite subgroup H � G, the Weyl group WGH is finitely presented
and of type FP1 . Here WGH DNG.H/=H, where NG.H/ is the normalizer
of H in G.

(d) G admits a model of finite type for EG. In particular , G is finitely presented.

Remark 2.2 If one replaces “finite” by “finite-type” in the assumptions of the above
proposition, then the conclusions still hold if one also replaces “finite” by “finite-type”
in (b).

Lemma 2.3 [21, Lemma 1.3] Let G be a group. There is a model for EG with
finite 0–skeleton if and only if G has BVC.

The following structure theorem about virtually cyclic groups is well known; see for
example [11, Proposition 4] for a proof.

Lemma 2.4 Let G be a virtually cyclic group. Then G contains a unique maximal
normal finite subgroup F such that one of the following holds:

(a) in the finite case , G D F ;

(b) in the orientable case , G=F is the infinite cyclic group;

(c) in the nonorientable case , G=F is the infinite dihedral group.

Lemma 2.5 [21, Lemma 1.7] If a group G has BVC, then G has finitely many
conjugacy classes of finite subgroups. In particular, the order of finite subgroups in G
is bounded.

Lemma 2.6 [12, Lemma 5.6] If a group G has BVC, then any finite-index subgroup
also has BVC.

The following notion was introduced by the authors in [20, Definition 1.10]:

Definition 2.7 Let F be a family of subgroups. For a natural number n� 1, we say
that a group G has property nF if there are H1; : : : ;Hn 2 F such that any cyclic
subgroup of G is contained in a conjugate of Hi for some i . We say that G has bF
if G has nF for some n 2N .

We are mostly interested in bVCyc as both bCyc and BVC imply bVCyc, which leads
to unified proofs when we deal with finiteness properties of ECyc.G/ and EG. The
three notions generally do not coincide [20, Example 1.11,1.12].
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Lemma 2.8 [20, Lemma 1.13] Suppose the family F is closed under quotients. If
� W G!Q is an epimorphism and G has bF, then Q has bF.

Lemma 2.9 [20, Lemma 1.14] Let K �G be a finite-index subgroup and suppose
G has bF. Then K also has bF.

Theorem 2.10 Let G be a finitely generated group in one of the classes

(a) virtually solvable groups ,

(b) one-relator groups ,

(c) acylindrically hyperbolic groups ,

(d) 3–manifold groups ,

(e) CAT (0) cube groups ,

(f) linear groups ,

(g) groups acting properly and discontinuously on a Hadamard manifold via isome-
tries such that the quotient has finite volume.

If G has bVCyc, then G is virtually cyclic.

Proof We only need to prove the last item [20, Theorems 1.15 and 2.11]. This
follows from the rank rigidity theorem [1, Theorem C, page 6] for nonpositively
curved manifolds. In fact, let M be the Hadamard manifold described in (g). By
[1, Theorem C, page 6], we have that either M is rank one or a symmetric space, or
a nontrivial Riemannian product. If M is rank one, by [1, Theorem B(iii), page 5],
G contains a rank one isometry, hence G does not have bVCyc as it is acylindrically
hyperbolic [22]. If M is a symmetric space, since G acts properly on M, we have
that G surjects onto a linear group with finite kernel. But a linear group has bVCyc if
and only if it is virtually cyclic. Hence, if G has bVCyc, it is virtually cyclic. Now
we assume that M is a Riemannian product. If M is a product of symmetric spaces,
then we are again done by the same reasoning as above. Thus, by rank rigidity, we can
assume that M DM1�M2� � � ��Mn�S, such that each Mi is of rank one and S is
a product of symmetric spaces. Now, up to replacing G by a finite-index subgroup, we
can assume that G preserves the product. Note that G still has bVCyc by Lemma 2.9.
Now G maps to the isometry group of M1 , and we denote the image by G1 . Note
that G1 acts on M1 properly and discontinuously with finite covolume. Applying [1,
Theorem B(iii), page 5] again, we have that G1 contains a rank one isometry. Thus
G1 does not have bVCyc. By Lemma 2.8, G also does not have bVCyc.
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Remark 2.11 Conjecture A is also known for elementary amenable groups — see
[12, Corollary 5.8] — but we do not know whether an elementary amenable group has
bVCyc (or BVC) if and only if it is virtually cyclic.

Corollary 2.12 If G has bVCyc and surjects onto a finitely generated group Q that
lies in one of the classes described in Theorem 2.10, then Q is virtually cyclic. In
particular, the abelianization H1.G;Z/ is finitely generated of rank at most one.

3 Artin groups

In this section, we prove that an Artin group has bVCyc if and only if it is virtually
cyclic.

3.1 Basics about Artin groups

We give a quick definition of Artin groups; see [18] for more information about Artin
groups. An Artin group (or generalized braid group) A is a group with a presentation
of the form˝
x1;x2; : : : ;xn j hx1;x2i

m1;2Dhx2;x1i
m2;1; : : : ;hxn�1;xni

mn�1;nDhxn;xn�1i
mn;n�1

˛
;

where mi;j Dmj;i 2 f2; 3; : : : ;1g for i < j, and, for mi;j 2 f2; 3; : : : g, hxi ; xj imi;j

denotes an alternating product of xi and xj of length m, beginning with xi . For
example, hx1; x3i3 D x1x3x1 . When mi;j D1, there is (by convention) no relation
for xi and xj .

This data can be encoded by a Coxeter diagram; this is a labeled graph with n vertices
v1; : : : ; vn , where two vertices vi and vj are connected by an edge if mi;j � 3 and
edges are labeled by mi;j whenever mi;j � 4.

Given an Artin group with the above presentation, one further obtains a Coxeter
group W by adding the relation x2i D 1 for all i . We say that the Artin group A
is of spherical type if the associated Coxeter group W is finite. When the Coxeter
diagram associated to the Artin group is connected, the groups A and W are said to
be irreducible, otherwise reducible.

3.2 The bVCyc property for Artin groups

We first deal with the case when the Coxeter group corresponding to the Artin group is
virtually cyclic.
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Proposition 3.1 Let A be an Artin group and let W be its corresponding Coxeter
group. If W is infinite virtually cyclic, then A does not have bVCyc.

Proof By Lemma 2.4, we have a unique maximal finite normal subgroup F of W
such that W=F is either isomorphic to Z or Z=2�Z=2. On the other hand, one easily
calculates that W=ŒW;W � is a direct product of copies of Z=2, hence W=F must be
isomorphic to Z=2 �Z=2 in this case. This means that W=ŒW;W � has at least two
copies of Z=2. This further shows that A=ŒA;A� contains a copy of Z2 . Now, by
Corollary 2.12, it follows that A does not have bVCyc.

Proof of Theorem B Since Coxeter groups are linear, we know that a Coxeter group
has bVCyc if and only if it is virtually cyclic by Theorem 2.10. Hence we are left to
consider the case when the Coxeter group H is finite by Lemma 2.8. In this case, A is
an Artin group of spherical type. Calvez and Wiest showed that in the case that A is
an irreducible Artin group of spherical type and it is not right-angled, then A=Z.A/ is
acylindrically hyperbolic [5, Theorem 1.3]. Since RAAGs are CAT(0) cube groups,
by Theorem 2.10 and Lemma 2.8, it follows that irreducible Artin group of spherical
type do not have bVCyc unless they are virtually cyclic. When A is not irreducible, it
splits as a direct product of irreducible ones; in particular, H1.A;Z/ is a free abelian
group of rank at least two, and thus reducible Artin groups do not have bVCyc by
Corollary 2.12.

4 Conjugacy growth of groups acting on CAT(0) spaces

In this section, we study the conjugacy growth of groups acting properly on CAT(0)
spaces via semisimple isometries. We will show that when such groups contain Z2 as
a subgroup, they have strictly faster than linear conjugacy growth. As a consequence,
we show that a CAT(0) cube group has at most linear conjugacy growth if and only
if it is virtually cyclic. Part of the ideas of the proof given here are drawn from our
previous paper [21, Section 4], where we studied the BVC property for CAT(0) groups.

4.1 Quick review on conjugacy growth

Let G be a group with a finite symmetric generating set S. We define the word metric
on G as

dS .g; h/Dminfn j g�1hD s1s2 � � � sn; si 2 Sg:
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2892 Timm von Puttkamer and Xiaolei Wu

For any g 2G, we define the word length of g via

jgjS D dS .e; g/;

where e is the identity element of G. Now, given n > 0, we denote by Bn.G; S/
the ball of radius n around the identity element with respect to the word metric. The
word growth function is the function that maps n > 0 to jBn.G; S/j, ie the number of
elements of distance at most n from the identity.

Now given n>0, we can consider the conjugacy classes in Bn.G; S/, which we denote
by Bcn.G; S/. The conjugacy growth function gc.n/ assigns to n > 0 the number
jBcn.G; S/j, ie the number of conjugacy classes in G which intersect Bn.G; S/. For
f; gW N!N , we write f �g if there is some constant C 2N such that f .n/�g.Cn/
for all n 2 N . If f � g and g � f , we say that f and g are equivalent and write
f � g . Under this equivalence relation, the growth function and the conjugacy growth
function are independent of the choice of generating set. We say that a group has linear
(resp. at most linear) conjugacy growth if gc.n/ � n (resp. gc.n/ � n), and we say
that a group has exponential conjugacy growth if gc.n/� 2n , or equivalently if

lim inf
n!1

log jBcn.G; S/j
n

> 0:

For more information about conjugacy growth, we refer to [8; 9].

4.2 Conjugacy growth of groups acting on CAT(0) spaces

We now review some standard terminology from [3].

Definition 4.1 [3, II.6.1] Let X be a metric space and let g be an isometry of X. The
displacement function of g is the function dg W X !RC D fr � 0 j r 2Rg defined by
dg.x/Dd.gx; x/. The translation length of g is the number jgj WD inffdg.x/ jx 2Xg.
The set of points where dg attains this infimum will be denoted by Min.g/. More
generally, if G is a group acting by isometries on X, then Min.G/ WD

T
g2G Min.g/.

An isometry g is called semisimple if Min.g/ is nonempty. An action of a group by
isometries of X is called semisimple if all of its elements are semisimple.

The following theorem is known as the flat torus theorem [3, II.7.1]:

Theorem 4.2 Let A be a free abelian group of rank n acting properly by semisimple
isometries on a CAT (0) space X. Then:

(a) Min.A/D
T
˛2A Min.˛/ is nonempty and splits as a product Y �En ; here En

denotes Rn equipped with the standard Euclidean metric.
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(b) Every element ˛ 2 A leaves Min.A/ invariant and respects the product decom-
position; ˛ acts as the identity on the first factor Y and as a translation on the
second factor En .

(c) The quotient of each n–flat Y �En by the action of A is an n–torus.

It is clear that the translation length is invariant under conjugation, ie jhgh�1j D jgj
for any g; h 2 G. Moreover, for g semisimple, we have that jgnj D jnj � jgj for any
n 2 Z, eg by the flat torus theorem.

The following theorem is proven by Paul Bernays in his PhD thesis [2], which general-
izes results of Landau and Ramanujan; see the introduction of [4] for more information.

Theorem 4.3 Let f .x; y/D ax2C bxyC cy2 be a primitive quadratic form over Z

with nonsquare discriminant DDb2�4ac, and suppose f is positive if it is definite. Let
Bf .n/ be the number of positive integers less than or equal to n which are representable
by f . Then Bf .n/ grows asymptotically as fast as n=

p
lnn, ie the limit

lim
n!1

Bf .n/

n=
p

lnn
exists and has a positive value.

Corollary 4.4 Let V1 and V2 be two linearly independent vectors in the plane R2 ,
and let S.n/ be the number of elements in

fkxV1CyV2k j kxV1CyV2k � n; x; y 2 Zg:

Then S.n/ grows asymptotically the same as n2=
p

lnn or n2 .

Proof This is basically [19, Proposition 1]. Recall that a two-dimensional lattice L is
said to be arithmetic if and only if there exists a real number � such that �L is isometric
to a Z–submodule of rank two in an imaginary quadratic number field, otherwise it is
said to be nonarithmetic. If the lattice corresponding to V1 and V2 is nonarithmetic,
we obtain quadratic growth by [13, Corollary, page 166]. Otherwise, possibly after
scaling, we can apply Theorem 4.3 to obtain a growth rate of n2=

p
lnn.

Recall that a CAT(0) group is a group which acts properly and cocompactly on a CAT(0)
space via isometries.

Theorem 4.5 Let G be a CAT (0) group which contains Z2 as a subgroup; then the
conjugacy growth of G is strictly faster than linear.
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Proof Fix a generating set S D hs1; s2; : : : ; ski for G and assume that G acts on
the CAT(0) complex X properly and cocompactly. Since G contains Z2 and the
asymptotics of the conjugacy growth function do not depend on S, we can assume that
the elements s1 and s2 are a generating set for H Š Z2 in G. Now, by the flat torus
theorem, H acts on a flat plane P inside X via translations. Let x0 be a point in P ;
the translation length of any h2H can now be calculated easily via dX .x0; hx0/ again
by the flat torus theorem. Moreover, by the Švarc–Milnor lemma [3, I.8.19], there exist
C;D > 0 such that, for any g1; g2 2G,

dS .g1; g2/� CdX .g1x0; g2x0/CD:

Now, given n > 0, let BcH .n/ be the conjugacy classes of elements in H with word
length � n. Since translation length is an invariant of the conjugacy classes and
jgj D dX .x0; gx0/ for any g 2H, we have

fjgj j jgj � n; g 2H g � BcH .nC CD/:

Now, by Corollary 4.4, fjgj j jgj�n; g2H g grows already faster than linear, hence the
same holds for BcH .n/. Thus the conjugacy growth of G is also faster than linear.

In order to prove the rest of Theorem C, we also need the following result, which is
essentially due to Caprace and Sageev [6]:

Lemma 4.6 [21, Lemma 4.15] Let G be a group which acts on a CAT (0) cube
complex X properly and cocompactly via isometries and suppose that G is not virtually
cyclic. Then either G contains a rank one isometry or G contains a free abelian
subgroup of rank 2.

Theorem 4.7 A CAT (0) cube group has at most linear conjugacy growth if and only
if it is virtually cyclic.

Proof By Lemma 4.6, we only need to deal with the case that G contains a rank
one isometry or Z2 . If G contains a rank one isometry, then G is acylindrically
hyperbolic [22] and has exponential conjugacy growth [9, Theorem 1.1]. When G
contains Z2 , the result is implied by Theorem 4.5.

As an application of Theorem 4.7, we give a new proof of [21, Corollary 4.16].

Corollary 4.8 A CAT (0) group containing Z2 does not have BVC. In particular, a
CAT (0) cube group has BVC if and only if it is virtually cyclic.
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Proof By [20, Corollary 2.5], a CAT(0) group has BVC if and only if it has at most
linear conjugacy growth. BVC implies bVCyc by definition [20, Definition 1.10]. Now
the corollary is implied by Theorems 4.5 and 4.7.

Remark 4.9 Using [6, Corollary 6.4], one can actually prove that a CAT(0) cube
group has exponential conjugacy growth if and only if it is not virtually abelian.

5 Finiteness of the classifying space BG

Given a group G and a family of subgroups F of G, we now want to study the
finiteness properties of the classifying space BF .G/DEF .G/=G. Again we shall use
the convention that BG D BF in.G/ and BG D BVCyc.G/. As the G–homotopy type
of EF .G/ is uniquely determined, so is the homotopy type of BF .G/. If E and F are
G–CW–complexes with stabilizers in F, a homotopy equivalence between E=G and
F=G need not imply the existence of a G–homotopy equivalence between E and F .
The situation is different for the trivial family F D T R, since EG is the universal
cover of BG. Thus finiteness conditions of the G–CW–complex EG are equivalent
to finiteness conditions of the CW–complex BG. The following question goes back to
[11, Remark 17] and motivated our study:

Question 5.1 (Question D) Suppose BG is homotopy equivalent to a finite CW–
complex. Is BG necessarily contractible?

In contrast to Question 5.1, in the case of the family of finite subgroups, Leary and
Nucinkis [15] showed that every connected CW–complex is homotopy equivalent
to BG for some group G. By [15, Proposition 3] we know that �1.BF .G//ŠG=N,
where N is the smallest normal subgroup of G containing all subgroups of F. In
particular, it follows that BG is simply connected for any group G. Then Question 5.1
is equivalent to the question whether BG is contractible if all homology groups
H�.BGIZ/ are finitely generated. Question 5.1 appears to be more difficult than
Conjecture A in the sense that our proofs for certain classes of groups depend on the
validity of Conjecture A.

5.1 Lück–Weiermann construction

Suppose we have a group G and two families of subgroups F � G of G. We want
to recall a construction due to Lück and Weiermann [17] that allows us to obtain a
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model for EG.G/ from a model for EF .G/ using a pushout. The spaces that are being
attached are classifying spaces for certain generalized normalizer subgroups. We will
be interested in the case that F D F in and G D VCyc. Note that for large classes of
groups there exist finite models for the classifying space of proper actions. Our strategy
in answering Question 5.1 can then be outlined as follows: For certain classes of groups
we shall obtain EG from EG by attaching infinitely many classifying spaces. In a
second step we compute the homology of EG, at least partially, in the hope that the
attached classifying spaces generate enough classes in the homology of EG.

To perform the construction we will assume that the set G n F of subgroups of G
is equipped with an equivalence relation � that satisfies the following additional
properties, which we will refer to as (P):

(P) (a) If H;K 2 G nF with H �K, then H �K.

(b) If H;K 2 G nF and g 2G, then H �K if and only if gHg�1 � gKg�1.

Notation 5.2 We let ŒGnF � denote the set of equivalence classes under the equivalence
relation � and we denote by ŒH �2 ŒGnF � the equivalence class of an element H 2GnF.

By property (2) of (P) the G–action by conjugation on the set GnF induces a G–action
on ŒG nF �. We then define the subgroup

NG ŒH �D fg 2G j Œg
�1Hg�D ŒH �g;

which is equal to the isotropy group of ŒH � under the G–action we just explained.

Moreover, we define a family of subgroups of NG ŒH � by

GŒH �D fK �NG ŒH � jK 2 G nF ; ŒK�D ŒH �g[ .F \NG ŒH �/:

Note that GŒH �� G.

Definition 5.3 (equivalence relation on VCyc nF in) In the case that F D F in and
G D VCyc, we choose the equivalence relation defined by

V �W () jV \W j D1;

where V;W 2 VCyc nF in.

Theorem 5.4 [17, Theorem 2.3] Let F � G and � as above an equivalence relation
on G n F satisfying (P). Let I be a complete system of representatives ŒH � of the
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G–orbits in ŒG n F � under the G–action induced by conjugation. Choose arbitrary
NG ŒH �–CW–models for EF\NG ŒH�.NG ŒH �/ and EGŒH�.NG ŒH �/, and an arbitrary
G–CW–model for EF .G/. Define a G–CW–complex X by the cellular G–pushout`

ŒH�2I G �NG ŒH�EF\NG ŒH�.NG ŒH �/ EF .G/

`
ŒH�2I G �NG ŒH�EGŒH�.NG ŒH �/ X

`
ŒH�2I idG�NG ŒH�fŒH�

i

such that fŒH� is a cellular NG ŒH �–map for every ŒH � 2 I and i is an inclusion
of G–CW–complexes, or such that every map fŒH� is an inclusion of NG ŒH �–CW–
complexes for every ŒH � 2 I and i is a cellular G–map. Then X is a model for
EG.G/.

Notation 5.5 Let F � G be two families of subgroups of G. We say that G satisfies
.MF�G/ if every subgroup H 2 G nF is contained in a unique subgroup Hmax which
is maximal in G nF, ie if K 2 G nF with Hmax �K, then K DHmax .

We say that a group G satisfies .NMF�G/ if G satisfies .MF�G/ and every maximal
subgroup Hmax 2 G nF is a self-normalizing subgroup, ie NGHmax DHmax .

Corollary 5.6 Let G be a group satisfying .MF in�VCyc/. Let M be a complete
system of representatives of the conjugacy classes of maximal infinite virtually cyclic
subgroups V �G. Then EG can be obtained by the cellular G–pushout

`
V 2MG �NGV ENGV EG

`
V 2MG �NGV EWGV EG

`
F2M idG�fV

i

Here, EWGV is viewed as an NGV –CW–complex via the projection map NGV �
WGV DNGV=V , the maps starting from the left upper corner are cellular and one of
them is an inclusion of G–CW–complexes.

Corollary 5.7 Let G be a group satisfying .NMF in�VCyc/ and let M be a complete
system of representatives of the conjugacy classes of maximal infinite virtually cyclic
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subgroups. Then EG can be obtained via the cellular G–pushout

`
V 2MG �V EV EG

`
V 2MG=V EG

`
V2M p

i

Here, i is an inclusion of G–CW–complexes and p is the obvious projection.

Lemma 5.8 Let G be a group and let I be a complete set of representatives of
conjugacy classes of elements in ŒVCyc nF in� as in the statement of Theorem 5.4. If
G has bVCyc, then I is finite.

Proof Let V1; : : : ; Vn be witnesses to bVCyc for G. We claim that jI j � n. For each
Vi that is infinite, choose some infinite cyclic subgroup Hi � Vi . If V �G is some
infinite virtually cyclic subgroup, choose some infinite cyclic subgroup H � V . By
the bVCyc property there exists some g 2G such that Hg � Vj for some j. But then
Hg \Hj is an infinite group, hence V g �Hj .

In the light of Lemma 5.8 one has to be cautious that the converse does not hold. First
of all, observe that representatives of ŒVCycnF in� might as well be taken to be infinite
cyclic. Then having finitely many conjugacy classes of elements in ŒVCyc nF in� is
equivalent to the statement that there are only finitely many commensurability classes
of infinite-order elements in the group. Note that by [20, Lemma 4.14] there exists a
torsion-free group with only two commensurability classes that fails to have bCyc.

Definition 5.9 For a group G we denote by Tor.G/ the subgroup of G which is
generated by all elements of finite order.

As noted in the introduction of this section, we have �1.BG/ŠG=Tor.G/.

Remark 5.10 Tor.G/ is a characteristic subgroup of G. In general, the subgroup
Tor.G/ contains elements of infinite order and the quotient G=Tor.G/ is not torsion-
free. As an example, consider G D Z �Z D1 D hg; a; b j g

2 D ab; a2 D 1 D b2i.
There is an epimorphism � W G ! Z=2 by killing a and b . In an amalgamated
product, an element of finite order is conjugate to an element lying in one of the factor
groups. Hence Tor.G/� ker.�/, and thus g … Tor.G/ defines an element of order 2
in G=Tor.G/.
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Suppose ˛W G !Q is a group homomorphism. It induces a map B˛W BG ! BQ

and �1.B˛/ can then be identified with the natural map

G=Tor.G/!Q=Tor.Q/

which is induced by ˛ . Thus H1.B˛/W H1.BG/!H1.BQ/ can be identified with
the abelianization of the above map,

H1.B˛/W .G=Tor.G//ab
! .Q=Tor.Q//ab:

For an abelian group A, we write Af D A=Tor.A/ for the torsion-free part.

Lemma 5.11 Let G be a group satisfying .MF in�VCyc/; then there is an exact se-
quence

� � � !

M
V 2M

H2.BNGV /!H2.BG/˚
M
V 2M

H2.BWGV /!H2.BG/

!

M
V 2M

.NGV=Tor.NGV //ab
! .G=Tor.G//ab

˚

M
V 2M

.WGV /
ab
! 0:

Proof The long exact sequence arises as the Mayer–Vietoris sequence for the pushout
obtained from Corollary 5.6.

To proceed, we need the following lemma, which determines the topology of BV for
V virtually cyclic:

Lemma 5.12 Let V be a virtually cyclic group. Then BV is contractible if and
only if V is finite or nonorientable. If V is orientable, then BV D S1 . In particular,
Hn.BV IZ/D 0 for n� 2 in all cases.

Proof For V D Z, we have of course BV D BV D K.V; 1/ D S1 . For V D
D1 D Z=2�Z=2 the infinite dihedral group, we get that �1.BD1/D 1 since D1
is generated by elements of finite order. But more is true: we have R as a model for
ED1 , and moreover R=D1 Š

�
0; 1
2

�
.

More generally, if V is an orientable virtually cyclic group, there exists an epimorphism
� W V ! Z with finite kernel. Then R serves as a model for EV by pulling back the
standard Z–action on R via � . Thus BV D S1 . Similarly, if V is nonorientable, then
BV is contractible.

Algebraic & Geometric Topology, Volume 20 (2020)



2900 Timm von Puttkamer and Xiaolei Wu

Lemma 5.13 Let G be a group satisfying .NMF in�VCyc/ and let M be a complete
system of representatives of the conjugacy classes of maximal infinite virtually cyclic
subgroups. Then there is an exact sequence

0!H2.BG/!H2.BG/!
M
V 2M

.V=Tor.V //ab
! .G=Tor.G//ab

! 0:

Here, H2.BG/! H2.BG/ is induced by the canonical map BG ! BG and the
inclusions V ! G for V 2M induce the other map. For n > 2, the canonical map
Hn.BG/!Hn.BG/ is an isomorphism. Moreover, note thatM

V 2M

.V=Tor.V //ab
Š

M
V 2Mo

Z;

where Mo denotes the subset of M consisting only of orientable infinite virtually
cyclic subgroups.

Proof By taking the G–quotient of the pushout of Corollary 5.7 we obtain the long
exact sequence

� � � !

M
V 2M

H2.BV /!H2.BG/!H2.BG/!
M
V 2M

H1.BV /!H1.BG/! 0:

The sequence is exact at the right, since BG is simply connected, so H1.BG/D 0.
By Lemma 5.12, Hn.BV /D 0 for all virtually cyclic groups V for n� 2.

Remark 5.14 Lemma 5.13 in particular applies to hyperbolic groups and this is basi-
cally how Juan-Pineda and Leary give a positive answer to Question 5.1 for hyperbolic
groups [11, Corollary 16].

5.2 Abelian and poly-Z–groups

Juan-Pineda and Leary computed in [11, Example 3] that H2.BZ2/ and H3.BZ2/

are free abelian of infinite rank using an explicit model that they constructed. Let us
consider more generally G D Zn for n � 2. Using Corollary 5.6 and the fact that
NGV DG DZn and WGV DG=V ŠZn�1 for V maximal infinite cyclic, we obtain
the long exact sequence

0!HnC1.BG/!
M
V 2M

Hn.BG/!Hn.BG/˚
M
V 2M

Hn.BZn�1/! � � � ;

where M denotes the set of maximal infinite cyclic subgroups of G. Note that M is
infinite and since Hn.BZn�1/D 0 and Hn.BZn/ŠZ, it follows that HnC1.BG/ is
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a free abelian group of infinite rank. This also implies that gd.Zn/ � nC 1. In fact,
by [17, Example 5.21] we have gd.Zn/D nC 1. For G finitely generated abelian we
have G Š Zn˚T with T finite abelian. It follows that HnC1.BG/ contains a free
abelian subgroup of infinite rank as a direct summand whenever G is not virtually
cyclic.

Proposition 5.15 Let G be an abelian group that is not locally virtually cyclic. Then
H2.BG/ is not finitely generated.

Proof First note that an abelian group is locally virtually cyclic if and only if it does
not contain a copy of Z2 as a subgroup. In particular, it follows that the complete set I
of representatives of elements in ŒVCyc nF in� is infinite. Since G is abelian, we have
NG ŒV �DG for any virtually cyclic V . By Theorem 5.4 there exists a G–pushout`

V 2I G �G EG EG

`
V 2I G �EVCycŒV �G EG

`
V2I idG�GfŒV �

i

Here, VCycŒV �D fK �G jK 2 VCyc.G/ and jK \V j D1g[F in. After taking the
quotient by G we obtain the following part of the Mayer–Vietoris sequence:

� � �!H2.BG/!
M
V 2I

H1.BG/!H1.BG/˚
M
V 2I

H1.BVCycŒV �G/!H1.BG/D 0:

As before, let Gf D G=Tor.G/ denote the torsion-free quotient of G. Now the last
nontrivial map in the long exact sequence can be identified with

� W
M
V 2I

Gf !Gf ˚
M
V 2I

Gf =NV ;

where NV D hK jK cyclic and jK\V j D1g�Gf and given by the sum of idG and
the canonical projections. Then ker.�/D

˚
.gV /V 2I 2

L
V 2I NV j

P
V 2I gV D 0

	
,

which is not finitely generated. Then H2.BG/, which surjects onto ker.�/, cannot be
finitely generated.

We see in particular that an abelian group G has a contractible classifying space BG if
and only if it is locally virtually cyclic. It is also worthwhile to note that a torsion-free
locally cyclic group is isomorphic to a subgroup of the rational numbers Q; see eg [14,
Chapter VIII, Section 30].
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We call a group G poly-Z if there exists a chain of subgroups 1 D G0 � G1 �

G2 � � � � � Gn D G such that Gi E GiC1 and GiC1=Gi is infinite cyclic for all
i D 0; 1; : : : ; n� 1. Note that poly-Z–groups do not necessarily satisfy the condition
MF in�VCyc . An example is already provided by the nontrivial extension ZÌZ; see
[17, Example 3.7]. For a poly-Z–group G we know that the cohomological dimension
cd.G/ is given by cd.G/Dmaxfi jHi .GIZ=2/¤ 0g; see eg [16, Example 5.26].

Proposition 5.16 Let G be a poly-Z–group that is not infinite cyclic. Then there is
some n such that Hn.BGIZ=2/ is not finitely generated.

Proof By [16, Example 5.26] we know that there exists a finite model for EH for
any virtually poly-Z–group H. In [17, Theorem 5.13] a model of minimal dimension
for EG is constructed. In the course of this proof one obtains the pushout, where the
index set I runs over certain infinite cyclic subgroups of G,`

C2I G �NGC ENGC EG

`
C2I G �NGC EWGC EG

`
C2I idG�NG CfC

i

Here, i is an inclusion of G–CW–complexes and fC is a cellular NGC –map for every
C 2 I. Observe that I has to be infinite. Otherwise, we would obtain a classifying space
EG of finite type since NGC and WGC are virtually poly-Z. But this is impossible
by Theorem 2.10 since G is solvable but not virtually cyclic. By taking the quotient
by G one obtains the pushout`

C2I BNGC BG

`
C2I BWGC BG

Of course, as G is torsion-free, we have BG D BG and BNGC D BNGC. From the
pushout, we obtain the Mayer–Vietoris sequence, suppressing the coefficient group Z=2

in the notation,

� � � !HkC1.BG/!Hk

� a
C2I

BNGC

�
!Hk.BG/˚Hk

� a
C2I

BWGC

�
! � � � :
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We also note that gd.G/D vcd.G/D cd.G/, gd.NGC/D cd.NGC/ and gd.WGC/D
cd.NGC/� 1, the proof of which can be found in the proof of [17, Theorem 5.13]
as well. In particular, we see that the homology groups of all spaces appearing in
the pushout will vanish in large enough degrees. Now, let k be the largest integer
such that there are infinitely many C 2 I with gd.NGC/D k and with only finitely
many C 2 I with gd.NGC/ D k C 1. Then there are only finitely many C 2 I

with gd.BWGC/ � k . Observe that Hk.NGC IZ=2/¤ 0 for infinitely many C. As
Hk.BG/ is finite, the above exact sequence shows that HkC1.BG/ cannot be finitely
generated.

As a corollary we obtain an affirmative answer to Question 5.1 for the class of poly-Z–
groups.
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