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Vanishing of cohomology and parameter rigidity
of actions of solvable Lie groups, II

Hirokazu Maruhashi*

Abstract

Let M 22 S beaC® locally free action of a connected simply connected
solvable Lie group S on a closed manifold M. Roughly speaking, po is parameter
rigid if any C*° locally free action of .S on M having the same orbits as pg is C™°
conjugate to po. In this paper we prove two types of result on parameter rigidity.

First let G be a connected semisimple Lie group with finite center of real rank at
least 2 without compact factors nor simple factors locally isomorphic to SO (7, 1)
(n > 2)or SU(n,1) (n > 2), and let I" be an irreducible cocompact lattice in
G. Let G = KAN be an Iwasawa decomposition. We prove that the action
I'\G ~~ AN by right multiplication is parameter rigid. One of the three main
ingredients of the proof is the rigidity theorems of Pansu and Kleiner—Leeb on the
quasiisometries of Riemannian symmetric spaces of noncompact type.

Secondly we show, if M A Sis parameter rigid, then the zeroth and first
cohomology of the orbit foliation of po with certain coefficients must vanish. This
is a partial converse to the results in the author’s [17], where we saw sufficient
conditions for parameter rigidity in terms of vanishing of the first cohomology with
various coefficients.
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This paper consists of two parts. The first part, Section [l to Section 4] deals with
parameter rigidity of certain actions. Section[l| serves as the introduction for the first
part. The second part is on necessary conditions for parameter rigidity in terms of
vanishing of cohomology, and it is from Section[3]to Section[7] where Section[3serves
as the introduction for the second part.

1 Parameter rigidity of the action of AN on ['\G

Let M A SbeaC™® locally free (ie the isotropy subgroup of every point is discrete)
action of a connected simply connected solvable Lie group S on a closed C°*° manifold
M. Let F be the set of all orbits of pg, which is called the orbit foliation of py and
actually is a C'* foliation of M. We say pq is parameter rigid if every C*° locally free
action M A S with the same orbit foliation as that of po 1S parameter equivalent to pg.
(We do not assume that p is close to pg in some topology.) Here parameter equivalence
between p and pg means the following. There exist a diffeomorphism F' of M and an
automorphism ® of S such that:

* F(po(z,s)) =p(F(x),®(s)) forallz € M and s € S
* the map F preserves each leaf of F, thatis, F(L) C Lforall L € F

« the map F' is C° homotopic to the identity map of M through C'°° maps which
preserve each leaf of F.

For example a linear flow on a torus is parameter rigid if and only if the velocity
vector satisfies the Diophantus condition.
In [[11] and [12] Katok and Spatzier proved the following.

Theorem 1 (Katok—Spatzier). Let G be a connected semisimple Lie group with finite
center of real rank at least 2 without compact factors nor simple factors locally isomor-
phicto SO¢(n,1) (n > 2) or SU(n, 1) (n > 2), and let T be an irreducible cocompact
lattice in G. Let G = K AN be an Iwasawa decomposition. Then the actionT'\G ~~ A
by right multiplication is parameter rigid.

This is proved using representation theory of semisimple Lie groups and has lead
to a number of subsequent research. In this paper we prove the following, based on the
above theorem and applying large scale geometry.



Theorem 2. Under the same assumptions as Theoreml[l] the action T\G «~ AN by
right multiplication is parameter rigid.

We give a proof of this theorem in Section[3land Section@lafter recalling the results
in Maruhashi [17] in Section[2l The proof is a combination of the following three steps:

1. vanishing of cohomology = parameter rigidity.
This is the sufficient condition for parameter rigidity proved in [[17]. In the current
article this is Theorem[4]

2. cohomology vanishing results.
These are by Katok—Spatzier [[11], [12] and Kanai [10]. See Theorem and
Corollary[[2in this paper

3. bridging the gap between Step [ and Step[2l

This is because the cohomology vanishing results are available only for finitely
many coefficients, while the sufficient condition for parameter rigidity requires
vanishing of cohomology for seemingly much more coefficients. Here we use
Proposition[6] which shows the relevance to large scale geometry. Then the main
point is that our acting group AN is isometric to G/ K by Iwasawa decomposition
G = ANK. So we can use the rigidity theorems of Pansu [18]] and Kleiner-Leeb
[13] on quasiisometries of symmetric spaces, and a certain rigidity property of
quasiisometries of hyperbolic spaces proved in Farb—Mosher [5]] and Reiter Ahlin
[19].

Theorem [2] shows a contrast between the higher rank case and @(Q,R), the
universal cover of PSL(2, R), for which Asaoka [[1]] gives (generally) nontrivial orbit-
preserving deformations of the actions of AN by right multiplication.

Theorem 3 (Asaoka [[1l]). Let " be a cocompact lattice in 15§£(2, R) and let

{0 o w{( D)

Let ®r be the flow on F\I/;S/L@, R) defined by the action of A by right multiplication,
P be the set of oriented periodic orbits of ®r and 7(7y) be the period of -y for v € P.

Consider
sup lat)I _ 1}
~EP T(FY)

Ap = {a cH' (F\Iﬁ(z,R);R)

which is an open neighborhood of 0 in H* (F\Pgi@, R); R). Then there exists an

analytic locally free action p, of AN on F\f’gi(lR) for each a € Ar with the
following properties:

* The action py is defined by the right multiplication.
o All the p,’s have the same orbit foliation F.

* Actions p, and p, are not parameter equivalent if a # a'.



* Any C® locally free action of AN whose orbit foliation is F is parameter
equivalent to p, for some a € Arp.

e The action p, does not preserve any C° volume form on F\ﬁ(l R) except
when a = 0.

We also know how the action p,, is controlled by the cohomology class a, but we
refer the reader to [1] for that and more information. Note that the above deformation
is different from the nonorbit-preserving deformation coming from the deformation of
the lattice, whose deformation space has the dimension equal to that of Teichmiiller
space, because such deformations are necessarily C° volume preserving.

2 Preliminaries

This section is a summary of the results we need later, proved in Maruhashi [17]]. See
[[L7] for the detail. In this paper Lie algebras are denoted by the corresponding lowercase
Fraktur of the corresponding Lie groups. The symbol T'( - ) denotes the set of all C*°
sections of a vector bundle.

2.1 Leafwise cohomology

Let M A SbeaC™ locally free action of a connected simply connected solvable Lie
group S on a closed manifold M with the orbit foliation F. Let wg € T’ (Hom(T'F, s))
denote the canonical 1-form of pg, ie (wo)z: ToF — s for x € M is defined as the
inverse of the derivative at the identity of the map S — M, s — po(x, s). Let

dr: T (;\T*]—') — T <p/+\lT*]:>

be the leafwise exterior derivative of F, defined by the same formula as the usual exterior
derivative. Then wy satisfies the Maurer—Cartan equation d rwg + [wo,wo] = 0. Here
drwo and [wo, wp)| are defined by

d]:WQ(X, Y) = Xwo(Y) — YWQ(X) — Wy ([X, Y])

and
[wo, wo] (X, Y) = [wo(X),wo(Y)]

for X,Y € T(TF). Lets A Vbea representation of 5 on a finite dimensional real
vector space V. Then mwy € I' (Hom (T'F, End(V))) satisfies

drmwy + [rwo, Two] = 0.

We regard mwy as the connection form of a flat F-partial connection V of the trivial
vector bundle M x V' — M relative to any global frame of the bundle which has
constant V' components, ie Vxv = 7 (wo(X)) v for X € T'(T'F) and v € V, where



v is regarded as a section of M x V. — M. Hence V¢ = dr& + mwoé for general
& € T(V). The exterior derivative of V is

p p+1
r </\T*f®v> =T </\ T*]—'®V>
w = drw + Two A w,

where our definition of exterior product is

p+1

(7Tw0 A\ w) (Xl, c. ,Xp+1) = Z(—l)iJATFWQ(Xi)W (Xl, e ,3—(\1‘, - ,Xp+1) .
=1

The square of this operator is zero by the flatness. The cohomology H* (]—' 15 V)
of this complex is the leafwise cohomology of F with coefficient w. Recall that the

cohomology H* (5; 5 A V) of the Lie algebra s with coefficient 7 is obtained from

the complex Hom (/\" s, V). We have an injective cochain map

o () 1 (o
P = W,
where wy is the pullback by wg. Then by Lemma 2.1.3 of [17], the induced map
H* (5;5 A V) = H (]—";5 A V)
is injective and we see H* (5;5 A V) as a subspace of H* (}'; 5 V).

2.2 A sufficient condition for parameter rigidity

Let n denote the nilradical of s. We have [s,5] C n. Take a subspace h such that
[s,5] C b C n. Then b is a nilpotent ideal of s and let

hoh2D---0h1 D0

. . . . . . d
be the lower central series of h. This filtration of § is invariant with respect to s ~ b.
Let

d
s A Gr(h) = Phi/p
=1

be the associated graded quotient. Since b acts trivially, we get s/h S Gr(h).

Let A(F,.S) be the set of all C° locally free actions M «~ S with the orbit foliation
F. Let p € A(F,S), and let w denote the canonical 1-form of p. Let p: s — s/b
denote the natural projection. Applying p to drw + [w,w] = 0, we get drpw = 0.



Assume H'(F) = H'(s). Then [pw] € H' (F;s/h) = H' (s;5/h). So there exist a
unique linear map ¢, : § — s/h which vanishes on [s,s] and a C* map h: M — s/h
such that

pw = powo + drh.

The map ¢, is surjective by Lemma 2.2.2 of [17].
Theorem 4 (Maruhashi [17]). If
H'(F) = H'(s)

and
ad oy, ad oy,

H! (]-';s ~ Gr(h)) =H! (5;5 ~ Gr(f)))
for some b and for all p € A(F, S), then M A S is parameter rigid.
See Theorem 2.2.5 of [[17] for this theorem.

2.3 A property from large scale geometry

Letp € A(F,S)andleta,: M x S — S be the unique C'° map satisfying

po(z,s) =p(x,a,(z,s)) and a,(zr,1)=1

forallz € M and s € S. The map a, is defined since py and p have the same orbit
foliation. It is known that a,, is a cocycle over py.

Let X, B be metric spaces. A surjective map p: X — B is a distance respecting
projection if

d(b,0') = d (p~(0),p~ ' (V) = da (p~"(0),p~ ' (V)
holds for all b, b’ € B, where
d(p~(b),p~' (V) = inf {d(z,2") [ € p~(b), 2" € p~' (V') }
and dy denotes the Hausdorff distance. Let p: X — B and p’: X’ — B’ be distance
respecting projections. A diagram

x . x

L b

/
BTB

is fiber respecting or f is fiber respecting over ¢ if f and ¢ are maps and there exists a
constant C' > 0 such that dy (f (p=*(b)) , (p') ™" (0(b))) < C forall b € B.

Proposition 5. Let G be a connected Lie group and H a connected normal closed
subgroup of G. Take an inner product of g. Endow g/ with the inner product for
which the restriction b~ =5 g/ of the projection g — g/ is an isometry. Give G and
G/ H left invariant Riemannian metrics corresponding to these inner products. Then
the projection p: G — G/ H is a distance respecting projection.



Proof. This follows from Lemma 4.1.1 of [[17] by noting that H N g/b is trivial. O

Assume H'(F) = H'(s) for an action M A S and let p € A(F,S) and p,: 5 —
s/b,a,: M x S — S as above. Let K, and H be the Lie subgroups corresponding to
ker ¢, and bj. Then S/K, and S/H are vector groups. Let ¢,: S/K, — S/H be the
linear isomorphism with differential ¢, : s/ ker, ~ s/b.

Proposition 6 (Maruhashi [17]). For any p € A(F,S), x € M and b, consider the
diagram

ap(w:')

S—— S

| |

S/K, - S/H,

where the vertical maps are the natural projections. Fix an inner product of s and
give S, S/K, and S/ H left invariant Riemannian metrics considered in Proposition[5]
Then a,(zx, - ) is a fiber respecting biLipschitz diffeomorphism over ¢,. (In particular
ap(z,-) is a quasiisometry.)

See Proposition 4.1.4 of [17] for this proposition.

3 Reduction of the proof of Theorem 2] to Proposition

13

Let GG be a connected semisimple Lie group. Fix a Cartan decomposition g = £ & p
and a maximal abelian subspace a of p. Let X be the restricted root system of (g, a)
and fix a positive system >4 of X. Letn = @A€2+ g, where

on={Xeg|[H,X]|=XMNH)X forall H € a}

is a restricted root space. Let K, A and N be the Lie subgroups corresponding to ¢, a
and n. Then G = K AN is an Iwasawa decomposition. The group AN is a connected
simply connected solvable Lie group and its Lie algebra is an = n x a.

It is easy to show that n is the nilradical of an and n = [an, an]. So we must take
h = n to apply Theorem[@d Then

an/n=a S Gr(n) = G}ni/rm“rl

i>1

ad
amn= @ gx-

PYSIINE

is isomorphic to

To apply TheoremH] we must show H!(F) = H'(an) and then calculate cohomology
with coefficient

ad op . ad op
an ~ " Gr(n), ie an ~ ' n= @ gx ey
AEX 4



for any p € A(F,AN), where ¢,: an — a. Note that kerp, = n and ¢,|a €
ad oy, . . . . .
GL(a). The gx-component an ~ g in () is a direct sum of the 1-dimensional

. Aoy .
representation an . R. Therefore, we get the following.

Lemma 7. Let G be a connected semisimple Lie group. Fix a Cartan decomposition
g = €D p, a maximal abelian subspace a of p with the associated restricted root system
3 and a positive system ¥4 of ¥.. Let F be the orbit foliation of a C* locally free

action M 22 AN on a closed manifold M. If

H'(F) = H'(an) )
and
H <]—'; an %e R) —H (an; an o5 R) 3)

forany A € ¥4 and p € A(F, AN), then py is parameter rigid.

Before proving Theorem [2] we remark that the same result but with a stronger
assumption of real rank at least 3 follows easily from the following result of Kononenko
[[15) Theorem 8.2].

Theorem 8 (Kononenko [15]]). Let G be a connected semisimple Lie group with finite
center of real rank at least 3 whose simple factors are of real rank at least 2, and
let T' be an irreducible cocompact lattice in G. Let G = KAN be an Iwasawa
decomposition. Take pi: an — R be any nonzero linear function which vanishes on
n, and let i: AN — GL(1,R) be the homomorphism with differential . Then any
f-twisted C* cocycle over the action T\G v~ AN by right multiplication is C*
cohomologous to a constant cocycle. Equivalently we have

H! (]—';anry\vR) =H! (an;anr@R).

Corollary 9. Let G be a connected semisimple Lie group with finite center of real rank
at least 3 whose simple factors are of real rank at least 2, and let T be an irreducible
cocompact latticein G. Let G = K AN be an Iwasawa decomposition. Then the action
I'\G ~ AN by right multiplication is parameter rigid.

Proof. Under the assumptions of this corollary, @) in Lemma[7l follows from the case
A = 0 in Corollary[12]below and (B) in Lemmalf7 follows from Theorem|[8] which imply
parameter rigidity of the action. o

But this does not cover the case of real rank 2. In this case we only know vanishing
of the cohomology with coefficients corresponding to restricted roots.

Theorem 10. Let G be a connected semisimple Lie group with finite center of real rank
at least 2 without compact factors or simple factors locally isomorphic to SOg(n, 1)
(n > 2) or SU(n,1) (n > 2), and let T be an irreducible cocompact lattice in G.
Fix a Cartan decomposition g = ¥ @ p and a maximal abelian subspace a of p with
the associated restricted root system Y. Let F4 be the orbit foliation of the action
I\G ~ A by right multiplication. Then we have:



1. (Katok—Spatzier [12, Theorem 3.6])
H'(Fa) = H'(a)
2. (Kanai [10, Theorem 2.2])
H! (]—'A;afA\VR) =H! (a;arA\vR) =
forany X € %.

Remark 11. In Theorem 2.2 (2) of [10] it is written that « (a notation from [[10]) is
C* if the conditions (i) and (ii) from that paper are satisfied, but those conditions (i)
and (ii) are always satisfied, so that we get the above result.

Corollary 12. Let G be a connected semisimple Lie group with finite center of real rank
at least 2 without compact factors or simple factors locally isomorphic to SOg(n, 1)
(n > 2) or SU(n,1) (n > 2), and let T be an irreducible cocompact lattice in G.
Fix a Cartan decomposition g = € @ p, a maximal abelian subspace a of p with the
associated restricted root system Y and a positive system ¥ of X.. Let F be the orbit
foliation of the action T\G «\~ AN by right multiplication. Then we have

H' (]-'; an A R) —H' (an; an A R)

Jorany A € X U {0}, where A: a — R is regarded as \: an — R by extending it as 0
onn.

Proof. Let [w] € H* (}'; an A R), that is, drw + Awg A w = 0, where wy is the

canonical 1-form of I'\G \\ AN. By restriction to T F4 we get dr,w + Awg Aw = 0.
Note that wy restricts to the canonical 1-form of I'\G \~ A. So

[w] € H (fA;a/\\vR) =H! (a;af)\xR).

There exist a linear map ¢: @ — R such that A\(H)¢(H') — A(H')¢(H) = O forall H,
H' € aand a C*™ function h: T\G — R satisfying w = ¢wy + dr, h + Awoh. For
any H €caand X € g, foru € X,

0= Huw(X) = Xw(H) — p(H)w(X) + A(H)w(X)

= Hw(X) — X((b( )+ Hh+ AH)h) — p(H)w(X) + M H)w(X)
— Hw(X) — HXh — [X, HJh — A(H)Xh — p(H)w(X) + A(H)w(X)
) X+ ) o) X

If u # A, take Hy € a such that A\(Hy) — u(Hp) # 0. Then the above equation for
H = Hy and the boundedness of w(X) — X h imply w(X) — Xh = 0. If u = ), take
H # 0. We can apply Moore’s Ergodicity Theorem since G has finite center and no



compact factor and T is irreducible. So the flow e'f (¢t € R) has a dense orbit and
w(X) — Xh =1(X) forsome (X) € R. Letw’ = w — drh — Awph. Then

W' (H)=¢(H) forH € a,

W(X) = 0 for X € gy and pu # A
Y(X) for X e gyrand A € X,
/ 1 A
Therefore, [w] = [w'] € H (an; an R). O

By Corollary[12] the proof of TheoremPlreduces to the following proposition.

Proposition 13. Let G be a connected semisimple Lie group. Fix a Cartan decompo-
sition g = € @ p, a maximal abelian subspace a of p with the associated restricted root
system X and a positive system ¥ of 3. Let G = K AN be the corresponding Iwasawa

decomposition. Let M A AN be a C™ locally free action on a closed manifold M
with the orbit foliation F. If
H'(F) = H'(an)

and
H! (]—';an/\\vR) =H! (un;an/\\vR)

forall X € ¥4, where \: a — R is regarded as \: an — R by extending it linearly as
0 on n, then pg is parameter rigid.

Note that we need no assumption on the simple factors of G in this proposition.

Remark 14. In Theorem[I0] we assume that

(¥) G has no simple factors locally isomorphic to SOg(n,1) (n > 2) or SU(n, 1)
(n>2).

If 1 in Theorem [T0] is true without the assumption (), then 2 in Theorem [I0] and
Corollary [12] are true without the assumption (x). Hence Theorem 2] will be true
without the assumption () by Proposition[13]

4 Proof of Proposition [13]

To prove Proposition[I3] it suffices to show that A o ¢, |, € X forany A € ¥ and
any p € A(F, AN) by Lemmal[7l At this moment we know ¢,|q is only an element of
GL(a), so it is not clear whether ¢, |, preserves . To prove it we need rigidity of
quasiisometries of symmetric spaces.

For the proof of Proposition [13] we may assume that G has no compact factors,
since this does not change AN. Recall that Inn(g) = Ad(G) = G/Z(G), where Z(G)
denotes the center of G, and G/Z(G) has the trivial center. Replacing G with G/Z(G)
also does not change AN, so we may assume G = Inn(g) as well.

The mapping an — ankK gives a canonical diffeomorphism AN ~ G/K by the
Iwasawa decomposition. Henceforth we identify AN with G/K in this way. This is
AN equivariant.

10



Recall that the identification p ~ TxG/K is by X — £e'XK|_ . In the
following K denotes the subgroup K or the point K in G /K depending on the context.

G-invariant Riemannian metrics on G/ K are in one-to-one correspondence with inner

products on p invariant under % p. We equip G/ K with a G-invariant Riemannian
metric g corresponding to the restriction of By to p, where 6 is the Cartan involution
associated with the Cartan decomposition g = € @ p, B the Killing form of g and
By(X,Y) = —B(X,0Y) for X, Y € g. The restriction of By to p is the same as the
restriction of B top. We give AN the Riemannian metric which makes the identification
AN ~ G/K anisometry. This Riemannian metricis AN invariant. Geodesicsin G/ K
passing K at time 0 are of the form !X K (¢ € R) for X € p. Note that e!* K (¢ € R)
for X € g\ p is not a geodesic in general. In AN curves of the form net? (t € R) for
fixedn € N and H € a are geodesics.

The decomposition g = € @ p is orthogonal with respect to the positive definite
symmetric bilinear form By. Let g} be the orthogonal projection to p with respect
tog =t®pof gy for \ € ¥. The space g} has the same dimension as gy since
¢ = ker(0 — id) and fg, = g_,. This orthogonal projection maps an isomorphically
to p by the Iwasawa decomposition g = £ @ a @ n. Therefore,

p=a®n’, where n' = @ gl
AEX 4

Note that a | n’ since a L gy for A € ¥ and a L € with respect to By. Observe that
the differentiation
an ——— p=adn
| o
TYAN ——— TkG/K

at 1 of the identification AN ~ G/K maps an to p by the orthogonal projection with
respect to g = € @ p. Therefore, a maps identically to a and n maps isomorphically to
n. Soa L ninan.

For any p € A(F,AN) and x € M, consider the diagram

AN “@ AN

where p is the natural projection. We give A aleft invariant Riemannian metric for which
the restriction a — a of the natural projection an — a to n = a becomes an isometry,
ie we consider the restriction of B to a. Then p is a distance respecting projection by
Proposition[5land a,(x, - ) is a fiber respecting biLipschitz diffeomorphism over ¢, by
Proposition[6l

Since G = Ad(G), we have G = G; X --- X Gy, where G; is a connected
noncompact simple Lie group with trivial center. Since any two maximal compact
subgroups of GG are conjugate by an inner automorphism of G, we have K = K X - - - X

11



Ky, where K; is amaximal compact subgroupof G;and G/ K = G1 /K1 x- - -x Gy / K.
Let g; = & @ p; be the Cartan decomposition. Then p = p; & --- & py. Let g; be
the G;-invariant Riemannian metric on G;/K; corresponding to the restriction of the
Killing form B; of g; to p;. Since

B((Xla-'-vXZ)v(}/la-'-vn)) = Bl(Xlayl) + +B5(Xfa}/l)

for X;, Y; € g;, we have g = g3 X --- X g¢. Since maximal abelian subspaces in
p are conjugate by Ad(k) for some k € K and Ad(k) preserves each p;, we have
a=a;®--- P a, for some maximal abelian subspace a; of p;. Let

gi=0a;,Om; D @ (9i)x:
AEX;

be the restricted root space decomposition of g;. Then

¢ ¢ ¢
g:@ai@@mi@@ @ (9i)x
i=1 i=1

i=1 \;eX;

is the restricted root space decomposition of g. Thus X = >; U --- U Xy, where
Ai:a; > Rin ¥; is regarded as A;: @ — R in X by extending it linearly on a; (5 # 7)
as 0. Hence gy, = (gi)x, for \; € ;. Since any two simple systems of 3 are
conjugate by Ad(k) for some k € Ni(a) = Nk, (a1) X --- x Ng,(ar), it follows that
Yp =314 U- - UXyy for some positive system X, of ;. Hencen =n; @ --- S ny,
where n; = €D, ¢x,,, (8i)x,. Of course we also have

A=A x---xAy, N=N;x---xNp, AN = ANy x--- X AyNy.

The metric g on AN decomposesas g = g1 X - - - X gy, Where g; on A; N; is defined by
the identification A;N; ~ G;/K;, a;n; — a;n;K;. The same kind of decomposition
holds for the metric on A.

The map a,(z,-): G/K — G/K is a quasiisometry. By Kleiner and Leeb [13|
Theorem 1.1.2] there exist a permutation o0 € G, and quasiisometries

®i: (Gi/Ki, 9i) = (Goiy/ Koi)s 9o(i)
such that a,(z, - ) and
P: (xl, cee ,.CC[) — (‘1)071(1) (ngl(l)) goee ,(ba.—l(g) (ngl(g)))

are close. Then

| I»

is fiber respecting. In fact, let C' > 0 be a constant such that

dy (ap(z,aN), pp(a)N) < C

12



forall @ € A and C’ > 0 be such that
d(®(s),a,(z,s)) < C'
forall s € AN, then we have

dr (2(aN), 3,(@)N) < dag (2(aN), ap(z, aN)) + dy (ay(x,aN), G, (@) N)
<C'+C

foralla € A.

Lemma 15. There exist linear isomorphisms p;: a; — a,(;) such that

Golar,...,ap) = (Go-1(1) (a5-101)) s, Bo-1(0) (Ar-1()))

forall a; € A; and
AN, s Aoy No(i)

Pil J/po'(i)

Ai % Aa(i)
Pi

is fiber respecting, where p; is the natural projection and ; is the isomorphism with

differential @;.

Proof. Let ¢,(ay, ... ap) = (qzl(al,...,ag),...,qgg(al,...,ag» for a; € A;. For

fixed ¢ and for any H; € a; and ¢t € R, the Hausdorff distance between

®(pt(1,..., 1,1, 1))
:(I)(Nl ><"'><Ni_1 XetHiNiXNi_,_l Xoee XN@)
= ‘1)071(1) (Na-—l(l)) X oo X Dy (etHiNi) X oo X @U—l(g) (No-—l(g))

and

is bounded by a constant C' > 0, where ¢; is the differential of g?)j. Thus
dr (1) (Nomr) €910 Hon 0N ) < €

for j # o(4). Hence

13

“
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for all t € R, which implies ¢; (0, ..., H;,...,0) = 0. Therefore,

@p (eHl, . ,eH’f) = ( 1 (e(Hl""’H’f)) yees ,d;g (e(Hl""’H’Z)))

— (e¢1(0,...,H(,71(1),...,0)7 L em(o,...,H(,fl(,z),...,O))

= (él (6H071(1)> g 7&@ (6H071(£)>>
= (95071(1) (eH"*l(“) sees Po1 (o) (GH"’I“))) ;

where we put ¢; = g?),,(j) : Aj = Ag(;). Finally by looking at o(i)-th components of
@) and (@), we have

-

dy (‘I)l (etHiNi) s Di (etHi) Ng(z)) =dy ((I)z (etHiNi) ,etd)"(i)(0""’Hi""’o)Ng(i)) < Ca

hence ®; is fiber respecting over ¢;. O

Therefore, Proposition[13] follows if A o Yo-1(i) € Vg-1(i)4 forall A € 3; since
Yp =Xy U---UXppand Ao g0p|a =)o Po-1(3:) for A\ e ¥;y.

Since G, ;) / K, iy and G/ K; are quasiisometric, g, (;) and g; are isomorphic. Fix
an isomorphism «: g,(;) ~ g; such that

a () =t alpow) =pi a(tnm) =a
and « takes Y., (;)4 to X;1. Then « canonically induces isomorphisms
o) =i, Goy) = Giy Koy = Kiy Agiy = Aiy Noy = Ni
and isometries
(Gotiy/ Koty 9oi)) = (Gi/Ki,9i) s Ao(iyNogy = AilNi.

In this way we identify A, ;) Ny(;) with A; N; etc. Hence now

AiN; =2 AN,

a) |

Pi

is fiber respecting and to complete the proof of Proposition [13] it suffices to show
Ao, € X, forany A € ¥,
We consider the following two cases separately:

* The group G; is of real rank at least 2 or locally isomorphic to Sp(n, 1) (n > 2)
or F; %

* The group G; is of real rank 1.

14



We can treat G; locally isomorphic to Sp(n, 1) (n > 2) or F,; ?® in either cases.

From now on we will no longer consider the original objects G, K, A, N, g, ¥, ¢,
etc and we will focus only on the decomposed objects G;, K;, A;, Ni, g:, >, p; etc.
Hence we will drop all the subscripts 7 to simplify the notations. So we have

G7g7K7 B7p797 B7 A7 a? N7 n7n/7 E? E"'?g)\?g/)\’g? 907 @7 @7p7

but we do not have M, p and a,. Recall that G = Ad(G), g is the restriction of
Bat Tk G/K = p, AN is equipped with a Riemannian metric by the identification
AN ~ G/K, the Riemannian metric of A is the one which makes p.|q: a ~ a an
isometry, and

AN —2 4 AN

| |»

A —;> A
is fiber respecting. Under these conditions we must prove Ao ¢ € ¥ forany A € 3.

4.1 The case where G is of real rank at least 2 or locally isomorphic
to Sp(n,1) (n > 2) or F; %

By Kleiner-Leeb [[13, Theorem 1.1.3] for GG of real rank at least 2 and by Pansu [18|
1. Théoréme] for G locally isomorphic to Sp(n,1) (n > 2) or F; °, there exists a

homothety
F: (G/K,g) — (G/K,g)

close to ®. Thus there is a constant ¢ > 0 such that g (F. X, F.Y) = ¢g(X,Y) for all
reG/Kand X,Y € T,G/K,s0 F: (G/K,cg) — (G/K, g) is an isometry. Since
the isometry group of G/ K acts transitively, there exists the minimum K, € (—o0,0)
of the sectional curvature of (G/K,g). Then cKj is the minimum of the sectional
curvature of (G/K, cg). Since they are isometric we must have Ky = cKj hence
¢=1.Thus F': (G/K,g) — (G/K, g) is an isometry.
Since F'is close to P,
AN —E 4 AN

| |»

A—¢>A

is fiber respecting.
Let F(1)~! = agng € AN. We have

AN Loy an
p @) P
AL4>A,

ao



where L denotes the left multiplication. Since L, is an isometry,

AN —L .y AN
”l l”
Lago®

is fiber respecting, where f = Ly n, o F. Since L,, o ¢ and ¢ are close,

AN — 4 AN

| |»
A — A
is also fiber respecting. Note that f is an isometry and f(1) = 1.

Lemma 16. The map ¢ is an isometry.

Proof. There exists a constant C' > 0 such that dy (f(aN), ¢(a)N) < C foralla € A.
Then we have

|d(1,a) = d(1,5(a))| = |dw (f(N), f(aN)) — dp (N, g(a)N)|
< |dw (f(N), f(aN)) = dw (f(N), B(a)N))|
< dy (f(aN), @(a)N) + dy (f(N), N)
<2C
forall a € A. Hence forall t > 0 and H € a we have
|d (1,e") —d (1,e7)| < 20,
that is,
[LIH - tleH||| < 2C.
This implies
leH| = IH].
Thus ¢ is an isometry. o

Now we regard f as f: G/K — G/K and p: G/K — A. Consider
ferp=TkG/K — p=TkG/K.
Lemma 17. We have f.(a) = aand f.|a = ¢: a — a.
Proof. Takeany H € a. Let f,H =X +Y forsome X € aandY € n’. Since

[H|1* = fH ) = X1+ Y112 > X)),
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we have ||H|| > || X||. Because ¢! K (t € R) is a geodesic and f is an isometry,
f (e K) (t € R) is also a geodesic and f (e K) = !X Y K. Lett > 0.
Since f is fiber respecting over ¢, there exists a constant C' > 0 such that

da (f (07" (")) ,p " (¢ (1)) < C.

Since !XTV K = f (e K) € f (p~* (e'')) and by the definition of the Haus-
dorff distance, there exists z € p~! (@ (e"7)) such that d (e"* TV K, z) < C.

The map p is distance decreasing since d(a,a’) = d (p~*(a),p " (a’)) for all a,
a’ € A. So

d(e™, ¢ (™)) =d(p(e*TEK),pa)) <d (X K,x) <C. (6
Since @ is an isometry,
d(g(e"™),1) = d (e",1) = t| H]|.
By the triangle inequality we have
| = HIX ] = d (1,2 (")) —d (1,e) <d (e, 5 (")) < C

for all ¢ > 0. This forces |[H|| = || X|| and then Y = 0 by the equation ||H|]?> =
| X2 + ||Y]|?. Hence f.H = X € a.
For the second assertion we have by (@)

d (etf*H, et“"H) <C
for any ¢t € R. This implies f. H = ¢H. O

Proposition 18. Let g be a real semisimple Lie algebra and let G = Inn(g). (Recall
that the Lie algebra of G is naturally isomorphic to g and G is the identity component
of Aut(g).) Fix a maximal compact subgroup K of G:

1. Let v € Aut(g) and consider ¥ € Aut(G) defined by V(g) = gyt The
automorphism U permutes the maximal compact subgroups of G. Identifying
the set of all maximal compact subgroups of G with G/K by gKg~' + gK,
the map I, : G/K — G/K induced by ¥ is an isometry with respect to the
G-invariant Riemannian metric defined by the restriction of the Killing form to
the orthogonal complement of the Lie algebra of K.

2. Suppose g has no compact simple factor. Then the mapping 1 — Iy is an
isomorphism from Aut(g) to Isom(G/K).

Proof. This is Exercise 7 in Chapter VI of Helgason [7]. A proof can be found in
Solutions to Exercises. (]

By Proposition [I8] there exists ¢ € Aut(g) such that f = I,,. Since f(K) = K,
we have U(K) = K. This implies

f(gK) =V (g9)K (7

17



forall g € G. We have () = ¢. Since
p={Xeg|B(X,Y)=0forall Y € £}

and B is 1)-invariant, we also have ¢)(p) = p. Hence f. = v[,: p — p by (@) and

1 (a) = a by Lemma[[7 Therefore, 1|, = ¢: a — a again by Lemmal[l7l Since 9 is

an isomorphism of g which preserves a, we have ) ~1gy = Oxoy|, forany A € ¥ Thus

Aop=Xot|, € Lif A € . We must show that \o p = Ao t)|s € T if X € X,
For a Weyl chamber C in g, let

Yoe={ e X | AH)>0forsome H € C}

be the positive system correspondingto C, let ng = @, eso 9, and let No be the Lie
subgroup corresponding to ne.
Let Cy C a be the Weyl chamber corresponding to ¥, ie

Co={Heca|XH)>0forallA e X }.

Then C; = ¢Cy is a Weyl chamber in a. We have A € ¥ if and only if Ao (¢|) 7! €
Y¢,. Thus ym = ne,. By @) we have f(NK) = N¢, K. Therefore, the Hausdorff
distance between N¢, K and N K is finite.

Lemma 19. If C and C' are distinct Weyl chambers in a, then the Hausdorff distance
between Noc K and N K is infinite.

Proof. Take A € X \ X¢r. Hence gy C ne and g—) C ngs. We will prove that
e%-* K contains arbitrarily far points from No K. Let Hy € a be the element defined
by N(H) = B(H), H) for all H € a. By Knapp [14, Proposition 6.52] there exists
nonzero X € gy such that:

d [X)\,QX)\] = B(X)\,HX)\)H)\
o B(X}\,HX)\) = _B#) < 0

(Hx,H»x

* the subspace ROX )y DR H &R X is a Lie subalgebra of g isomorphicto s[(2, R).
The isomorphism is given by

X'\ =0X, +— <O O>

10
2 10

Hy=———H

AT By Y T (0 —1)
X{=-X) <+— (8 é)

For any x € R we have

1 €T 1 0 1 x
L0y _ 4 | ( Vi Tras T+a? |
z 1 0 1 0 Vita?) \—7= —

g

fiin
+
&



This can be regarded as an equation of elements in the universal cover éi(2, R) of
SL(2,R). We rewrite it using the exponential map:

x _log(1+m2)
exp 00 = exp 0 1 exp 2 0 2
z 0 0 0 0 log(Lta*)

ox —arctanz
p arctan 0 )

Mapping the above equation by the homomorphism éi(2, R) — G, we get

log(1 2
exp (X’ ) = exp (LX1\> exp (—MH;)

1422 2
- exp (arctan:z: (X',A - X;)) . €]
Note that
x
exp (:CX'_/\) €e9-> C Ngr, exp (1—1-—:172X§‘> € e% C Ng,
log(1 2
exp (_w H;) cA

SinceH(X’_A—Xﬁ\) = X', — X{,wehave X" , — X| € ¢ hence
exp (arctanz (X', — X})) € K.

Thus (8) gives the Iwasawa decomposition of exp (:CX 4 A) as an element of G =
NgAK. Therefore,

log(1 + 22
d (exp (zX",) K, NoK) = d (eXp <1+%X;> exp (—MH&) K, NCK)

2
—d (eXp <—MH;) K, NCK>

2
=d (exp <_MH§\> K, K>

_ || log(1 + 2?)
B 2
log(1 + z?%)

VB(Hy, Hy)

This shows N¢: K contains points arbitrarily far from N¢ K. (]

H),

Thus C; = Cp andso ¢yn =n. Hence A\op = Ao, € By if A € X4,
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4.2 The case where ( is of real rank 1

Proposition 20. If
AN —L AN

| I»

A—0r— A

is fiber respecting, f is a quasiisometry and h is a map, then h is close to the identity
map.

The map ¢ is close to the identity map by this proposition. But since ¢ is a
homomorphism, ¢ must be the identity map. Hence Ao = A € X forall A € X
and this concludes the proof of Proposition[T3]

Proposition20lis Proposition 5.8 of Farb—-Mosher [3] when G is locally isomorphic
to SOg(n,1). For the other cases it is basically Theorem 33 of Reiter Ahlin [19] but
the proof there seems incomplete. To get the conclusion of Proposition 20 we need to
argue at some point in the same manner as Farb—-Mosher do. Here we give a proof of
Proposition 20 following the arguments by Farb—Mosher and Reiter Ahlin.

We have ;. = {\} for G locally isomorphic to SOg(n, 1) and X = {\, 2\} for
the other cases. Accordingly n = g, in the former case and n = g, @ g2, in the latter
case. Take H € a such that A\(H) = 1. Hence a = RH. We identify A with R by
et — t.

We write the proof for the case of ¥ = {), 2\} but no change is needed when we
have ¥ = {\} except notational one.

Let g; be the Riemannian metric on NV induced from g by the embedding N — AN,
x — ze'f. Let d and d; be the metrics induced from g and g; respectively. Since
z (ye') = (wzy)e', ie the embedding N — AN is N-equivariant, g, is a left
invariant Riemannian metric on N. Let ||-||; be a norm on g, (j = 1,2) and set

|x| = 1(1(1&:)({”5”1 , H’UHQ%} forx € N, where logaz = £ + v for £ € gy, v € gax. Let
¢¢: N — N be the map defined by ¢;(z) = e xze~**. Then

|pu(x)] = |t et | = |exp (e (£ 4 v))|
= lexp (e'¢ + €2v)| = max {e ¢l o]} |
= et max {Jigl, oll3 } = e [e€*|
— ¢t |z
forany z € N andt € R.

Lemma 21. There exists K1 > 1 such that

1

forallt € Rand x, y € N.
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Proof. Since ez = ¢y (x)et, ¢y: (N, go) — (IV, g¢) is an isometry. Hence

di(z,y) = di (L7 'y) = do (1,0 (z7'y)).
It is known that there exists a constant &1 > 1 such that

1
e |17| - K; < dO(laI) < K; |$| + K,
1

for all x € N. See for example Breuillard [3, Proposition 4.5]. Therefore,
di(z,y) < K4 ’qﬁ_t (:C_ly)‘ + K=Kt ’x_ly’ + K,
and

1 ., 1 _
¢ Ha™ty| - Ky = el |9t (z7'y)| — K1 < di(,y).

Corollary 22. There exists Ko > 1 such that for any fixed ty € R we have

_ di(z,y) _
__eto tS t\s SKQet() t
‘KQ2 dto(xvy) ?
ift <toand|x'y| > (K% +1)e'.

Proof. If t <t and |2~ 'y| > (Kf+1)e'o, then we have e~* [z71y| > K7 + 1,
hence

1 Kl —t -1 Kl —t —1
— <d <|K
<Kl K12+1)6 |‘T y|— t(Iay)— 1+K12+1 € |:17 y|
by Lemma[2dl Since
1 K >0
K, K}+1 ’

there exists K> > 1, which is independent of £y, such that

1
Eeft |x71y| < di(x,y) < Koe™! ‘:zfly|

under the above conditions. In particular

1
Eeft" ‘xily’ < dyy(z,y) < Koe 0 ’xily’ .

We get the conclusion from these two inequalities. O

A mapo: S — X between geodesic spaces is called uniformly proper if there exist
constants K > 1, C' > 0 and a function p: R>¢ — R>( with lim, o p(a) = oo such
that

p(d(z,y)) < d(o(x),0(y)) < Kd(z,y) +C

forall z,y € S. Wecall p, K and C the uniformity data for o.
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Lemma 23. The embedding (N, d;) — (AN, d) is uniformly proper for eacht € R and
the uniformity data are independent of t. In fact there exists a function p: R>o — R
with lim,_, p(a) = oo such that

p(de(z,y)) < d (we'™ ye) < di(z,y)
forallz, y € N andt € R.

Proof. The second inequality is obvious. For the first inequality, define p1: R>g —
R>o by

p1(R) =sup{do(1l,z) |z € N, d(1,z) = R}.
Then p; is strictly increasing and limp_o p1(R) = oo. We have do(l,z) <
p1 (d(1,z)) for any 2z € N hence do(z,y) < p1 (d(z,y)) forall z, y € N. Since

(z,y) = do (e eftHy tH)

(
G

< pl( ( —tH e—tHyetH))
(d

(ze'™,yetT))

we get p1 ' (di(z,y)) < d (ze yetf). So p = p; ! satisfies the required properties.
O

Lemma?24. Let X, Y, S, T be geodesic spaces, let f: X — Y be a quasiisometry, and
leto: S — X, 7: T — Y be uniformly proper maps such that dy (fo(S),7(T)) <
oo. Take any map g: S — T satisfying sup,cgd(fo(x),7g(x)) < oco. Then g is
a quasiisometry and the quasiisometry constants depend only on the quasiisometry
constants for f, the uniformity data for o and T, and sup,c g d (fo(z), 7g(z)).

Proof. This is Lemma 2.1 of Farb and Mosher [3]]. O

Weidentify h: A — Awithh: R — Rbyh (e'¥) = " Define f,: (N,d;) —
(N, dp)) by f (zetf) = f,(x)e"@DH  Then f, satisfies the property of Lemma[24]
In fact since f is fiber respecting over h, there exists a constant C; > 0 such that
dy (f (p_1 (etH)) p! ( (t)H)) < (] forallt € R. Hence there exists y € N such
that d (f (zet?) ,ye"®H) < Cy. Therefore,

a(f (we ™), fila)e" O ) = d (fl@)e =" fi(@)ehOF)
<d(fila)e @Oyt OT) <0 (©)
forallz € N and ¢ € R. By LemmaR3land Lemmal4l f;: (N,d;) — (N, dp)) isa
quasiisometry with quasiisometry constants independent of ¢.

Let AN be the Gromov boundary of AN. Then 0AN = {co} U N. The
quasiisometry f induces amap 0f: 0AN — OAN.

Lemma 25. Jf(c0) = co.
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Proof. Assume the contrary: df(00) =z € N. Takey € N with y # (9f)!(00).
Let v be the directed geodesic connecting y and co. Then the Hausdorff distance
between f(vy) and the directed geodesic v’ connecting 0 f (y) and x is finite. Hence the
height of f(~) is bounded above. Since h is a quasiisometry, we can choose ¢ty € R so
that h(tg) is as large as we wish. Therefore, the height of f (p_l (etoH )) is also large.
But we always have f (ye'™) € f (p~* (")) f(7) # @, whichis impossible. [

For any z € N, ze!f (t € R) is a geodesic of AN connecting x € AN and oc.
Then f (:vetH ) (t € R) is aquasigeodesic of AN. By Lemma[23]there exists a constant
C3 > 0 such that dy (f (2e®7),0f(z)e*) < Cy. By @)

[u(z, 1) = h()] | ] < C1. (10)
There exists s(z,t) € R such that d (f (ze*f), 9 (z)e*®DH) < C5. We have
[ue,t) = s(a, O] | HI| = d (9f @)e =07 of (z)es=0H )
a(p ( uz “H) of (w)e =)
d (f (z)e SWW) < O (1)

IN

By (I0) and (II) we get
|5(z,8) — h(H| [H]| < C1 + Cs. (12)

Therefore,

4 (ful@)e" O, o (w)e"OH)
< d(fu@)e" DT, fi(@)e @O ) - d (ful@)e @OH of (@)= 0H)
+d (0f(@)e O of () )
<lu(z,t) = (O H| + C2 + |s(z,t) = h(O)] | H]|
<201 +205.

Hence
dnry (fe(),0f () < p~* (d (ft(x)eh@)H, ) f(:c)eh<f>H)) < p 1 (20) +203) .

Namely f; and Of are close and the constant of closeness is independent of ¢t. Thus
af: (N,dy) — (N , dh(t)) is a quasiisometry with constants independent of ¢, so there
exists a constant K3 > 1 such that

K%dxx y) — Ky < diy (0f(2), 0F (y)) < Kada(z,y) + K

forallz,y € Nandt € R.
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Lemma 26. For any fixed to € R we have

1

ﬁdt(l’ y) < dh (t) (6f($)7 af(y)) < 2K3dt(‘r= y)

forallt <toandx, y € N with ’x’ly’ > el Ky (2K§ + Kl).

Proof. If t < tg and ‘x_ly’ > e Ky (2K3 + K1), we have
1
di(x,y) > —e " a7 ly| — K1 > 2K3.
K

Hence
dn(y (0f(2),0f(y)) < Ksdi(z,y) + K3 < 2Ksdi(z,y)

and

o) OF (0),01() = - dslavy) = 532K = 5 dily).

2K.
(]

It is easy to show that A is a quasiisometry of R. See Farb—Mosher [5, Lemma 5.1].

Lemma 27. There exists L > 0 such that for any t, to € R witht + L < tg we have
h(t) < h(to).

Proof. Recall that h is close to s(x, - ) as we saw in (IZ). By the definition of s(z, t)
we see s(z,t) — oo ast — +oo. So h(t) - tooast — too. Let K > 1bea
constant such that  |s — t| — K < |h(s) — h(t)| < K|s—t| + K forall s, t € R.
Take L = 4K? and assume the contrary, ie there were sg, tg € R with sg + L < ¢y
such that h(tg) < h(sg). We have |h(sg) — h(to)| > 3K and |h(so) — h(t)| > 3K
for any ¢ > tg. Forty <t < to + 1 we have |h(t) — h(to)| < 2K. Hence we must
have h(t) < h(sg) forall tp < t < t3 + 1. Now we have so + L < to + 1 and
h(to 4+ 1) < h(so). Hence this time we get h(t) < h(sg) forallto+ 1 <t < to+ 2.
By repeating we see that h(t) < h(sg) for all ¢ > ¢y, which is a contradiction. O

Lemma 28. For any fixed ty € R, we have

dnry (0f (@), 0f(y)) _
eh(to)—h(t) h(t) 2 Jh(to)—h(t)
73 = ey OF @), 0F () = 2

ift<tog— Land

1 K
e 1y| > K2 KO (71( - < B Kyt K1> (D) eh<to>> |
1

Proof. Ift <ty — L and

_ _ 1 K
‘I 1y| > K7 Kze hO) (m <K1 + K3 +K1> + (K12 + 1) eh(t0)> )
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then

T (o) (0. 0£(0) ~ K2)

1 1
m (Edo(%y) - K3 — Kl)

1 1 1 1
> (—(— —Ki)-Ks—K
- Klefh(o) <K3 (Kl ‘x y‘ 1) 3 1)

B 1 1 1 K
- K{K3e=h(0 }I y} K h0) (E et Kl)

> (K7 +1) ")

|0f ()" 0f (y)| =

and h(t) < h(tp). So we get the desired inequality by Corollary 22 O
Lemma 29. There exists C's > 0 such that for any to € R and t < ty, we have
h(t) >t —to + h(te) — Cs.

Proof. Fix tg and take =z, y € N with |:1:*1y| large enough so that we can apply
Corollary22] Lemma[28l and Lemma[28] Then for any ¢ < tg — L, we have

1 h —h 1 h —h
2K22K38 (t0) (t)dto ({E, y) S K_228 (to) (t)dh(to) (8f(17), 8f(y))

<dnw (0f(2),0f(y))

< 2K3di(z,y)

< 2K Kae' dy, (2, y).
Hence

eh(to)*h(t) S 4K§K326t07t,
Taking log we get
h(to) — h(t) <to —t +log (4K3K3) .

Since h is a quasiisometry, h(ty) — h(t) — to + t is bounded above for tg — L < t < tg

by a constant independent of ¢g. Hence the claim is proved. o

Let f: AN — AN be a coarse inverse of f, ie f is a quasiisometry such that f o f
and f o f are close to the identity map. Let 2: R — R be a coarse inverse of h. It is
easy to show that f is fiber respecting over h. Apply Lemma[29to f and h rather than
f and h. Then there exists C > 0 such that

B(S) Z S — 8o + B(So) — Cé

for all s < so. Now we can argue completely in the same way as in Farb—-Mosher [5]
page 167 just after Claim 5.9] to prove that & is close to the identity map.

25



5 Necessary conditions for parameter rigidity

From this section we consider necessary conditions for parameter rigidity. (For the
definition of parameter rigidity, see the beginning of Section [II) These necessary
conditions are given by certain vanishing of zeroth and first cohomology of the orbit
foliation. The main results are Theorem[30l and Theorem[33]

Let M A S denote a C™ locally free action of a connected simply connected
solvable Lie group .S on a closed C'*° manifold M, with the orbit foliation F.

Recall that a connected simply connected solvable Lie group S is called of expo-
nential type if the exponential map exp: s — S is a diffeomorphism, or equivalently,
every eigenvalue of ad X either is 0 or has nonzero real part for each X € s. For a
proof of this equivalence, see Dixmier [4, Théoréme 3] or Saito [20]. A derivation of a
Lie algebra is called an outer derivation if it is not an inner derivation.

The first necessary condition is the following.

Theorem 30 (Vanishing of H). Assume that S is of exponential type and there is

L P . .. ;
an outer derivation of s. If M A S s parameter rigid, then M is connected and

HO(F) = Hs).
We will prove Theorem[30]in Section

Corollary 31. Let N # 1 be a connected simply connected nilpotent Lie group and let
M 2 N be a parameter rigid action. Then M is connected and HO(F) = H°(n).

Proof. Every nonzero nilpotent Lie algebra over any field has an outer derivation. See
Jacobson [9]. O

Note that HY(F) consists of real valued leafwise constant C*° functions on M
and HO(s) (as a subspace of H°(F)) consists of real valued constant functions on M.
Hence we have H°(F) = H(s) if and only if leafwise constant C*° functions are
constant. This is satisfied if there is a dense leaf of F. In the proof of Theorem B0l we
don’t prove the existence of a dense leaf of F. We prove H’(F) = H(s) somewhat
algebraically without studying dynamical properties of the foliation F.

Remark 32. The author does not know whether Theorem 30 remains true if we drop
one of the two assumptions on S. One possibility of constructing counterexamples
which are parameter rigid but H°(F) is huge is the following. Take a connected simply
connected solvable Lie group S and a cocompact lattice I" in .S such that:

* S has no outer automorphisms

 T'is a rigid lattice in .S, which means, if T” is a lattice in S and o: T — T" is
an isomorphism, then « extends to an automorphism of S. (This terminology is
taken from Starkov [21].)

The author does not know the existence of such S and I". But if we had such a
pair, Proposition 6.1.2 in Maruhashi [17] says, the action T'\S v~ S defined by right
multiplication is parameter rigid because in this case parameter rigidity is equivalent to
the rigidity of the lattice I'. Then the action S* x I'\'S .\~ S defined by (x,y)s = (z, ys)
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is perhaps parameter rigid by the first condition, whereas H°(F) is now identified with
the space of all real valued C*° functions on S*.

Recall the following theorem.

Theorem 33 (Maruhashi [16]]). Let N be a connected simply connected nilpotent Lie
group, and let M A N beaC>® locally free action. Then the following are equivalent:

o The action py is parameter rigid and H°(F) = H(n).
« HY(F) = H'(n).
Hence we have the following.

Corollary 34. Let N be a connected simply connected nilpotent Lie group, and let
M R N bea C> locally free action. Then the following are equivalent:

* The action py is parameter rigid.
« H'(F) = H'(n).
Proof. Thisis true evenif N = 1. O

If we have vanishing of H? for the trivial coefficient, then we can deduce vanishing
of HO for various nontrivial coefficients by an easy argument. This will be done in
Lemma[2]in Section[6

The second necessary condition is on vanishing of H'. The following will be
proved in Section[7l

Theorem 35 (Vanishing of H'). Let V C s be an ad-invariant subspace (ie an ideal
of s) for which n S V is trivial. Assume that any eigenvalue of ad X on s/V either is

0 or has nonzero real part for any X € s. If M R Sis parameter rigid, then we have
o (]-';s BN V) - H(F) o 0 (5;5 BN V) .

Note that the assumption is weaker than the assumption that S is of exponential
type, as it allows ad X : V' — V to have purely imaginary nonzero eigenvalues.

Here an element [w] € H! (F;s S V) is in HO(F) ® H! (5;5 S V) if and
only if [w] is represented by a leafwise constant form, that is, represented by a form
¢ o wy for some C* leafwise constant map ¢: M — Hom(s, V). If we assume
also that s has an outer derivation, then by Theorem[30] the conclusion simplifies to
H! (f;s ES V) — H! (5;5 ES V).

Let us consider the coeflicients appearing Theorem 33l We have V' C n, thus V
is contained in the center of n, and is an abelian ideal of s. (For the first part, if not,
take X € V' \ n, then n + RX would be a nilpotent ideal of s which is larger than the
nilradical n.)

As an example of a coefficient V' satisfying the property, we can take V' = n®, where
n>n? D ... Dn® D O0is the lower central series of n.
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As a more concrete example, we consider the 2-dimensional solvable Lie algebra

ga = RX ®RY defined by [X,Y] = Y. Then the 1-dimensional representation ga S
RY satisfies the condition of Theorem [33] but the trivial representation s ~ ga/RY
does not satisfy the condition.

6 Vanishing of //°—proof of Theorem

The proof of Theorem 30] is immediate after proving Lemma [0, whose proof is the
main part of this section. Several lemmas before Lemma Q] prepare an “integration”
map p, which will be used in the proof of Lemma Sublemma [f] inside Lemma
is similar to Lemma[43]in the next section and the same kind of argument already
appeared in Maruhashi [16] when the vanishing of H' was proved under the assumption
of parameter rigidity together with the vanishing of H for actions of nilpotent Lie
groups.

Let M A SbeaC™® locally free action of a connected simply connected solvable
Lie group .S on a closed C'** manifold M, with the orbit foliation F and the canonical
1-form wy.

Let s /~ V be a finite dimensional real representation, and let S fH\v V denote the
representation whose differentiation is 7w. Then the trivial bundle M x V' — M is an
S-equivariant vector bundle with the action defined by

(z,v)s = (po(z,s),I1 (s7 ") v).

Let 'y (V) be the space of all bounded sections of M x V' — M which are continuous
on each leaf. (An element £ € T'y.(V) can be discontinuous on M.) We have a
representation S ~ T'pi(V') by

(s€) (x) = ()€ (po(x; s))

fors € S,& € Ty(V) and x € M. We equip V with a norm coming from an inner
product. Then I'y.(V') is a Banach space with the supremum norm. Let I';.(V') be the
closed subspace of I'y;.(V') which consists of bounded leafwise constant sections.

Lemma 36. There is an S-equivariant continuous linear map
o Fblc(v) — Flc(V)
which is the identity on T'1.(V').

Proof. Since S is amenable, by one of the characterizations of amenability, we have a
bi-invariant mean pg: C(S) — R on the space C(S) of all bounded continuous real
valued functions on S. See Page 26-29 of Greenleaf [[6]. Recall that 144(1) = 1 and its
operator norm is 1. Take a basis vy, ..., v, of V. For £ = Z?:l fivi € Tpie(V') and
x € M, we define

@) (@) =" po (fi (po(w,-))) vi.
1=1
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Then this is independent of a choice of a basis of V. We have

(&) (pola,8)) =Y o (fi(pola, s - ) vi = u(é)(x)

i=1
by left invariance, and

n

p(s€)(x) =TU(s) Y o (fi (po(a, - 9))) vi = sp(€)(x)

=1

by right invariance. We also have (&) = £ for & € Ty.(V) since po(1) = 1. By taking
v1,...,Up to be an orthonormal basis and using ||uo|| = 1, we see

@) @)1 < SN2 < nlel .
=1

Let V denote the flat leafwise connection of M x V' — M defined by s AV.

Lemma 37. Forv € V, zyp € M and sufficiently small s € S, the locally defined
section

&0 (po(x0,5)) = (po(wo,8), T (s~ 1) v)
of M x V' — M on the leaf containing x, is a parallel section for V, that is, V& = 0.

Proof. For any y = pg(zg, so) with small sy € S and any X € s, we have

d
v %po(y,etxmzogo = dr&o (EPO (y,e) t_0> + 7(X)&(y)
= iH (emsg M w + (I (s5 ') v
dt =0
=0.

O

Therefore, the directions of orbits of the action M x V .~ S are horizontal for the
leafwise connection V. By the expression of covariant derivative by parallel transport,
we have

I (%) € (po (z,'¥)) = &(=)

(Vx¢) () = lim

t—0 t
@) )
t—0 t

forany £ € I'(V), X € s and x € M. Note that X € s is regarded as X € I'(T'F)
using the locally free action pg.
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Lemma 38. Forany £ € T'(V) and X € s, etxf_g converges uniformly to V x & as
t—0.

Proof. Take a basis vy, ..., v, of V and write (e"X¢) (x) = Y1, fi(t, x)v; for some
C* functions f;: R x M — R. Then we have (Vx¢) (z) = Y., f/(0,z)v;. The
function f;(t, ) has the Taylor expansion

2
Filts2) = F(0,2) + L71(0,2) + = (o),

where 0; , ; is a number between 0 and ¢. Since

etXe) (z) — £(x t
O 5= 3 A G
and f/'(6,x) is bounded for —1 < < 1 and z € M, we get the conclusion. O

Lemma 39. Let ji: Ty (V) — T'1.(V) be the map in Lemma38 Then

1 (Vx€) = Vxu(§)
Jorall§ e T(V) and X € s. (Note that (&) might be discontinuous on M.)

Proof. By Lemma[38] etxf_f converges uniformly to Vx¢ as ¢ — 0. By continuity

and equivariance, we have

e u(€) — u)
¢

p(Vx§) = lim = Vxu(§).

O

Lemma 40. Assume that S is of exponential type. Let U: M — Aut(S) be a C> map
which is constant on each leaf of F. If po is parameter rigid, then W: M — Out(S) is
constant on M, where bar denotes the projection Aut(S) — Out(S). In particular, if
Out(S) # 1, M must be connected.

Proof. Define M A S by p(z,s) = po (z,@;(s)). This defines an action because
WU is leafwise constant:

0 (po (2,9, (s)) , ¥, (s)
(p z,5), \pr_(ILS) (s’))

Since p is a C* locally free action with the same orbit foliation as pg, p is parameter
equivalent to py by parameter rigidity. Note that ¥,.wy is the canonical 1-form of p.
By Proposition 1.4.4 of Asaoka [2]], there exist ® € Aut(S)andaC>®map P: M — S
such that

Vpwo = Ad (P71) @,w + PO, (13)
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where © denotes the left Maurer—Cartan form of S. (In [2], ® is referred to as an
endomorphism, but it is the same ® appearing in the definition of parameter equivalence
which we saw in Section[l] so ® can be taken as an automorphism. It is easy to see P*©
is equivalent to the expression P~'dzP in [2]. There is a small difference between
our definition of parameter equivalence and the one in [2], since in [2] the map F' is
assumed to be homotopic to the identity through diffeomorphisms. But this does not
cause any problem here.)

Let a denote both projections s — s/n and S — S/N, where n is the nilradical of
s and N is the Lie subgroup corresponding to n. By projecting (13), we get

aV.wo = a®,wo + draP, (14)

since s/n is abelian. For any z € M, X € s and T > 0, we integrate (I4) over the
curve po (z,e'X) for 0 < ¢t < T. Then noting ¥ being leafwise constant,

Ta¥,. X =Ta®, X + aP (po (z,e")) — aP(z).

Since a P is bounded due to the compactness of M, we must have aV ., X = a®, X and
aP is leafwise constant. Hence there exists a leafwise constant C*° map R: M — S
such that Q = R~'P: M — N. Since R is leafwise constant, we have

P*O = (RQ)"® = Q"©
and (13) becomes
Upwo = Ad (Q7') Ad (R™1) ®uwp + Q*O. (15)

Letn D n? O --- D n® O 0bethelower central series of n. Recall thatexp: n — N
is a diffeomorphism and log: N — n is defined.

Sublemma. Assume that there exist a C*° map Q: M — N and a leafwise constant
C*® map R: M — S such that:

* Uowo =Ad(Q71) Ad (Ril) d.wo+ Q*O
* logQ € n* for some 1 < k < s.

Thenwe canfinda C*® map Q': M — N and aleafwise constant C®°map R': M — S
such that:

.« U,.wo = Ad ((Q’)*l) Ad ((R/)*l) B0+ (Q) O
* log Q' € nktL,

Proof. Take subspaces Vp, ..., Vs such that 5 = Vp @ n and n® = V; @ n'*! for
i=1,...,s. Wecan write Q = exp (>_;_, @;) for some C> maps Q;: M — V.
We will calculate the V;, component of

Upwo = Ad (Q7') Ad (R™1) ®uwp + Q*O. (16)
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First note that
Q*0 =drQ;, modn*tL,

In fact, for all X = %x(t)‘tzo e T, F,

Q'O(X) = LQ@)Q (1)

t=0

= % exp <_ Z Qi(z) | exp (Z Qs (x(t)))
i=k

i=k

t=0

_ 4 exp (i: (Qi (x(t)) — Qi(x)) + an element of nk“)

dt ,
i=k

t=0

= % exp (Qk (w(t)) — Qk(gg) &+ an element of nk""l)

= d]:Qk(X) mod nkH.

t=0

0
Lets Vi, be the representation obtained from s 2k /nF*1 by the identification
Vi ~ nF/ubt1 Put 1, = 70 o ®,. We take 5 /v Vi as s -~ V considered in the
beginning of this section; we let V be the leafwise connection defined by 7, and we
let o2 Tpie(Vi) — Ty (Vi) be the map in Lemma[36
Write U,wo = Y5y and Ad (R™1) ®,wo = Y°;_, B; according to the de-
composition s = @;_, V;. Then we have

Ad (Q') Ad(R™) ®.wo = exp (ad <—§Q>> gﬁi

Bi + 8o, Qr] mod n*T?

1l
.
= 1 M -~
[}

Bi + ﬂ',gﬂoQk mod n*t1,
0

Take the V};, components of (T6)) to get

ok = B + mBoQk + dr Q.

Since
P.wo=Ad (R™") ®uwo=Hy modn

and 79 vanishes on n, we have mwo = 7% 3. Therefore,

VQi = drQy + mpwoQr
= drQ + mpBoQr,

and we get
ag = B + VQy. (17)
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Hence
a(X) = Br(X) + VxQx

forany X € s. Note that a,(X) and 8y, (X)) are leafwise constant because R is leafwise
constant. Applying p and using Lemmal[39] we get

a(X) = Br(X) + Vxu(Qk)-

Therefore,

Vx (Qr — p(Qr)) = 0.

Put Q) = Qr — 1(Qr). We shall see @), is leafwise constant. Let S ~ Vi be the
representation with the derivative s A Vi. Then for any ¢t € Rand z € M, we have

d (e"¥ Q) (po (. e"™)) — Q4 (po (. ¢'7))
h

— (eSXQQC) ((E) _ }{%Hk (etX)

ds s=t
= 10 (%) (Vx Q%) (po (w,¢X))
=0.

Thus (e'*Q},) (x) = Ik (") Q}, (po (z, €'X)) is constant with respect to ¢. So

Q. (o (. €%)) = Ty () Q4(a) = Q) 1)

for all t € R. Note that Q) (po (z,e'X)) is bounded with respect to ¢. Take a basis
of Vj, which turns —m1,(X) = —7 (®.X) into a real Jordan normal form. Since any
eigenvalue of ad X : s — s for any X € s either is O or has nonzero real part by our
assumption that s is of exponential type, the same is true for wg (X): Vi = Vj forall
X € 5. Therefore, each Jordan block of —mj,(X) = —n%(®,X) has the eigenvalue
which either is O or has nonzero real part. For a Jordan block whose eigenvalue has the
nonzero real part, the corresponding components of e~ (X )Q; (z) have the following
forms:

ete * c1
0 ete Cm
if the eigenvalue a is real, and
e R, * c1
. N
0 e R, Cm

where

R — costb sintb
t— \—sinth costh

if the eigenvalue a + b: is not real. Since this must be bounded for all ¢ € R,
¢1 =+ = ¢y = 0, which implies the corresponding components of Q}, (po (z, X))
must be constant.
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On the other hand, for a Jordan block with the eigenvalue 0, the corresponding
components in e =™ (X) Q! (z) is

1 * C1

0 1 Cm
where the entries in the * part of the matrix are now polynomials in ¢. Since bounded
polynomial functions must be constant, we see the corresponding components in

Q). (po (z,€e'X)) are also constant.
So @, is leafwise constant. Put Q' = e~ ?*(Q. Then log @’ has values in n**! and

U,wo = Ad ((Q')*l) Ad ((R’)*l) D.wo + (Q)7 O,
where R’ = Re®* is leafwise constant. O
Applying Sublemmal@lto (I3) repeatedly, we finally get Q = 1 and therefore
Uyuwy = Ad (R71) By
for some R. Therefore, ¥, is equal to ® modulo inner automorphisms. O

Theorem [3Qlis restated and proved here.

Theorem 41. Assume that S is of exponential type and there is an outer derivation of
s. If M R S is parameter rigid, then M is connected and H® (F) = HOs).

Proof. Since there is an outer derivation of s, the outer automorphism group Out(S)
of S is nontrivial, hence M is connected. Take an outer derivation ¢ of s and set
®; = e € Aut(S). For any f € HO(F), consider a map M — Aut(S) defined
by &+ ®(,y. Since this is leafwise constant, z +— @,y € Out(S) is constant by
LemmalQl Let Inn(,S) denote the inner automorphism group of S. This is a connected
normal Lie subgroup of Aut(S). We must be a bit careful because Inn(S) might
not be closed in Aut(S) in general. See Hochschild [8]. But the cosets of Inn(S)
defines a foliation on Aut(S) and P is a curve transverse to the foliation. Since the
automorphisms @,y for all z € M are contained in a single leaf of 7 and M is
connected, P ¢,y must be constant with respect to z. This implies f is constant over
M. O

Finally we see vanishing of H° with nontrivial coefficients.

Lemma 42. Assume H°(F) = HO(s). Let s ~ V be a representation for which
7(X) has no nonzero purely imaginary eigenvalues for each X € s. Then H(F;7) =
HO(s; 7).

Proof. Take & € HY(F;7). The function ¢ satisfies dz& + mwoé = 0. This means
X¢+m(X)€ =0forall X €s. Foreach z € M this is solved as & (po (z,e'™)) =
e 1 (X)¢(z) for all t € R. As in the proof of Sublemmal[@ we transform 7(X) into a
real Jordan normal form and ¢ being bounded implies & (po (, €'*)) must be constant.

Therefore, ¢ is leafwise constant. By the assumption H°(F) = H(s), £ is constant
on M. Hence ¢ € V and (X )¢ = 0 for all X € s, which shows & € H(s; ). O
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7 Vanishing of H'—proof of Theorem

Here we prove the following (a restatement of Theorem [33).

ad
Theorem43. Let V' C s be an ad-invariant subspace (ie an ideal of s) for whichn AV
is trivial. Assume that any eigenvalue of ad X on s/V either is O or has nonzero real

part forany X € s. If M R Sis parameter rigid, then we have
H (;f;s S V) = H(F)® H! (5;5 S V) .

Proof. Take any [w] € H* (}' o S V). Let wy be the canonical 1-form of py. Fix
an € > 0 and put n := wyp + ew € I'(Hom (T'F,s)). Let us see n satisfies the
Maurer—Cartan equation. As we saw in Section[3] V' is abelian and then
dFn + [1n,n] = drwo + edFw + [wo, wo| + € ([wo, w] + [w, wo))
= e (drw + [wo,w] + [w,wq]) -

But this is zero because w satisfies drw + (adwp) A w = 0 and (adwp) A w =
[wo, w] + [w, wo).

Since M is compact, we can assume 1), : 1T, F — s is bijective for all z € M by
taking e > 0 small enough. Then there exists a unique action p of .S on M whose orbit
foliation is F and whose canonical 1-form is 7. See Asaoka [2, Proposition 1.4.3]. By

parameter rigidity, p is parameter equivalent to pg. Thus by Proposition 1.4.4 of [2],
there exist a C'>° map P: M — S and an automorphism ® of .S satisfying

wo + ew = Ad (Pil) d,.wo + PO, (18)

where O is the left Maurer—Cartan form of S. By seeing this equation modulo n, we
get .
wo = Pywp +drP modn,

where bar denotes the projection S — S/N. The same argument as in the proof of
vanishing of H? yields
wo = Pwp modn,

drP =0 modn.

So we can take a leafwise constant C*° map R: M — S suchthat Q := R~!P € N.
Then Equation (I8) becomes

wo + ew =Ad (QT'R™") ®.wo + (RQ)" O
=Ad(Q7") Vwo + Q*O,

where ¥, = Ad (Rfl) P, is leafwise constant.

Lemma 44. There exists a filtration
sOn=W1 DWoD---DWy=V D W1 =0,

where W;’s are ideals of s such that [n, W;] C W;1.
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Proof. 1f
non®>---on o0

denotes the lower central series of n, then the filtration
sonon?+Vond+Vo. ..o 4+ VDOV D0
gives the desired filtration. o
Note that we have wy = ¥ ,wg modulo Wi.

Lemma 45. Assume there exist a C*> map QQ: M — N and a leafwise constant C*°
map V: M — Aut(S) such that

wo +ew = Ad (Q7") U,wy + Q*O, (19)
log @ € Wy

and
wo = VYwog modWy:

1. Ifk < s, then there exist a C* map Q': M — N and a leafwise constant C*°
map V' : M — Aut(S) such that
wo+ew=Ad ((Q)7") Wlwo + (@) 6,

log Q" € Wi1

and
wo =V wy modWiyi1.

2. If k = s, then w is cohomologous to a leafwise constant cocycle.

Proof. The proofis similar to the proof of Sublemmal@ Take complementary subspaces
Vi’ssothats = Vo @nand W; = V; & W,4;. Write

wo = iai, \I/*WQ = iﬁl and Q = exXp <i Qz)
=0 =0 i=k

according to the decomposition s = @;_, V;.
The same calculation as in Sublemmal6l gives

Q*® = d]:Qk mod WkJrl.
We have

Ad (Qil) U, wy = exp (ad <— i QZ>> i Bi

Bi + [Bo, Qr] mod Wi

Il

T
|
- o

o + Br + [, Qx]  mod Wiyq.
0

-
Il



Equation (T9) gives

k k—1
Z a; + Opsew = Z a; + Bk + [ao, Qk] +drQr mod Wiq.
1=0 =0

Thus
ag + Opsew = B + o, Qi) +drQr  mod Wiy 1.

If £ = s, we have
w=€" (8 —as) +dr (€'Qs) + [a0,6'Q] .
If V denotes the covariant derivative defined from s /% V, then by [n, V] = 0 we have
V(e'Qs) = dr (77Qs) + [wo, 7' Qs]
— dr (7'Q.) + [a0, e Q4].

Therefore, w is cohomologous to e ! (Bs — as) which is leafwise constant since so are
wo and \I/*LUO.
If £ < s, then

ar = B + [ao, Qi) + drQr  mod Wiy,

Lets & V. denote the representation obtained from s ?(\i Wi /W1 by the identifica-
tion Wy, /Wi1 ~ Vi, and let V be the leafwise connection defined by 7. Recall that
VQr = drQi + mrwoQy. Since

TrwoQr = T <Z 041‘) Qx

i=0
= [, Qr] mod Wi4q,

we have
ar = B+ drQr + mwo@r  mod Wiy,

which implies

ar = P+ drQp + TrwoQk
= Bk + VQ.

By the same argument starting from Equation (I7) in the proof of vanishing of H°,
using the assumption on the eigenvalues of ad X, we can conclude that Qy, is leafwise
constant. Define Q': M — N by Q = e?+Q’. Then Equation (I9) becomes

wo + ew = Ad ((Q')fl G_Q"> W,wo + (GQ"Q/)* S

= Ad((Q) ") Wl + (@),
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where ¥, = Ad (e~ 9*) ¥,. Now we have log Q" € Wj41 and

U wo = e 24,y

k—1
= ¢ 2d Qs <Z a; + B + an element of Wk+1>

=0
k1
= i+ B+ [0, Qi) mod Wiy
=0
k
= Z Q; mod Wk+1
=0

= Wo mod Wk+l
since drQy = 0. o

Applying Lemma repeatedly, we see that w is cohomologous to a leafwise
constant cocycle. Note that we have used the assumption on the eigenvalues only on
Vi,...,Vs_1,butnoton Vy, = V. O
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