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1 Vanishing of cohomology and parameter rigidity

of actions of solvable Lie groups, II

Hirokazu Maruhashi∗

Abstract

Let M
ρ0
x S be a C∞ locally free action of a connected simply connected

solvable Lie group S on a closed manifold M . Roughly speaking, ρ0 is parameter
rigid if any C∞ locally free action of S on M having the same orbits as ρ0 is C∞

conjugate to ρ0. In this paper we prove two types of result on parameter rigidity.
First letG be a connected semisimple Lie group with finite center of real rank at

least 2 without compact factors nor simple factors locally isomorphic to SO0(n, 1)
(n ≥ 2) or SU(n, 1) (n ≥ 2), and let Γ be an irreducible cocompact lattice in
G. Let G = KAN be an Iwasawa decomposition. We prove that the action
Γ\G x AN by right multiplication is parameter rigid. One of the three main
ingredients of the proof is the rigidity theorems of Pansu and Kleiner–Leeb on the
quasiisometries of Riemannian symmetric spaces of noncompact type.

Secondly we show, if M
ρ0
x S is parameter rigid, then the zeroth and first

cohomology of the orbit foliation of ρ0 with certain coefficients must vanish. This
is a partial converse to the results in the author’s [17], where we saw sufficient
conditions for parameter rigidity in terms of vanishing of the first cohomology with
various coefficients.
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This paper consists of two parts. The first part, Section 1 to Section 4, deals with
parameter rigidity of certain actions. Section 1 serves as the introduction for the first
part. The second part is on necessary conditions for parameter rigidity in terms of
vanishing of cohomology, and it is from Section 5 to Section 7, where Section 5 serves
as the introduction for the second part.

1 Parameter rigidity of the action of AN on Γ\G
Let M

ρ0
x S be a C∞ locally free (ie the isotropy subgroup of every point is discrete)

action of a connected simply connected solvable Lie group S on a closed C∞ manifold
M . Let F be the set of all orbits of ρ0, which is called the orbit foliation of ρ0 and
actually is a C∞ foliation of M . We say ρ0 is parameter rigid if everyC∞ locally free

actionM
ρ
x S with the same orbit foliation as that of ρ0 is parameter equivalent to ρ0.

(We do not assume that ρ is close to ρ0 in some topology.) Here parameter equivalence
between ρ and ρ0 means the following. There exist a diffeomorphism F of M and an
automorphism Φ of S such that:

• F (ρ0(x, s)) = ρ (F (x),Φ(s)) for all x ∈M and s ∈ S

• the map F preserves each leaf of F , that is, F (L) ⊂ L for all L ∈ F

• the map F is C0 homotopic to the identity map of M through C∞ maps which
preserve each leaf of F .

For example a linear flow on a torus is parameter rigid if and only if the velocity
vector satisfies the Diophantus condition.

In [11] and [12] Katok and Spatzier proved the following.

Theorem 1 (Katok–Spatzier). Let G be a connected semisimple Lie group with finite
center of real rank at least 2 without compact factors nor simple factors locally isomor-
phic to SO0(n, 1) (n ≥ 2) or SU(n, 1) (n ≥ 2), and let Γ be an irreducible cocompact
lattice inG. LetG = KAN be an Iwasawa decomposition. Then the action Γ\Gx A
by right multiplication is parameter rigid.

This is proved using representation theory of semisimple Lie groups and has lead
to a number of subsequent research. In this paper we prove the following, based on the
above theorem and applying large scale geometry.
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Theorem 2. Under the same assumptions as Theorem 1, the action Γ\G x AN by
right multiplication is parameter rigid.

We give a proof of this theorem in Section 3 and Section 4 after recalling the results
in Maruhashi [17] in Section 2. The proof is a combination of the following three steps:

1. vanishing of cohomology⇒ parameter rigidity.
This is the sufficient condition for parameter rigidity proved in [17]. In the current
article this is Theorem 4

2. cohomology vanishing results.
These are by Katok–Spatzier [11], [12] and Kanai [10]. See Theorem 10 and
Corollary 12 in this paper

3. bridging the gap between Step 1 and Step 2.
This is because the cohomology vanishing results are available only for finitely
many coefficients, while the sufficient condition for parameter rigidity requires
vanishing of cohomology for seemingly much more coefficients. Here we use
Proposition 6, which shows the relevance to large scale geometry. Then the main
point is that our acting groupAN is isometric toG/K by Iwasawa decomposition
G = ANK . So we can use the rigidity theorems of Pansu [18] and Kleiner–Leeb
[13] on quasiisometries of symmetric spaces, and a certain rigidity property of
quasiisometries of hyperbolic spaces proved in Farb–Mosher [5] and Reiter Ahlin
[19].

Theorem 2 shows a contrast between the higher rank case and P̃SL(2,R), the
universal cover of PSL(2,R), for which Asaoka [1] gives (generally) nontrivial orbit-
preserving deformations of the actions of AN by right multiplication.

Theorem 3 (Asaoka [1]). Let Γ be a cocompact lattice in P̃SL(2,R) and let

A =

{(
a

a−1

)∣∣∣∣a > 0

}
, N =

{(
1 b

1

)∣∣∣∣b ∈ R

}
.

Let ΦΓ be the flow on Γ\P̃SL(2,R) defined by the action of A by right multiplication,
P be the set of oriented periodic orbits of ΦΓ and τ(γ) be the period of γ for γ ∈ P .
Consider

∆Γ =

{
a ∈ H1

(
Γ\P̃SL(2,R);R

) ∣∣∣∣ sup
γ∈P

|a(γ)|
τ(γ)

< 1

}

which is an open neighborhood of 0 in H1
(
Γ\P̃SL(2,R);R

)
. Then there exists an

analytic locally free action ρa of AN on Γ\P̃SL(2,R) for each a ∈ ∆Γ with the
following properties:

• The action ρ0 is defined by the right multiplication.

• All the ρa’s have the same orbit foliation F .

• Actions ρa and ρa′ are not parameter equivalent if a 6= a′.
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• Any C∞ locally free action of AN whose orbit foliation is F is parameter
equivalent to ρa for some a ∈ ∆Γ.

• The action ρa does not preserve any C0 volume form on Γ\P̃SL(2,R) except
when a = 0.

We also know how the action ρa is controlled by the cohomology class a, but we
refer the reader to [1] for that and more information. Note that the above deformation
is different from the nonorbit-preserving deformation coming from the deformation of
the lattice, whose deformation space has the dimension equal to that of Teichmüller
space, because such deformations are necessarily C0 volume preserving.

2 Preliminaries

This section is a summary of the results we need later, proved in Maruhashi [17]. See
[17] for the detail. In this paper Lie algebras are denoted by the corresponding lowercase
Fraktur of the corresponding Lie groups. The symbol Γ( · ) denotes the set of all C∞

sections of a vector bundle.

2.1 Leafwise cohomology

Let M
ρ0
x S be a C∞ locally free action of a connected simply connected solvable Lie

group S on a closed manifoldM with the orbit foliationF . Let ω0 ∈ Γ (Hom(TF , s))
denote the canonical 1-form of ρ0, ie (ω0)x : TxF → s for x ∈ M is defined as the
inverse of the derivative at the identity of the map S →M , s 7→ ρ0(x, s). Let

dF : Γ

(
p∧
T ∗F

)
→ Γ

(
p+1∧

T ∗F
)

be the leafwise exterior derivative ofF , defined by the same formula as the usual exterior
derivative. Then ω0 satisfies the Maurer–Cartan equation dFω0 + [ω0, ω0] = 0. Here
dFω0 and [ω0, ω0] are defined by

dFω0(X,Y ) = Xω0(Y )− Y ω0(X)− ω0 ([X,Y ])

and
[ω0, ω0](X,Y ) = [ω0(X), ω0(Y )]

for X , Y ∈ Γ(TF). Let s
π
y V be a representation of s on a finite dimensional real

vector space V . Then πω0 ∈ Γ (Hom (TF ,End(V ))) satisfies

dFπω0 + [πω0, πω0] = 0.

We regard πω0 as the connection form of a flat F -partial connection ∇ of the trivial
vector bundle M × V → M relative to any global frame of the bundle which has
constant V components, ie ∇Xv = π (ω0(X)) v for X ∈ Γ(TF) and v ∈ V , where

4



v is regarded as a section of M × V → M . Hence ∇ξ = dFξ + πω0ξ for general
ξ ∈ Γ(V ). The exterior derivative of∇ is

Γ

(
p∧
T ∗F ⊗ V

)
→ Γ

(
p+1∧

T ∗F ⊗ V
)

ω 7→ dFω + πω0 ∧ ω,

where our definition of exterior product is

(πω0 ∧ ω) (X1, . . . , Xp+1) =

p+1∑

i=1

(−1)i+1πω0(Xi)ω
(
X1, . . . , X̂i, . . . , Xp+1

)
.

The square of this operator is zero by the flatness. The cohomology H∗
(
F ; s π

y V
)

of this complex is the leafwise cohomology of F with coefficient π. Recall that the

cohomology H∗
(
s; s

π
y V

)
of the Lie algebra s with coefficient π is obtained from

the complex Hom
(∧∗

s, V
)
. We have an injective cochain map

Hom

( ∗∧
s, V

)
→֒ Γ

( ∗∧
T ∗F ⊗ V

)

ϕ 7→ ω∗
0ϕ,

where ω∗
0 is the pullback by ω0. Then by Lemma 2.1.3 of [17], the induced map

H∗
(
s; s

π
y V

)
→ H∗

(
F ; s π

y V
)

is injective and we see H∗
(
s; s

π
y V

)
as a subspace of H∗

(
F ; s π

y V
)

.

2.2 A sufficient condition for parameter rigidity

Let n denote the nilradical of s. We have [s, s] ⊂ n. Take a subspace h such that
[s, s] ⊂ h ⊂ n. Then h is a nilpotent ideal of s and let

h ⊃ h2 ⊃ · · · ⊃ hd ⊃ 0

be the lower central series of h. This filtration of h is invariant with respect to s
ad
y h.

Let

s
ad
y Gr(h) =

d⊕

i=1

hi/hi+1

be the associated graded quotient. Since h acts trivially, we get s/h
ad
y Gr(h).

LetA(F , S) be the set of allC∞ locally free actionsM x S with the orbit foliation
F . Let ρ ∈ A(F , S), and let ω denote the canonical 1-form of ρ. Let p : s → s/h
denote the natural projection. Applying p to dFω + [ω, ω] = 0, we get dFpω = 0.

5



Assume H1(F) = H1(s). Then [pω] ∈ H1 (F ; s/h) = H1 (s; s/h). So there exist a
unique linear map ϕρ : s→ s/h which vanishes on [s, s] and a C∞ map h : M → s/h
such that

pω = ϕρω0 + dFh.

The map ϕρ is surjective by Lemma 2.2.2 of [17].

Theorem 4 (Maruhashi [17]). If

H1(F) = H1(s)

and

H1

(
F ; s ad ◦ϕρ

y Gr(h)

)
= H1

(
s; s

ad ◦ϕρ

y Gr(h)

)

for some h and for all ρ ∈ A(F , S), then M
ρ0
x S is parameter rigid.

See Theorem 2.2.5 of [17] for this theorem.

2.3 A property from large scale geometry

Let ρ ∈ A(F , S) and let aρ : M × S → S be the unique C∞ map satisfying

ρ0(x, s) = ρ (x, aρ(x, s)) and aρ(x, 1) = 1

for all x ∈ M and s ∈ S. The map aρ is defined since ρ0 and ρ have the same orbit
foliation. It is known that aρ is a cocycle over ρ0.

Let X , B be metric spaces. A surjective map p : X → B is a distance respecting
projection if

d(b, b′) = d
(
p−1(b), p−1(b′)

)
= dH

(
p−1(b), p−1(b′)

)

holds for all b, b′ ∈ B, where

d
(
p−1(b), p−1(b′)

)
= inf

{
d(x, x′)

∣∣ x ∈ p−1(b), x′ ∈ p−1(b′)
}

and dH denotes the Hausdorff distance. Let p : X → B and p′ : X ′ → B′ be distance
respecting projections. A diagram

X X ′

B B′

f

p p′

ϕ

is fiber respecting or f is fiber respecting over ϕ if f and ϕ are maps and there exists a
constant C > 0 such that dH

(
f
(
p−1(b)

)
, (p′)−1 (ϕ(b))

)
< C for all b ∈ B.

Proposition 5. Let G be a connected Lie group and H a connected normal closed
subgroup of G. Take an inner product of g. Endow g/h with the inner product for
which the restriction h⊥

∼→ g/h of the projection g→ g/h is an isometry. Give G and
G/H left invariant Riemannian metrics corresponding to these inner products. Then
the projection p : G→ G/H is a distance respecting projection.
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Proof. This follows from Lemma 4.1.1 of [17] by noting that H
Ad
y g/h is trivial.

Assume H1(F) = H1(s) for an action M
ρ0
x S and let ρ ∈ A(F , S) and ϕρ : s→

s/h, aρ : M × S → S as above. Let Kρ and H be the Lie subgroups corresponding to
kerϕρ and h. Then S/Kρ and S/H are vector groups. Let ϕ̃ρ : S/Kρ → S/H be the
linear isomorphism with differential ϕρ : s/ kerϕρ ≃ s/h.

Proposition 6 (Maruhashi [17]). For any ρ ∈ A(F , S), x ∈ M and h, consider the
diagram

S S

S/Kρ S/H,

aρ(x,·)

ϕ̃ρ

where the vertical maps are the natural projections. Fix an inner product of s and
give S, S/Kρ and S/H left invariant Riemannian metrics considered in Proposition 5.
Then aρ(x, · ) is a fiber respecting biLipschitz diffeomorphism over ϕ̃ρ. (In particular
aρ(x, · ) is a quasiisometry.)

See Proposition 4.1.4 of [17] for this proposition.

3 Reduction of the proof of Theorem 2 to Proposition

13

Let G be a connected semisimple Lie group. Fix a Cartan decomposition g = k ⊕ p

and a maximal abelian subspace a of p. Let Σ be the restricted root system of (g, a)
and fix a positive system Σ+ of Σ. Let n =

⊕
λ∈Σ+

gλ, where

gλ = {X ∈ g | [H,X ] = λ(H)X for all H ∈ a}

is a restricted root space. Let K , A and N be the Lie subgroups corresponding to k, a
and n. Then G = KAN is an Iwasawa decomposition. The group AN is a connected
simply connected solvable Lie group and its Lie algebra is an = n⋊ a.

It is easy to show that n is the nilradical of an and n = [an, an]. So we must take
h = n to apply Theorem 4. Then

an/n = a
ad
y Gr(n) =

⊕

i≥1

ni/ni+1

is isomorphic to

a
ad
y n =

⊕

λ∈Σ+

gλ.

To apply Theorem 4, we must showH1(F) = H1(an) and then calculate cohomology
with coefficient

an
ad ◦ϕρ

y Gr(n), ie an
ad ◦ϕρ

y n =
⊕

λ∈Σ+

gλ (1)

7



for any ρ ∈ A(F , AN), where ϕρ : an → a. Note that kerϕρ = n and ϕρ|a ∈
GL(a). The gλ-component an

ad ◦ϕρ

y gλ in (1) is a direct sum of the 1-dimensional

representation an
λ◦ϕρ

y R. Therefore, we get the following.

Lemma 7. Let G be a connected semisimple Lie group. Fix a Cartan decomposition
g = k⊕ p, a maximal abelian subspace a of p with the associated restricted root system
Σ and a positive system Σ+ of Σ. Let F be the orbit foliation of a C∞ locally free

action M
ρ0
x AN on a closed manifold M . If

H1(F) = H1(an) (2)

and

H1

(
F ; an λ◦ϕρ

y R

)
= H1

(
an; an

λ◦ϕρ

y R

)
(3)

for any λ ∈ Σ+ and ρ ∈ A(F , AN), then ρ0 is parameter rigid.

Before proving Theorem 2 we remark that the same result but with a stronger
assumption of real rank at least 3 follows easily from the following result of Kononenko
[15, Theorem 8.2].

Theorem 8 (Kononenko [15]). Let G be a connected semisimple Lie group with finite
center of real rank at least 3 whose simple factors are of real rank at least 2, and
let Γ be an irreducible cocompact lattice in G. Let G = KAN be an Iwasawa
decomposition. Take µ : an → R be any nonzero linear function which vanishes on
n, and let µ̃ : AN → GL(1,R) be the homomorphism with differential µ. Then any
µ̃-twisted C∞ cocycle over the action Γ\G x AN by right multiplication is C∞

cohomologous to a constant cocycle. Equivalently we have

H1
(
F ; an µ

y R

)
= H1

(
an; an

µ
y R

)
.

Corollary 9. LetG be a connected semisimple Lie group with finite center of real rank
at least 3 whose simple factors are of real rank at least 2, and let Γ be an irreducible
cocompact lattice inG. LetG = KAN be an Iwasawa decomposition. Then the action
Γ\Gx AN by right multiplication is parameter rigid.

Proof. Under the assumptions of this corollary, (2) in Lemma 7 follows from the case
λ = 0 in Corollary 12 below and (3) in Lemma 7 follows from Theorem 8, which imply
parameter rigidity of the action.

But this does not cover the case of real rank 2. In this case we only know vanishing
of the cohomology with coefficients corresponding to restricted roots.

Theorem 10. LetG be a connected semisimple Lie group with finite center of real rank
at least 2 without compact factors or simple factors locally isomorphic to SO0(n, 1)
(n ≥ 2) or SU(n, 1) (n ≥ 2), and let Γ be an irreducible cocompact lattice in G.
Fix a Cartan decomposition g = k ⊕ p and a maximal abelian subspace a of p with
the associated restricted root system Σ. Let FA be the orbit foliation of the action
Γ\Gx A by right multiplication. Then we have:

8



1. (Katok–Spatzier [12, Theorem 3.6])

H1(FA) = H1(a)

2. (Kanai [10, Theorem 2.2])

H1
(
FA; a

λ
y R

)
= H1

(
a; a

λ
y R

)
= 0

for any λ ∈ Σ.

Remark 11. In Theorem 2.2 (2) of [10] it is written that u (a notation from [10]) is
C∞ if the conditions (i) and (ii) from that paper are satisfied, but those conditions (i)
and (ii) are always satisfied, so that we get the above result.

Corollary 12. LetG be a connected semisimple Lie group with finite center of real rank
at least 2 without compact factors or simple factors locally isomorphic to SO0(n, 1)
(n ≥ 2) or SU(n, 1) (n ≥ 2), and let Γ be an irreducible cocompact lattice in G.
Fix a Cartan decomposition g = k ⊕ p, a maximal abelian subspace a of p with the
associated restricted root system Σ and a positive system Σ+ of Σ. Let F be the orbit
foliation of the action Γ\Gx AN by right multiplication. Then we have

H1
(
F ; an λ

y R

)
= H1

(
an; an

λ
y R

)

for any λ ∈ Σ ∪ {0}, where λ : a→ R is regarded as λ : an→ R by extending it as 0
on n.

Proof. Let [ω] ∈ H1
(
F ; an λ

y R

)
, that is, dFω + λω0 ∧ ω = 0, where ω0 is the

canonical 1-form of Γ\Gx AN . By restriction to TFA we get dFA
ω+λω0 ∧ω = 0.

Note that ω0 restricts to the canonical 1-form of Γ\Gx A. So

[ω] ∈ H1
(
FA; a

λ
y R

)
= H1

(
a; a

λ
y R

)
.

There exist a linear map φ : a→ R such that λ(H)φ(H ′)− λ(H ′)φ(H) = 0 for allH ,
H ′ ∈ a and a C∞ function h : Γ\G → R satisfying ω = φω0 + dFA

h + λω0h. For
any H ∈ a and X ∈ gµ for µ ∈ Σ+,

0 = Hω(X)−Xω(H)− µ(H)ω(X) + λ(H)ω(X)

= Hω(X)−X(φ(H) +Hh+ λ(H)h)− µ(H)ω(X) + λ(H)ω(X)

= Hω(X)−HXh− [X,H ]h− λ(H)Xh− µ(H)ω(X) + λ(H)ω(X)

= H(ω(X)−Xh) + (λ(H)− µ(H))(ω(X)−Xh).

If µ 6= λ, take H0 ∈ a such that λ(H0) − µ(H0) 6= 0. Then the above equation for
H = H0 and the boundedness of ω(X)−Xh imply ω(X)−Xh = 0. If µ = λ, take
H 6= 0. We can apply Moore’s Ergodicity Theorem since G has finite center and no

9



compact factor and Γ is irreducible. So the flow etH (t ∈ R) has a dense orbit and
ω(X)−Xh = ψ(X) for some ψ(X) ∈ R. Let ω′ = ω − dFh− λω0h. Then

ω′(H) = φ(H) for H ∈ a,

ω′(X) =

{
0 for X ∈ gµ and µ 6= λ

ψ(X) for X ∈ gλ and λ ∈ Σ+.

Therefore, [ω] = [ω′] ∈ H1
(
an; an

λ
y R

)
.

By Corollary 12, the proof of Theorem 2 reduces to the following proposition.

Proposition 13. Let G be a connected semisimple Lie group. Fix a Cartan decompo-
sition g = k⊕ p, a maximal abelian subspace a of p with the associated restricted root
system Σ and a positive system Σ+ ofΣ. LetG = KAN be the corresponding Iwasawa

decomposition. Let M
ρ0
x AN be a C∞ locally free action on a closed manifold M

with the orbit foliation F . If
H1(F) = H1(an)

and
H1
(
F ; an λ

y R

)
= H1

(
an; an

λ
y R

)

for all λ ∈ Σ+, where λ : a→ R is regarded as λ : an→ R by extending it linearly as
0 on n, then ρ0 is parameter rigid.

Note that we need no assumption on the simple factors of G in this proposition.

Remark 14. In Theorem 10 we assume that

(∗) G has no simple factors locally isomorphic to SO0(n, 1) (n ≥ 2) or SU(n, 1)
(n ≥ 2).

If 1 in Theorem 10 is true without the assumption (∗), then 2 in Theorem 10 and
Corollary 12 are true without the assumption (∗). Hence Theorem 2 will be true
without the assumption (∗) by Proposition 13.

4 Proof of Proposition 13

To prove Proposition 13, it suffices to show that λ ◦ ϕρ|a ∈ Σ+ for any λ ∈ Σ+ and
any ρ ∈ A(F , AN) by Lemma 7. At this moment we know ϕρ|a is only an element of
GL(a), so it is not clear whether ϕρ|a preserves Σ+. To prove it we need rigidity of
quasiisometries of symmetric spaces.

For the proof of Proposition 13 we may assume that G has no compact factors,
since this does not changeAN . Recall that Inn(g) = Ad(G) = G/Z(G), where Z(G)
denotes the center ofG, andG/Z(G) has the trivial center. ReplacingGwithG/Z(G)
also does not change AN , so we may assume G = Inn(g) as well.

The mapping an 7→ anK gives a canonical diffeomorphism AN ≃ G/K by the
Iwasawa decomposition. Henceforth we identify AN with G/K in this way. This is
AN equivariant.

10



Recall that the identification p ≃ TKG/K is by X 7→ d
dt
etXK

∣∣
t=0

. In the
followingK denotes the subgroupK or the pointK inG/K depending on the context.
G-invariant Riemannian metrics on G/K are in one-to-one correspondence with inner

products on p invariant under K
Ad
y p. We equip G/K with a G-invariant Riemannian

metric g corresponding to the restriction of Bθ to p, where θ is the Cartan involution
associated with the Cartan decomposition g = k ⊕ p, B the Killing form of g and
Bθ(X,Y ) = −B(X, θY ) for X,Y ∈ g. The restriction of Bθ to p is the same as the
restriction ofB to p. We giveAN the Riemannian metric which makes the identification
AN ≃ G/K an isometry. This Riemannian metric isAN invariant. Geodesics inG/K
passingK at time 0 are of the form etXK (t ∈ R) forX ∈ p. Note that etXK (t ∈ R)
for X ∈ g \ p is not a geodesic in general. In AN curves of the form netH (t ∈ R) for
fixed n ∈ N and H ∈ a are geodesics.

The decomposition g = k ⊕ p is orthogonal with respect to the positive definite
symmetric bilinear form Bθ. Let g′λ be the orthogonal projection to p with respect
to g = k ⊕ p of gλ for λ ∈ Σ. The space g′λ has the same dimension as gλ since
k = ker(θ − id) and θgλ = g−λ. This orthogonal projection maps an isomorphically
to p by the Iwasawa decomposition g = k⊕ a⊕ n. Therefore,

p = a⊕ n′, where n′ =
⊕

λ∈Σ+

g′λ.

Note that a ⊥ n′ since a ⊥ gλ for λ ∈ Σ and a ⊥ k with respect to Bθ. Observe that
the differentiation

an p = a⊕ n′

T1AN TKG/K

∼

�

∼

at 1 of the identification AN ≃ G/K maps an to p by the orthogonal projection with
respect to g = k ⊕ p. Therefore, a maps identically to a and n maps isomorphically to
n′. So a ⊥ n in an.

For any ρ ∈ A(F , AN) and x ∈M , consider the diagram

AN AN

A A,

aρ(x,·)

p p

ϕ̃ρ

∼

where p is the natural projection. We giveA a left invariant Riemannian metric for which
the restriction a→ a of the natural projection an→ a to n⊥ = a becomes an isometry,
ie we consider the restriction of B to a. Then p is a distance respecting projection by
Proposition 5 and aρ(x, · ) is a fiber respecting biLipschitz diffeomorphism over ϕ̃ρ by
Proposition 6.

Since G = Ad(G), we have G = G1 × · · · × Gℓ, where Gi is a connected
noncompact simple Lie group with trivial center. Since any two maximal compact
subgroups ofG are conjugate by an inner automorphism ofG, we haveK = K1×· · ·×
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Kℓ, whereKi is a maximal compact subgroup ofGi andG/K = G1/K1×· · ·×Gℓ/Kℓ.
Let gi = ki ⊕ pi be the Cartan decomposition. Then p = p1 ⊕ · · · ⊕ pℓ. Let gi be
the Gi-invariant Riemannian metric on Gi/Ki corresponding to the restriction of the
Killing formBi of gi to pi. Since

B ((X1, . . . , Xℓ), (Y1, . . . , Yℓ)) = B1(X1, Y1) + · · ·+Bℓ(Xℓ, Yℓ)

for Xi, Yi ∈ gi, we have g = g1 × · · · × gℓ. Since maximal abelian subspaces in
p are conjugate by Ad(k) for some k ∈ K and Ad(k) preserves each pi, we have
a = a1 ⊕ · · · ⊕ aℓ for some maximal abelian subspace ai of pi. Let

gi = ai ⊕mi ⊕
⊕

λi∈Σi

(gi)λi

be the restricted root space decomposition of gi. Then

g =

ℓ⊕

i=1

ai ⊕
ℓ⊕

i=1

mi ⊕
ℓ⊕

i=1

⊕

λi∈Σi

(gi)λi

is the restricted root space decomposition of g. Thus Σ = Σ1 ∪ · · · ∪ Σℓ, where
λi : ai → R in Σi is regarded as λi : a→ R in Σ by extending it linearly on aj (j 6= i)
as 0. Hence gλi

= (gi)λi
for λi ∈ Σi. Since any two simple systems of Σ are

conjugate by Ad(k) for some k ∈ NK(a) = NK1(a1)× · · · ×NKℓ
(aℓ), it follows that

Σ+ = Σ1+ ∪ · · · ∪Σℓ+ for some positive system Σi+ of Σi. Hence n = n1⊕ · · · ⊕ nℓ,
where ni =

⊕
λi∈Σi+

(gi)λi
. Of course we also have

A = A1 × · · · ×Aℓ, N = N1 × · · · ×Nℓ, AN = A1N1 × · · · ×AℓNℓ.

The metric g onAN decomposes as g = g1× · · ·× gℓ, where gi onAiNi is defined by
the identification AiNi ≃ Gi/Ki, aini 7→ ainiKi. The same kind of decomposition
holds for the metric on A.

The map aρ(x, · ) : G/K → G/K is a quasiisometry. By Kleiner and Leeb [13,
Theorem 1.1.2] there exist a permutation σ ∈ Sℓ and quasiisometries

Φi : (Gi/Ki, gi)→
(
Gσ(i)/Kσ(i), gσ(i)

)

such that aρ(x, · ) and

Φ: (x1, . . . , xℓ) 7→
(
Φσ−1(1)

(
xσ−1(1)

)
, . . . ,Φσ−1(ℓ)

(
xσ−1(ℓ)

))

are close. Then
ΠAiNi ΠAiNi

ΠAi ΠAi

Φ

p p

ϕ̃ρ

∼

is fiber respecting. In fact, let C > 0 be a constant such that

dH (aρ(x, aN), ϕ̃ρ(a)N) < C

12



for all a ∈ A and C′ > 0 be such that

d (Φ(s), aρ(x, s)) < C′

for all s ∈ AN , then we have

dH (Φ(aN), ϕ̃ρ(a)N) ≤ dH (Φ(aN), aρ(x, aN)) + dH (aρ(x, aN), ϕ̃ρ(a)N)

< C′ + C

for all a ∈ A.

Lemma 15. There exist linear isomorphisms ϕi : ai → aσ(i) such that

ϕ̃ρ(a1, . . . , aℓ) =
(
ϕ̃σ−1(1)

(
aσ−1(1)

)
, . . . , ϕ̃σ−1(ℓ)

(
aσ−1(ℓ)

))

for all ai ∈ Ai and

AiNi Aσ(i)Nσ(i)

Ai Aσ(i)

Φi

pi pσ(i)

ϕ̃i

∼

is fiber respecting, where pi is the natural projection and ϕ̃i is the isomorphism with
differential ϕi.

Proof. Let ϕ̃ρ(a1, . . . , aℓ) =
(
φ̃1(a1, . . . , aℓ), . . . , φ̃ℓ(a1, . . . , aℓ)

)
for ai ∈ Ai. For

fixed i and for any Hi ∈ ai and t ∈ R, the Hausdorff distance between

Φ
(
p−1

(
1, . . . , 1, etHi , 1, . . . , 1

))

= Φ
(
N1 × · · · ×Ni−1 × etHiNi ×Ni+1 × · · · ×Nℓ

)

= Φσ−1(1)

(
Nσ−1(1)

)
× · · · × Φi

(
etHiNi

)
× · · · × Φσ−1(ℓ)

(
Nσ−1(ℓ)

)
(4)

and

φ̃1
(
1, . . . , etHi , . . . , 1

)
N1 × · · · × φ̃ℓ

(
1, . . . , etHi , . . . , 1

)
Nℓ

= etφ1(0,...,Hi,...,0)N1 × · · · × etφℓ(0,...,Hi,...,0)Nℓ (5)

is bounded by a constant C > 0, where φj is the differential of φ̃j . Thus

dH
(
Φσ−1(j)

(
Nσ−1(j)

)
, etφj(0,...,Hi,...,0)Nj

)
< C

for j 6= σ(i). Hence

d
(
etφj(0,...,Hi,...,0), 1

)
= dH

(
etφj(0,...,Hi,...,0)Nj , Nj

)
< 2C
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for all t ∈ R, which implies φj (0, . . . , Hi, . . . , 0) = 0. Therefore,

ϕ̃ρ
(
eH1 , . . . , eHℓ

)
=
(
φ̃1

(
e(H1,...,Hℓ)

)
, . . . , φ̃ℓ

(
e(H1,...,Hℓ)

))

=
(
eφ1(0,...,Hσ−1(1),...,0), . . . , eφℓ(0,...,Hσ−1(ℓ),...,0)

)

=
(
φ̃1

(
eHσ−1(1)

)
, . . . , φ̃ℓ

(
eHσ−1(ℓ)

))

=
(
ϕ̃σ−1(1)

(
eHσ−1(1)

)
, . . . , ϕ̃σ−1(ℓ)

(
eHσ−1(ℓ)

))
,

where we put ϕ̃j = φ̃σ(j) : Aj → Aσ(j). Finally by looking at σ(i)-th components of
(4) and (5), we have

dH
(
Φi
(
etHiNi

)
, ϕ̃i

(
etHi

)
Nσ(i)

)
= dH

(
Φi
(
etHiNi

)
, etφσ(i)(0,...,Hi,...,0)Nσ(i)

)
< C,

hence Φi is fiber respecting over ϕ̃i.

Therefore, Proposition 13 follows if λ ◦ ϕσ−1(i) ∈ Σσ−1(i)+ for all λ ∈ Σi+ since
Σ+ = Σ1+ ∪ · · · ∪ Σℓ+ and λ ◦ ϕρ|a = λ ◦ ϕσ−1(i) for λ ∈ Σi+.

SinceGσ(i)/Kσ(i) andGi/Ki are quasiisometric, gσ(i) and gi are isomorphic. Fix
an isomorphism α : gσ(i) ≃ gi such that

α
(
kσ(i)

)
= ki, α

(
pσ(i)

)
= pi, α

(
aσ(i)

)
= ai

and α takes Σσ(i)+ to Σi+. Then α canonically induces isomorphisms

nσ(i) ≃ ni, Gσ(i) ≃ Gi, Kσ(i) ≃ Ki, Aσ(i) ≃ Ai, Nσ(i) ≃ Ni

and isometries

(
Gσ(i)/Kσ(i), gσ(i)

)
≃ (Gi/Ki, gi) , Aσ(i)Nσ(i) ≃ AiNi.

In this way we identify Aσ(i)Nσ(i) with AiNi etc. Hence now

AiNi AiNi

Ai Ai

Φi

pi pi

ϕ̃i

∼

is fiber respecting and to complete the proof of Proposition 13 it suffices to show
λ ◦ ϕi ∈ Σi+ for any λ ∈ Σi+.

We consider the following two cases separately:

• The groupGi is of real rank at least 2 or locally isomorphic to Sp(n, 1) (n ≥ 2)
or F−20

4 .

• The groupGi is of real rank 1.

14



We can treat Gi locally isomorphic to Sp(n, 1) (n ≥ 2) or F−20
4 in either cases.

From now on we will no longer consider the original objectsG, K , A, N , g, Σ, ϕρ
etc and we will focus only on the decomposed objects Gi, Ki, Ai, Ni, gi, Σi, ϕi etc.
Hence we will drop all the subscripts i to simplify the notations. So we have

G, g,K, k, p, θ, B,A, a, N, n, n′,Σ,Σ+, gλ, g
′
λ, g, ϕ, ϕ̃,Φ, p,

but we do not have M , ρ and aρ. Recall that G = Ad(G), g is the restriction of
B at TKG/K = p, AN is equipped with a Riemannian metric by the identification
AN ≃ G/K , the Riemannian metric of A is the one which makes p∗|a : a ≃ a an
isometry, and

AN AN

A A

Φ

p p

ϕ̃

∼

is fiber respecting. Under these conditions we must prove λ ◦ ϕ ∈ Σ+ for any λ ∈ Σ+.

4.1 The case where G is of real rank at least 2 or locally isomorphic

to Sp(n, 1) (n ≥ 2) or F−20

4

By Kleiner–Leeb [13, Theorem 1.1.3] for G of real rank at least 2 and by Pansu [18,
1. Théorème] for G locally isomorphic to Sp(n, 1) (n ≥ 2) or F−20

4 , there exists a
homothety

F : (G/K, g)→ (G/K, g)

close to Φ. Thus there is a constant c > 0 such that g (F∗X,F∗Y ) = cg(X,Y ) for all
x ∈ G/K and X , Y ∈ TxG/K , so F : (G/K, cg)→ (G/K, g) is an isometry. Since
the isometry group of G/K acts transitively, there exists the minimum K0 ∈ (−∞, 0)
of the sectional curvature of (G/K, g). Then cK0 is the minimum of the sectional
curvature of (G/K, cg). Since they are isometric we must have K0 = cK0 hence
c = 1. Thus F : (G/K, g)→ (G/K, g) is an isometry.

Since F is close to Φ,

AN AN

A A

F

p p

ϕ̃

is fiber respecting.
Let F (1)−1 = a0n0 ∈ AN . We have

AN AN

A A,

La0n0

p � p

La0

15



where L denotes the left multiplication. Since La0n0 is an isometry,

AN AN

A A

f

p p

La0◦ϕ̃

is fiber respecting, where f = La0n0 ◦ F . Since La0 ◦ ϕ̃ and ϕ̃ are close,

AN AN

A A

f

p p

ϕ̃

is also fiber respecting. Note that f is an isometry and f(1) = 1.

Lemma 16. The map ϕ̃ is an isometry.

Proof. There exists a constantC > 0 such that dH (f(aN), ϕ̃(a)N) < C for all a ∈ A.
Then we have

|d(1, a)− d (1, ϕ̃(a))| = |dH (f(N), f(aN))− dH (N, ϕ̃(a)N)|
≤ |dH (f(N), f(aN))− dH (f(N), ϕ̃(a)N)|
+ |dH (f(N), ϕ̃(a)N)− dH (N, ϕ̃(a)N)|
≤ dH (f(aN), ϕ̃(a)N) + dH (f(N), N)

< 2C

for all a ∈ A. Hence for all t > 0 and H ∈ a we have

∣∣d
(
1, etH

)
− d

(
1, etϕH

)∣∣ < 2C,

that is,
|t‖H‖ − t‖ϕH‖| < 2C.

This implies
‖ϕH‖ = ‖H‖.

Thus ϕ̃ is an isometry.

Now we regard f as f : G/K → G/K and p : G/K → A. Consider

f∗ : p = TKG/K → p = TKG/K.

Lemma 17. We have f∗(a) = a and f∗|a = ϕ : a→ a.

Proof. Take any H ∈ a. Let f∗H = X + Y for some X ∈ a and Y ∈ n′. Since

‖H‖2 = ‖f∗H‖2 = ‖X‖2 + ‖Y ‖2 ≥ ‖X‖2,
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we have ‖H‖ ≥ ‖X‖. Because etHK (t ∈ R) is a geodesic and f is an isometry,
f
(
etHK

)
(t ∈ R) is also a geodesic and f

(
etHK

)
= etX+tYK . Let t > 0.

Since f is fiber respecting over ϕ̃, there exists a constant C > 0 such that

dH
(
f
(
p−1

(
etH
))
, p−1

(
ϕ̃
(
etH
)))

< C.

Since etX+tYK = f
(
etHK

)
∈ f

(
p−1

(
etH
))

and by the definition of the Haus-
dorff distance, there exists x ∈ p−1

(
ϕ̃
(
etH
))

such that d
(
etX+tYK,x

)
< C.

The map p is distance decreasing since d(a, a′) = d
(
p−1(a), p−1(a′)

)
for all a,

a′ ∈ A. So

d
(
etX , ϕ̃

(
etH
))

= d
(
p
(
etX+tYK

)
, p(x)

)
≤ d

(
etX+tYK,x

)
< C. (6)

Since ϕ̃ is an isometry,

d
(
ϕ̃(etH), 1

)
= d

(
etH , 1

)
= t‖H‖.

By the triangle inequality we have

t‖H‖ − t‖X‖ = d
(
1, ϕ̃

(
etH
))
− d

(
1, etX

)
≤ d

(
etX , ϕ̃

(
etH
))
< C

for all t > 0. This forces ‖H‖ = ‖X‖ and then Y = 0 by the equation ‖H‖2 =
‖X‖2 + ‖Y ‖2. Hence f∗H = X ∈ a.

For the second assertion we have by (6)

d
(
etf∗H , etϕH

)
< C

for any t ∈ R. This implies f∗H = ϕH .

Proposition 18. Let g be a real semisimple Lie algebra and let G = Inn(g). (Recall
that the Lie algebra of G is naturally isomorphic to g and G is the identity component
of Aut(g).) Fix a maximal compact subgroup K of G:

1. Let ψ ∈ Aut(g) and consider Ψ ∈ Aut(G) defined by Ψ(g) = ψgψ−1. The
automorphism Ψ permutes the maximal compact subgroups of G. Identifying
the set of all maximal compact subgroups of G with G/K by gKg−1 ↔ gK ,
the map Iψ : G/K → G/K induced by Ψ is an isometry with respect to the
G-invariant Riemannian metric defined by the restriction of the Killing form to
the orthogonal complement of the Lie algebra of K .

2. Suppose g has no compact simple factor. Then the mapping ψ 7→ Iψ is an
isomorphism from Aut(g) to Isom(G/K).

Proof. This is Exercise 7 in Chapter VI of Helgason [7]. A proof can be found in
Solutions to Exercises.

By Proposition 18 there exists ψ ∈ Aut(g) such that f = Iψ . Since f(K) = K ,
we have Ψ(K) = K . This implies

f (gK) = Ψ(g)K (7)
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for all g ∈ G. We have ψ(k) = k. Since

p = {X ∈ g | B(X,Y ) = 0 for all Y ∈ k}

and B is ψ-invariant, we also have ψ(p) = p. Hence f∗ = ψ|p : p → p by (7) and
ψ(a) = a by Lemma 17. Therefore, ψ|a = ϕ : a → a again by Lemma 17. Since ψ is
an isomorphism of g which preserves a, we haveψ−1gλ = gλ◦ψ|a for any λ ∈ Σ. Thus
λ ◦ ϕ = λ ◦ ψ|a ∈ Σ if λ ∈ Σ. We must show that λ ◦ ϕ = λ ◦ ψ|a ∈ Σ+ if λ ∈ Σ+.

For a Weyl chamber C in a, let

ΣC = {λ ∈ Σ | λ(H) > 0 for some H ∈ C}

be the positive system corresponding to C, let nC =
⊕

λ∈ΣC
gλ, and letNC be the Lie

subgroup corresponding to nC .
Let C0 ⊂ a be the Weyl chamber corresponding to Σ+, ie

C0 = {H ∈ a | λ(H) > 0 for all λ ∈ Σ+} .

ThenC1 = ψC0 is a Weyl chamber in a. We have λ ∈ Σ+ if and only if λ ◦ (ψ|a)−1 ∈
ΣC1 . Thus ψn = nC1 . By (7) we have f(NK) = NC1K . Therefore, the Hausdorff
distance between NC1K and NK is finite.

Lemma 19. If C and C′ are distinct Weyl chambers in a, then the Hausdorff distance
between NCK and NC′K is infinite.

Proof. Take λ ∈ ΣC \ ΣC′ . Hence gλ ⊂ nC and g−λ ⊂ nC′ . We will prove that
eg−λK contains arbitrarily far points from NCK . Let Hλ ∈ a be the element defined
by λ(H) = B (Hλ, H) for all H ∈ a. By Knapp [14, Proposition 6.52] there exists
nonzeroXλ ∈ gλ such that:

• [Xλ, θXλ] = B (Xλ, θXλ)Hλ

• B (Xλ, θXλ) = − 2
B(Hλ,Hλ)

< 0

• the subspaceRθXλ⊕RHλ⊕RXλ is a Lie subalgebra of g isomorphic to sl(2,R).
The isomorphism is given by

X ′
−λ = θXλ ←→

(
0 0
1 0

)

H ′
λ =

2

B(Hλ, Hλ)
Hλ ←→

(
1 0
0 −1

)

X ′
λ = −Xλ ←→

(
0 1
0 0

)
.

For any x ∈ R we have

(
1 0
x 1

)
=

(
1 x

1+x2

0 1

)( 1√
1+x2

0

0
√
1 + x2

)( 1√
1+x2

x√
1+x2

− x√
1+x2

1√
1+x2

)
.
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This can be regarded as an equation of elements in the universal cover S̃L(2,R) of
SL(2,R). We rewrite it using the exponential map:

exp

(
0 0
x 0

)
= exp

(
0 x

1+x2

0 0

)
exp

(
− log(1+x2)

2 0

0 log(1+x2)
2

)

· exp
(

0 − arctanx
arctanx 0

)
.

Mapping the above equation by the homomorphism S̃L(2,R)→ G, we get

exp
(
xX ′

−λ
)
= exp

(
x

1 + x2
X ′
λ

)
exp

(
− log(1 + x2)

2
H ′
λ

)

· exp
(
arctanx

(
X ′

−λ −X ′
λ

))
. (8)

Note that

exp
(
xX ′

−λ
)
∈ eg−λ ⊂ NC′ , exp

(
x

1 + x2
X ′
λ

)
∈ egλ ⊂ NC ,

exp

(
− log(1 + x2)

2
H ′
λ

)
∈ A.

Since θ
(
X ′

−λ −X ′
λ

)
= X ′

−λ −X ′
λ, we have X ′

−λ −X ′
λ ∈ k, hence

exp
(
arctanx

(
X ′

−λ −X ′
λ

))
∈ K.

Thus (8) gives the Iwasawa decomposition of exp
(
xX ′

−λ
)

as an element of G =
NCAK . Therefore,

d
(
exp

(
xX ′

−λ
)
K,NCK

)
= d

(
exp

(
x

1 + x2
X ′
λ

)
exp

(
− log(1 + x2)

2
H ′
λ

)
K,NCK

)

= d

(
exp

(
− log(1 + x2)

2
H ′
λ

)
K,NCK

)

= d

(
exp

(
− log(1 + x2)

2
H ′
λ

)
K,K

)

=

∥∥∥∥−
log(1 + x2)

2
H ′
λ

∥∥∥∥

=
log(1 + x2)√
B(Hλ, Hλ)

.

This shows NC′K contains points arbitrarily far from NCK .

Thus C1 = C0 and so ψn = n. Hence λ ◦ ϕ = λ ◦ ψ|a ∈ Σ+ if λ ∈ Σ+.
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4.2 The case where G is of real rank 1

Proposition 20. If

AN AN

A A

f

p p

h

is fiber respecting, f is a quasiisometry and h is a map, then h is close to the identity
map.

The map ϕ̃ is close to the identity map by this proposition. But since ϕ̃ is a
homomorphism, ϕ̃ must be the identity map. Hence λ ◦ ϕ = λ ∈ Σ+ for all λ ∈ Σ+

and this concludes the proof of Proposition 13.
Proposition 20 is Proposition 5.8 of Farb–Mosher [5] whenG is locally isomorphic

to SO0(n, 1). For the other cases it is basically Theorem 33 of Reiter Ahlin [19] but
the proof there seems incomplete. To get the conclusion of Proposition 20 we need to
argue at some point in the same manner as Farb–Mosher do. Here we give a proof of
Proposition 20 following the arguments by Farb–Mosher and Reiter Ahlin.

We have Σ+ = {λ} for G locally isomorphic to SO0(n, 1) and Σ+ = {λ, 2λ} for
the other cases. Accordingly n = gλ in the former case and n = gλ ⊕ g2λ in the latter
case. Take H ∈ a such that λ(H) = 1. Hence a = RH . We identify A with R by
etH → t.

We write the proof for the case of Σ+ = {λ, 2λ} but no change is needed when we
have Σ+ = {λ} except notational one.

Let gt be the Riemannian metric onN induced from g by the embeddingN →֒ AN ,
x 7→ xetH . Let d and dt be the metrics induced from g and gt respectively. Since
x
(
yetH

)
= (xy) etH , ie the embedding N →֒ AN is N -equivariant, gt is a left

invariant Riemannian metric on N . Let ‖· ‖j be a norm on gjλ (j = 1, 2) and set

|x| = max
{
‖ξ‖1 , ‖v‖

1
2
2

}
for x ∈ N , where log x = ξ + v for ξ ∈ gλ, v ∈ g2λ. Let

φt : N → N be the map defined by φt(x) = etHxe−tH . Then

|φt(x)| =
∣∣etHeξ+ve−tH

∣∣ =
∣∣exp

(
et adH(ξ + v)

)∣∣

=
∣∣exp

(
etξ + e2tv

)∣∣ = max
{
et ‖ξ‖1 , et ‖v‖

1
2
2

}

= etmax
{
‖ξ‖1 , ‖v‖

1
2
2

}
= et

∣∣eξ+v
∣∣

= et |x|

for any x ∈ N and t ∈ R.

Lemma 21. There exists K1 ≥ 1 such that

1

K1
e−t

∣∣x−1y
∣∣−K1 ≤ dt(x, y) ≤ K1e

−t ∣∣x−1y
∣∣+K1

for all t ∈ R and x, y ∈ N .
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Proof. Since etHx = φt(x)e
tH , φt : (N, g0)→ (N, gt) is an isometry. Hence

dt(x, y) = dt
(
1, x−1y

)
= d0

(
1, φ−t

(
x−1y

))
.

It is known that there exists a constantK1 ≥ 1 such that

1

K1
|x| −K1 ≤ d0(1, x) ≤ K1 |x|+K1

for all x ∈ N . See for example Breuillard [3, Proposition 4.5]. Therefore,

dt(x, y) ≤ K1

∣∣φ−t
(
x−1y

)∣∣+K1 = K1e
−t ∣∣x−1y

∣∣+K1

and
1

K1
e−t

∣∣x−1y
∣∣−K1 =

1

K1

∣∣φ−t
(
x−1y

)∣∣ −K1 ≤ dt(x, y).

Corollary 22. There exists K2 ≥ 1 such that for any fixed t0 ∈ R we have

1

K2
2

et0−t ≤ dt(x, y)

dt0(x, y)
≤ K2

2e
t0−t

if t ≤ t0 and
∣∣x−1y

∣∣ >
(
K2

1 + 1
)
et0 .

Proof. If t ≤ t0 and
∣∣x−1y

∣∣ >
(
K2

1 + 1
)
et0 , then we have e−t

∣∣x−1y
∣∣ > K2

1 + 1,
hence

(
1

K1
− K1

K2
1 + 1

)
e−t

∣∣x−1y
∣∣ ≤ dt(x, y) ≤

(
K1 +

K1

K2
1 + 1

)
e−t

∣∣x−1y
∣∣

by Lemma 21. Since
1

K1
− K1

K2
1 + 1

> 0,

there exists K2 ≥ 1, which is independent of t0, such that

1

K2
e−t

∣∣x−1y
∣∣ ≤ dt(x, y) ≤ K2e

−t ∣∣x−1y
∣∣

under the above conditions. In particular

1

K2
e−t0

∣∣x−1y
∣∣ ≤ dt0(x, y) ≤ K2e

−t0
∣∣x−1y

∣∣ .

We get the conclusion from these two inequalities.

A map σ : S → X between geodesic spaces is called uniformly proper if there exist
constantsK ≥ 1, C ≥ 0 and a function ρ : R≥0 → R≥0 with lima→∞ ρ(a) =∞ such
that

ρ (d(x, y)) ≤ d (σ(x), σ(y)) ≤ Kd(x, y) + C

for all x, y ∈ S. We call ρ, K and C the uniformity data for σ.
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Lemma 23. The embedding (N, dt) →֒ (AN, d) is uniformly proper for each t ∈ R and
the uniformity data are independent of t. In fact there exists a function ρ : R≥0 → R≥0

with lima→∞ ρ(a) =∞ such that

ρ (dt(x, y)) ≤ d
(
xetH , yetH

)
≤ dt(x, y)

for all x, y ∈ N and t ∈ R.

Proof. The second inequality is obvious. For the first inequality, define ρ1 : R≥0 →
R≥0 by

ρ1(R) = sup {d0(1, x) | x ∈ N, d(1, x) = R} .
Then ρ1 is strictly increasing and limR→∞ ρ1(R) = ∞. We have d0(1, x) ≤
ρ1 (d(1, x)) for any x ∈ N hence d0(x, y) ≤ ρ1 (d(x, y)) for all x, y ∈ N . Since

dt(x, y) = d0
(
e−tHxetH , e−tHyetH

)

≤ ρ1
(
d
(
e−tHxetH , e−tHyetH

))

= ρ1
(
d
(
xetH , yetH

))
,

we get ρ−1
1 (dt(x, y)) ≤ d

(
xetH , yetH

)
. So ρ = ρ−1

1 satisfies the required properties.

Lemma 24. LetX , Y , S, T be geodesic spaces, let f : X → Y be a quasiisometry, and
let σ : S → X , τ : T → Y be uniformly proper maps such that dH (fσ(S), τ(T )) <
∞. Take any map g : S → T satisfying supx∈S d (fσ(x), τg(x)) < ∞. Then g is
a quasiisometry and the quasiisometry constants depend only on the quasiisometry
constants for f , the uniformity data for σ and τ , and supx∈S d (fσ(x), τg(x)).

Proof. This is Lemma 2.1 of Farb and Mosher [5].

We identifyh : A→ Awithh : R→ Rbyh
(
etH
)
= eh(t)H . Defineft : (N, dt)→(

N, dh(t)
)

by f
(
xetH

)
= ft(x)e

u(x,t)H . Then ft satisfies the property of Lemma 24.
In fact since f is fiber respecting over h, there exists a constant C1 > 0 such that
dH
(
f
(
p−1

(
etH
))
, p−1

(
eh(t)H

))
< C1 for all t ∈ R. Hence there exists y ∈ N such

that d
(
f
(
xetH

)
, yeh(t)H

)
< C1. Therefore,

d
(
f
(
xetH

)
, ft(x)e

h(t)H
)
= d

(
ft(x)e

u(x,t)H , ft(x)e
h(t)H

)

≤ d
(
ft(x)e

u(x,t)H , yeh(t)H
)
< C1 (9)

for all x ∈ N and t ∈ R. By Lemma 23 and Lemma 24, ft : (N, dt)→
(
N, dh(t)

)
is a

quasiisometry with quasiisometry constants independent of t.
Let ∂AN be the Gromov boundary of AN . Then ∂AN = {∞} ∪ N . The

quasiisometry f induces a map ∂f : ∂AN → ∂AN .

Lemma 25. ∂f(∞) =∞.
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Proof. Assume the contrary: ∂f(∞) = x ∈ N . Take y ∈ N with y 6= (∂f)−1(∞).
Let γ be the directed geodesic connecting y and ∞. Then the Hausdorff distance
between f(γ) and the directed geodesic γ′ connecting ∂f(y) and x is finite. Hence the
height of f(γ) is bounded above. Since h is a quasiisometry, we can choose t0 ∈ R so
that h(t0) is as large as we wish. Therefore, the height of f

(
p−1

(
et0H

))
is also large.

But we always have f
(
yet0H

)
∈ f

(
p−1

(
et0H

))
∩f(γ) 6= ∅, which is impossible.

For any x ∈ N , xetH (t ∈ R) is a geodesic of AN connecting x ∈ ∂AN and∞.
Then f

(
xetH

)
(t ∈ R) is a quasigeodesic ofAN . By Lemma 25 there exists a constant

C2 > 0 such that dH
(
f
(
xeRH

)
, ∂f(x)eRH

)
< C2. By (9)

|u(x, t)− h(t)| ‖H‖ < C1. (10)

There exists s(x, t) ∈ R such that d
(
f
(
xetH

)
, ∂f(x)es(x,t)H

)
< C2. We have

|u(x, t)− s(x, t)| ‖H‖ = d
(
∂f(x)eu(x,t)H , ∂f(x)es(x,t)H

)

= d
(
p−1

(
eu(x,t)H

)
, ∂f(x)es(x,t)H

)

≤ d
(
f
(
xetH

)
, ∂f(x)es(x,t)H

)
< C2. (11)

By (10) and (11) we get

|s(x, t) − h(t)| ‖H‖ < C1 + C2. (12)

Therefore,

d
(
ft(x)e

h(t)H , ∂f(x)eh(t)H
)

≤ d
(
ft(x)e

h(t)H , ft(x)e
u(x,t)H

)
+ d

(
ft(x)e

u(x,t)H , ∂f(x)es(x,t)H
)

+ d
(
∂f(x)es(x,t)H , ∂f(x)eh(t)H

)

< |u(x, t)− h(t)| ‖H‖+ C2 + |s(x, t)− h(t)| ‖H‖
< 2C1 + 2C2.

Hence

dh(t) (ft(x), ∂f(x)) ≤ ρ−1
(
d
(
ft(x)e

h(t)H , ∂f(x)eh(t)H
))

< ρ−1 (2C1 + 2C2) .

Namely ft and ∂f are close and the constant of closeness is independent of t. Thus
∂f : (N, dt)→

(
N, dh(t)

)
is a quasiisometry with constants independent of t, so there

exists a constantK3 ≥ 1 such that

1

K3
dt(x, y)−K3 ≤ dh(t) (∂f(x), ∂f(y)) ≤ K3dt(x, y) +K3

for all x, y ∈ N and t ∈ R.
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Lemma 26. For any fixed t0 ∈ R we have

1

2K3
dt(x, y) ≤ dh(t) (∂f(x), ∂f(y)) ≤ 2K3dt(x, y)

for all t ≤ t0 and x, y ∈ N with
∣∣x−1y

∣∣ > et0K1

(
2K2

3 +K1

)
.

Proof. If t ≤ t0 and
∣∣x−1y

∣∣ > et0K1

(
2K2

3 +K1

)
, we have

dt(x, y) ≥
1

K1
e−t

∣∣x−1y
∣∣−K1 ≥ 2K2

3 .

Hence
dh(t) (∂f(x), ∂f(y)) ≤ K3dt(x, y) +K3 ≤ 2K3dt(x, y)

and

dh(t) (∂f(x), ∂f(y)) ≥
1

K3
dt(x, y)−

1

2K3
2K2

3 ≥
1

2K3
dt(x, y).

It is easy to show that h is a quasiisometry of R. See Farb–Mosher [5, Lemma 5.1].

Lemma 27. There exists L > 0 such that for any t, t0 ∈ R with t + L ≤ t0 we have
h(t) ≤ h(t0).

Proof. Recall that h is close to s(x, · ) as we saw in (12). By the definition of s(x, t)
we see s(x, t) → ±∞ as t → ±∞. So h(t) → ±∞ as t → ±∞. Let K ≥ 1 be a
constant such that 1

K
|s− t| − K ≤ |h(s)− h(t)| ≤ K |s− t| + K for all s, t ∈ R.

Take L = 4K2 and assume the contrary, ie there were s0, t0 ∈ R with s0 + L ≤ t0
such that h(t0) ≤ h(s0). We have |h(s0)− h(t0)| ≥ 3K and |h(s0)− h(t)| ≥ 3K
for any t ≥ t0. For t0 ≤ t ≤ t0 + 1 we have |h(t)− h(t0)| ≤ 2K . Hence we must
have h(t) ≤ h(s0) for all t0 ≤ t ≤ t0 + 1. Now we have s0 + L ≤ t0 + 1 and
h (t0 + 1) ≤ h(s0). Hence this time we get h(t) ≤ h(s0) for all t0 + 1 ≤ t ≤ t0 + 2.
By repeating we see that h(t) ≤ h(s0) for all t ≥ t0, which is a contradiction.

Lemma 28. For any fixed t0 ∈ R, we have

1

K2
2

eh(t0)−h(t) ≤ dh(t) (∂f(x), ∂f(y))

dh(t0) (∂f(x), ∂f(y))
≤ K2

2e
h(t0)−h(t)

if t ≤ t0 − L and

∣∣x−1y
∣∣ > K2

1K3e
−h(0)

(
1

K1e−h(0)

(
K1

K3
+K3 +K1

)
+
(
K2

1 + 1
)
eh(t0)

)
.

Proof. If t ≤ t0 − L and

∣∣x−1y
∣∣ > K2

1K3e
−h(0)

(
1

K1e−h(0)

(
K1

K3
+K3 +K1

)
+
(
K2

1 + 1
)
eh(t0)

)
,
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then

∣∣∂f(x)−1∂f(y)
∣∣ ≥ 1

K1e−h(0)
(
dh(0) (∂f(x), ∂f(y))−K1

)

≥ 1

K1e−h(0)

(
1

K3
d0(x, y)−K3 −K1

)

≥ 1

K1e−h(0)

(
1

K3

(
1

K1

∣∣x−1y
∣∣−K1

)
−K3 −K1

)

=
1

K2
1K3e−h(0)

∣∣x−1y
∣∣− 1

K1e−h(0)

(
K1

K3
+K3 +K1

)

>
(
K2

1 + 1
)
eh(t0)

and h(t) ≤ h(t0). So we get the desired inequality by Corollary 22.

Lemma 29. There exists C3 > 0 such that for any t0 ∈ R and t ≤ t0, we have

h(t) ≥ t− t0 + h(t0)− C3.

Proof. Fix t0 and take x, y ∈ N with
∣∣x−1y

∣∣ large enough so that we can apply
Corollary 22, Lemma 26 and Lemma 28. Then for any t ≤ t0 − L, we have

1

2K2
2K3

eh(t0)−h(t)dt0(x, y) ≤
1

K2
2

eh(t0)−h(t)dh(t0) (∂f(x), ∂f(y))

≤ dh(t) (∂f(x), ∂f(y))
≤ 2K3dt(x, y)

≤ 2K2
2K3e

t0−tdt0(x, y).

Hence
eh(t0)−h(t) ≤ 4K4

2K
2
3e
t0−t.

Taking log we get
h(t0)− h(t) ≤ t0 − t+ log

(
4K4

2K
2
3

)
.

Since h is a quasiisometry, h(t0)− h(t)− t0 + t is bounded above for t0−L ≤ t ≤ t0
by a constant independent of t0. Hence the claim is proved.

Let f̄ : AN → AN be a coarse inverse of f , ie f̄ is a quasiisometry such that f̄ ◦ f
and f ◦ f̄ are close to the identity map. Let h̄ : R → R be a coarse inverse of h. It is
easy to show that f̄ is fiber respecting over h̄. Apply Lemma 29 to f̄ and h̄ rather than
f and h. Then there exists C′

3 > 0 such that

h̄(s) ≥ s− s0 + h̄(s0)− C′
3

for all s ≤ s0. Now we can argue completely in the same way as in Farb–Mosher [5,
page 167 just after Claim 5.9] to prove that h is close to the identity map.
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5 Necessary conditions for parameter rigidity

From this section we consider necessary conditions for parameter rigidity. (For the
definition of parameter rigidity, see the beginning of Section 1.) These necessary
conditions are given by certain vanishing of zeroth and first cohomology of the orbit
foliation. The main results are Theorem 30 and Theorem 35.

Let M
ρ0
x S denote a C∞ locally free action of a connected simply connected

solvable Lie group S on a closed C∞ manifold M , with the orbit foliation F .
Recall that a connected simply connected solvable Lie group S is called of expo-

nential type if the exponential map exp: s → S is a diffeomorphism, or equivalently,
every eigenvalue of adX either is 0 or has nonzero real part for each X ∈ s. For a
proof of this equivalence, see Dixmier [4, Théorème 3] or Saito [20]. A derivation of a
Lie algebra is called an outer derivation if it is not an inner derivation.

The first necessary condition is the following.

Theorem 30 (Vanishing of H0). Assume that S is of exponential type and there is

an outer derivation of s. If M
ρ0
x S is parameter rigid, then M is connected and

H0(F) = H0(s).

We will prove Theorem 30 in Section 6.

Corollary 31. Let N 6= 1 be a connected simply connected nilpotent Lie group and let

M
ρ0
x N be a parameter rigid action. Then M is connected and H0(F) = H0(n).

Proof. Every nonzero nilpotent Lie algebra over any field has an outer derivation. See
Jacobson [9].

Note that H0(F) consists of real valued leafwise constant C∞ functions on M
and H0(s) (as a subspace of H0(F)) consists of real valued constant functions on M .
Hence we have H0(F) = H0(s) if and only if leafwise constant C∞ functions are
constant. This is satisfied if there is a dense leaf of F . In the proof of Theorem 30 we
don’t prove the existence of a dense leaf of F . We prove H0(F) = H0(s) somewhat
algebraically without studying dynamical properties of the foliation F .

Remark 32. The author does not know whether Theorem 30 remains true if we drop
one of the two assumptions on S. One possibility of constructing counterexamples
which are parameter rigid butH0(F) is huge is the following. Take a connected simply
connected solvable Lie group S and a cocompact lattice Γ in S such that:

• S has no outer automorphisms

• Γ is a rigid lattice in S, which means, if Γ′ is a lattice in S and α : Γ → Γ′ is
an isomorphism, then α extends to an automorphism of S. (This terminology is
taken from Starkov [21].)

The author does not know the existence of such S and Γ. But if we had such a
pair, Proposition 6.1.2 in Maruhashi [17] says, the action Γ\S x S defined by right
multiplication is parameter rigid because in this case parameter rigidity is equivalent to
the rigidity of the latticeΓ. Then the actionS1×Γ\S x S defined by (x, y)s = (x, ys)
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is perhaps parameter rigid by the first condition, whereasH0(F) is now identified with
the space of all real valued C∞ functions on S1.

Recall the following theorem.

Theorem 33 (Maruhashi [16]). Let N be a connected simply connected nilpotent Lie

group, and letM
ρ0
x N be aC∞ locally free action. Then the following are equivalent:

• The action ρ0 is parameter rigid and H0(F) = H0(n).

• H1(F) = H1(n).

Hence we have the following.

Corollary 34. Let N be a connected simply connected nilpotent Lie group, and let

M
ρ0
x N be a C∞ locally free action. Then the following are equivalent:

• The action ρ0 is parameter rigid.

• H1(F) = H1(n).

Proof. This is true even if N = 1.

If we have vanishing ofH0 for the trivial coefficient, then we can deduce vanishing
of H0 for various nontrivial coefficients by an easy argument. This will be done in
Lemma 42 in Section 6.

The second necessary condition is on vanishing of H1. The following will be
proved in Section 7.

Theorem 35 (Vanishing of H1). Let V ⊂ s be an ad-invariant subspace (ie an ideal

of s) for which n
ad
y V is trivial. Assume that any eigenvalue of adX on s/V either is

0 or has nonzero real part for any X ∈ s. If M
ρ0
x S is parameter rigid, then we have

H1
(
F ; s ad

y V
)
= H0(F)⊗H1

(
s; s

ad
y V

)
.

Note that the assumption is weaker than the assumption that S is of exponential
type, as it allows adX : V → V to have purely imaginary nonzero eigenvalues.

Here an element [ω] ∈ H1
(
F ; s ad

y V
)

is in H0(F) ⊗ H1
(
s; s

ad
y V

)
if and

only if [ω] is represented by a leafwise constant form, that is, represented by a form
φ ◦ ω0 for some C∞ leafwise constant map φ : M → Hom(s, V ). If we assume
also that s has an outer derivation, then by Theorem 30, the conclusion simplifies to

H1
(
F ; s ad

y V
)
= H1

(
s; s

ad
y V

)
.

Let us consider the coefficients appearing Theorem 35. We have V ⊂ n, thus V
is contained in the center of n, and is an abelian ideal of s. (For the first part, if not,
take X ∈ V \ n, then n + RX would be a nilpotent ideal of s which is larger than the
nilradical n.)

As an example of a coefficientV satisfying the property, we can take V = ns, where
n ⊃ n2 ⊃ · · · ⊃ ns ⊃ 0 is the lower central series of n.
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As a more concrete example, we consider the 2-dimensional solvable Lie algebra

ga = RX ⊕RY defined by [X,Y ] = Y . Then the 1-dimensional representation ga
ad
y

RY satisfies the condition of Theorem 35, but the trivial representation s y ga/RY
does not satisfy the condition.

6 Vanishing of H0—proof of Theorem 30

The proof of Theorem 30 is immediate after proving Lemma 40, whose proof is the
main part of this section. Several lemmas before Lemma 40 prepare an “integration”
map µ, which will be used in the proof of Lemma 40. Sublemma 6 inside Lemma
40 is similar to Lemma 45 in the next section and the same kind of argument already
appeared in Maruhashi [16] when the vanishing ofH1 was proved under the assumption
of parameter rigidity together with the vanishing of H0 for actions of nilpotent Lie
groups.

Let M
ρ0
x S be a C∞ locally free action of a connected simply connected solvable

Lie group S on a closed C∞ manifoldM , with the orbit foliation F and the canonical
1-form ω0.

Let s
π
y V be a finite dimensional real representation, and let S

Π
y V denote the

representation whose differentiation is π. Then the trivial bundle M × V → M is an
S-equivariant vector bundle with the action defined by

(x, v)s =
(
ρ0(x, s),Π

(
s−1
)
v
)
.

Let Γblc(V ) be the space of all bounded sections ofM ×V →M which are continuous
on each leaf. (An element ξ ∈ Γblc(V ) can be discontinuous on M .) We have a
representation S y Γblc(V ) by

(sξ) (x) = Π(s)ξ (ρ0(x, s))

for s ∈ S, ξ ∈ Γblc(V ) and x ∈ M . We equip V with a norm coming from an inner
product. Then Γblc(V ) is a Banach space with the supremum norm. Let Γlc(V ) be the
closed subspace of Γblc(V ) which consists of bounded leafwise constant sections.

Lemma 36. There is an S-equivariant continuous linear map

µ : Γblc(V )→ Γlc(V )

which is the identity on Γlc(V ).

Proof. Since S is amenable, by one of the characterizations of amenability, we have a
bi-invariant mean µ0 : Cb(S)→ R on the space Cb(S) of all bounded continuous real
valued functions on S. See Page 26–29 of Greenleaf [6]. Recall that µ0(1) = 1 and its
operator norm is 1. Take a basis v1, . . . , vn of V . For ξ =

∑n
i=1 fivi ∈ Γblc(V ) and

x ∈M , we define

µ(ξ)(x) =

n∑

i=1

µ0 (fi (ρ0(x, · ))) vi.
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Then this is independent of a choice of a basis of V . We have

µ(ξ) (ρ0(x, s)) =
n∑

i=1

µ0 (fi (ρ0(x, s · ))) vi = µ(ξ)(x)

by left invariance, and

µ(sξ)(x) = Π(s)

n∑

i=1

µ0 (fi (ρ0(x, · s))) vi = sµ(ξ)(x)

by right invariance. We also have µ(ξ) = ξ for ξ ∈ Γlc(V ) since µ0(1) = 1. By taking
v1, . . . , vn to be an orthonormal basis and using ‖µ0‖ = 1, we see

‖µ(ξ)(x)‖2 ≤
n∑

i=1

‖fi‖2∞ ≤ n ‖ξ‖
2
∞ .

Let ∇ denote the flat leafwise connection of M × V →M defined by s
π
y V .

Lemma 37. For v ∈ V , x0 ∈ M and sufficiently small s ∈ S, the locally defined
section

ξ0 (ρ0(x0, s)) =
(
ρ0(x0, s),Π

(
s−1
)
v
)

ofM ×V →M on the leaf containing x0, is a parallel section for∇, that is,∇ξ0 = 0.

Proof. For any y = ρ0(x0, s0) with small s0 ∈ S and any X ∈ s, we have

∇ d
dt
ρ0(y,etX )|

t=0

ξ0 = dFξ0

(
d

dt
ρ0
(
y, etX

)∣∣∣∣
t=0

)
+ π(X)ξ0(y)

=
d

dt
Π
(
e−tXs−1

0

)
v

∣∣∣∣
t=0

+ π(X)Π
(
s−1
0

)
v

= 0.

Therefore, the directions of orbits of the action M × V x S are horizontal for the
leafwise connection∇. By the expression of covariant derivative by parallel transport,
we have

(∇Xξ) (x) = lim
t→0

Π
(
etX
)
ξ
(
ρ0
(
x, etX

))
− ξ(x)

t

= lim
t→0

(
etXξ

)
(x)− ξ(x)
t

for any ξ ∈ Γ(V ), X ∈ s and x ∈ M . Note that X ∈ s is regarded as X ∈ Γ(TF)
using the locally free action ρ0.
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Lemma 38. For any ξ ∈ Γ(V ) and X ∈ s, e
tXξ−ξ
t

converges uniformly to ∇Xξ as
t→ 0.

Proof. Take a basis v1, . . . , vn of V and write
(
etXξ

)
(x) =

∑n
i=1 fi(t, x)vi for some

C∞ functions fi : R ×M → R. Then we have (∇Xξ) (x) =
∑n

i=1 f
′
i(0, x)vi. The

function fi(t, x) has the Taylor expansion

fi(t, x) = fi(0, x) + tf ′
i(0, x) +

t2

2
f ′′
i (θi,x,t, x) ,

where θi,x,t is a number between 0 and t. Since

(
etXξ

)
(x)− ξ(x)
t

− (∇Xξ) (x) =
t

2

n∑

i=1

f ′′
i (θi,x,t, x) vi

and f ′′
i (θ, x) is bounded for −1 ≤ θ ≤ 1 and x ∈M , we get the conclusion.

Lemma 39. Let µ : Γblc(V )→ Γlc(V ) be the map in Lemma 36. Then

µ (∇Xξ) = ∇Xµ(ξ)

for all ξ ∈ Γ(V ) and X ∈ s. (Note that µ(ξ) might be discontinuous on M .)

Proof. By Lemma 38, e
tXξ−ξ
t

converges uniformly to ∇Xξ as t → 0. By continuity
and equivariance, we have

µ (∇Xξ) = lim
t→0

etXµ(ξ)− µ(ξ)
t

= ∇Xµ(ξ).

Lemma 40. Assume that S is of exponential type. Let Ψ: M → Aut(S) be aC∞ map
which is constant on each leaf of F . If ρ0 is parameter rigid, then Ψ: M → Out(S) is
constant on M , where bar denotes the projection Aut(S)→ Out(S). In particular, if
Out(S) 6= 1, M must be connected.

Proof. Define M
ρ
x S by ρ(x, s) = ρ0

(
x,Ψ−1

x (s)
)
. This defines an action because

Ψ is leafwise constant:

ρ (x, ss′) = ρ0
(
ρ0
(
x,Ψ−1

x (s)
)
,Ψ−1

x (s′)
)

= ρ0

(
ρ(x, s),Ψ−1

ρ(x,s) (s
′)
)

= ρ (ρ(x, s), s′) .

Since ρ is a C∞ locally free action with the same orbit foliation as ρ0, ρ is parameter
equivalent to ρ0 by parameter rigidity. Note that Ψx∗ω0 is the canonical 1-form of ρ.
By Proposition 1.4.4 of Asaoka [2], there existΦ ∈ Aut(S) and aC∞ mapP : M → S
such that

Ψx∗ω0 = Ad
(
P−1

)
Φ∗ω0 + P ∗Θ, (13)
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where Θ denotes the left Maurer–Cartan form of S. (In [2], Φ is referred to as an
endomorphism, but it is the sameΦ appearing in the definition of parameter equivalence
which we saw in Section 1, soΦ can be taken as an automorphism. It is easy to see P ∗Θ
is equivalent to the expression P−1dFP in [2]. There is a small difference between
our definition of parameter equivalence and the one in [2], since in [2] the map F is
assumed to be homotopic to the identity through diffeomorphisms. But this does not
cause any problem here.)

Let a denote both projections s→ s/n and S → S/N , where n is the nilradical of
s and N is the Lie subgroup corresponding to n. By projecting (13), we get

aΨx∗ω0 = aΦ∗ω0 + dFaP, (14)

since s/n is abelian. For any x ∈ M , X ∈ s and T > 0, we integrate (14) over the
curve ρ0

(
x, etX

)
for 0 ≤ t ≤ T . Then noting Ψ being leafwise constant,

TaΨx∗X = TaΦ∗X + aP
(
ρ0
(
x, eTX

))
− aP (x).

Since aP is bounded due to the compactness ofM , we must have aΨx∗X = aΦ∗X and
aP is leafwise constant. Hence there exists a leafwise constant C∞ map R : M → S
such that Q = R−1P : M → N . Since R is leafwise constant, we have

P ∗Θ = (RQ)∗Θ = Q∗Θ

and (13) becomes

Ψx∗ω0 = Ad
(
Q−1

)
Ad
(
R−1

)
Φ∗ω0 +Q∗Θ. (15)

Letn ⊃ n2 ⊃ · · · ⊃ ns ⊃ 0 be the lower central series of n. Recall that exp: n→ N
is a diffeomorphism and log : N → n is defined.

Sublemma. Assume that there exist a C∞ map Q : M → N and a leafwise constant
C∞ map R : M → S such that:

• Ψx∗ω0 = Ad
(
Q−1

)
Ad
(
R−1

)
Φ∗ω0 +Q∗Θ

• logQ ∈ nk for some 1 ≤ k ≤ s.

Then we can find aC∞mapQ′ : M → N and a leafwise constantC∞ mapR′ : M → S
such that:

• Ψx∗ω0 = Ad
(
(Q′)−1

)
Ad
(
(R′)−1

)
Φ∗ω0 + (Q′)∗ Θ

• logQ′ ∈ nk+1.

Proof. Take subspaces V0, . . . , Vs such that s = V0 ⊕ n and ni = Vi ⊕ ni+1 for
i = 1, . . . , s. We can write Q = exp (

∑s
i=k Qi) for some C∞ maps Qi : M → Vi.

We will calculate the Vk component of

Ψx∗ω0 = Ad
(
Q−1

)
Ad
(
R−1

)
Φ∗ω0 +Q∗Θ. (16)
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First note that
Q∗Θ ≡ dFQk mod nk+1.

In fact, for all X = d
dt
x(t)

∣∣
t=0
∈ TxF ,

Q∗Θ(X) =
d

dt
Q(x)−1Q (x(t))

∣∣∣∣
t=0

=
d

dt
exp

(
−

s∑

i=k

Qi(x)

)
exp

(
s∑

i=k

Qi (x(t))

)∣∣∣∣∣
t=0

=
d

dt
exp

(
s∑

i=k

(Qi (x(t)) −Qi(x)) + an element of nk+1

)∣∣∣∣∣
t=0

=
d

dt
exp

(
Qk (x(t)) −Qk(x) + an element of nk+1

)∣∣∣∣
t=0

≡ dFQk(X) mod nk+1.

Let s
π0
k

y Vk be the representation obtained from s
ad
y nk/nk+1 by the identification

Vk ≃ nk/nk+1. Put πk = π0
k ◦ Φ∗. We take s

πk
y Vk as s

π
y V considered in the

beginning of this section; we let ∇ be the leafwise connection defined by πk, and we
let µ : Γblc(Vk)→ Γlc(Vk) be the map in Lemma 36.

Write Ψx∗ω0 =
∑s

i=0 αi and Ad
(
R−1

)
Φ∗ω0 =

∑s
i=0 βi according to the de-

composition s =
⊕s

i=0 Vi. Then we have

Ad
(
Q−1

)
Ad
(
R−1

)
Φ∗ω0 = exp

(
ad

(
−

s∑

i=k

Qi

))
s∑

i=0

βi

≡
k∑

i=0

βi + [β0, Qk] mod nk+1

≡
k∑

i=0

βi + π0
kβ0Qk mod nk+1.

Take the Vk components of (16) to get

αk = βk + π0
kβ0Qk + dFQk.

Since
Φ∗ω0 ≡ Ad

(
R−1

)
Φ∗ω0 ≡ β0 mod n

and π0
k vanishes on n, we have πkω0 = π0

kβ0. Therefore,

∇Qk = dFQk + πkω0Qk

= dFQk + π0
kβ0Qk,

and we get
αk = βk +∇Qk. (17)
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Hence
αk(X) = βk(X) +∇XQk

for anyX ∈ s. Note that αk(X) and βk(X) are leafwise constant becauseR is leafwise
constant. Applying µ and using Lemma 39, we get

αk(X) = βk(X) +∇Xµ(Qk).

Therefore,
∇X (Qk − µ(Qk)) = 0.

Put Q′
k = Qk − µ(Qk). We shall see Q′

k is leafwise constant. Let S
Πk
y Vk be the

representation with the derivative s
πk
y Vk. Then for any t ∈ R and x ∈M , we have

d

ds

∣∣∣∣
s=t

(
esXQ′

k

)
(x) = lim

h→0
Πk
(
etX
) (ehXQ′

k

) (
ρ0
(
x, etX

))
−Q′

k

(
ρ0
(
x, etX

))

h

= Πk
(
etX
)
(∇XQ′

k)
(
ρ0
(
x, etX

))

= 0.

Thus
(
etXQ′

k

)
(x) = Πk

(
etX
)
Q′
k

(
ρ0
(
x, etX

))
is constant with respect to t. So

Q′
k

(
ρ0
(
x, etX

))
= Πk

(
e−tX

)
Q′
k(x) = e−tπk(X)Q′

k(x)

for all t ∈ R. Note that Q′
k

(
ρ0
(
x, etX

))
is bounded with respect to t. Take a basis

of Vk which turns −πk(X) = −π0
k (Φ∗X) into a real Jordan normal form. Since any

eigenvalue of adX : s → s for any X ∈ s either is 0 or has nonzero real part by our
assumption that s is of exponential type, the same is true for π0

k(X) : Vk → Vk for all
X ∈ s. Therefore, each Jordan block of −πk(X) = −π0

k(Φ∗X) has the eigenvalue
which either is 0 or has nonzero real part. For a Jordan block whose eigenvalue has the
nonzero real part, the corresponding components of e−tπk(X)Q′

k(x) have the following
forms: 


eta ∗

. . .
0 eta






c1
...
cm




if the eigenvalue a is real, and


etaRt ∗

. . .
0 etaRt






c1
...
cm


 ,

where

Rt =

(
cos tb sin tb
− sin tb cos tb

)

if the eigenvalue a + bi is not real. Since this must be bounded for all t ∈ R,
c1 = · · · = cm = 0, which implies the corresponding components ofQ′

k

(
ρ0
(
x, etX

))

must be constant.
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On the other hand, for a Jordan block with the eigenvalue 0, the corresponding
components in e−tπk(X)Q′

k(x) is


1 ∗

. . .
0 1






c1
...
cm


 ,

where the entries in the ∗ part of the matrix are now polynomials in t. Since bounded
polynomial functions must be constant, we see the corresponding components in
Q′
k

(
ρ0
(
x, etX

))
are also constant.

So Qk is leafwise constant. Put Q′ = e−QkQ. Then logQ′ has values in nk+1 and

Ψx∗ω0 = Ad
(
(Q′)

−1
)
Ad
(
(R′)

−1
)
Φ∗ω0 + (Q′)

∗
Θ,

where R′ = ReQk is leafwise constant.

Applying Sublemma 6 to (15) repeatedly, we finally get Q = 1 and therefore

Ψx∗ω0 = Ad
(
R−1

)
Φ∗ω0

for some R. Therefore, Ψx is equal to Φ modulo inner automorphisms.

Theorem 30 is restated and proved here.

Theorem 41. Assume that S is of exponential type and there is an outer derivation of

s. If M
ρ0
x S is parameter rigid, then M is connected and H0(F) = H0(s).

Proof. Since there is an outer derivation of s, the outer automorphism group Out(S)
of S is nontrivial, hence M is connected. Take an outer derivation ϕ of s and set
Φt = etϕ ∈ Aut(S). For any f ∈ H0(F), consider a map M → Aut(S) defined
by x 7→ Φf(x). Since this is leafwise constant, x 7→ Φf(x) ∈ Out(S) is constant by
Lemma 40. Let Inn(S) denote the inner automorphism group of S. This is a connected
normal Lie subgroup of Aut(S). We must be a bit careful because Inn(S) might
not be closed in Aut(S) in general. See Hochschild [8]. But the cosets of Inn(S)
defines a foliation on Aut(S) and Φt is a curve transverse to the foliation. Since the
automorphisms Φf(x) for all x ∈ M are contained in a single leaf of F and M is
connected, Φf(x) must be constant with respect to x. This implies f is constant over
M .

Finally we see vanishing of H0 with nontrivial coefficients.

Lemma 42. Assume H0(F) = H0(s). Let s
π
y V be a representation for which

π(X) has no nonzero purely imaginary eigenvalues for eachX ∈ s. ThenH0(F ;π) =
H0(s;π).

Proof. Take ξ ∈ H0(F ;π). The function ξ satisfies dFξ + πω0ξ = 0. This means
Xξ + π(X)ξ = 0 for all X ∈ s. For each x ∈ M this is solved as ξ

(
ρ0
(
x, etX

))
=

e−tπ(X)ξ(x) for all t ∈ R. As in the proof of Sublemma 6 we transform π(X) into a
real Jordan normal form and ξ being bounded implies ξ

(
ρ0
(
x, etX

))
must be constant.

Therefore, ξ is leafwise constant. By the assumption H0(F) = H0(s), ξ is constant
on M . Hence ξ ∈ V and π(X)ξ = 0 for all X ∈ s, which shows ξ ∈ H0(s;π).
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7 Vanishing of H1—proof of Theorem 35

Here we prove the following (a restatement of Theorem 35).

Theorem 43. LetV ⊂ s be an ad-invariant subspace (ie an ideal of s) for which n
ad
y V

is trivial. Assume that any eigenvalue of adX on s/V either is 0 or has nonzero real

part for any X ∈ s. If M
ρ0
x S is parameter rigid, then we have

H1
(
F ; s ad

y V
)
= H0(F)⊗H1

(
s; s

ad
y V

)
.

Proof. Take any [ω] ∈ H1
(
F ; s ad

y V
)

. Let ω0 be the canonical 1-form of ρ0. Fix

an ǫ > 0 and put η := ω0 + ǫω ∈ Γ (Hom (TF , s)). Let us see η satisfies the
Maurer–Cartan equation. As we saw in Section 5, V is abelian and then

dFη + [η, η] = dFω0 + ǫdFω + [ω0, ω0] + ǫ ([ω0, ω] + [ω, ω0])

= ǫ (dFω + [ω0, ω] + [ω, ω0]) .

But this is zero because ω satisfies dFω + (adω0) ∧ ω = 0 and (adω0) ∧ ω =
[ω0, ω] + [ω, ω0].

Since M is compact, we can assume ηx : TxF → s is bĳective for all x ∈ M by
taking ǫ > 0 small enough. Then there exists a unique action ρ of S on M whose orbit
foliation is F and whose canonical 1-form is η. See Asaoka [2, Proposition 1.4.3]. By
parameter rigidity, ρ is parameter equivalent to ρ0. Thus by Proposition 1.4.4 of [2],
there exist a C∞ map P : M → S and an automorphism Φ of S satisfying

ω0 + ǫω = Ad
(
P−1

)
Φ∗ω0 + P ∗Θ, (18)

where Θ is the left Maurer–Cartan form of S. By seeing this equation modulo n, we
get

ω0 ≡ Φ∗ω0 + dFP mod n,

where bar denotes the projection S → S/N . The same argument as in the proof of
vanishing of H0 yields

ω0 ≡ Φ∗ω0 mod n,

dFP ≡ 0 mod n.

So we can take a leafwise constant C∞ map R : M → S such that Q := R−1P ∈ N .
Then Equation (18) becomes

ω0 + ǫω = Ad
(
Q−1R−1

)
Φ∗ω0 + (RQ)

∗
Θ

= Ad
(
Q−1

)
Ψ∗ω0 +Q∗Θ,

where Ψ∗ = Ad
(
R−1

)
Φ∗ is leafwise constant.

Lemma 44. There exists a filtration

s ⊃ n =W1 ⊃W2 ⊃ · · · ⊃Ws = V ⊃Ws+1 = 0,

where Wi’s are ideals of s such that [n,Wi] ⊂Wi+1.
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Proof. If
n ⊃ n2 ⊃ · · · ⊃ ns−1 ⊃ 0

denotes the lower central series of n, then the filtration

s ⊃ n ⊃ n2 + V ⊃ n3 + V ⊃ · · · ⊃ ns−1 + V ⊃ V ⊃ 0

gives the desired filtration.

Note that we have ω0 ≡ Ψ∗ω0 modulo W1.

Lemma 45. Assume there exist a C∞ map Q : M → N and a leafwise constant C∞

map Ψ: M → Aut(S) such that

ω0 + ǫω = Ad
(
Q−1

)
Ψ∗ω0 +Q∗Θ, (19)

logQ ∈Wk

and
ω0 ≡ Ψ∗ω0 mod Wk:

1. If k < s, then there exist a C∞ map Q′ : M → N and a leafwise constant C∞

map Ψ′ : M → Aut(S) such that

ω0 + ǫω = Ad
(
(Q′)

−1
)
Ψ′

∗ω0 + (Q′)
∗
Θ,

logQ′ ∈ Wk+1

and
ω0 ≡ Ψ′

∗ω0 mod Wk+1.

2. If k = s, then ω is cohomologous to a leafwise constant cocycle.

Proof. The proof is similar to the proof of Sublemma 6. Take complementary subspaces
Vi’s so that s = V0 ⊕ n and Wi = Vi ⊕Wi+1. Write

ω0 =

s∑

i=0

αi, Ψ∗ω0 =

s∑

i=0

βi and Q = exp

(
s∑

i=k

Qi

)

according to the decomposition s =
⊕s

i=0 Vi.
The same calculation as in Sublemma 6 gives

Q∗Θ ≡ dFQk mod Wk+1.

We have

Ad
(
Q−1

)
Ψ∗ω0 = exp

(
ad

(
−

s∑

i=k

Qi

))
s∑

i=0

βi

≡
k∑

i=0

βi + [β0, Qk] mod Wk+1

=

k−1∑

i=0

αi + βk + [α0, Qk] mod Wk+1.
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Equation (19) gives

k∑

i=0

αi + δksǫω ≡
k−1∑

i=0

αi + βk + [α0, Qk] + dFQk mod Wk+1.

Thus
αk + δksǫω ≡ βk + [α0, Qk] + dFQk mod Wk+1.

If k = s, we have

ω = ǫ−1 (βs − αs) + dF
(
ǫ−1Qs

)
+
[
α0, ǫ

−1Qs
]
.

If∇ denotes the covariant derivative defined from s
ad
y V , then by [n, V ] = 0 we have

∇
(
ǫ−1Qs

)
= dF

(
ǫ−1Qs

)
+
[
ω0, ǫ

−1Qs
]

= dF
(
ǫ−1Qs

)
+
[
α0, ǫ

−1Qs
]
.

Therefore, ω is cohomologous to ǫ−1 (βs − αs) which is leafwise constant since so are
ω0 and Ψ∗ω0.

If k < s, then

αk ≡ βk + [α0, Qk] + dFQk mod Wk+1.

Let s
πk
y Vk denote the representation obtained from s

ad
y Wk/Wk+1 by the identifica-

tion Wk/Wk+1 ≃ Vk, and let ∇ be the leafwise connection defined by πk. Recall that
∇Qk = dFQk + πkω0Qk. Since

πkω0Qk = πk

(
s∑

i=0

αi

)
Qk

≡ [α0, Qk] mod Wk+1,

we have
αk ≡ βk + dFQk + πkω0Qk mod Wk+1,

which implies

αk = βk + dFQk + πkω0Qk

= βk +∇Qk.

By the same argument starting from Equation (17) in the proof of vanishing of H0,
using the assumption on the eigenvalues of adX , we can conclude that Qk is leafwise
constant. Define Q′ : M → N by Q = eQkQ′. Then Equation (19) becomes

ω0 + ǫω = Ad
(
(Q′)

−1
e−Qk

)
Ψ∗ω0 +

(
eQkQ′)∗ Θ

= Ad
(
(Q′)

−1
)
Ψ′

∗ω0 + (Q′)
∗
Θ,
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where Ψ′
∗ = Ad

(
e−Qk

)
Ψ∗. Now we have logQ′ ∈ Wk+1 and

Ψ′
∗ω0 = e− adQkΨ∗ω0

= e− adQk

(
k−1∑

i=0

αi + βk + an element of Wk+1

)

≡
k−1∑

i=0

αi + βk + [α0, Qk] mod Wk+1

≡
k∑

i=0

αi mod Wk+1

= ω0 mod Wk+1

since dFQk = 0.

Applying Lemma 45 repeatedly, we see that ω is cohomologous to a leafwise
constant cocycle. Note that we have used the assumption on the eigenvalues only on
V1, . . . , Vs−1, but not on Vs = V .
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