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Sufficient statistics are combinations of data in terms of which the likelihood function can be
rewritten without loss of information. Depending on the data volume reduction, the use of sufficient
statistics as a preliminary step in a Bayesian analysis can lead to significant increases in efficiency
when sampling from posterior distributions of model parameters. Here we show that the frequency
integrand of the cross-correlation statistic and its variance are approximate sufficient statistics for
ground-based searches for stochastic gravitational-wave backgrounds. The sufficient statistics are
approximate because one works in the weak-signal approximation and uses measured estimates
of the auto-correlated power in each detector. Using analytic and numerical calculations, we prove
that LIGO-Virgo’s hybrid frequentist-Bayesian parameter estimation analysis is equivalent to a fully
Bayesian analysis. This work closes a gap in the LIGO-Virgo literature, and suggests directions for
additional searches.

I. INTRODUCTION

Current searches for stochastic gravitational-wave
backgrounds (GWBs) using ground-based laser interfer-
ometers (e.g., the Advanced LIGO [1] and Virgo [2]
detectors) use a hybrid of frequentist and Bayesian
analysis techniques [3–5]. Certain frequentist statistics
(namely, frequency integrands for the cross-correlation
statistic and its variance) are calculated for relatively
short stretches of time-series data (of order a couple of
minutes), and then combined using inverse-noise weight-
ing to produce two final frequency series, valid for the
whole observation period (of order several months to a
year). These frequency series are then used as the funda-
mental input data and variance for a subsequent Bayesian
analysis that calculates posterior probability distribu-
tions and Bayesian upper limits on the strength of po-
tential correlated gravitational-wave signals [6]. These
hybrid frequentist-Bayesian analyses have been used to
place upper limits on GWBs with different amplitudes
and spectral shapes [3, 7]; GWBs having non-GR polar-
izations predicted by alternative theories of gravity [3, 8];
and potential contamination from correlated global mag-
netic fields—i.e., Schumann resonances [9–13].

On the other hand, most searches for GWBs using
pulsar timing data [14, 15] and proposed searches using
space-based detectors like LISA [16] are fully Bayesian,
proceeding directly from the time-series data to posterior
distributions and upper limits, without ever calculating a
cross-correlation frequency integrand or statistic. So the
question naturally arises as to whether LIGO and Virgo’s
current hybrid frequentist-Bayesian analysis is losing in-
formation relative to a fully-Bayesian search.

As we shall show below, the answer is basically “no”.

∗ andrew.matas@aei.mpg.de
† joseph.d.romano@ttu.edu

We assume that we can work in the weak-signal approx-
imation, and we use measured estimates of the auto-
correlated power in each detector, as opposed to try-
ing to infer the noise power spectra as part of the full
analysis. Under these simplifications, the frequency inte-
grands of the cross-correlation statistic and its variance
are approximately lossless combinations of the full time-
series data in terms of which the full likelihood func-
tion can be rewritten. Hence, Bayesian posterior dis-
tributions produced from these frequency series agree
quite well with those produced from the full time-series
data. Said another way, the frequency integrands of the
cross-correlation statistic and its variance are approxi-
mate sufficient statistics for the analysis, so the hybrid
frequentist-Bayesian method is essentially equivalent to
a full Bayesian analysis.

The calculations presented in this paper can also be
thought of as a providing an alternative conceptual start-
ing point for LIGO-Virgo’s stochastic cross-correlation
analysis. We use the full Bayesian likelihood function
as a organizing priniciple, out of which the LIGO-Virgo
stochastic analyses follows. Various steps in the stochas-
tic analysis, such as coarse graining of cross-correlated
data [17], estimating auto-correlated power spectra from
neighboring data segments [18], inverse-noise weighting,
optimal filtering [19], the inclusion of “bias” factors for
the theoretical variance [18], and the use of the cross-
correlation frequency integrand and its variance to do
parameter estimation and model selection [6], all follow
directly from the Bayesian likelihood under the assump-
tions of a weak signal and estimated auto-correlated de-
tector power spectra. We also see opportunities to de-
velop new methods to look for signals which violate our
assumptions.

Our main result will be to show that the full Gaussian
likelihood for a stochastic background (cf. equations (31)
and (32)) is equivalent to the reduced likelihood given
in equation (48), under the approximations enumerated
above. To do this, we will build up the tools necessary
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in a series of increasingly more realistic (and more com-
plex) scenarios. In Sec. II, we give a simple example of
a sufficient statistic in the context of a search for a con-
stant deterministic signal in the output of a single detec-
tor. This example serves as a basis for the calculations
in the following two sections for cross-correlation-based
searches for stochastic gravitational waves. We first re-
strict attention in Sec. III to white signal+noise models,
and stationary data. We then extend our analyses in
Sec. IV to colored signal+noise models, allowing for non-
stationary noise. Both of these sections present results
of different analyses performed on simulated data com-
paring posterior distributions produced by fully-Bayesian
and sufficient-statistic analyses. We conclude in Sec. V
with a brief summary, followed by a discussion of other
related approaches in the literature, and possible exten-
sions of these results. We also include three appendices:
Appendix A contains a simple, yet very useful, identity
(A1) that we use repeatedly throughout the paper; Ap-
pendix B summarizes uncertainties in power spectrum
estimation; and Appendix C gives an alternative deriva-
tion of a reduced likelihood function, but which makes
different assumptions than those given in the main text.

II. SIMPLE EXAMPLE

Perhaps the simplest example of a non-trivial sufficient
statistic is the sample mean of the data for a constant
signal in white, Gaussian noise (see Sec. 3.5 of Ref. [5] for
a more detailed treatment of this example.) We suppose
we record N time-series data samples d ≡ {di} as

di = a+ ni , i = 1, 2, · · · , N , (1)

where a > 0 is the amplitude of the signal and ni denotes
the ith sample of the noise. For simplicity, we will assume
that the noise is white and has zero mean—i.e., 〈ni〉 =
0, 〈ninj〉 = σ2 δij , and that the variance σ2 is known
a priori. The likelihood function is then

p(d|a) =
1

(2π)N/2σN
exp

[
− 1

2σ2

∑
i

(di − a)2

]
, (2)

which has the interpretation of being the probability of
observing the data d given a signal of amplitude a in
white noise with known variance σ2.

It is fairly straight-forward to show that the maximum-
likelihood estimator of the amplitude a is given by the
sample mean of the data

â ≡ aML(d) =
1

N

∑
i

di . (3)

This is an unbiased estimator of a and has variance

σ2
â = σ2/N . (4)

In terms of â, the data-dependent term in the likelihood
becomes∑

i

(di − a)2 =
∑
i

d2
i −Nâ2 +N(â− a)2 . (5)

This equation is a special case of the general identity
(A1), which is discussed and proven in Appendix A, and
which we will use in future sections. The likelihood can
then be rewritten in the form

p(d|a) =
1

(2π)N/2σN

× exp

[
− 1

2σ2

∑
i

d2
i

]
exp

[
â2

2σ2
â

]
exp

[
− (â− a)2

2σ2
â

]
(6)

In this expression, we see that the data appear only via
the combination â, up to a proportionality factor which
is independent of the parameter a. By precomputing the
sample mean â and

∑
i d

2
i , we can reduce the evaluation

of the likelihood from O(N) to O(1) operations.
The posterior distribution for a, denoted p(a|d), is cal-

culated using Bayes’ theorem

p(a|d) =
p(d|a)p(a)

p(d)
, (7)

where p(a) is the prior probability distribution for a, and

p(d) ≡
∫

da p(d|a)p(a) (8)

is the so-called evidence (or marginalized likelihood).
Since p(d) is independent of a, the evidence acts as a nor-
malization factor as far as the posterior distribution of a
is concerned. Thus, one often writes p(a|d) ∝ p(d|a)p(a)
for posterior distribution calculations. For this example,

p(a|d) ∝ exp

[
− (â− a)2

2σ2
â

]
p(a) , (9)

where the data enter the RHS of the above expression
only via the expression (3) for the maximum-likelihood
estimator â ≡ aML(d). This shows that â is a sufficient
statistic for a.

Finally, we note that the prior probability distribution
p(a) is chosen based on expectations for ‘a’ prior to ob-
serving the data. It is common to use flat or log-uniform
priors,

p(a) = const or p(a) = const/a , (10)

defined over some interval [amin, amax], where the con-
stants in these expressions are determined by the normal-
ization condition

∫
dap(a) = 1. Note that non-trivial pri-

ors imply that the maximum-likelihood and maximum-
posterior values will differ in general. For the analyses
that we will perform in the following sections, we will
consider flat priors for simplicity, but note here that the
results we obtain are valid for arbitrary, non-flat priors
as well.
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III. SUFFICIENT STATISTICS FOR
CROSS-CORRELATION SEARCHES – WHITE

SIGNAL+NOISE MODELS

Here we extend the calculations of the previous section
to cross-correlation searches for stochastic gravitational
waves. We restrict our attention in Sec. III A to a white
signal+noise model, assuming stationary signal and noise
(see also Sec. 4 of Ref. [5]). In Sec. III B, we consider
a reduced version of this model, where we assume weak
signals relative to the detector noise and use measured
estimates of the auto-correlated power in each detector,
as opposed to having these as model parameters to be
determined by the search. Our analysis of the white noise
case contains all of the important steps present in the
colored noise case that we shall discuss in Sec. IV, but
with considerably less complication.

A. White signal+noise, stationary data

To start, let us consider two coincident and coaligned
detectors with uncorrelated noise. We take both the de-
tector noise and correlated stochastic signal to be Gaus-
sian, stationary and white. We denote the variances by
σ2
n1

, σ2
n2

, σ2
h, respectively. We will not assume that we

know the noise variances a priori, so we will try to recover
σ2
n1

and σ2
n2

in addition to σ2
h.

Then the likelihood function is given by

p(d|σ2
n1
, σ2
n2
, σ2
h) =

1√
det(2πC)

e−
1
2d
TC−1d , (11)

where

C ≡
[

(σ2
n1

+ σ2
h)1N×N σ2

h 1N×N
σ2
h 1N×N (σ2

n2
+ σ2

h)1N×N

]
(12)

is the covariance matrix and

dTC−1d ≡
∑
α,β

∑
i,j

dαi
(
C−1

)
αi,βj

dβj . (13)

The indices i, j = 1, 2, · · · , N label individual time sam-
ples, and α, β = 1, 2 label the two detectors. The joint
posterior distribution for the signal and noise variances
is

p(σ2
n1
, σ2
n2
, σ2
h|d) =

p(d|σ2
n1
, σ2
n2
, σ2
h) p(σ2

n1
, σ2
n2
, σ2
h)

p(d)
,

(14)

where p(σ2
n1
, σ2
n2
, σ2
h) is the joint prior probability distri-

bution, and

p(d) =

∫
dσ2

n1

∫
dσ2

n2

∫
dσ2

h

× p(d|σ2
n1
, σ2
n2
, σ2
h)p(σ2

n1
, σ2
n2
, σ2
h) (15)

is the evidence for this signal+noise model.
It is easy to show that the maximum-likelihood esti-

mators for the parameters σ2
n1

, σ2
n2

, σ2
h are given by the

following quadratic combinations of the data:

σ̂2
n1
≡ 1

N

∑
i

d2
1i −

1

N

∑
i

d1id2i ,

σ̂2
n2
≡ 1

N

∑
i

d2
2i −

1

N

∑
i

d1id2i ,

σ̂2
h ≡

1

N

∑
i

d1id2i .

(16)

These expressions show that it is also convenient to define

σ̂2
1 ≡

1

N

∑
i

d2
1i , σ̂2

2 ≡
1

N

∑
i

d2
2i , (17)

which are estimators of the total auto-correlated vari-
ances in the two detectors:

σ2
1 ≡ σ2

n1
+ σ2

h , σ2
2 ≡ σ2

n2
+ σ2

h . (18)

In the weak-signal limit σ2
1 ≈ σ2

n1
and σ2

2 ≈ σ2
n2

, but we
will not make that approximation at this stage. We will
discuss this approximation in Sec. III B.

To show that the above estimators are sufficient statis-
tics for this problem, it suffices to show that the data en-
ter the likelihood function (11) solely in the form of these
estimators, up to an overall normalization that does not
depend on the signal and noise parameters. Since the
only part of the likelihood function that depends on the
data is the argument of the exponential, we just need to
show that dTC−1d can be written in terms of σ̂2

n1
, σ̂2

n2
,

σ̂2
h, or, equivalently, in terms of σ̂2

1 , σ̂2
2 , σ̂2

h.
Since the covariance matrix C is a 2× 2-block matrix

with each block proportional to 1N×N , we can explicitly
invert C, yielding

C−1 =
1

β

[
σ2

2 1N×N −σ2
h 1N×N

−σ2
h 1N×N σ2

1 1N×N

]
, (19)

where

β ≡ σ2
1σ

2
2 − (σ2

h)2

= σ2
n1
σ2
n2

+
(
σ2
n1

+ σ2
n2

)
σ2
h > 0 .

(20)

Using this result, it is then straightforward to show that

dTC−1d =
1

β

[
σ2

2

∑
i

d2
1i + σ2

1

∑
i

d2
2i − 2σ2

h

∑
i

d1id2i

]

=
N

(1− (σ2
h)2/σ2

1σ
2
2)

[
σ̂2

1

σ2
1

+
σ̂2

2

σ2
2

− 2
σ2
hσ̂

2
h

σ2
1σ

2
2

]
.

(21)
Thus,

p(d|σ2
n1
, σ2
n2
, σ2
h) =

1

(2π)N (σ2
1σ

2
2 − (σ2

h)2)N/2

× exp

{
−1

2

N

(1− (σ2
h)2/σ2

1σ
2
2)

[
σ̂2

1

σ2
1

+
σ̂2

2

σ2
2

− 2
σ2
hσ̂

2
h

σ2
1σ

2
2

]}
,

(22)
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which depends on the data only via σ̂2
1 , σ̂2

2 , σ̂2
h, or, equiv-

alently, σ̂2
n1

, σ̂2
n2

, σ̂2
h.

B. Weak-signal approximation, estimating detector
auto-correlations

We now consider a reduced signal+noise model and its
corresponding likelihood function, again for the case of
white signal+noise, stationary data. The reduction in
the model has two components: First, instead of treat-
ing the detector noise variances σ2

n1
, σ2

n2
or the total

auto-correlated variances σ2
1 , σ2

2 as free parameters for
our analysis, we will use measured estimates σ̄2

1 , σ̄2
2 in

place of σ2
1 , σ2

2 . We use overbars instead of hats to de-
note these quantities to indicate that σ̄2

1 , σ̄2
2 are not the

same as the maximum-likelihood data combinations σ̂2
1 ,

σ̂2
2 for the segment that we are analyzing. For example,

for the actual LIGO-Virgo stochastic searches, the esti-
mates of the auto-correlated power are constructed from
two segments of data (each approximately one minute in
duration) immediately preceding and following the anal-
ysis segment. In fact, we will show in Fig. 4 that if the
measured estimates of the autocorrelated power equal the
maximum-likelihood data combinations for the analysis
segment, then we obtain biased recoveries of the GWB
spectrum, due to covariances between the autocorrela-
tion and cross-correlation estimators [18]. (But see also
the discussion of bias at the end of Appendix C.)

Second, we will assume that the stochastic signal is

weak compared to the detector noise and thus keep
only the leading-order terms in expressions involving
(σ2
h)2/σ̄2

1 σ̄
2
2 � 1. To zeroth order, the detector noise and

total auto-correlated variances are equal to one another,
σ2
n1
≈ σ2

1 , σ2
n2
≈ σ2

2 . This weak-signal approximation
is valid for searches for GWBs using ground-based detec-
tors like LIGO and Virgo. It is not a good approximation
for GWB searches using pulsar timing arrays, where the
auto-correlated power in the GWB may exceed that due
to pulsar noise and timing measurement noise at very low
frequencies [15, 20].

The likelihood function for the reduced signal+noise
model can be obtained from (22) by making the simplifi-
cations described above. We first approximate the terms
σ̂2

1/σ
2
1 and σ̂2

2/σ
2
2 by 1, given that we are replacing the

parameters σ2
1 and σ2

2 by measured estimates of these
quantities. We then replace the remaining factors of σ2

1 ,
σ2

2 , which appear in lihood function in the combination
1/σ2

1σ
2
2 by

1

Σ̄4
12

≡ 1

σ̄2
1 σ̄

2
2(1 + 2/Navg)

, (23)

where Navg (which we assume to be equal for both de-
tectors) is the number of averages used in the construc-
tion of σ̄2

1 , σ̄2
2 , e.g., Welch power spectrum estimates [21].

The justification for including the factor of (1 + 2/Navg)
is given in Appendix B; the factor removes a bias that
would otherwise exist in the estimation of 1/σ2

1σ
2
2 , due

to the use of a finite amount of data to construct σ̄2
1 , σ̄2

2 .
Making all these replacments in (22), we obtain

p(d|σ̄2
1 , σ̄

2
2 , σ

2
h) =

1

(2π)N (Σ̄4
12)N/2(1− (σ2

h)2/Σ̄4
12)N/2

exp

{
− N

(1− (σ2
h)2/Σ̄4

12)

[
1− σ2

hσ̂
2
h

Σ̄4
12

]}
. (24)

We then Taylor expand the RHS keeping only the leading-order terms in (σ2
h)2/σ2

1σ
2
2 = (σ2

h)2/Σ̄4
12. The σ2

h factor
in front of the exponential can be written as

1

(1− (σ2
h)2/Σ̄4

12)N/2
≈ 1 +

N

2

(σ2
h)2

Σ̄4
12

≈ exp

[
N

2

(σ2
h)2

Σ̄4
12

]
, (25)

while the exponential factor itself becomes

exp

{
− N

(1− (σ2
h)2/Σ̄4

12)

[
1− σ2

hσ̂
2
h

Σ̄4
12

]}
≈ exp

{
−N

(
1 +

(σ2
h)2

Σ̄4
12

− σ2
hσ̂

2
h

Σ̄4
12

)}
. (26)

Combining these last two expressions gives

exp

[
−N

2

(
2 +

(σ2
h)2 − 2σ2

hσ̂
2
h

Σ̄4
12

)]
= e−N exp

[
(σ̂2
h)2

2 var(σ̂2
h)

]
exp

[
− (σ̂2

h − σ2
h)2

2 var(σ̂2
h)

]
, (27)

where we completed the square in σ2
h and σ̂2

h and made the substitution

var(σ̂2
h) ≡ Σ̄4

12/N = (1 + 2/Navg) σ̄2
1 σ̄

2
2/N , (28)

which is the leading-order expression for the variance of the maximum-likelihood estimator σ̂2
h. Thus,

p(d|σ̄2
1 , σ̄

2
2 , σ

2
h) =

e−N

(2π)N (Nvar(σ̂2
h))N/2

exp

[
(σ̂2
h)2

2 var(σ̂2
h)

]
exp

[
− (σ̂2

h − σ2
h)2

2 var(σ̂2
h)

]
, (29)
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which shows that σ̂2
h and var(σ̂2

h) are sufficient statistics for this reduced signal+noise model. Note that the σ2
h-

dependent term in the likelihood function has the same general form as that for the simple example described in
Sec. II; see (6). (In Appendix C, we present an alternative derivation of the likelihood function for a reduced
signal+noise model, but under different assumptions than used here.)

Figure 1 compares the marginalized posterior distribu-
tions for σ2

h calculated from the two likelihood functions,
(22) and (29), for a short stretch of simulated time-series
data consisting of a white signal injected into white noise
in two coincident and coaligned detectors. The simu-
lated noise had variances σ2

n1
= σ2

n2
= 1, while the

injected signal had σ2
h = 0.3. For 512 samples, these

values correspond to an expected signal-to-noise ratio
ρ =
√
N σ2

h/
√
σ2

1σ
2
2 = 5.22 for the full set of data. Note,

however, that (σ2
h)2/σ2

1σ
2
2 = 0.05 � 1, consistent with

the weak-signal approximation. The blue histogram is
the marginalized posterior for σ2

h calculated from the
full likelihood function (22); the orange histogram is the
marginalized posterior for σ2

h calculated from the reduced
likelihood function (29). For the reduced likelihood anal-
ysis, the detector auto-correlated power were estimated
from an additional simulated data segment. The dashed
vertical grey line and the dashed vertical red line show the
injected value of σ2

h and the maximum-likelihood value
σ̂2
h.

0.1 0.2 0.3 0.4 0.5

σ2
h

0

2

4

6

8

p(
σ

2 h
|d

)

injected value
max likelihood value
full likelihood
reduced likelihood

FIG. 1. Comparison of the marginalized posteriors for the
full likelihood function (22) (blue histogram) and its reduced
version (29) (orange histogram), which substitutes measured
estimates σ̄2

1 , σ̄2
2 for the auto-correlated power σ2

1 , σ2
2 and

keeps only leading-order terms in (σ2
h)2/σ̄2

1 σ̄
2
2 .

IV. SUFFICIENT STATISTICS FOR
CROSS-CORRELATION SEARCHES – COLORED

SIGNAL+NOISE MODELS

Here we extend the analysis of the previous section
to a colored signal+noise model, starting with station-
ary data in Sec. IV A and then discussing the complica-
tions introduced by non-stationary noise in Sec. IV B.

In Sec. IV C, we simplify the signal+noise model by
again considering weak signals and measured estimates
of the auto-correlated power, for which the frequency in-
tegrands of the cross-correlation statistic and its vari-
ance are sufficient statistics. In Sec. IV D we show
that the full Bayesian analysis is approximately equiv-
alent to LIGO-Virgo’s hybrid frequentist-Bayesian anal-
ysis, and in Sec. IV E we construct percentile-percentile
(pp) plots [22] to show that the reduced analyses have
proper statistical coverage. (We do not assume that the
detectors are coincident and co-aligned in this section.)

A. Colored signal+noise, stationary data

For the case where the detector noise and GWB signal
are colored, it simplest to work in the frequency domain,
since the Fourier components are independent of one an-
other (assuming the data are stationary over the duration
of the analysis segment). Assuming multivariate Gaus-
sian distributions as before, the variances σ2

n1
, σ2

n2
, σ2

h,
for the white signal+noise case are replaced by power
spectral densitites Pn1

(f), Pn2
(f), Ph(f), defined by

〈h̃(f)h̃∗(f ′)〉 =
1

2
δ(f − f ′)Ph(f) , etc., (30)

where h̃(f) is the Fourier transform of the signal com-
ponent h(t) of the time-series data. The factor of 1/2
is included to make these one-sided power spectral den-
sities, so that the total variance is given by an integral
of the power spectral density over positive frequencies,
σ2 =

∫∞
0

df P (f). Although the above expressions are
written in terms of continuous functions of frequency,
in practice we work with frequency series, e.g., Ph(fk),
where the discrete frequencies take values fk ≡ k∆f ,
where ∆f ≡ 1/T and k = 0, 1, · · · , N/2 − 1, for a
data segment of duration T ≡ N∆t. For white data,
P (f) = 2σ2∆t is constant between f = 0 and the Nyquist
frequency fNyq ≡ 1/2∆t.

Even though we are assuming here that the data are
stationary, it is convenient to divide the data from a large
observation period into segments, which we will label by
I = 1, 2, · · · , Nseg. The full likelihood function is then
a product of the likelihood functions for the individual
segments

p(d|Pn1
, Pn2

, Ph) =
∏
I

pI(dI |Pn1
, Pn2

, Ph) , (31)
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where

pI(dI |Pn1 , Pn2 , Ph)

=
∏
k

1

det(2πC̃(fk))
e
− 1

2

∑
α,β d̃

∗
αI(fk)(C̃(fk)−1)

αβ
d̃βI(fk)

.

(32)

In the above expression

C̃(f) =
T

4

[
P1(f) γ(f)Ph(f)

γ(f)Ph(f) P2(f)

]
(33)

is the covariance matrix of the data, with

P1(f) ≡ Pn1(f) + Ph(f) ,

P2(f) ≡ Pn2
(f) + Ph(f) ,

(34)

denoting the total auto-correlated detector power spec-
tral densities. The inverse covariance matrix is simply

C̃(f)−1 =
4

T

1

(P1(f)P2(f)− γ2(f)P 2
h (f))

×
[

P2(f) −γ(f)Ph(f)
−γ(f)Ph(f) P1(f)

]
. (35)

Note that although the data depend on segment I, the
parameters Pn1

, Pn2
, Ph do not, since we are assuming

that the noise and signal power spectra are the same in
each segment.

The dimensionless function γ(f), which appears in the
off-diagonal elements of the covariance matrix, is the
overlap reduction function, which accounts for the rel-
ative position and orientation of the detectors [23, 24].
The functional form of γ(f) is not relevant for the dis-
cussion that follows, other than the fact that γ(f) equals
unity for coincident and coaligned detectors in the long-
wavelength limit.

If we want to estimate the values of the power spectral
densities Pn1

(f), Pn2
(f), Ph(f), at each discrete (posi-

tive) frequency fk ≡ k∆f , then there are no simplying
sufficient statistics for this case as the data enter the like-
lihood function only through the combinations

|d̃1I(fk)|2 , |d̃2I(fk)|2 , Re
(
d̃∗1I(fk)d̃2I(fk)

)
, (36)

which does not correspond to a reduction in the number
of data samples used in writing the likelihood function.
However, if the power spectra are expected to be smooth
over a coarser frequency resolution δf ≡ 1/τ > ∆f ,
where τ ≡ T/M is some fractional part of the segment
duration T , then there is a reduction in the data combi-
nations. This is because the relevant power spectra need
only be estimated at fewer discrete frequencies f` ≡ ` δf ,
where ` = 0, 1, · · · , (N/M)/2 − 1. (For typical LIGO-
Virgo searches, M is approximately 20.) Hence the data
combinations (36) can be averaged over a subset of M
fine-grained frequencies fk centered at f`:

c̃11,I(f`) ≡
1

M

`+M/2−1∑
k=`−M/2

|d̃1I(fk)|2 ,

c̃22,I(f`) ≡
1

M

`+M/2−1∑
k=`−M/2

|d̃2I(fk)|2 ,

c̃12,I(f`) ≡
1

M

`+M/2−1∑
k=`−M/2

Re
(
d̃∗1I(fk)d̃2I(fk)

)
.

(37)

This leads to averaged (or coarse-grained) power spectral
density estimators

P̂1I(f`) ≡
2

T
c̃11,I(f`) ,

P̂2I(f`) ≡
2

T
c̃22,I(f`) ,

P̂hI(f`) ≡
2

T

c̃12,I(f`)

γ(f`)
,

(38)

in terms of which the likelihood function (32) can be
written:

pI(dI |Pn1
, Pn2

, Ph) =
∏
`

1

(πT/2)2M (P1(f`)P2(f`)− γ2(f`)P 2
h (f`))M

× exp

{
− M

(1− γ2(f`)P 2
h (f`)/P1(f`)P2(f`))

[
P̂1I(f`)

P1(f`)
+
P̂2I(f`)

P2(f`)
− 2γ2(f`)

Ph(f`)P̂hI(f`)

P1(f`)P2(f`)

]}
. (39)

We note that estimating a power spectrum by subdividing a segment of data into shorter duration subsegments is a
standard practice in signal processing [21]. Its a way to reduce the variance in the power spectrum estimate at the
expense of a coarser frequency resolution.

For this stationary case, we get a further level of data reduction in the sufficient statistics, as we can average
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the coarsed-grained power spectrum estimators (38) over
the number of segments. By construction, these segment-
averaged estimators will give expected values of Ph(f`),
P1(f`), P2(f`) over the whole observation. This is fine
for stationary data. But if the detector noise levels can
change from segment to segment, then this simple av-
eraging will fail to capture the non-stationarity of the
noise. We have to do something different for this more
complicated, but realistic, scenario.

B. Colored signal+noise, non-stationary data

For non-stationary detector noise, we have to in-
crease the number of model parameters from Pn1

(f`),
Pn2

(f`), Ph(f`) to Pn1I(f`), Pn2I(f`), Ph(f`), where I =
1, 2, · · · , Nseg, since the noise levels can differ from seg-

ment to segment. We are assuming here that the power
spectrum of the stochastic signal is stationary, which is
not necessarily the case for a “popcorn-like” background,
such as that produced by stellar-mass binary black hole
mergers [25]. The covariance matrix for this case is then

C̃I(f`) =
T

4

[
P1I(f`) γ(f`)Ph(f`)

γ(f`)Ph(f`) P2I(f`)

]
, (40)

where

P1I(f) ≡ Pn1I(f) + Ph(f) ,

P2I(f) ≡ Pn2I(f) + Ph(f) ,
(41)

are the auto-correlated detector power spectra for seg-
ment I. Similar to what we found in (39), the corre-
sponding likelihood function for a single segment of data
can be written as

pI(dI |Pn1I , Pn2I , Ph) =
∏
`

1

(πT/2)2M (P1I(f`)P2I(f`)− γ2(f`)P 2
h (f`))M

× exp

{
− M

(1− γ2(f`)P 2
h (f`)/P1I(f`)P2I(f`))

[
P̂1I(f`)

P1I(f`)
+
P̂2I(f`)

P2I(f`)
− 2γ2(f`)

Ph(f`)P̂hI(f`)

P1I(f`)P2I(f`)

]}
, (42)

where the estimators P̂hI(f`), P̂1I(f`), P̂2I(f`) are the same as in (38). We emphasize that this likelihood differs from
that in (39) only by our assumption that the noise is not stationary, which is reflected in the fact that the parameters
P1I(f`), P2I(f`) carry I indices. Note that the above likelihood has the same form as the white noise case (22), but
with both frequency and segment dependence in the estimators and parameters. The full expression for the likelihood
function involves a further product over I, as specified in (31).

C. Reduced version of the colored, non-stationary likelihood function

To simplify the above analysis, we will proceed as we did in Sec. III B, where we considered a reduced signal+noise
model and its corresponding likelihood by replacing the auto-correlated power spectral densities with measured esti-
mates P̄1I(f`), P̄2I(f`), and working in the weak-signal approximation where P 2

h (f`)/P̄1I(f`)P̄2I(f`)� 1. For a given
discrete frequency f` and data segment I, the reduction in the likelihood function has exactly the same form as the
white noise case, which allows us to immediately write down:

pI(dI |P̄1I , P̄2I , Ph) =
∏
`

e−2M

(πT/2)2M (P̄1I(f`)P̄2I(f`)(1 + 2/Navg))M
exp

[
P̂ 2
hI(f`)

2σ̄2
hI(f`)

]
exp

[
− (P̂hI(f`)− Ph(f`))

2

2σ̄2
hI(f`)

]
,

(43)
where

σ̄2
hI(f`) ≡

1

2Tδf

P̄1I(f`)P̄2I(f`)

γ2(f`)
(1 + 2/Navg) , (44)

which is the leading-order expression for the variance of P̂hI(f`). (Here we used the relation M = Tδf for the coarse-
grained frequencies, and we included the factor of (1 + 2/Navg) to account for imperfect estimation of the detector
auto-correlated power spectra P̄1I(f`), P̄2I(f`).) Additionally, since the parameter Ph(f`) shows up only in the last
exponential, we can use identity (A1) from Appendix A to perform the product over the number of data segments,
which translates into a sum over I inside the exponential:

∑
I

(P̂hI(f`)− Ph(f`))
2

σ̄2
hI(f`)

=
∑
I

P̂ 2
hI(f`)

σ̄2
hI(f`)

−
P̂ 2
h,opt(f`)

σ̄2
h,opt(f`)

+
(P̂h,opt(f`)− Ph(f`))

2

σ̄2
h,opt(f`)

, (45)
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where

P̂h,opt(f`)

σ̄2
h,opt(f`)

≡
∑
I

2Tδfγ(f`)

P̄1I(f`)P̄2I(f`)

1

(1 + 2/Navg)

2

T

1

M

`+M/2−1∑
k=`−M/2

Re
(
d̃∗1I(fk)d̃2I(fk)

)
, (46)

1

σ̄2
h,opt(f`)

≡
∑
I

2Tδfγ2(f`)

P̄1I(f`)P̄2I(f`)

1

(1 + 2/Navg)
. (47)

Thus, summing over both I and `:

p(d|{P̄1I}, {P̄2I}, Ph)

=
∏
`

e−2MNseg

(πT/2)2MNseg
∏
I(P̄1I(f`)P̄2I(f`))M

exp

[
P̂ 2
h,opt(f`)

2σ̄2
h,opt(f`)

]
exp

[
− (P̂h,opt(f`)− Ph(f`))

2

2σ̄2
h,opt(f`)

]
. (48)

This is our main result. Note that it has the same basic form as (29), which we derived for the white signal+noise
case. Thus, given some choice for the prior probability p(Ph(f`)), the posterior distribution for Ph(f`) is given by

p(Ph(f`)|d, {P̄1I(f`)}, {P̄2I(f`)}) ∝ exp

[
− (P̂h,opt(f`)− Ph(f`))

2

2σ̄2
h,opt(f`)

]
p(Ph(f`)) . (49)

This expression for the posterior shows that P̂h,opt(f`) and σ̄2
h,opt(f`) given by (46) and (47) are sufficient statistics

for this colored signal+noise, non-stationary analysis, assuming weak signals and measured estimates of the auto-
correlated power in two detectors for each data segment.

In Figure 2, we compare recoveries of the amplitude
of the GWB using the full and reduced versions of the
Bayesian likelihood functions appropriate for both white
and colored data. The simulated data are the same
as that from the previous section, consisting of a white
GWB signal injected into white detector noise, for two
coincident and coaligned detectors. For the reduced like-
lihood functions, the detector autocorrelated power were
estimated from an additional simulated data segment.
We see that all analyses agree very well, demonstrating
that the mathematical derivations capture the behavior
of the fully-Bayesian analysis in practice.

In Figure 3, we compare recoveries of the GWB ampli-
tude and spectral index using the full and reduced ver-
sions of the Bayesian likelihood function appropriate for
a colored signal+noise model. For the full likelihood, we
parameterize both the GWB signal and detector noise as
power laws of the form

Ph(f) = A

(
f

fref

)β
, etc. , (50)

where the A is the amplitude, β is the spectral index, and
fref is a reference frequency. (The amplitude and spec-
tral indices for the detector noise will differ, in general,
from those for the GWB.) For this simulation the in-
jected noise power spectra have An1

= An2
= 0.125, and

β1 = β2 = 0.5, while the injected signal has A = An1
/2,

β = 0 (i.e., it is white). For the reduced likelihood
function, the detector auto-correlated power were esti-
mated from coarse-grained power spectral density esti-
mators applied to an additional simulated data segment.

0.0 0.1 0.2 0.3 0.4 0.5

σ2
h

0

2

4

6

8

p(
σ

2 h
|d

)

injected value
max likelihood value
white, full
white, reduced
colored, full
colored, reduced

FIG. 2. Recovered posterior distributions for the amplitude
of the GWB as obtained from the full and reduced versions of
the Bayesian likelihood functions appropriate for both white
and colored data. The simulated data consisted of a white
signal and white detector noise.

Finally, we note that by using sufficient statistics, one
improves the computational efficiency of a search relative
to a fully-Bayesian analysis that works with the raw un-
combined time-domain (or frequency-domain) data sam-
ples. For example, for a stationary GWB, one can re-
duce the number of likelihood evaluations by a factor
of MNseg, where M ∼ 10-20 corresponds to coarse-
graining, and Nseg ∼ 105 comes from averaging six
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FIG. 3. Recovered posterior distributions obtained from the full and reduced likelihood functions for a colored signal+noise
model. The simulated data consisted of a white GWB signal injected into power-law detector noise. The solid red lines show
the injected values of the GWB amplitude and spectral index.

months of data split into approximately one-minute data
segments. One simply precomputes the sufficient statistic

data combinations (46) and (47), and performs Bayesian
inference (e.g., MCMC sampling) for the corresponding
likelihood function (48).
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D. Connection to LIGO’s hybrid frequentist-Bayesian analysis

We can use the reduced-form of the likelihood (48) to search for GWB signals described by the power spectral
density Ph(f). But to make connection with the literature on GWBs, we should parametrize the background in terms
of the (dimensionless) energy density spectrum [19]:

Ωgw(f) ≡ 1

ρc

dρgw

d ln f
, (51)

where ρc is the energy density needed to close the universe. Then

Ph(f) =
3H2

0

10π2

Ωgw(f)

f3
, (52)

which differs from the one-sided strain spectral density Sh(f) = (3H2
0/2π

2)Ωgw(f)/f3 by a factor of 1/5, since we are
interested here in the strain response of a laser interferometer with a 90◦ opening angle between the arms [5]. Thus,

we can rewrite the likelihood function (48) in terms of Ωgw(f) and its optimal estimator Ω̂gw(f) as

p(d|{P̄1I}, {P̄2I},Ωgw)

=
∏
`

e−2MNseg

(πT/2)2MNseg
∏
I(P̄1I(f`)P̄2I(f`))M

exp

[
Ω̂2

gw(f`)

2σ̄2
gw(f`)

]
exp

[
− (Ω̂gw(f`)− Ωgw(f`))

2

2σ̄2
gw(f`)

]
, (53)

where

Ω̂gw(f`)

σ̄2
gw(f`)

≡
∑
I

2Tδf

P̄1I(f`)P̄2I(f`)

(
3H2

0

10π2

γ(f`)

f3
`

)
1

(1 + 2/Navg)

2

T

1

M

`+M/2−1∑
k=`−M/2

Re
(
d̃∗1I(fk)d̃2I(fk)

)
, (54)

1

σ̄2
gw(f`)

≡
∑
I

2Tδf

P̄1I(f`)P̄2I(f`)

(
3H2

0

10π2

γ(f`)

f3
`

)2
1

(1 + 2/Navg)
. (55)

This is the form of the likelihood function that you’ll find in the LIGO-Virgo GWB literature, e.g., [6], which serves
as the starting point for subsequent Bayesian parameter estimation analyses.

We can go one step further if we fix the spectral shape of the GWB, and focus attention on estimating only its
amplitude at some reference frequency fref , where we normalize the spectral shape to have unit value. (Typically
fref = 25 Hz for LIGO-Virgo stochastic analyses.) For example, for a power-law background with spectral index α,
we have

Ωgw(f) ≡ Ωα

(
f

fref

)α
, (56)

(note that there is no implied sum over α in the above equation). The spectral index of Ωgw(f) is related to the
spectral index of Ph(f) defined in the previous section by α = β+3. Then we can perform the product over frequencies
f`, again using identity (A1) from Appendix A to do the relevant sum of the argument of the exponential. This yields
a likelihood function and posterior distribution for the amplitude Ωα that are both proportional to

exp

[
− (Ω̂α − Ωα)2

2σ̄2
α

]
, (57)

where

Ω̂α
σ̄2
α

≡
∑
I

2Tδf

P̄1I(f`)P̄2I(f`)

(
3H2

0

10π2

γ(f`)

f3
ref

(
f`
fref

)α−3
)

1

(1 + 2/Navg)

2

T

1

M

`+M/2−1∑
k=`−M/2

Re
(
d̃∗1I(fk)d̃2I(fk)

)
, (58)

1

σ̄2
α

≡
∑
I

2Tδf

P̄1I(f`)P̄2I(f`)

(
3H2

0

10π2

γ(f`)

f3
ref

(
f`
fref

)α−3
)2

1

(1 + 2/Navg)
. (59)
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Note that the factor

Q(f) ≡ 3H2
0

10π2

γ(f`)

f3
ref

(
f`
fref

)α−3
1

P̄1I(f`)P̄2I(f`)
, (60)

which multiplies the correlated data in (58), is proportional to the standard expression for the optimal filter in the
frequency domain, see e.g., [5, 19].

E. Rigorous comparison

As a check on the results of the previous section, we
produce several percentile-percentile (pp) plots [22] to
verify that the LIGO-Virgo hybrid frequentist-Bayesian
analysis has good statistical coverage.

To generate a pp plot, we first perform N = 300 in-
jections and recover the injection with different likeli-
hood functions, as described below. For each recovery,
we record the percentile of the posterior distribution at
which the injected value lies. We then plot the cumula-
tive distribution function of the percentiles, along with
a 90% credible interval determined using order statistics
showing the expected range of the cumulative distribu-
tion for each percentile value. If the methods we use
are unbiased, then the cumulative distribution should lie
within the 90% credible interval, close to a diagonal line.
Deviations from this line indicate poor coverage, showing
the method is biased.

First, we consider a set of white signal+noise injec-
tions. We generate 300 noise and signal realizations, and
recover the signal amplitude using the full Bayesian likeli-
hood, reduced likelihood for a white signal+noise model,
and also the LIGO-Virgo hybrid frequentist-Bayesian
analysis. As emphasized previously, for the reduced like-
lihood, it is important to use data segments different
from the analysis segment to estimate the auto-correlated
power in the two detectors, in order to avoid a bias in
the recovered parameters. To illustrate the importance
of this point, we recover the signal using the reduced
likelihood analysis in two different ways: (i) using data
segments different from the analysis segment to estimate
the auto-correlated power, and (ii) using the same data
segment as the analysis segment for estimating the auto-
correlated power. We show the results of those anal-
yses in Figure 4. The analysis using the same data
segment as the analysis segment to estimate the auto-
correlated power is clearly biased. On the other hand,
the full likelihood analysis, the reduced likelihood anal-
ysis and the LIGO-Virgo stochastic analysis, the latter
two of which use data segments different from the anal-
ysis segment to estimate the auto-correlated power, all
show good coverage. These analyses are not identical,
however, due to different conditioning of the data. In
particular, the LIGO-Virgo analysis computes the cross-
correlation using 50% overlapping Hann windows, and
estimates the auto-correlated power by averaging Welch
estimators from adjacent data segments. In contrast, for
our simple reduced likelihood analysis, we do not win-

dow the data (which is okay for white data), and use a
single additional data segment for estimating the auto-
correlated power.

FIG. 4. White signal+noise analysis. The pp plot compares
recoveries of the amplitude by the full likelihood, reduced
likelihood and LIGO-Virgo stochastic analyses, showing that
they both have good Bayesian coverage. The latter two anal-
yses are not identical because of different choices made in
conditioning the data. The dotted line shows the bias ob-
tained when using the reduced likelihood analysis if the same
data segment as the analysis segment is used to estimate the
auto-correlated power in the two detectors.

Second, we perform a more realistic set of colored
signal+noise injections, and recover the signal with the
LIGO-Virgo stochastic analysis. In these injections, the
theoretical noise power spectra are kept the same, al-
though the noise realization changes in every injection.
The amplitude of Ph(f) at a reference frequency of 1 Hz
is fixed, but we draw the spectral index from a uniform
prior probability distribution ranging from −3 to 3. We
use the same prior on the spectral index to perform the
recovery. The realization of the GWB signal changes in
every injection. We perform two sets of 300 injections.
In the first set, the amplitude of Ph(f) is set to be 1/8
of the amplitude of Pn(f) at the reference frequency in
each segment, which is consistent with the weak-signal
approximation. In the second set, the amplitude of the
signal is set to 2 times the amplitude of the noise at the
reference frequency in each segment, which violates the
weak-signal approximation.

In the top panel of Figure 5, we show the spectrum
associated with one injection in the weak-signal regime,
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along with the injected noise and GWB signal spectra.
In the bottom panel, we show the results of the pp plot
analysis for both strong and weak-signal amplitudes. The
recovery of both the amplitude and spectral index for
weak signals lie within the 90% uncertainty, demonstrat-
ing good Bayesian coverage. On the other hand, the re-
covery of the amplitude and spectral index for strong sig-
nals lies outside the 90% region. This is expected, given
that strong signals violate the weak-signal approxima-
tion, which was used to derive the approximate equiva-
lence of the LIGO-Virgo stochastic analysis and the fully-
Bayesian approach.

FIG. 5. Colored signal+noise analysis. In the top panel,
we show the injected noise power spectrum Pn(f) (the same
for both detectors) and the injected GWB power spectrum

Ph(f), along with the optimal estimator P̂h,opt(f) and its un-
certainty σ̄h,opt(f) for one segment in one realization. In the
bottom panel, we show a pp plot generated by performing
300 strong-signal and 300 weak-signal injections and recov-
eries. We see that when the weak-signal approximation is
satisfied, the LIGO-Virgo stochastic analysis has excellent
Bayesian coverage. Outside of the weak-signal approxima-
tion, the coverage is less good, as expected.

V. DISCUSSION

In this paper, we have shown in what sense LIGO-
Virgo’s hybrid frequentist-Bayesian cross-correlation
analysis for a GWB is equivalent to a fully-Bayesian
search. The main result was our proof that for a re-
duced signal+noise model consisting of weak signals and
estimated auto-correlated power spectra, the frequency
integrand of the cross-correlation statistic and its vari-
ance are sufficient statistics for the recovery of the GWB.
This means that the posterior distributions of the recov-
ered spectrum of the GWB (e.g., its amplitude and spec-
tral index) will agree for the hybrid frequentist-Bayesian
analysis and the fully-Bayesian analysis in the context of
this reduced signal+noise model. The results of our anal-
yses on simulated data are consistent with those found in
[26], which describes a fully-Bayesian implementation of
LIGO’s stochastic search that can estimate the presence
of a primordial GWB in the presence of an astrophysical
foreground.

We note that a similar hybrid frequentist-Bayesian
analysis is also being used for pulsar timing array
searches for a GWB produced by inspiraling supermas-
sive blackhole binaries associated with galaxy mergers.
Here a noise-marginalized version of the cross-correlation
statistic [27, 28] is used to avoid strong covariances that
exist between individual estimates of pulsar red noise pa-
rameters and the amplitude of the GWB. Noise marginal-
ization is performed by drawing values of the pulsars’ red
noise parameters from posterior distributions that were
generated by an earlier Bayesian analysis which jointly
estimates the pulsar’s red noise parameters and that of
a common red process (e.g., the auto-correlated power
due to the GWB), which may exceed the noise at the
lowest observed frequencies. This leads to a more accu-
rate recovery of the amplitude of the GWB at relatively
little computational cost to the cross-correlation statistic
analysis.

A similar hierarchical approach, which first estimates
the auto-correlated component of the background before
looking for evidence of cross-correlations, would mostly
likely also be needed for analyzing data from proposed
3rd generation (3G) ground-based detectors, like Cosmic
Explorer [29] and Einstein Telescope [30]. The expected
sensitivity of these 3G detectors is such that the weak-
signal approximation in a single segment of data is no
longer valid, at least for the rate of binary black hole
mergers that advanced LIGO and Virgo are currently
observing [31]. As such, simply estimating the auto-
correlated power spectra without assigning some portion
of it to the GWB would lead to biased estimates of the
amplitude of the background, similar to what is seen in
pulsar timing analyses [27].

It may be possible to extend the results of our paper
to other signal+noise models, such as a non-stationary
“popcorn-like” background produced e.g., by stellar-
mass binary black hole mergers in the LIGO frequency
band [25]. For such a background, one would need
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to use a mixture signal+noise prior to model the non-
stationarity, which amounts to postulating the presence
of a correlated GWB signal in a certain fraction ξ of
the data segments and just noise for the remaining seg-
ments, with fraction 1− ξ [25]. The detection of a GWB
in this scenario would amount to a posterior distribu-
tion for ξ strongly peaked away from zero. By focus-
ing on a GWB signal model that consists of just excess
correlation in a certain fraction of data segments (as op-
posed to marginalizing over the parameters of potential
BBH mergers [25]), one should be able to implement a
computationally-efficient and robust (albeit suboptimal)
search for a non-stationary GWB.
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Appendix A: Useful identity

A useful identity that appears in several calculations
in the paper is

∑
i

(xi − µ)2

σ2
i

=
∑
i

x2
i

σ2
i

− x2
opt

σ2
opt

+
(xopt − µ)2

σ2
opt

, (A1)

where xopt and σ2
opt are defined by

xopt

σ2
opt

≡
∑
i

xi
σ2
i

,
1

σ2
opt

≡
∑
i

1

σ2
i

. (A2)

One can think of xi and σi, where i = 1, 2, · · · , N , as
a set of N independent measurements and error bars of
the quantity µ, whose value is to be determined from
the measured data. It is a well-known result that xopt

defined above is the minimal-variance unbiased estimator

of µ with variance σ2
opt. A proof of (A1) is the following:

∑
i

(xi − µ)2

σ2
i

=
∑
i

x2
i

σ2
i

− 2µ
∑
i

xi
σ2
i

+ µ2
∑
i

1

σ2
i

=
∑
i

x2
i

σ2
i

− 2µ
xopt

σ2
opt

+
µ2

σ2
opt

=
∑
i

x2
i

σ2
i

− x2
opt

σ2
opt

+
(xopt − µ)2

σ2
opt

,

(A3)

where we completed the square in xopt and µ to get the
last equality.

Appendix B: Uncertainties in power spectrum
estimates

In this appendix, we provide a brief summary of un-
certainties in power spectrum estimates. The final re-
sult of this analysis justifies the inclusion of the factor
(1+2/Navg) in the expressions for the reduced likelihood
functions for both the white and colored signal+noise
models. Our presentation follows that of an unpublished
internal LIGO technical note by Warren Anderson (25
May 2004).

To simplify the notation a bit, we will use P̄1, P̄2

to denote two power spectrum estimators, representing
either the auto-correlations σ̄2

1 , σ̄2
2 for the white sig-

nal+noise model or the auto-correlated power spectra
P̄1I(f`), P̄2I(f`) for the colored signal+noise model. The
number of averages used in the construction of the power
spectrum estimators is denoted by Navg, which is pro-
portional to the number of data samples N for the white
signal+noise models, or the number of frequency bins M
averaged over for coarse graining in a Welch power spec-
trum estimate [21] for the colored signal+noise models.

Since P̄1 and P̄2 are unbiased estimators of P1 and P2,
we can write

P̄1 = P1 + δP̄1 ,

P̄2 = P2 + δP̄2 ,
(B1)

where

〈δP̄1〉 = 〈δP̄2〉 = 0 . (B2)

The variance and covariance of the power spectrum esti-
mators are given by the quadratic expectation values

〈(δP̄1)2〉 = 〈P̄ 2
1 〉 − P 2

1 ≡ var(P̄1) ,

〈(δP̄2)2〉 = 〈P̄ 2
2 〉 − P 2

2 ≡ var(P̄2) ,

〈δP̄1δP̄2〉 = 〈P̄1P̄2〉 − P1P2 ≡ cov(P̄1P̄2) .

(B3)

Explicitly evaluating 〈P̄ 2
1 〉, etc., using the identity

〈abcd〉 = 〈ab〉〈cd〉+ 〈ac〉〈bd〉+ 〈ad〉〈bc〉 (B4)
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for zero-mean, Gaussian random variables, leads to

〈(δP̄1)2〉 = P 2
1 /Navg ,

〈(δP̄2)2〉 = P 2
2 /Navg ,

〈P̄1P̄2〉 = P 2
h/Navg .

(B5)

Since the power spectra appear in the full likelihood

function via the product of their inverses, 1/σ2
1σ

2
2 or

1/P1I(f`)P2I(f`), we need to calculate the expectation
value 〈1/P̄1P̄2〉. So making a Taylor series expansion

1

P̄
=

1

P + δP̄
=

1

P

(
1− δP̄

P
+

(
δP̄
)2

P 2
− · · ·

)
(B6)

for both 1/P̄1 and 1/P̄2, it follows that

1

P̄1P̄2
=

1

P1P2

(
1− δP̄1

P1
+

(
δP̄1

)2
P 2

1

− · · ·
)(

1− δP̄2

P2
+

(
δP̄2

)2
P 2

2

− · · ·
)

=
1

P1P2

(
1− δP̄1

P1
− δP̄2

P2
+

(
δP̄1

)2
P 2

1

+

(
δP̄2

)2
P 2

2

+
δP̄1δP̄2

P1P2
− · · ·

)
.

(B7)

Taking the expectation value of both sides of the above expression, we find〈
1

P̄1P̄2

〉
=

1

P1P2

(
1 +

2

Navg
+

1

Navg

P 2
h

P1P2
− · · ·

)
' 1

P1P2

(
1 +

2

Navg

)
, (B8)

where we have ignored cubic and higher-order terms in
δP̄1 and δP̄2, and assumed the weak-signal approxima-
tion, P 2

h/P1P2 � 1, to get the last approximately equal-
ity. This result shows that 1/P̄1P̄2 is a biased estimator of
1/P1P2. Nonetheless, this bias can be removed by simply
moving the factor of (1 + 2/Navg) to the left-hand side,
so that

1

P̄1P̄2(1 + 2/Navg)
(B9)

is a unbiased estimator of 1/P1P2. This is the replace-
ment we make for 1/P1P2 in the reduced likelihood func-
tions in the main text, cf. (23).

Appendix C: Alternative derivation of a reduced
likelihood function

In this appendix, we give an alternative derivation of
the likelihood function for a reduced signal+noise model,
but under different assumptions than those given in the
main text. More specifically, we do not assume here that
the GWB signal is weak compared to the detector noise,
nor do we use estimators of the auto-correlated power
calculated from data segments different from that be-
ing analyzed for the signal. Rather we assume that: (i)
the number of data points N (or coarse-grained aver-
ages M) for a given data segment I is sufficiently large
that one can expand the likelihood function around the
maximum-likelihood estimators of σ2

1 , σ2
2 , σ2

h (or P1I(f`),
P2I(f`), Ph(f`)) to second order without loss of infor-
mation; and (ii) the data are informative for the auto-
correlated power σ2

1 , σ2
2 (or P1I(f`), P2I(f`)) allowing

us to evaluate the second-order likelihood function at

the values of σ2
1 , σ2

2 (or P1I(f`), P2I(f`)) that maxi-
mize the likelihood for fixed values of σ2

h (or Ph(f`)). For
concreteness, we give the derivation here in the context
of the white signal+noise model for two coincident and
coaligned detectors. But it can be easily extended to
the case of colored data with non-stationary noise and a
non-trivial overlap function. Our derivation follows that
given in [36].

We start with the full likelihood function (22) for the
white signal+noise model, which we rewrite here as

p(d|σ2
n1
, σ2
n2
, σ2
h) = exp

[
−N

2
f(σ2

1 , σ
2
2 , σ

2
h|d)

]
, (C1)

where

f(σ2
1 , σ

2
2 , σ

2
h|d) = 2 ln(2π) + ln

(
σ2

1σ
2
2 − (σ2

h)2
)

1

(σ2
1σ

2
2 − (σ2

h)2)

(
σ̂2

1σ
2
2 + σ̂2

2σ
2
1 − 2σ̂2

hσ
2
h

)
. (C2)

In the above expressions, σ2
1 , σ2

2 are the total auto-
correlated variances in the two detectors, see (18), and

σ̂2
1 ≡

1

N

∑
i

d2
1i ,

σ̂2
2 ≡

1

N

∑
i

d2
2i ,

σ̂2
h ≡

1

N

∑
i

d1id2i ,

(C3)

are the maximum-likelihood estimators of σ2
1 , σ2

2 , σ2
h.

Assuming that N is sufficiently large, we can Taylor
expand f around its maximum-likelihood values ignoring
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terms higher than second order in the differences σ2
1− σ̂2

1 , σ2
2 − σ̂2

2 , σ2
h − σ̂2

h. Doing so gives

f(σ2
1 , σ

2
2 , σ

2
h|d) ' f(σ̂2

1 , σ̂
2
2 , σ̂

2
h|d) +

1

2

∑
i,j

∂2f

∂xi∂xj

∣∣∣∣
ML

(xi − x̂i)(xj − x̂j) , (C4)

where xi ≡ (σ2
1 , σ

2
2 , σ

2
h), and

∂2f

∂xi∂xj

∣∣∣∣
ML

=
1

(σ̂2
1 σ̂

2
2 − (σ̂2

h)2)

 (σ̂2
2)2 (σ̂2

h)2 −2σ̂2
2 σ̂

2
h

(σ̂2
h)2 (σ̂2

1)2 −2σ̂2
1 σ̂

2
h

−2σ̂2
2 σ̂

2
h −2σ̂2

1σ
2
h 2

(
σ̂2

1 σ̂
2
2 + (σ̂2

h)2
)
 . (C5)

Defining

Γij ≡
N

2

∂2f

∂xi∂xj

∣∣∣∣
ML

, (C6)

it follows that the inverse matrix

Cij ≡
(
Γ−1

)
ij

=
1

N

 2(σ̂2
1)2 2(σ̂2

h)2 2σ̂2
1 σ̂

2
z

2(σ̂2
h)2 2(σ̂2

2)2 2σ̂2
2 σ̂

2
z

2σ̂2
1 σ̂

2
h 2σ̂2

2σ
2
h σ̂2

1 σ̂
2
2 + (σ̂2

h)2

 (C7)

is an estimator of the covariance matrix of the maximum-likelihood estimators σ̂2
1 , σ̂2

2 , σ̂2
h.

To proceed further, we construct a reduced likelihood function by assuming that the data are informative with
respect to the detector auto-correlations σ2

1 , σ2
2 . This means that we can evaluate (C4) at the values of σ2

1 , σ2
2 that

maximize (C4) for fixed values of σ2
h. So, simultaneously solving the two equations

∂f

∂σ2
1

= 0 ,
∂f

∂σ2
2

= 0 , (C8)

for σ2
1 , σ2

2 , we obtain

σ2
1 = σ̂2

1 +
2σ̂2

1 σ̂
2
h

(σ̂2
1 σ̂

2
2 + (σ̂2

h)2)
(σ2
h − σ̂2

h) , σ2
2 = σ̂2

2 +
2σ̂2

2 σ̂
2
h

(σ̂2
1 σ̂

2
2 + (σ̂2

h)2)
(σ2
h − σ̂2

h) . (C9)

Denoting the RHSs of these expressions by σ̄2
1 , σ̄2

2 , it follows that (C4) becomes

f(σ2
1 , σ

2
2 , σ

2
h|d)

∣∣∣
σ2
1=σ̄2

1 , σ
2
2=σ̄2

2

' f(σ̂2
1 , σ̂

2
2 , σ̂

2
h|d) +

(σ2
h − σ̂2

h)2

(σ̂2
1 σ̂

2
2 + (σ̂2

h)2)
. (C10)

The corresponding reduced likelihood function is

p(d|σ̄2
1 , σ̄

2
2 , σ

2
h) ≡ p(d|σ̂2

1 , σ̂
2
2 , σ̂

2
h) exp

[
−N

2

(σ2
h − σ̂2

h)2

(σ̂2
1 σ̂

2
2 + (σ̂2

h)2)

]
. (C11)

Thus, we see that σ̂2
h together with σ̂2

1 , σ̂2
2 are sufficient statistics for σ2

h with variance

var[σ̂2
h] =

(
σ̂2

1 σ̂
2
2 + (σ̂2

h)2
)
/N . (C12)

A couple of remarks are in order:

(i) Nowhere in the above derivation did we assume that
the power in the GWB is small compared to the detector
noise. Thus, the reduced likelihood function (C11) is
valid for arbitrarily large GWB signals, which is relevant,
for example, for searches for a GWB using pulsar timing

arrays [15, 20] or the proposed space-based interferometer
LISA [37]; see e.g., [16]. Equation (C12) contains an
extra term, (σ̂2

h)2, compared to (28), which takes into
account the extra variance associated with the GWB,
over and above that which is already captured in the
auto-correlations σ̂2

1 and σ̂2
2 .
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(ii) Although we denoted the right-hand sides of (C9)
by σ̄2

1 , σ̄2
2 , these expressions are not the same as those

used in the main text (see the discussion in Sec. III B),
which were estimators of σ2

1 , σ2
2 constructed from data

segments different than that being analyzed for the sig-
nal. The use of different data segments to estimate the
auto-correlations is necessary for LIGO-Virgo data, since
the number of averages used to estimate power spectra
is not sufficiently large to beat down the bias that arises
from using the same data in both the numerator and
denominator of the exponential in (C11). (Recall that
for the colored signal+noise model, the number of av-

erages is proportional to the number of frequency bins
M that are averaged together for coarse-graining.) For
LIGO-Virgo data, one is restricted to Navg of order at
most 50, due to the complexity of the detector noise (the
need to take the coarse-grained frequency resolution to
be δf ∼ 0.25 Hz) and its broad non-stationarity on time
scales of order minutes (ignoring shorter time-scale in-
strumental glitches). By using different data segments to
estimate the auto-correlated power, the bias goes away
in the weak-signal limit, as shown in Fig. 4. But if the
number of averages was sufficiently large, then one could
use the expression in (C11) as is.
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