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Sufficient statistics are combinations of data in terms of which the likelihood function can be rewritten
without loss of information. Depending on the data volume reduction, the use of sufficient statistics as a
preliminary step in a Bayesian analysis can lead to significant increases in efficiency when sampling from
posterior distributions of model parameters. Here we show that the frequency integrand of the cross-
correlation statistic and its variance are approximate sufficient statistics for ground-based searches for
stochastic gravitational-wave backgrounds. The sufficient statistics are approximate because one works in
the weak-signal approximation and uses measured estimates of the autocorrelated power in each detector.
We perform analytic and numerical calculations to show that, in this approximation, LIGO-Virgo’s hybrid
frequentist-Bayesian parameter estimation analysis is equivalent to a fully Bayesian analysis. This work
closes a gap in the LIGO-Virgo literature and suggests directions for additional searches.
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I. INTRODUCTION

Current searches for stochastic gravitational-wave back-
grounds (GWBs) using ground-based laser interferometers
(e.g., the Advanced LIGO [1] and Virgo [2] detectors) use a
hybrid of frequentist and Bayesian analysis techniques
[3–5]. Certain frequentist statistics (namely, frequency
integrands for the cross-correlation statistic and its
variance) are calculated for relatively short stretches of
time-series data (of order a couple of minutes), and then
combined using inverse-noise weighting to produce two
final frequency series, valid for the whole observation
period (of order several months to a year). These frequency
series are then used as the fundamental input data and
variance for a subsequent Bayesian analysis that calculates
posterior probability distributions and Bayesian upper
limits on the strength of potential correlated gravita-
tional-wave signals [6]. These hybrid frequentist-
Bayesian analyses have been used to place upper limits
on GWBs with different amplitudes and spectral shapes
[3,7]; GWBs having non-general relativity polarizations

predicted by alternative theories of gravity [3,8]; and
potential contamination from correlated global magnetic
fields—i.e., Schumann resonances [9–13].
On the other hand, most searches for GWBs using pulsar

timing data [14,15] and proposed searches using space-
based detectors such as LISA [16,17] are fully Bayesian,
proceeding directly from the time-series data to posterior
distributions and upper limits, without ever calculating a
cross-correlation frequency integrand or statistic. So the
question naturally arises as to whether LIGO and Virgo’s
current hybrid frequentist-Bayesian analysis is losing
information relative to a fully Bayesian search.
As we shall show below, the answer is basically “no.”

We assume that we can work in the weak-signal approxi-
mation, and we use measured estimates of the autocorre-
lated power in each detector, as opposed to trying to infer
the noise power spectra as part of the full analysis. Under
these simplifications, the frequency integrands of the cross-
correlation statistic and its variance are approximately
lossless combinations of the full time-series data in terms
of which the full likelihood function can be rewritten.
Hence, Bayesian posterior distributions produced from
these frequency series agree quite well with those produced
from the full time-series data. Said another way, the
frequency integrands of the cross-correlation statistic and
its variance are approximate sufficient statistics for the
analysis, so the hybrid frequentist-Bayesian method is
essentially equivalent to a full Bayesian analysis.
The calculations presented in this paper can also be

thought of as providing an alternative conceptual starting
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point for LIGO-Virgo’s stochastic cross-correlation analy-
sis. We use the full Bayesian likelihood function as an
organizing principle, out of which the LIGO-Virgo sto-
chastic analyses follows. Various steps in the stochastic
analysis, such as coarse graining of cross-correlated data
[18], estimating autocorrelated power spectra from
neighboring data segments [19], inverse-noise weighting,
optimal filtering [20], the inclusion of bias factors for
the theoretical variance [19], and the use of the cross-
correlation frequency integrand and its variance to do
parameter estimation and model selection [6], all follow
directly from the Bayesian likelihood under the assump-
tions of a weak signal and estimated autocorrelated detector
power spectra. We also see opportunities to develop new
methods to look for signals which violate our assumptions.
Our main result will be to show that the full Gaussian

likelihood for a stochastic background [cf. Eqs. (31) and
(32)] is equivalent to the reduced likelihood given in
Eq. (48), under the approximations enumerated above.
To do this, we will build up the tools necessary in a series of
increasingly more realistic (and more complex) scenarios.
In Sec. II, we give a simple example of a sufficient statistic
in the context of a search for a constant deterministic signal
in the output of a single detector. This example serves as a
basis for the calculations in the following two sections
for cross-correlation-based searches for stochastic gravita-
tional waves. We first restrict attention in Sec. III to white
signalþ noise models and stationary data. We then extend
our analyses in Sec. IV to colored signalþ noise models,
allowing for nonstationary noise. Both of these sections
present results of different analyses performed on simulated
data comparing posterior distributions produced by fully
Bayesian and sufficient-statistic analyses. We conclude
in Sec. V with a brief summary, followed by a discussion
of other related approaches in the literature, and
possible extensions of these results. We also include three
Appendixes: Appendix A contains a simple, yet very
useful, identity (A1) that we use repeatedly throughout
the paper; Appendix B summarizes uncertainties in power
spectrum estimation; and Appendix C gives an alternative
derivation of a reduced likelihood function, but which
makes different assumptions than those given in the
main text.

II. SIMPLE EXAMPLE

Perhaps the simplest example of a nontrivial sufficient
statistic is the sample mean of the data for a constant signal
in white, Gaussian noise (see Sec. 3.5 of Ref. [5] for a more
detailed treatment of this example). We suppose we record
N time-series data samples d≡ fdig as

di ¼ aþ ni; i ¼ 1; 2;…; N; ð1Þ

where a > 0 is the amplitude of the signal and ni denotes
the ith sample of the noise. For simplicity, we will assume

that the noise is white and has zero mean, i.e., hnii ¼ 0,
hninji ¼ σ2δij, and that the variance σ2 is known a priori.
The likelihood function is then

pðdjaÞ ¼ 1

ð2πÞN=2σN
exp

�
−

1

2σ2
X
i

ðdi − aÞ2
�
; ð2Þ

which has the interpretation of being the probability of
observing the data d given a signal of amplitude a in white
noise with known variance σ2.
It is fairly straightforward to show that the maximum-

likelihood estimator of the amplitude a is given by the
sample mean of the data

â≡ aMLðdÞ ¼
1

N

X
i

di: ð3Þ

This is an unbiased estimator of a and has variance

σ2â ¼ σ2=N: ð4Þ

In terms of â, the data-dependent term in the likelihood
becomes

X
i

ðdi − aÞ2 ¼
X
i

d2i − Nâ2 þ Nðâ − aÞ2: ð5Þ

This equation is a special case of the general identity (A1),
which is discussed and proven in Appendix A, and which
we will use in future sections. The likelihood can then be
rewritten in the form

pðdjaÞ ¼ 1

ð2πÞN=2σN

× exp

�
−

1

2σ2
X
i

d2i

�
exp

�
â2

2σ2â

�
exp

�
−
ðâ − aÞ2
2σ2â

�
:

ð6Þ

From this expression, we see that the likelihood function
has factored into a product of components, the last of
which depends on the data di only via the combination
â≡ aMLðdÞ, with all other components being independent
of the parameter a. This means that â is a sufficient statistic
for the parameter a for this simple signalþ noise model.
The posterior distribution for a, denoted pðajdÞ, is

calculated using Bayes’ theorem

pðajdÞ ¼ pðdjaÞpðaÞ
pðdÞ ; ð7Þ

where pðaÞ is the prior probability distribution for a, and

pðdÞ≡
Z

dapðdjaÞpðaÞ ð8Þ
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is the so-called evidence (or marginalized likelihood).
Since pðdÞ is independent of a, the evidence acts as a
normalization factor as far as the posterior distribution of a
is concerned. Thus, one often writes pðajdÞ ∝ pðdjaÞpðaÞ
for posterior distribution calculations. For this example,

pðajdÞ ∝ exp

�
−
ðâ − aÞ2
2σ2â

�
pðaÞ; ð9Þ

where we have ignored all factors in the likelihood function
(6) that are independent of the parameter a. Thus, the
sufficient statistic â≡ aMLðdÞ is the only data combination
we need to calculate the posterior. This observation has
computational advantages, since if we use a Bayesian
sampling algorithm to estimate the posterior, then by
precomputing â we obtain an OðNÞ saving relative to
the same posterior calculation but using the original form of
the likelihood, Eq. (2).
Finally, we note that the prior probability distribution

pðaÞ is chosen based on expectations for a prior to
observing the data. It is common to use flat or log-uniform
priors,

pðaÞ ¼ const or pðaÞ ¼ const=a; ð10Þ

defined over some interval ½amin; amax�, where the constants
in these expressions are determined by the normalization
condition

R
dapðaÞ ¼ 1. For the analyses that we will

perform in the following sections, we will consider flat
priors for simplicity, but note here that the results we obtain
are valid for arbitrary, nonflat priors as well.

III. SUFFICIENT STATISTICS FOR CROSS-
CORRELATION SEARCHES—WHITE

SIGNAL +NOISE MODELS

Here we extend the calculations of the previous section
to cross-correlation searches for stochastic gravitational
waves. We restrict our attention in Sec. III A to a white
signalþ noise model, assuming stationary signal and noise
(see also Sec. 4 of Ref. [5]). In Sec. III B, we consider a
reduced version of this model, where we assume weak
signals relative to the detector noise and use measured
estimates of the autocorrelated power in each detector, as
opposed to having these as model parameters to be
determined by the search. Our analysis of the white noise
case contains all of the important steps present in the
colored noise case that we shall discuss in Sec. IV, but with
considerably less complication.

A. White signal+noise, stationary data

To start, let us consider two coincident and coaligned
detectors with uncorrelated noise. We take both the detector
noise and correlated stochastic signal to be Gaussian,
stationary, and white. We denote the variances by σ2n1,

σ2n2 , σ
2
h, respectively. We will not assume that we know the

noise variances a priori, so we will try to recover σ2n1 and
σ2n2 in addition to σ2h.
Then the likelihood function is given by

pðdjσ2n1 ; σ2n2 ; σ2hÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πCÞp e−
1
2
dTC−1d; ð11Þ

where

C≡
� ðσ2n1 þ σ2hÞ1N×N σ2h1N×N

σ2h1N×N ðσ2n2 þ σ2hÞ1N×N

�
ð12Þ

is the covariance matrix and

dTC−1d≡X
α;β

X
i;j

dαiðC−1Þαi;βjdβj: ð13Þ

The indices i; j ¼ 1; 2;…; N label individual time samples,
and α, β ¼ 1, 2 label the two detectors. [The covariance
matrix C and its inverse C−1 are thus 2 × 2 block matrices
with N × N blocks; cf. (12) and (19).] The joint posterior
distribution for the signal and noise variances is

pðσ2n1 ; σ2n2 ; σ2hjdÞ ¼
pðdjσ2n1 ; σ2n2 ; σ2hÞpðσ2n1 ; σ2n2 ; σ2hÞ

pðdÞ ; ð14Þ

where pðσ2n1 ; σ2n2 ; σ2hÞ is the joint prior probability distri-
bution, and

pðdÞ ¼
Z

dσ2n1

Z
dσ2n2

Z
dσ2h

× pðdjσ2n1 ; σ2n2 ; σ2hÞpðσ2n1 ; σ2n2 ; σ2hÞ ð15Þ

is the evidence for this signalþ noise model.
It is easy to show that the maximum-likelihood estima-

tors for the parameters σ2n1 , σ2n2 , σ2h are given by the
following quadratic combinations of the data:

σ̂2n1 ≡
1

N

X
i

d21i −
1

N

X
i

d1id2i;

σ̂2n2 ≡
1

N

X
i

d22i −
1

N

X
i

d1id2i;

σ̂2h ≡ 1

N

X
i

d1id2i: ð16Þ

These expressions show that it is also convenient to
define

σ̂21 ≡ 1

N

X
i

d21i; σ̂22 ≡ 1

N

X
i

d22i; ð17Þ
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which are estimators of the total autocorrelated variances in
the two detectors:

σ21 ≡ σ2n1 þ σ2h; σ22 ≡ σ2n2 þ σ2h: ð18Þ

In the weak-signal limit σ21 ≈ σ2n1 and σ22 ≈ σ2n2 , but we will
not make that approximation at this stage. We will discuss
this approximation in Sec. III B.
To show that the above estimators are sufficient statistics

for this problem, it suffices to show that the data enter
the likelihood function (11) solely in the form of these
estimators, up to an overall normalization that does not
depend on the signal and noise parameters. Since the only
part of the likelihood function that depends on the data is
the argument of the exponential, we just need to show that
dTC−1d can be written in terms of σ̂2n1 , σ̂2n2 , σ̂2h, or,
equivalently, in terms of σ̂21, σ̂

2
2, σ̂

2
h.

Since the covariance matrix C is a 2 × 2-block matrix
with each block proportional to 1N×N , we can explicitly
invert C, yielding

C−1 ¼ 1

β

�
σ221N×N −σ2h1N×N

−σ2h1N×N σ211N×N

�
; ð19Þ

where

β≡ σ21σ
2
2 − ðσ2hÞ2

¼ σ2n1σ
2
n2 þ ðσ2n1 þ σ2n2Þσ2h > 0: ð20Þ

Using this result, it is then straightforward to show that

dTC−1d ¼ 1

β

�
σ22
X
i

d21i þ σ21
X
i

d22i − 2σ2h
X
i

d1id2i

�

¼ N
ð1 − ðσ2hÞ2=ðσ21σ22ÞÞ

�
σ̂21
σ21

þ σ̂22
σ22

− 2
σ2hσ̂

2
h

σ21σ
2
2

�
: ð21Þ

Thus,

pðdjσ2n1 ; σ2n2 ; σ2hÞ

¼ 1

ð2πÞNðσ21σ22 − ðσ2hÞ2ÞN=2

× exp

�
−
1

2

N
ð1 − ðσ2hÞ2=ðσ21σ22ÞÞ

�
σ̂21
σ21

þ σ̂22
σ22

− 2
σ2hσ̂

2
h

σ21σ
2
2

��
;

ð22Þ

which depends on the data only via σ̂21, σ̂22, σ̂2h, or,
equivalently, σ̂2n1 , σ̂

2
n2 , σ̂

2
h.

B. Weak-signal approximation, estimating
detector autocorrelations

We now consider a reduced signalþ noise model and its
corresponding likelihood function, again for the case of
white signalþ noise, stationary data. The reduction in the
model has two components: First, instead of treating the
detector noise variances σ2n1 , σ

2
n2 or the total autocorrelated

variances σ21, σ
2
2 as free parameters for our analysis, we will

use measured estimates σ̄21, σ̄
2
2 in place of σ21, σ

2
2. We use

overbars instead of hats to denote these quantities to indicate
that σ̄21, σ̄

2
2 are not the same as the maximum-likelihood data

combinations σ̂21, σ̂
2
2 for the segment that we are analyzing.

For example, for the actual LIGO-Virgo stochastic searches,
the estimates of the autocorrelated power are constructed
from two segments of data (each approximately one minute
in duration) immediately preceding and following the
analysis segment. In fact, we will show in Fig. 4 that if
themeasured estimates of the autocorrelated power equal the
maximum-likelihood data combinations for the analysis
segment, then we obtain biased recoveries of the GWB
spectrum, due to covariances between the autocorrelation
and cross-correlation estimators [19]. (But see also the
discussion of bias at the end of Appendix C.)
Second, we will assume that the stochastic signal is

weak compared to the detector noise and thus keep
only the leading-order terms in expressions involving
ðσ2hÞ2=σ̄21σ̄22 ≪ 1. To zeroth order, the detector noise and
total autocorrelated variances are equal to one another,
σ2n1 ≈ σ21, σ

2
n2 ≈ σ22. This weak-signal approximation is valid

for searches for GWBs using ground-based detectors such as
LIGO and Virgo. It is not a good approximation for GWB
searches using pulsar timing arrays, where the autocorrelated
power in the GWB may exceed that due to pulsar noise and
timing measurement noise at very low frequencies [15,21].
The likelihood function for the reduced signalþ noise

model can be obtained from (22) by making the simpli-
fications described above. We first approximate the terms
σ̂21=σ

2
1 and σ̂22=σ

2
2 by 1, given that we are replacing the

parameters σ21 and σ22 by measured estimates of these
quantities. We then replace the remaining factors of σ21,
σ22, which appear in the likelihood function in the combi-
nation 1=σ21σ

2
2 by

1

Σ̄4
12

≡ 1

σ̄21σ̄
2
2ð1þ 2=NavgÞ

; ð23Þ

where Navg (which we assume to be equal for both
detectors) is the number of averages used in the construc-
tion of σ̄21, σ̄

2
2, e.g., Welch power spectrum estimates [22].

The justification for including the factor of ð1þ 2=NavgÞ is
given in Appendix B; the factor removes a bias that would
otherwise exist in the estimation of 1=σ21σ

2
2, due to the use

of a finite amount of data to construct σ̄21, σ̄
2
2. Making all

these replacements in (22), we obtain
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pðdjσ̄21; σ̄22; σ2hÞ ¼
1

ð2πÞNðΣ̄4
12ÞN=2ð1 − ðσ2hÞ2=Σ̄4

12ÞN=2 exp

�
−

N
ð1 − ðσ2hÞ2=Σ̄4

12Þ
�
1 −

σ2hσ̂
2
h

Σ̄4
12

��
: ð24Þ

We then Taylor expand the right-hand side (RHS) keeping only the leading-order terms in ðσ2hÞ2=σ21σ22 ¼
ðσ2hÞ2=Σ̄4

12. The σ2h factor in front of the exponential can be written as

1

ð1 − ðσ2hÞ2=Σ̄4
12ÞN=2 ≈ 1þ N

2

ðσ2hÞ2
Σ̄4
12

≈ exp

�
N
2

ðσ2hÞ2
Σ̄4
12

�
; ð25Þ

while the exponential factor itself becomes

exp

�
−

N
ð1 − ðσ2hÞ2=Σ̄4

12Þ
�
1 −

σ2hσ̂
2
h

Σ̄4
12

��
≈ exp

�
−N

�
1þ ðσ2hÞ2

Σ̄4
12

−
σ2hσ̂

2
h

Σ̄4
12

��
: ð26Þ

Combining these last two expressions gives

exp

�
−
N
2

�
2þ ðσ2hÞ2 − 2σ2hσ̂

2
h

Σ̄4
12

��
¼ e−N exp

� ðσ̂2hÞ2
2varðσ̂2hÞ

�
exp

�
−
ðσ̂2h − σ2hÞ2
2varðσ̂2hÞ

�
; ð27Þ

where we completed the square in σ2h and σ̂2h and made the substitution

varðσ̂2hÞ≡ Σ̄4
12=N ¼ ð1þ 2=NavgÞσ̄21σ̄22=N; ð28Þ

which is the leading-order expression for the variance of the maximum-likelihood estimator σ̂2h. [The full expression for the
variance would include an additional term proportional to the square of σ2h; cf. Eq. (4.18) in [5]. We also derive a closely
related relationship involving estimators constructed from the data in (C12).] Thus,

pðdjσ̄21; σ̄22; σ2hÞ ¼
e−N

ð2πÞNðNvarðσ̂2hÞÞN=2 exp

� ðσ̂2hÞ2
2varðσ̂2hÞ

�
exp

�
−
ðσ̂2h − σ2hÞ2
2varðσ̂2hÞ

�
; ð29Þ

which shows that σ̂2h and varðσ̂2hÞ are sufficient statistics for this reduced signalþ noise model. We can also see from (29)
that σ̂2h is the maximum-likelihood estimator of σ2h for this reduced signalþ noise model. Note that the σ2h-dependent term in
the likelihood function has the same general form as that for the simple example described in Sec. II; see (6). (In
Appendix C, we present an alternative derivation of the likelihood function for a reduced signalþ noise model, but under
different assumptions than used here.)

Figure 1 compares the marginalized posterior distribu-
tions for σ2h calculated from the two likelihood functions,
Eqs. (22) and (29), for a short stretch of simulated time-
series data consisting of a white signal injected into
white noise in two coincident and coaligned detectors.
The simulated noise had variances σ2n1 ¼ σ2n2 ¼ 1, while
the injected signal had σ2h ¼ 0.3. For 512 samples, these
values correspond to an expected signal-to-noise ratio ρ ¼ffiffiffiffi
N

p
σ2h=

ffiffiffiffiffiffiffiffiffi
σ21σ

2
2

p
¼ 5.22 for the full set of data. Note,

however, that ðσ2hÞ2=σ21σ22 ¼ 0.05 ≪ 1, consistent with
the weak-signal approximation. The blue histogram is
the marginalized posterior for σ2h calculated from the full
likelihood function (22); the orange histogram is the
marginalized posterior for σ2h calculated from the reduced
likelihood function (29). For the reduced likelihood analy-
sis, the detector autocorrelated power were estimated from
additional, adjacent, simulated data segments, following
the procedure used in real LIGO-Virgo analyses such as
[23]. The dashed vertical gray line and the dashed vertical
red line show the injected value of σ2h and the maximum-
likelihood value σ̂2h.

injected value
max likelihood value

reduced likelihood

FIG. 1. Comparison of the marginalized posteriors for the full
likelihood function (22) (blue histogram) and its reduced version
(29) (orange histogram), which substitutes measured estimates
σ̄21, σ̄

2
2 for the autocorrelated power σ

2
1, σ

2
2 and keeps only leading-

order terms in ðσ2hÞ2=σ̄21σ̄22. (Note that since this posterior is based
on a single realization of the data, we cannot conclude whether
the offset of the peak of the posterior relative to the injected value
is because of a statistical fluctuation or a systematic bias. We
return to this point in Figs. 4 and 5.)

FREQUENTIST VERSUS BAYESIAN ANALYSES: CROSS- … PHYS. REV. D 103, 062003 (2021)

062003-5



IV. SUFFICIENT STATISTICS FOR CROSS-
CORRELATION SEARCHES—COLORED

SIGNAL +NOISE MODELS

Here we extend the analysis of the previous section to a
colored signalþ noise model, starting with stationary data
in Sec. IVA and then discussing the complications intro-
duced by nonstationary noise in Sec. IV B. In Sec. IV C, we
simplify the signalþ noise model by again considering
weak signals and measured estimates of the autocorrelated
power, for which the frequency integrands of the cross-
correlation statistic and its variance are sufficient statistics.
In Sec. IV D we show that the full Bayesian analysis is
approximately equivalent to LIGO-Virgo’s hybrid frequent-
ist-Bayesian analysis, and in Sec. IV E we construct
percentile-percentile (pp) plots [24] to show that the
reduced analyses have proper statistical coverage. (We
do not assume that the detectors are coincident and coal-
igned in this section.)

A. Colored signal+noise, stationary data

For the case where the detector noise and GWB signal
are colored, it is simpler to work in the frequency domain,
since the Fourier components are independent of one
another (assuming the data are stationary over the duration
of the analysis segment). Assuming multivariate Gaussian
distributions as before, the variances σ2n1 , σ

2
n2 , σ

2
h, for the

white signalþ noise case are replaced by power spectral
densities Pn1ðfÞ, Pn2ðfÞ, PhðfÞ, defined by

hh̃ðfÞh̃�ðf0Þi ¼ 1

2
δðf − f0ÞPhðfÞ; etc:; ð30Þ

where h̃ðfÞ is the Fourier transform of the signal compo-
nent hðtÞ of the time-series data. The factor of 1=2 is
included to make these one-sided power spectral densities,
so that the total variance is given by an integral of the power
spectral density over positive frequencies, σ2¼R

∞
0 dfPðfÞ.

Although the above expressions are written in terms of
continuous functions of frequency, in practice we work
with frequency series, e.g., PhðfkÞ, where the discrete
frequencies take values fk ≡ kΔf, where Δf ≡ 1=T
and k ¼ 0; 1;…; N=2 − 1, for a data segment of duration
T ≡ NΔt. For white data, PðfÞ ¼ 2σ2Δt is constant
between f ¼ 0 and the Nyquist frequency fNyq ≡ 1=2Δt.
Even though we are assuming here that the data are

stationary, it is convenient to divide the data from a large
observation period into segments, which we will label by
I ¼ 1; 2;…; Nseg. The full likelihood function is then a
product of the likelihood functions for the individual
segments

pðdjPn1 ; Pn2 ; PhÞ ¼
Y
I

pIðdIjPn1 ; Pn2 ; PhÞ; ð31Þ

where

pIðdIjPn1 ; Pn2 ; PhÞ

¼
Y
k

1

detð2πC̃ðfkÞÞ
e−

1
2

P
α;β

d̃�αIðfkÞðC̃ðfkÞ−1Þαβ d̃βIðfkÞ: ð32Þ

In the above expression

C̃ðfÞ ¼ T
4

�
P1ðfÞ γðfÞPhðfÞ

γðfÞPhðfÞ P2ðfÞ

�
ð33Þ

is the covariance matrix of the data, with

P1ðfÞ≡ Pn1ðfÞ þ PhðfÞ;
P2ðfÞ≡ Pn2ðfÞ þ PhðfÞ; ð34Þ

denoting the total autocorrelated detector power spectral
densities. The inverse covariance matrix is simply

C̃ðfÞ−1 ¼ 4

T
1

ðP1ðfÞP2ðfÞ − γ2ðfÞP2
hðfÞÞ

×

�
P2ðfÞ −γðfÞPhðfÞ

−γðfÞPhðfÞ P1ðfÞ

�
: ð35Þ

Note that although the data depend on segment I, the
parameters Pn1 , Pn2 , Ph do not, since we are assuming that
the noise and signal power spectra are the same in each
segment.
The dimensionless function γðfÞ, which appears in the

off-diagonal elements of the covariance matrix, is the
overlap reduction function, which accounts for the relative
position and orientation of the detectors [25,26]. The
functional form of γðfÞ is not relevant for the discussion
that follows, other than the fact that γðfÞ equals unity
for coincident and coaligned detectors in the long-wave-
length limit.
If we want to estimate the values of the power spectral

densities Pn1ðfÞ, Pn2ðfÞ, PhðfÞ, at each discrete (positive)
frequency fk ≡ kΔf, then there are no simplifying suffi-
cient statistics for this case as the data enter the likelihood
function only through the combinations

jd̃1IðfkÞj2; jd̃2IðfkÞj2; Reðd̃�1IðfkÞd̃2IðfkÞÞ; ð36Þ

which does not correspond to a reduction in the number of
data samples used in writing the likelihood function.
However, if the power spectra are expected to be smooth
over a coarser frequency resolution δf ≡ 1=τ > Δf, where
τ≡ T=M is some fractional part of the segment duration T,
then there is a reduction in the data combinations. This is
because the relevant power spectra need only be
estimated at fewer discrete frequencies fl ≡ lδf, where
l ¼ 0; 1;…; ðN=MÞ=2 − 1. (For typical LIGO-Virgo
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searches, M is of order 10 or larger [23].) Hence the data
combinations (36) can be averaged over a subset ofM fine-
grained frequencies fk centered at fl:

c̃11;IðflÞ≡ 1

M

XlþM=2−1

k¼l−M=2

jd̃1IðfkÞj2;

c̃22;IðflÞ≡ 1

M

XlþM=2−1

k¼l−M=2

jd̃2IðfkÞj2;

c̃12;IðflÞ≡ 1

M

XlþM=2−1

k¼l−M=2

Reðd̃�1IðfkÞd̃2IðfkÞÞ: ð37Þ

This leads to averaged (or coarse-grained) power spectral
density estimators

P̂1IðflÞ≡ 2

T
c̃11;IðflÞ;

P̂2IðflÞ≡ 2

T
c̃22;IðflÞ;

P̂hIðflÞ≡ 2

T
c̃12;IðflÞ
γðflÞ

; ð38Þ

in terms of which the likelihood function (32) can be
written:

pIðdIjPn1 ;Pn2 ;PhÞ¼
Y
l

1

ðπT=2Þ2MðP1ðflÞP2ðflÞ−γ2ðflÞP2
hðflÞÞM

×exp

�
−

M
ð1−γ2ðflÞP2

hðflÞ=ðP1ðflÞP2ðflÞÞÞ
�
P̂1IðflÞ
P1ðflÞ

þ P̂2IðflÞ
P2ðflÞ

−2γ2ðflÞ
PhðflÞP̂hIðflÞ
P1ðflÞP2ðflÞ

��
: ð39Þ

We note that estimating a power spectrum by subdividing a
segment of data into shorter duration subsegments is a
standard practice in signal processing [22]. It is a way to
reduce the variance in the power spectrum estimate at the
expense of a coarser frequency resolution.
For this stationary case, we get a further level of data

reduction in the sufficient statistics, as we can average the
coarse-grained power spectrum estimators (38) over the
number of segments. By construction, these segment-aver-
aged estimatorswill give expected values ofPhðflÞ,P1ðflÞ,
P2ðflÞ over thewhole observation. This is fine for stationary
data. But if the detector noise levels can change from segment
to segment, then this simple averaging will fail to capture the
nonstationarity of the noise. We have to do something
different for this more complicated, but realistic, scenario.

B. Colored signal+noise, nonstationary data

Real data from ground-based gravitational-wave inter-
ferometers is not stationary. As discussed, for instance, in
[27], non-Gaussian noise transients (often referred to as
glitches) can frequently occur, and additionally the noise
power spectrum changes with time over the course of the
run, for instance due to changes in detector configuration or
in response to seismic activity. Therefore, analyses of real
data must explicitly test that the data are sufficiently

stationary. One approach developed in [28] is to explicitly
test that the estimator follows the expected distribution
from Gaussian noise. It is also common for LIGO-Virgo
analyses to reject segments where the noise is nonstationary
between adjacent segments [23].
For nonstationary detector noise, we have to increase the

number ofmodel parameters fromPn1ðflÞ,Pn2ðflÞ,PhðflÞ
to Pn1IðflÞ, Pn2IðflÞ, PhðflÞ, where I ¼ 1; 2;…; Nseg,
since the noise levels can differ from segment to segment.
We are assuming here that the power spectrum of the
stochastic signal is stationary, which is not necessarily the
case for a “popcornlike” background, such as that produced
by stellar-mass binary black hole mergers [29]. The covari-
ance matrix for this case is then

C̃IðflÞ ¼
T
4

�
P1IðflÞ γðflÞPhðflÞ

γðflÞPhðflÞ P2IðflÞ

�
; ð40Þ

where

P1IðfÞ≡Pn1IðfÞþPhðfÞ;
P2IðfÞ≡Pn2IðfÞþPhðfÞ; ð41Þ

are the autocorrelated detector power spectra for segment I.
Similar to what we found in (39), the corresponding like-
lihood function for a single segment of data can bewritten as

pIðdIjPn1I;Pn2I;PhÞ ¼
Y
l

1

ðπT=2Þ2MðP1IðflÞP2IðflÞ− γ2ðflÞP2
hðflÞÞM

× exp

�
−

M
ð1− γ2ðflÞP2

hðflÞ=ðP1IðflÞP2IðflÞÞÞ
�
P̂1IðflÞ
P1IðflÞ

þ P̂2IðflÞ
P2IðflÞ

− 2γ2ðflÞ
PhðflÞP̂hIðflÞ
P1IðflÞP2IðflÞ

��
;

ð42Þ
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where the estimators P̂hIðflÞ, P̂1IðflÞ, P̂2IðflÞ are the same as in (38). We emphasize that this likelihood differs from that
in (39) only by our assumption that the noise is not stationary, which is reflected in the fact that the parameters P1IðflÞ,
P2IðflÞ carry I indices. Note that the above likelihood has the same form as the white noise case (22), but with both
frequency and segment dependence in the estimators and parameters. The full expression for the likelihood function
involves a further product over I, as specified in (31).

C. Reduced version of the colored, nonstationary likelihood function

To simplify the above analysis, we will proceed as we did in Sec. III B, where we considered a reduced signalþ noise
model and its corresponding likelihood by replacing the autocorrelated power spectral densities with measured estimates
P̄1IðflÞ, P̄2IðflÞ, and working in the weak-signal approximation where P2

hðflÞ=P̄1IðflÞP̄2IðflÞ ≪ 1. For a given discrete
frequency fl and data segment I, the reduction in the likelihood function has exactly the same form as the white noise case,
which allows us to immediately write down

pIðdIjP̄1I; P̄2I;PhÞ ¼
Y
l

e−2M

ðπT=2Þ2MðP̄1IðflÞP̄2IðflÞð1þ 2=NavgÞÞM
exp

�
P̂2
hIðflÞ

2σ̄2hIðflÞ
�
exp

�
−
ðP̂hIðflÞ−PhðflÞÞ2

2σ̄2hIðflÞ
�
; ð43Þ

where

σ̄2hIðflÞ≡ 1

2Tδf
P̄1IðflÞP̄2IðflÞ

γ2ðflÞ
ð1þ 2=NavgÞ; ð44Þ

which is the leading-order expression for the variance of P̂hIðflÞ. [Here we used the relation M ¼ Tδf for the coarse-
grained frequencies, and we included the factor of ð1þ 2=NavgÞ to account for imperfect estimation of the detector
autocorrelated power spectra P̄1IðflÞ, P̄2IðflÞ.] Additionally, since the parameter PhðflÞ shows up only in the last
exponential, we can use identity (A1) from Appendix A to perform the product over the number of data segments, which
translates into a sum over I inside the exponential

X
I

ðP̂hIðflÞ − PhðflÞÞ2
σ̄2hIðflÞ

¼
X
I

P̂2
hIðflÞ

σ̄2hIðflÞ
−
P̂2
h;optðflÞ

σ̄2h;optðflÞ
þ ðP̂h;optðflÞ − PhðflÞÞ2

σ̄2h;optðflÞ
; ð45Þ

where

P̂h;optðflÞ
σ̄2h;optðflÞ

≡X
I

2TδfγðflÞ
P̄1IðflÞP̄2IðflÞ

1

ð1þ 2=NavgÞ
2

T
1

M

XlþM=2−1

k¼l−M=2

Reðd̃�1IðfkÞd̃2IðfkÞÞ; ð46Þ

1

σ̄2h;optðflÞ
≡X

I

2Tδfγ2ðflÞ
P̄1IðflÞP̄2IðflÞ

1

ð1þ 2=NavgÞ
: ð47Þ

Thus, summing over both I and l,

pðdjfP̄1Ig; fP̄2Ig; PhÞ ¼
Y
l

e−2MNseg

ðπT=2Þ2MNseg
Q

IðP̄1IðflÞP̄2IðflÞÞM
exp

�
P̂2
h;optðflÞ

2σ̄2h;optðflÞ
�
exp

�
−
ðP̂h;optðflÞ − PhðflÞÞ2

2σ̄2h;optðflÞ
�
: ð48Þ

This is our main result. Note that it has the same basic form as (29), which we derived for the white signalþ noise case.
Thus, given some choice for the prior probability pðPhðflÞÞ, the posterior distribution for PhðflÞ is given by

pðPhðflÞjd; fP̄1IðflÞg; fP̄2IðflÞgÞ ∝ exp

�
−
ðP̂h;optðflÞ − PhðflÞÞ2

2σ̄2h;optðflÞ
�
pðPhðflÞÞ: ð49Þ

This expression for the posterior shows that P̂h;optðflÞ and σ̄2h;optðflÞ given by (46) and (47) are sufficient statistics for this
colored signalþ noise, nonstationary analysis, assuming weak signals and measured estimates of the autocorrelated power
in two detectors for each data segment.1

1One might worry that the frequency-dependent factors multiplying the last exponential in (48) will affect the calculation of the
posterior distribution for PhðflÞ. But this is not the case since these factors can be lumped together as a single frequency-independent
normalization factor that does not depend on PhðflÞ. This is a consequence of the associative property

Q
lðalblÞ ¼ ðQl alÞð

Q
l blÞ.
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In Fig. 2, we compare recoveries of the amplitude of the
GWB using the full and reduced versions of the Bayesian
likelihood functions appropriate for both white and colored
data. The simulated data are the same as that from the
previous section, consisting of a white GWB signal injected
into white detector noise, for two coincident and coaligned
detectors. For the reduced likelihood functions, the detector
autocorrelated power were estimated from an additional,
adjacent, simulated data segment. We see that all analyses
agree very well, demonstrating that the mathematical
derivations capture the behavior of the fully Bayesian
analysis in practice.
In Fig. 3, we compare recoveries of the GWB amplitude

and spectral index using the full and reduced versions of the
Bayesian likelihood function appropriate for a colored
signalþ noise model. For the full likelihood, we para-
metrize both the GWB signal and detector noise as power
laws of the form

PhðfÞ ¼ A

�
f
fref

�
β

; etc:; ð50Þ

injected value
Reduced Likelihood
Full Likelihood

FIG. 3. Recovered posterior distributions obtained from the full and reduced likelihood functions for a colored signalþ noise model.
The simulated data consisted of a white GWB signal injected into power-law detector noise. The solid red lines show the injected values
of the GWB amplitude and spectral index.

injected value
max likelihood value
white, full
white, reduced
colored, full
colored, reduced

FIG. 2. Recovered posterior distributions for the amplitude of
the GWB as obtained from the full and reduced versions of the
Bayesian likelihood functions appropriate for both white and
colored data. The simulated data consisted of a white signal and
white detector noise. (As with Fig. 1, this plot is based on a single
realization of the data and cannot be used to infer the presence
or absence of a systematic bias. See Figs. 4 and 5 for further
discussion.)

FREQUENTIST VERSUS BAYESIAN ANALYSES: CROSS- … PHYS. REV. D 103, 062003 (2021)

062003-9



where A is the amplitude, β is the spectral index, and fref is
a reference frequency. (The amplitude and spectral indices
for the detector noise will differ, in general, from those for
the GWB.) For this simulation the injected noise power
spectra have An1 ¼ An2 ¼ 0.125, and β1 ¼ β2 ¼ 0.5, while
the injected signal has A ¼ An1=2, β ¼ 0 (i.e., it is white).
For the reduced likelihood function, the detector autocor-
related power were estimated from coarse-grained power
spectral density estimators applied to an additional, adja-
cent simulated data segment.
Finally, we note that by using sufficient statistics, one

improves the computational efficiency of a search relative
to a fully Bayesian analysis that works with the raw
uncombined time-domain (or frequency-domain) data sam-
ples. For example, for a stationary GWB, one can reduce
the number of likelihood evaluations by a factor of MNseg,
where M, which is of order 10 or larger, corresponds to
coarse-graining, and Nseg ∼ 105 comes from averaging six
months of data split into approximately one-minute data
segments. One simply precomputes the sufficient statistic
data combinations (46) and (47), and performs Bayesian
inference (e.g., Markov-chain Monte Carlo (MCMC)
sampling) for the corresponding likelihood function (48).

D. Connection to LIGO’s hybrid
frequentist-Bayesian analysis

We can use the reduced form of the likelihood (48) to
search for GWB signals described by the power spectral
density PhðfÞ. But to make connection with the literature
on GWBs, we should parametrize the background in terms
of the (dimensionless) energy density spectrum [20]:

ΩgwðfÞ≡ 1

ρc

dρgw
d ln f

; ð51Þ

where ρc is the energy density needed to close the universe.
Then

PhðfÞ ¼
3H2

0

10π2
ΩgwðfÞ

f3
; ð52Þ

which differs from the one-sided strain spectral density
ShðfÞ ¼ ð3H2

0=2π
2ÞΩgwðfÞ=f3 by a factor of 1=5, since

we are interested here in the strain response of a laser
interferometer with a 90° opening angle between the
arms [5]. Thus, we can rewrite the likelihood function
(48) in terms ofΩgwðfÞ and its optimal estimator Ω̂gwðfÞ as

pðdjfP̄1Ig; fP̄2Ig;ΩgwÞ ¼
Y
l

e−2MNseg

ðπT=2Þ2MNseg
Q

IðP̄1IðflÞP̄2IðflÞÞM
exp

�
Ω̂2

gwðflÞ
2σ̄2gwðflÞ

�
exp

�
−
ðΩ̂gwðflÞ −ΩgwðflÞÞ2

2σ̄2gwðflÞ
�
; ð53Þ

where

Ω̂gwðflÞ
σ̄2gwðflÞ

≡X
I

2Tδf
P̄1IðflÞP̄2IðflÞ

�
3H2

0

10π2
γðflÞ
f3l

�
1

ð1þ2=NavgÞ
2

T
1

M

XlþM=2−1

k¼l−M=2

Reðd̃�1IðfkÞd̃2IðfkÞÞ; ð54Þ

1

σ̄2gwðflÞ
≡X

I

2Tδf
P̄1IðflÞP̄2IðflÞ

�
3H2

0

10π2
γðflÞ
f3l

�
2 1

ð1þ2=NavgÞ
: ð55Þ

This is the form of the likelihood function that you will find in the LIGO-Virgo GWB literature, e.g., Ref. [6], which serves
as the starting point for subsequent Bayesian parameter estimation analyses.
We can go one step further if we fix the spectral shape of the GWB and focus attention on estimating only its amplitude at

some reference frequency fref, where we normalize the spectral shape to have unit value. (Typically fref ¼ 25 Hz for LIGO-
Virgo stochastic analyses.) For example, for a power-law background with spectral index α, we have

ΩgwðfÞ≡Ωα

�
f
fref

�
α

ð56Þ

(note that there is no implied sum over α in the above equation). The spectral index ofΩgwðfÞ is related to the spectral index of
PhðfÞ defined in the previous section byα ¼ β þ 3. Thenwe can perform the product over frequencies fl, again using identity
(A1) fromAppendixA to do the relevant sumof the argument of the exponential. This yields a likelihood function and posterior
distribution for the amplitude Ωα that are both proportional to

exp

�
−
ðΩ̂α −ΩαÞ2

2σ̄2α

�
; ð57Þ

where
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Ω̂α

σ̄2α
≡X

I

2Tδf
P̄1IðflÞP̄2IðflÞ

�
3H2

0

10π2
γðflÞ
f3ref

�
fl
fref

�
α−3

�
1

ð1þ 2=NavgÞ
2

T
1

M

XlþM=2−1

k¼l−M=2

Reðd̃�1IðfkÞd̃2IðfkÞÞ; ð58Þ

1

σ̄2α
≡X

I

2Tδf
P̄1IðflÞP̄2IðflÞ

�
3H2

0

10π2
γðflÞ
f3ref

�
fl
fref

�
α−3

�
2 1

ð1þ 2=NavgÞ
: ð59Þ

Note that the factor

QðfÞ≡ 3H2
0

10π2
γðflÞ
f3ref

�
fl
fref

�
α−3 1

P̄1IðflÞP̄2IðflÞ
; ð60Þ

which multiplies the correlated data in (58), is proportional to the standard expression for the optimal filter in the frequency
domain; see, e.g., Refs. [5,20].

E. Rigorous comparison

As a check on the results of the previous section, we
produce several pp plots [24] to verify that the LIGO-Virgo
hybrid frequentist-Bayesian analysis has good statistical
coverage.
To generate a pp plot, we first perform N ¼ 300

injections and recover the injection with different like-
lihood functions, as described below. For each recovery,
we record the percentile of the posterior distribution at
which the injected value lies. We then plot the cumulative
distribution function of the percentiles, along with a 90%
credible interval determined using order statistics showing
the expected range of the cumulative distribution for each
percentile value. If the methods we use are unbiased, then
the cumulative distribution should lie within the 90%
credible interval, close to a diagonal line. Deviations from
this line indicate poor coverage, showing the method is
biased.
First, we consider a set of white signalþ noise injec-

tions. We generate 300 noise and signal realizations, and
we recover the signal amplitude using the full Bayesian
likelihood, reduced likelihood for a white signalþ noise
model, and also the LIGO-Virgo hybrid frequentist-
Bayesian analysis. As emphasized previously, for the
reduced likelihood, it is important to use data segments
different from the analysis segment to estimate the auto-
correlated power in the two detectors, in order to avoid a
bias in the recovered parameters. To illustrate the impor-
tance of this point, we recover the signal using the reduced
likelihood analysis in two different ways: (i) using data
segments different from the analysis segment to estimate
the autocorrelated power, and (ii) using the same data
segment as the analysis segment for estimating the auto-
correlated power. We show the results of those analyses in
Fig. 4. The analysis using the same data segment as the
analysis segment to estimate the autocorrelated power is
clearly biased. On the other hand, the full likelihood
analysis, the reduced likelihood analysis, and the

LIGO-Virgo stochastic analysis, the latter two of which
use data segments different from the analysis segment to
estimate the autocorrelated power, all show good coverage.
These analyses are not identical, however, due to different
conditioning of the data. In particular, the LIGO-Virgo
analysis computes the cross-correlation using 50% over-
lapping Hann windows and estimates the autocorrelated
power by averaging Welch estimators from adjacent data
segments. In contrast, for our simple reduced likelihood
analysis, we do not window the data (which is okay for
white data) and use a single additional, adjacent, data
segment for estimating the autocorrelated power.
Second, we perform a more realistic set of colored

signalþ noise injections, and recover the signal with the

Percentile

Fr
ac

tio
n

of
re

co
ve

rie
s

Full Likelihood
Reduced Likelihood

LIGO-Virgo Analysis
Reduced Likelihood [same data]
Expected

FIG. 4. White signalþ noise analysis. The pp plot compares
recoveries of the amplitude by the full likelihood, reduced
likelihood, and LIGO-Virgo stochastic analyses, showing that
they both have good Bayesian coverage. The latter two analyses
are not identical because of different choices made in condition-
ing the data. The dotted line shows the bias obtained when using
the reduced likelihood analysis if the same data segment as the
analysis segment is used to estimate the autocorrelated power in
the two detectors.
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LIGO-Virgo stochastic analysis. In these injections, the
theoretical noise power spectra are kept the same, although
the noise realization changes in every injection. The
amplitude of PhðfÞ at a reference frequency of 1 Hz is
fixed, but we draw the spectral index from a uniform prior
probability distribution ranging from −3 to 3. We use the
same prior on the spectral index to perform the recovery.
The realization of the GWB signal changes in every
injection. We perform two sets of 300 injections. In the
first set, the amplitude of PhðfÞ is set to be 1=8 of the
amplitude of PnðfÞ at the reference frequency in each
segment, which is consistent with the weak-signal

approximation. In the second set, the amplitude of the
signal is set to 2 times the amplitude of the noise at the
reference frequency in each segment, which violates the
weak-signal approximation.
In the top panel of Fig. 5, we show the spectrum

associated with one injection in the weak-signal regime,
along with the injected noise and GWB signal spectra. In
the bottom panel, we show the results of the pp plot
analysis for both strong- and weak-signal amplitudes. The
recovery of both the amplitude and spectral index for weak
signals lies within the 90% uncertainty, demonstrating good
Bayesian coverage. On the other hand, the recovery of the
amplitude and spectral index for strong signals lies outside
the 90% region. This is expected, given that strong signals
violate the weak-signal approximation, which was used to
derive the approximate equivalence of the LIGO-Virgo
stochastic analysis and the fully Bayesian approach.

V. DISCUSSION

In this paper, we have shown in what sense LIGO-
Virgo’s hybrid frequentist-Bayesian cross-correlation
analysis for a GWB is equivalent to a fully Bayesian
search. The main result was our argument that for a reduced
signalþ noise model consisting of weak signals and
estimated autocorrelated power spectra, the frequency
integrand of the cross-correlation statistic and its variance
are sufficient statistics for the recovery of the GWB. This
means that the posterior distributions of the recovered
spectrum of the GWB (e.g., its amplitude and spectral
index) will agree for the hybrid frequentist-Bayesian
analysis and the fully Bayesian analysis in the context
of this reduced signalþ noise model. The results of our
analyses on simulated data are consistent with those found
in [30], which describes a fully Bayesian implementation of
LIGO’s stochastic search that can estimate the presence
of a primordial GWB in the presence of an astrophysical
foreground.
We note that a similar hybrid frequentist-Bayesian

analysis is also being used for pulsar timing array searches
for a GWB produced by inspiraling supermassive black
hole binaries associated with galaxy mergers. Here a noise-
marginalized version of the cross-correlation statistic
[31,32] is used to avoid strong covariances that exist
between individual estimates of pulsar red noise parameters
and the amplitude of the GWB. Noise marginalization is
performed by drawing values of the pulsars’ red noise
parameters from posterior distributions that were generated
by an earlier Bayesian analysis which jointly estimates the
pulsar’s red noise parameters and that of a common red
process (e.g., the autocorrelated power due to the GWB),
which may exceed the noise at the lowest observed
frequencies. This leads to a more accurate recovery of
the amplitude of the GWB at relatively little computational
cost to the cross-correlation statistic analysis.

FIG. 5. Colored signalþ noise analysis. In the top panel, we
show the injected noise power spectrum PnðfÞ (the same for both
detectors) and the injected GWB power spectrum PhðfÞ, along
with the optimal estimator P̂h;optðfÞ and its uncertainty σ̄h;optðfÞ
for one segment in one realization. We rescale the optimal
estimator and its uncertainty by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
2TΔf

p
, where T

is the observation time and Δf is the frequency resolution, so that
they can be directly compared with the injected autopower and
cross power. In the bottom panel, we show a pp plot generated by
performing 300 strong-signal and 300 weak-signal injections and
recoveries. We see that when the weak-signal approximation is
satisfied, the LIGO-Virgo stochastic analysis has excellent
Bayesian coverage. Outside of the weak-signal approximation,
the coverage is less good, as expected.
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A similar hierarchical approach, which first estimates the
autocorrelated component of the background before look-
ing for evidence of cross-correlations, would most likely
also be needed for analyzing data from proposed third
generation (3G) ground-based detectors, such as Cosmic
Explorer [33] and Einstein Telescope [34]. The expected
sensitivity of these 3G detectors is such that the weak-
signal approximation in a single segment of data is no
longer valid, at least for the rate of binary black hole
mergers that advanced LIGO and Virgo are currently
observing [35].2 As such, simply estimating the autocorre-
lated power spectra without assigning some portion of it to
the GWB would lead to biased estimates of the amplitude
of the background, similar to what is seen in pulsar timing
analyses [31].
It may be possible to extend the results of our paper to

other signalþ noise models, such as a nonstationary
“popcornlike” background produced, e.g., by stellar-mass
binary black hole mergers in the LIGO frequency band
[29]. For such a background, one would need to use a
mixture signalþ noise prior to model the nonstationarity,
which amounts to postulating the presence of a correlated
GWB signal in a certain fraction ξ of the data segments and
just noise for the remaining segments, with fraction 1 − ξ
[29]. The detection of a GWB in this scenario would
amount to a posterior distribution for ξ strongly peaked
away from zero. By focusing on a GWB signal model that
consists of just excess correlation in a certain fraction of
data segments (as opposed to marginalizing over the
parameters of potential binary black hole mergers [29]),
one should be able to implement a computationally
efficient and robust (albeit suboptimal) search for a non-
stationary GWB.
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APPENDIX A: USEFUL IDENTITY

A useful identity that appears in several calculations in
the paper is

X
i

ðxi − μÞ2
σ2i

¼
X
i

x2i
σ2i

−
x2opt
σ2opt

þ ðxopt − μÞ2
σ2opt

; ðA1Þ

where xopt and σ2opt are defined by

xopt
σ2opt

≡X
i

xi
σ2i

;
1

σ2opt
≡X

i

1

σ2i
: ðA2Þ

One can think of xi and σi, where i ¼ 1; 2;…; N, as a set of
N independent measurements and error bars of the quantity
μ, whose value is to be determined from the measured data.
It is a well-known result that xopt defined above is the
minimal-variance unbiased estimator of μ with variance
σ2opt. A proof of (A1) is the following:

X
i

ðxi − μÞ2
σ2i

¼
X
i

x2i
σ2i

− 2μ
X
i

xi
σ2i

þ μ2
X
i

1

σ2i

¼
X
i

x2i
σ2i

− 2μ
xopt
σ2opt

þ μ2

σ2opt

¼
X
i

x2i
σ2i

−
x2opt
σ2opt

þ ðxopt − μÞ2
σ2opt

; ðA3Þ

where we completed the square in xopt and μ to get the last
equality.

APPENDIX B: UNCERTAINTIES IN
POWER SPECTRUM ESTIMATES

In this Appendix, we provide a brief summary of
uncertainties in power spectrum estimates. The final result
of this analysis justifies the inclusion of the factor ð1þ
2=NavgÞ in the expressions for the reduced likelihood
functions for both the white and colored signalþ noise
models. Our presentation follows that of an unpublished
internal LIGO technical note by Warren Anderson (May
25, 2004).
To simplify the notation a bit, we will use P̄1, P̄2 to

denote two power spectrum estimators, representing either
the autocorrelations σ̄21, σ̄

2
2 for the white signalþ noise

model or the autocorrelated power spectra P̄1IðflÞ, P̄2IðflÞ
for the colored signalþ noise model. The number of
averages used in the construction of the power spectrum
estimators is denoted by Navg, which is proportional to the

2Note, however, that it may be possible to subtract out the loud
resolvable signals, bringing one back to the weak-signal regime
[36,37], or else simultaneously fit for the presence of a GWB and
resolvable signals [30].
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number of data samples N for the white signalþ noise
models, or the number of frequency bins M averaged over
for coarse graining in a Welch power spectrum estimate
[22] for the colored signalþ noise models.
Since P̄1 and P̄2 are unbiased estimators of P1 and P2,

we can write

P̄1 ¼ P1 þ δP̄1;

P̄2 ¼ P2 þ δP̄2; ðB1Þ

where

hδP̄1i ¼ hδP̄2i ¼ 0: ðB2Þ

The variance and covariance of the power spectrum
estimators are given by the quadratic expectation values

hðδP̄1Þ2i ¼ hP̄2
1i − P2

1 ≡ varðP̄1Þ;
hðδP̄2Þ2i ¼ hP̄2

2i − P2
2 ≡ varðP̄2Þ;

hδP̄1δP̄2i ¼ hP̄1P̄2i − P1P2 ≡ covðP̄1P̄2Þ: ðB3Þ

Explicitly evaluating hP̄2
1i, etc., using the identity

habcdi ¼ habihcdi þ hacihbdi þ hadihbci ðB4Þ

for zero-mean, Gaussian random variables, leads to

hðδP̄1Þ2i ¼ P2
1=Navg;

hðδP̄2Þ2i ¼ P2
2=Navg;

hδP̄1δP̄2i ¼ P2
h=Navg: ðB5Þ

Since the power spectra appear in the full likelihood
function via the product of their inverses, 1=σ21σ

2
2 or

1=P1IðflÞP2IðflÞ, we need to calculate the expectation
value h1=P̄1P̄2i. So making a Taylor series expansion

1

P̄
¼ 1

Pþ δP̄
¼ 1

P

�
1 −

δP̄
P

þ ðδP̄Þ2
P2

− � � �
�

ðB6Þ

for both 1=P̄1 and 1=P̄2, it follows that

1

P̄1P̄2

¼ 1

P1P2

�
1 −

δP̄1

P1

þ ðδP̄1Þ2
P2
1

− � � �
��

1 −
δP̄2

P2

þ ðδP̄2Þ2
P2
2

− � � �
�

¼ 1

P1P2

�
1 −

δP̄1

P1

−
δP̄2

P2

þ ðδP̄1Þ2
P2
1

ðδP̄2Þ2
P2
2

þ δP̄1δP̄2

P1P2

− � � �
�
: ðB7Þ

Taking the expectation value of both sides of the above expression, we find
	

1

P̄1P̄2



¼ 1

P1P2

�
1þ 2

Navg
þ 1

Navg

P2
h

P1P2

− � � �
�
≃

1

P1P2

�
1þ 2

Navg

�
; ðB8Þ

where we have ignored cubic and higher-order terms
in δP̄1 and δP̄2, and assumed the weak-signal approxima-
tion, P2

h=P1P2 ≪ 1, to get the last approximate equality.
This result shows that 1=P̄1P̄2 is a biased estimator of
1=P1P2. Nonetheless, this bias can be removed by simply
moving the factor of ð1þ 2=NavgÞ to the left-hand side,
so that

1

P̄1P̄2ð1þ 2=NavgÞ
ðB9Þ

is a unbiased estimator of 1=P1P2. This is the replacement
we make for 1=P1P2 in the reduced likelihood functions in
the main text; cf. (23).

APPENDIX C: ALTERNATIVE DERIVATION
OF A REDUCED LIKELIHOOD FUNCTION

In this Appendix, we give an alternative derivation of the
likelihood function for a reduced signalþ noise model, but
under different assumptions than those given in the main

text. More specifically, we do not assume here that the
GWB signal is weak compared to the detector noise, nor do
we use estimators of the autocorrelated power calculated
from data segments different from that being analyzed for
the signal. Rather we assume the following: (i) the number
of data points N (or coarse-grained averagesM) for a given
data segment I is sufficiently large that one can expand
the likelihood function around the maximum-likelihood
estimators of σ21, σ

2
2, σ

2
h [or P1IðflÞ, P2IðflÞ, PhðflÞ] to

second order without loss of information; and (ii) the
data are informative for the autocorrelated power σ21, σ

2
2

[or P1IðflÞ, P2IðflÞ] allowing us to evaluate the second-
order likelihood function at the values of σ21, σ

2
2 [or P1IðflÞ,

P2IðflÞ] that maximize the likelihood for fixed values
of σ2h [or PhðflÞ]. For concreteness, we give the derivation
here in the context of the white signalþ noise model
for two coincident and coaligned detectors. But it can
easily be extended to the case of colored data with non-
stationary noise and a nontrivial overlap function. Our
derivation follows that given in [42].
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We start with the full likelihood function (22) for the
white signalþ noise model, which we rewrite here as

pðdjσ2n1 ; σ2n2 ; σ2hÞ ¼ exp

�
−
N
2
fðσ21; σ22; σ2hjdÞ

�
; ðC1Þ

where

fðσ21; σ22; σ2hjdÞ ¼ 2 lnð2πÞ þ ln ðσ21σ22 − ðσ2hÞ2Þ

þ 1

ðσ21σ22 − ðσ2hÞ2Þ
ðσ̂21σ22 þ σ̂22σ

2
1 − 2σ̂2hσ

2
hÞ:

ðC2Þ
In the above expressions, σ21, σ

2
2 are the total autocorrelated

variances in the two detectors [see (18)], and

σ̂21 ≡ 1

N

X
i

d21i;

σ̂22 ≡ 1

N

X
i

d22i;

σ̂2h ≡ 1

N

X
i

d1id2i; ðC3Þ

are the maximum-likelihood estimators of σ21, σ
2
2, σ

2
h.

Assuming that N is sufficiently large, we can Taylor
expand f around its maximum-likelihood values ignoring
terms higher than second order in the differences σ21 − σ̂21,
σ22 − σ̂22, σ

2
h − σ̂2h. Doing so gives

fðσ21; σ22; σ2hjdÞ ≃ fðσ̂21; σ̂22; σ̂2hjdÞ

þ 1

2

X
i;j

∂2f
∂xi∂xj

����
ML

ðxi − x̂iÞðxj − x̂jÞ;

ðC4Þ

where xi ≡ ðσ21; σ22; σ2hÞ and

∂2f
∂xi∂xj

����
ML

¼ 1

ðσ̂21σ̂22− ðσ̂2hÞ2Þ

2
64

ðσ̂22Þ2 ðσ̂2hÞ2 −2σ̂22σ̂2h
ðσ̂2hÞ2 ðσ̂21Þ2 −2σ̂21σ̂2h
−2σ̂22σ̂2h −2σ̂21σ2h 2ðσ̂21σ̂22þðσ̂2hÞ2Þ

3
75:

ðC5Þ

Defining

Γij ≡ N
2

∂2f
∂xi∂xj

����
ML

; ðC6Þ

it follows that the inverse matrix

Cij≡ ðΓ−1Þij ¼
1

N

2
64
2ðσ̂21Þ2 2ðσ̂2hÞ2 2σ̂21σ̂

2
z

2ðσ̂2hÞ2 2ðσ̂22Þ2 2σ̂22σ̂
2
z

2σ̂21σ̂
2
h 2σ̂22σ

2
h σ̂21σ̂

2
2þðσ̂2hÞ2

3
75 ðC7Þ

is an estimator of the covariance matrix of the maximum-
likelihood estimators σ̂21, σ̂

2
2, σ̂

2
h.

To proceed further, we construct a reduced likelihood
function by assuming that the data are informative with
respect to the detector autocorrelations σ21, σ

2
2. This means

that we can evaluate (C4) at the values of σ21, σ22 that
maximize (C4) for fixed values of σ2h. So, simultaneously
solving the two equations

∂f
∂σ21 ¼ 0;

∂f
∂σ22 ¼ 0; ðC8Þ

for σ21, σ
2
2, we obtain

σ21 ¼ σ̂21 þ
2σ̂21σ̂

2
h

ðσ̂21σ̂22 þ ðσ̂2hÞ2Þ
ðσ2h − σ̂2hÞ;

σ22 ¼ σ̂22 þ
2σ̂22σ̂

2
h

ðσ̂21σ̂22 þ ðσ̂2hÞ2Þ
ðσ2h − σ̂2hÞ: ðC9Þ

Denoting the RHSs of these expressions by σ̄21, σ̄22, it
follows that (C4) becomes

fðσ21; σ22; σ2hjdÞjσ21¼σ̄2
1
;σ2

2
¼σ̄2

2

≃ fðσ̂21; σ̂22; σ̂2hjdÞ þ
ðσ2h − σ̂2hÞ2

ðσ̂21σ̂22 þ ðσ̂2hÞ2Þ
: ðC10Þ

The corresponding reduced likelihood function is

pðdjσ̄21; σ̄22;σ2hÞ≡pðdjσ̂21; σ̂22; σ̂2hÞexp
�
−
N
2

ðσ2h− σ̂2hÞ2
ðσ̂21σ̂22þðσ̂2hÞ2Þ

�
:

ðC11Þ

Thus, we see that σ̂2h together with σ̂21, σ̂
2
2 are sufficient

statistics for σ2h with variance

var½σ̂2h� ¼ ðσ̂21σ̂22 þ ðσ̂2hÞ2Þ=N: ðC12Þ

A couple of remarks are in order:
(i) Nowhere in the above derivation did we assume that

the power in the GWB is small compared to the detector
noise. Thus, the reduced likelihood function (C11) is valid
for arbitrarily large GWB signals, which is relevant, for
example, for searches for a GWB using pulsar timing arrays
[15,21] or the proposed space-based interferometer LISA
[17]. Equation (C12) contains an extra term, ðσ̂2hÞ2, com-
pared to (28), which takes into account the extra variance
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associated with the GWB, over and above that which is
already captured in the autocorrelations σ̂21 and σ̂22.
(ii) Although we denoted the right-hand sides of (C9)

by σ̄21, σ̄22, these expressions are not the same as
those used in the main text (see the discussion in
Sec. III B), which were estimators of σ21, σ

2
2 constructed

from data segments different than that being analyzed for
the signal. The use of different data segments to estimate
the autocorrelations is necessary for LIGO-Virgo data,
since the number of averages used to estimate power
spectra is not sufficiently large to beat down the bias that
arises from using the same data in both the numerator and
denominator of the exponential in (C11). (Recall that for

the colored signalþ noise model, the number of averages is
proportional to the number of frequency bins M that are
averaged together for coarse graining.) For LIGO-Virgo
data, one is restricted to Navg of order at most 50, due to the
complexity of the detector noise (the need to take the
coarse-grained frequency resolution to be δf ∼ 0.25 Hz)
and its broad nonstationarity on timescales of order minutes
(ignoring shorter timescale instrumental glitches). By using
different data segments to estimate the autocorrelated
power, the bias goes away in the weak-signal limit, as
shown in Fig. 4. But if the number of averages was
sufficiently large, then one could use the expression in
(C11) as is.
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