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Abstract

We investigate the generic n-point correlation functions of the con-
formal field theories (CFTs) with the T7T and JT deformations in
terms of perturbative CF'T approach. We systematically obtain the
first order correction to the generic correlation functions of the CFTs
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time ordered correlation function (OTOC) in Ising model with 7T or
JT deformation which confirm that these deformations do not change
the integrable property up to the first order level.
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1 Introduction

A class of exactly solvable deformation of 2D QFTs with rotational and
translational symmetries called TT deformation [, 2, [3] attracts a lot of
research interests. It has numerous intriguing properties, although such kind
of irrelevant deformation is usually hard to handle. A remarkable property
is integrability [2], B 4, Bl 6] [7, B]. If the un-deformed theory is integrable,
there exists a set of infinite commuting conserved charges or KdV charges
[4] in the deformed theory. These deformations also preserve the integrable
properties of the un-deformed theory.

For TT deformation, it was proposed that the TT deformed CFT cor-
responding to cutoff AdS3 at finite radius with Dirichlet boundary condition
[9, 10 T1]. There are some non-trivial checks about this proposal. The JT
deformation also has holographic interpretation [12] 13|, 14, [15]. Moreover,
these deformations are also related to string theory [13] [16] 17, 18] [19] 20] 21,
23, 241, 25], 26, 27]. A gravitational aspects associated with TT deformation
have been studied by [28] 29, 30, BT, B2]. The gravitational perturbations
can be regarded as the TT deformation of the 2D QFT. These deformed
theories can be well controlled by the fact that many quantities in the de-
formed theory, such as S-matrix, energy spectrum, wilson loop, correlation
functions, entanglement entropy and so on can be computed analytically
[2, 8, 33, 34, 35] 36, 37, B8, 89], in particular when the un-deformed theory is



a CFT. These deformations also attracts much further attention from both
field theory [40] [4T], 42, 43|, 44 45| [46], 47, [48, 49, 50, 1] and holographic
perspectives [52], 53], 54 [55, 56l 57, 58, 59, 601 61, 62 63].

The correlation functions are fundamental observables in QFTs, there-
fore, it is important to study the correlation functions in its own right. The
correlation functions have many significant applications, e.g. quantum chaos,
quantum entanglement, and so on. In particular, the four-point functions
are associated with the out of time order correlator (OTOC), which can be
applied to diagnose the chaotic behavior in field theory with/without the
deformations [64], 65 66, 67]. To measure the quantum entanglement, the
computation of entanglement (or Rényi) entropies involves the correlation
functions [69)]. In particular, one can apply the higher point correlation func-
tion to calculate the Rényi entanglement entropy of the local excited states
in 2D conformal field theory in various situations [70, [71]. The TT" deformed
partition function, namely zero-point correlation function, on torus could be
computed and was shown to be modular invariant [6l [7]. Furthermore the
partition function with chemical potentials for KdV charges turning on was
also obtained by [63]. The correlation functions with 77 and JT deforma-
tions in the deep UV theory were investigated in a non-perturbative way by
J. Cardy [33].

In the present work we are interested in studying the higher point cor-
relation functions in the 77 and JT deformed CFTs. Here we focus on
the deformation region nearby the un-deformed CFTs, where the CF'T Ward
identity holds and the renormalization group flow effect of the operator with
the irrelevant deformation can be neglected in the current setup. The total
Lagrangian is expanded near the critical point for small coupling constant A

£:£CFT—)\/CZ2ZO(Z, 2) (1)

The first order correction to the deformed correlation functions takes the
following form

A /C POz, D)pr(21)n(22)), (2)

where the O(z, Z) can be TT or JT and the expectation value in the integrand
is calculated in the underformed CFTs by Ward identity. In the perturbative
CFT approach, the deformed two-point functions and three-point functions
were consider in [I1) [72] up to the first order in coupling constant. Subse-
quently, the present authors have considered the four-point functions on the



plane [67] and on the torus [73]. Also we generalized this study to the case
with supersymmetric extension [74]. More recently, the TT flow effect has
been taken into account in the computation of the partition function of CFTs
on torus in lagrangian formalism up to the second order deformation [75].
In the present work, we would like to follow the same approach to obtain
the generic n-point correlation function of the 77 and JT of the deformed
field theories. Since the n-point correlation functions depend on the 2n — 3
holomorphic and anti-holomorphic cross ratios, one can also apply the Ward
identity to obtain the first order correction to the deformed correlation func-
tion, which is quite complicated. Since the OTOC can diagnostic quantum
chaos, in particular, the late time behavior of OTOC gives strong evidence to
confirm whether the system is maximal chaos or integrable. In the paper [67],
they found that the 77 and JT deformations do not change the maximal
chaos of the un-deformed large central charge CFT which has a holographic
dual picture. It is nature to ask whether these deformations preserve the in-
tegrability property of the un-deformed integrable CFT in terms of the late
time behavior of OTOC. In this paper, we take 2D Ising model as an example
to check whether the deformations preserve the integrability property of the
un-deformed CFT.

The plan of this paper is as follows. In section 2, we review the generic
n-point correlation function of the CFTs and we apply the Ward identity
associated with 7', T and J to study the first order correction of the 7T or JT
deformed n-point correlation function. In section 3, we apply the deformed
correlation function to study the OTOC in the Ising model to show that
the TT and JT deformations do not change the integrability property of the
un-deformed Ising model. Conclusions and discussions are given in the final
section. In appendix, we list some relevant techniques and notations which
are useful in our analysis.

2 n-point correlation functions in the deformed
CFTs

We would like to review the generic structure of the n-point correla-
tion function in 2D CFTs. We apply these structures to construct the first
order correction to the 77 or JT deformed correlation function. By the
constraints of global conformal invariance, the n-point function [76] in CFT



can be written as following form

n

(O1(21, 21)---On(2ns 20)) = f(mis 1) H Zi;aijzi;aija (3)

i<j

the 7; are the n — 3 cross ratios and the f(n;,7;) is abbreviated as the
FOm, iy oo Mp—2, T, ... Ty .., Mn—z2). The a;; and individual conformal dimen-
sion h; of the each operator eq.(3]) satisfy the n equations

2}2,Z = Z Qij —+ Z Q- (4>

i<j i>j

One special solution is

2 hy -
“U:n_z(n—l‘m‘hO’f“:Z:m' (5)

By global conformal transformation

(z — 21)(2Zn_1 — 2n)
ST P . ©)

there are 2 (holomorphic) independent cross ratiodl for n = 5 and 3 for n = 6
in 2D

I Gl G ),
G =) G — )

2<i<n-—2 (11)

2The number of independent cross ratios in D dimensional spacetime is

min(C? —n,nD — W) (7)

Take n = 5, D = 2 for example. The two independent cross ratios can be chosen as Az, A3

2127245 ’ 215242 213745 / 215243
225214 225214 235214 235214
then o o
12235 15223
Ag/A2—>A4=——>A£l: R (9)
225213 225213
i / / li
AL A, — As, ALJAL — Ay, (10)



We are interested in the cases with equal conformal dimension h;, then

n

(O1(21, 1) .00 (20, 20)) = (i) [[ 25 25", @iy = —

1<j

2h

o1 12

with all Ay = nh and a;; = a.

2.1 n-point correlation function in 77 deformed CFTs

In this subsection, we would like to construct the first order correction
to the n-point correlation function in the 7" deformed CFTs

A [ BT 2o (e1)n() (13)
c
For simplicity, we define the following symbols

Op =[] =" Or=[]z;" (14)

1<j 1<j
= h . h
F=2.C=%y F=) =y (15)
i=1 i=1
"9, L= 9
= i = 1 1
T=F+@G T=F+@G (17)

By conformal Wald identity, the single energy momentum tensor 7" acting on
the generic n-point correlation function can be written as

(TOn) = FO, + (GOL)f(n,1)Or + (GOg) f(n,7)OL + (G f(n, U))OLOE%- )
18

Since

O = ) —0u, (19)

then




with

n

= 1)

i=1 j#i

The main factor in the third term of eq.(I8) is

n

3 L9, 2m 3 206 (zr). (22)

z — z; 0% z— 2z
i=1 re " k#£1

Since Vi, k, always ds, t,such that s =k, t =1

1 1
zik5(2)(zik) +

z— z Z — Zg

28t6(2) (Zst) - Oa (23)

then

n

> ! 8OR:o. (24)

i1 zZ— Z; 02,

One can check the main factor in the third term G f(n,7) of eq.([I8) is

SO S ) = L (25)
2t 2 7
e 2 0f(n7)
q= ;ﬁj#@ (26)

For generic n, one can obtain the following result

h — 2z
F+p=n_1zz(2_zi)2(z_2j)2. (27)

i=1 j>i

Finally, the total contribution to the first order deformation of the correlation
function with a single operator insertion 7T is

(TO,) = (F +p+ %)<0n>. (28)



The explicit form is the following

n—2
Of(n:,1:)
(70,) = (7 + 0100+ Y- 0,222 B g0,0,, (29)
=2 !
with
~ 1 Zin—1 1 Z1n 1 Zn1 1 Zn—1,j
1= Z — 21 Zp-1,1%51 Z = Zj Znjz1j Z — Zp—1 21,n—1%n,n—1 Z = Zn Zjnin—1,n .
(30)
Similarly, one can also find that
N OF (051
(TO,) = (F+p)fOLOr+ Y ilj——2"2G0Op. (31)

on;

Jj=2

As a consistency check, the correlation function with one single operator
insertion 7" in n = 2,3,4 case is the same as the one presented in [67]. In
particular, the two- and three-point correlation functions have nothing to do
with the final term in eq.(3I). For n = 2, we have

2
hzi,

(z — 21)2 (z — zz)2’

F+p=

which is the same as the two-point correlation function inserted with a single
T in [67]. For n = 3, we have

h? 22 22 1
Ftp=-22 ( L + = + )
2 \(z— 21)2 (z — 22)2 (z — 21)2 (2 — 23)2 (z — 22)2 (z — 23)2

For n = 4, since we use a slight different notations of four-point function
between the current study and [67]

<O4>In our paper = f(n’ ﬁ) H Zi;azi;a
= (32)

(On)xotation in 571 = 1 1) 5 an o om

i T
where the f(n,7) = =37 3 (1 —n)"3 (1 — )% f(n,7). Finally, one can
reproduce the 4—point correlation function with inserted a single 7" in [67].
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One can obtain the full expression of (T'TO,,)

(TTO,) = (F+G) ((F +p)fOLOR + i: nj%;’_ﬁj)qOLOR>
j=2 J

= 7 Of(n,iy)
=2 f(njvﬁj) 87—7)

= L 0f(ny,ny) -
+anjf(77ja77j) on; 20w

= (F+p)((F+p)(0n) + i(0n))

=2
n—2 _ _
) n;  O0f(nj, 1)

f(nm n;)  On 240n)

n—2 n—2
8f 77]77_73')~ ~ 8f(77j777j)~
O,+G ————=q)0.0

+ ((;(F + p>) (On),
) ) (33)
where we have used GOy, = 0, GOr = pOg and f(n,7)OLOr = (O,,).

Since
- L ong;
E 822 77]‘]7 (34>

z— z

i=1
we rewrite the first order deformation of the n-point correlation function as
following

110,) = [ @=((F+p(F+)+ (F ) zf(m'm)@fgg;%

n—2 n—2
Fip n; Of(ny,m) - 1 Pf(nm) -
+ (F + _ _ P AUII o)
( P) =2 f(nj,m;)  On; 9 f(n;, ;) = 8%87}3 n )( )

Q




For later convenience, we can define the following conventions

A / PATT(2 )61 (21) . bn(20))
GIT 4+ GIT + GIT + GZT) (On),

— Q

GIT = / P=(F + p)(F + p),
n—1 —
, - Of _
Gyl = / PoFp) S B (36)
— f on;
=2
n—2 _
P - o Of(n;,my) -
GTT:F—i—p 77]_ j qu
s = );f(m,m) On;

= 82f(77j>77j)77_q~77~.q:‘
f(njﬁﬁ]) 5o a?’baﬁ; Iy

D)=

GiT =
The first term of eq.(3H]) is following
GIT :/d%(F +p)(F +p)

h\x - 2 & ij
) RXY [ gty

i=1 j>i =1 j>i
(37)




and this integration can be divided to several individual terms

2 7
()X 2 2 D= P e e e S
2 22

+(n i 1>2 ; ; . g;éw / (z — zl)?(jz —2;)? (2 — z~)?(jz — Z;)? lj=jiig >

n n 2 ez
+(n E 1)2 ; ;Z_g;é” / dzz(z — zz)zl(jz —2;)? (2 — z;)?(Jz — Z;)? ligti g j=i,g>i,5>0

2 z2
+(n i 1>2 ; ; %/ (z — z,)?(jz —2;)?%(Z— zj)?(Jz — 23)? litii=jj>i,j>5>i
2 22
+<n f 1)2 ; §]>z§q/ (z — zi)?(]z —2j)?(zZ — zi)zl(jz — 23)2 li=i g j,5>1.5>i
2 z2

+<n ﬁ 1)2 ; ; / & (z — z) Zjz —zj)? (2 — ZZ-)?(JZ — Z;)? lizij=jj>ig>i

(38)
Using the notation of integrals in Appendix [A] [ d*z(F + p)(F + p) can be
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rewritten as

GIT = /d2z(F +p)(F + p)

h 2 n n
2 =2 _
:( ) ZZ Z Z ziZlamn (2 2, %, 2) |
n — 1 . e~ ~ o~ ~ 1757'7.]7.775@7.77.]>27.]>7‘
=1 >0 =140, 50,570,
h 2 n n
2 -2 _
+( ) YD AETewGhg A )|
n—1 ° — J=0,i#4,5,5>150
i=1 j>i 5=1734ij
h 2 n n
2 -2 _
+< ) ZZ Z ZZlam (2, 25, 20 B) |
n— 1 ; N T ~ Z¢Z7]7j227j>272>7l
i=1 J>i 5=1,i#ij
h 2 - 2 =2
+< ) DD DR v 2 GO | R
n—1/ &~ &~ ii,i=,§>1,§> 5>
=1 j>i j55
h 2 ¢ 2 =2
e I D DD DI 2 G A |
n—1/ &~ i=i,§,j#5,5>1,§>1
=1 >G>
h 2 2 22
+( ) PR A )| I
n—1 i=4,5=7,j>1,5>i

i=1 j>i
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the Tpsa] is given by the eq.(73). The second term of the eq.(35) is

n—2
GIT /dzz(F +p)zﬁ—f§
2 f (977j

__h /d2zi@8_< - % 1 Zaa
n—1 s f on: - . (2_22)2(2—2])22—21 zn_ngjl

ZZZ- 1 Zln 1 Zin
+ D 2. (Z_Zi)z(;_zj)zg_zﬁ Z Z (z — z) z—z)2z Z; 2,32

i=1,i#] j>i,5#] i=1,i] j=j>i

n 2 5 =
D DR DI e
(2 = 2)%(2 — 2j)*Z — Zn—1 Zin—1Znn—1

i=1 i;én—l j>i,j#n—1

22n1 1 Zn — 21
+ Z Z (z —2)2%(z — 2y Z—Z, 12 Z

2
— Z — Zpn—1Rln—12n.n—
i lz;én 1j=n—1>i 1) n—1 “1l,n—14nn—1

j 1 Zn—l,j 1 Zn—lvj
i Z2—2)%(2 = %)% Z — Zn Z5 201 * (z — 2z) z—z)2z—zz Zn_1
=1 j>z,j;£n v J noLn i=1 j=n>i n Zynen—Ln
_ 2 .
i Z Zij 1 Z1n Zij 1 Gn—1
2 25 _ 5.5 .5 2 25 _ 5 3 .
2—2:1) 2 —2;)°Z—Z:Z 323 z2—21)(2—2)°Z — 21 Zn_11%;
e} ( ]) ( ]) j “nj~lj j>i ( 1) ( ]) 1 ~n—1,1<41
2 —
+ Zn—l,n 1 Znl
- ~n—1 — %n zZ — _n—l _l,n—l_n,n—l
(z—2p-1)2(z2— )% Z — Zp1 Z1n-1Z

(40)

3This integral has been also appeared in the first order deformation of the four point

function given by [67]. Here the regularization process applied is same as the one used in
[67].
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By using the integration notations, we obtain

n—2 - a
TT 2 ] =
G /d (F —i—p) #?q
j=2 J
-2 _ n _
h < /)7"' a _ =~ ~1
1 ?]F< 2321-231221(%Zjazl)zJ7#,~
n G=2 J =11 j>i n—1,1%51
Zln zln
+ Z Z ZiyTom (i, 2, %) —— % + Z Z ZiTan (2, 2 )anzlf
i= 1Z#JJ>W#J 371 i=1,i#] j=7>i I

-z
+ E g Z,J1221 iy Zjy Ep—1) —————

Z Z,
= lzyﬁn 1j>i,j#n—1 Ln—1%n,n-1

Zn — R1
+ E E Zip— 1ZLoo1 (2iy 2n—1, Zn—1) —————

z Z
le;én 1j=n—1>i 1,n—1#<n,n—1

Z
“n—1j n—1j
+ g E 25 Tom zl,zj,zn)? - + g g ZnTom Zz,ZmZn)z

i=1 j>i,j#n n?n—1n =1 j=n>i jnZn— Ln
_ 21
+ Z Z7;2j1-221 (Zj, Zj, Zj) } + Z 22]1-221 21, %4, Zl)L~
j>i=; nj 1] G>i Zn— llzl
Zni
_I—Zn 1n1221(zn 15 Zns Zn— 1)+>
Z1,n—1%n,n—1
(41)
Where the Zy9; is defined by the eq.(73). In particular, one can take the
n = 48 to compare with the first order deformation of the four point function

given in [67]. The third term of the eq.(35]) is the complex conjugate of the
second term G17. We will not repeat the details here. The fourth term of

4One should note that the coefficient of the nTJaa—f in [67] can be expressed by the linear
combinations of the Z52; and one can do proper arrangements of Zs2; to find the above
equation (I is consistent with the coefficient Za21111 given in [67]. The similar situation

happen in the GI7T.
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the eq.(33) is

n—2 — 2
T 77] i 8 f =~
GZT:/CFZ J - qq
et [ 0n;0m;
= Ul _j azf _ Zj,n—l Zin _ Zj,n—l Znl
= —F— - X (In(zj, Zy)— - + Thi(2n-1,21) = —
f aﬂjaﬂj An—1,1%751 njclj Zn—1,1%51 Z1,n—1%n,n—1

z

j,n—l Zn—1,5 zln Zjn—1

+ Zii (21, 25) 2

271—1,1231 Zinfin—1,n anzlj “n—1,1%41

Z1n Z1n zln Znl

+ T (201, %) <

Znj21j #nj?1j Zpj?1j Alin-1%nn—1

_\ 2ln Zn-1j _ Zn1 Zjn—1
+ T (zn, %) —— + Th1 (21, Zn1) 2 -
Zpj*1j “jncn—1n Z1n—1%nn—1 #n—1,1%51
_ Zn1 Z1n _ Zn1 Zn—1,j
+ T11 (25, Zn1) = - + Zi1(2ns Zn-1)— —
Z1,n—1%nn—1 Znj<lj Z1n—1%nn—1 Zjnn—1n
2 ~ 2 2 ~ z
_ n—1,j j,n—1 _ n—1,j 1n
+ Thi (21, 2n) —— + T (%), Zn) ——=
Zjnzn—l,n Zn—1,1%51 Zjnzn—l,n Znjc1j
Z = z
_ n—1,j5 nl
+Ill(zn—lvzn) — )

Zjngn—l,n Z1,n—1%n,n—1
(42)
Where the Z;; is given by (Z0) after the regularization and the terms asso-
clated with Zy1 (21, 21), Z11(25, Z), Z11(2n-1, Zn—1) and Zy1(zy, 2,) in eq.(d2)
have been removed by the renormalization due to the logarithmic divergence.
To closed the section, one can sum over these three terms,

A /C EATT(2,2)b1 (1) (20)) = (G{T + 2§R<G2TT> + G4TT) (0,)  (43)

to obtain the first order corrections to the 77" deformed higher point corre-
lation function. As a consistency chec, one can follow the similar proces
to take n = 4 to reproduce the first order deformation of the four point
correlation function given by the eq.(12) in [67].

>One should note that the coefficient of the m;]; a;?_ zafn, in [67] can be expressed by the
J J
linear combinations of the Z1; and one can do proper arrangements of Z;1 to find the above
equation ([@2)) coincides with the coefficient Z31111111 given in [67].
6To compare with the first order deformation of the four point function in [67], one has

to transfer our notation into theirs in terms of eq.([32]).
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2.2 n-point correlation function in J7T deformed CFTs

In this subsection, we turn to compute the n-point correlation function
in the JT deformed CFTs. Since

n n—2

Of(n, 1)
(TO,) = ) + ) + “I NG 5D
;(2—2 ;;z—zlzﬂ Z on;
1 Zi p— 1 Z1n 1 Zn 1 Zn—1.i
( pnol LU L L7 )OLOR,
£ = 21 Zn—1,1%51 &= Zj Znjclj 2 = Zpn—1*1n-1~nn-1 £ = Zp Zjnfn—1n
B (44)
and then the first order correction to the JT' deformed correlation function
is
_ n ql n 77/
(JTOy) :< ) ——5(0On) + ( )
;z—zi ;(z—zj)z Zz—zl ;;z—zjzm
n—2
Gi _0f(nj,7
HX ) 0,0,
-1 © A S J
1 Zim— 1 Z1n 1 Zn 1 Zn—1.i
(e - Al )
Z — Z1 Rp—-1,1%51 Z — Zj Znjkly Z = Zn—1 *1,n—1%nn—1 Z — Zn Zjnfn—1n
(45)
In terms of the (JTO,), we have to integrate the above equation over the
complex plane with proper regularization procedure
/d2z(JTOn)
-2
27qu : Zjn
SH 5 ZZZIJ- )+ g %) (mezj -
=1 i#j ij i=1 i#j j#k =2 ,rb =2 n—1,1<j1

+ Z IJQZ_ + Z Izn 19 ———— _'_Z:Z’-anl n_ LJ )OLORu

i=1,i%j n]zlj i=1,i#n—1 Z1,n— lznnl Zincin—1n
(46)
where the Z;; is defined in the appendix [Al As a consistency check, one can
take n = 4 and apply the relations given by eq.(73) to reproduce the first
order JT' deformation of the four point correlation function in CFTs given

by [67].
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3 OTOC in the deformed Ising model

The OTOC has been regarded as a diagnostic of quantum chaos [64]
69, 66]. A field theory with gravity dual is proposed to exhibit the maximal
Lyapunov exponent which measures the growth rate of the OTOC. In this
section, we investigate the OTOC between pairs of operators W,V

(WHVW V)
(W@OW(t))s{(VV)s

in the deformed CFTs to check whether the chaotic property is preserved or
not after the T'T or JT deformation perturbatively. The {(...)s is denoted by
the correlation function on the cylinder. Since the OTOC can be broadly
regarded as one of the quantities to characterize the chaotic or integrable
behavior, our current study will shed light on the integrability /chaos after
the TT or JT deformation.

In the thermal four-point correlators <r(r9‘éx, t)---)p, ,x,t are the coordi-
nates of the spatially infinite thermal systeml], one can compute through the
vacuum expectation values through the conformal transformation

(O (21,t1) )5 = (27;1)h (27;1)"«9 (z1,21) ),

where z;, z; are
2 (SL’i,tz‘) = 6%(%“0, Z; (xiati) = 6%(xi_ti) (47)

and (...) denotes the correlation function on the plane.

3.1 OTOC in TT-deformed Ising model

In this subsection, we can perturbatively calculate the TT deformation
of OTOC in Ising model [68]. The first order 77" deformation to the thermal
correlator is the following

)\/de (TT(w, w)O (wy,wy) - - - >B

"In particular, we put the 2D deformed theory on the cylinder.

16



where w = z +t and w = x — ¢ are coordinates on the cylinder. To apply
the T'T" deformed correlation function to the OTOC, we follow the steps in
[67], the first order deformed OTOC is

<W(w1,wl)W(’LUQ,wg)V(ZU3,1IJ3)V(w4,’LD4)>

(W, 1) W (ws, @) (V (w3, w3)V (wa, w4))

2m 2 2<( (2) — ﬁ)(T(Z)—ﬁ)W(zl,Zl)W(z%@»
30 [ e W (o020 W (0 22)

Cwy(t) =

x(l A(

2y [ o w{(T(2) = 52)(T(2) — 52)V (23, 23)V (24, 1))
NG [ el V(e 2V (2 20))

2_7T 2 2ZZ2<( (Z) 24022)( ( ) 2422)W(ZlaZl)W(Z2>22)V(23>23)V(24a24)>
M) /d 12 W (21, 20)W (22, 22)V (3, 25)V (20, 22))
+O(>\2))

(48)

For generic two-dimensional CFTs, the four-point function on the plane
is
_ _ _ _ 1 1 _
(W (21, 21)W (22, 22)V (23, 23)V (24, Z4)) = —55——1 = _ghvG(n7n>7 (49)

212 R34 R12 R34

where G(n,n) is associated with the conformal block. In the Ising model,
there are three types of G(n,7), which are associated with the three Virasoro
primary operators, e.g. identity operator I, spin operator ¢ and energy
operator €. They are

Gga(n,n):%)ﬁ‘m(lﬁr\/l—?ﬂ%ﬁl—\/1—77|)> (50)
Gon.7) = 5| 51)
Gucln,) = \1‘1”%“” , (52)

corresponding to (cooo), (oeoe) and (eeee) respectively [68]. Here |f(n)| =

F)\ f ().

Then the first order deformation can be calculated by considering differ-
ent forms of G(n,7). Here we take (cooo) as an example, and the first order

17



TT deformed OTOC (@S)) can be divided into three terms in terms of differ-
ent powers of the central charge@ c. The term with power ¢? is independent

of 6C,, that

2
2y . 2o [ o
5CUU(t,c)—)\242(ﬁ) /d z|z|

2 2m Al
:A—(—)227r/ d2p; (53)

2
c 9 ~

Since this term is only associated with the logarithmic divergence, it can be

regulated by the regularization procedure and it does not make contribution

to the OTOC. Putting the eq.(dJ) and eq.(50) into the eq.(dS), the term with

¢! of the TT deformed OTOC (48)) is following

oA 2m

§C,,(t,ct) = 29
( 7C ) 24( ﬁ ) m
0,G(n,n 1 1
X 77177(77_’77)213224<L10g_ — Llog_ _I_ Ll g_ - -
G(Ua 77) 212213714 |Zl‘ 212223724 |Z2| 2137223734 |Z3‘ 2147224734
no;G(n,n)_ _ z z z
- LMZlSZM(%IOgVﬂ - %10g|2’2| + %loglal E—
G(Ua 77) 212213714 212223724 2137223734 2147224734
(54)

To apply the T'T -deformed correlation function to the OTOC, we follow
the steps in [64, [67] to evaluate the OTOC by using the analytic continuation
of the Euclideans of the four-point function by writing

Z1=e?# te1 , 21 = 6_%”7;61 y

Zo = e%riez , 29 = 6_%7;62 y

Z3 = o7 (t+ies—z) , 23 = ¢~ F (—tmies—a) , (55)
2y = e%”(t-ﬁ-iu—x) 7= e—%”(—t—iq—x) 7

and € = 0, €2 = € + /2, ¢4 = €3 + (/2 into (54)). To get the late time

8The central charge c is % in the 2D Ising model.
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behavior of the OTOC, one can expand around e~ %5

_4W(i€3+m) 8mx

4 — 27t 27t
5000(15,01):CM e ;ﬁg ¢’ 1)(6_6)2—1—(’)((6_%3)3), (56)

Finally, we can apply the similar approach to calculate the order ¢° part,
27T> /d2 ‘ | [< (Z)T(Z)W(Zl, Zl)W(ZQ, EQ)V(Zg, 23)‘/(2’4, 24)>

B ~ <W(21,Zl)W(ZQ,;z2>V(23,Zg)V(Z4,Z4)>
<T(Z)T(Z)W(Zl, Zl)W(ZQ’ 22)> <T(Z)T(2)V(23, Zg)V(Z4, 24)>:|

5Cho(t, ") =A(

<W(Z17ZI)W(Z2722>> <V(Z37Z3)V(Z47Z4)>
3 M e 6 8z - -
_Am Ay (— 12 de’ 7 +4e 5 +e b )(e_ﬁ)2+(9<(e_6)3),
B

where € is cutoff denoted by |z;]? = 2;Z; + €2

Following similar steps, one can obtain the OTOC associated with (ceoe) s
and (eeee)p respectively. The first order corrections to the OTOC (cece)s
contain the following three individual contributions in the late time limit

AAmlog(AA)

7232 ’ (58)

5Ce(t, ) = —

_ 4n(iegtx) 8ra
ScAmizre 7 (e —1) 2zt

5Ch(t,c") = T € FP+o(eF)), 69
3 w€ M e&rTx — 27t t
oCntt) = 2 (0 DoY) (o

The first order corrections to the OTOC (eeee)s contain the following
three terms in the late time limit

2y 3 A
oy _ ' Amlog(AA)
0C.(t, ) = BT (61)
A (ieg+x) 8nx
64chmize B (e B —1), _2m
0Ce(t ') = 35 ( )(e ¢ )? +0(( )3), (62)
4m(ieg+w) 8nx
256 \m3h,e” B (e B —1 2t omt
5t ) = TR o( ). @)
0
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In these examples, one can see the late time limit of OTOC (B6])-(63]) asso-
ciated with one pairs of the operators is not changed up to the first order
TT deformation. In this sense, the TT deformation preserve the integrable
property of the un-deformed Ising model.

3.2 OTOC in JT-deformed Ising model

Similarly, one can calculate the OTOC in the JT-deformed Ising model.
The first order JT' deformation to the thermal correlator is following

A/dzw (JT(w, )0 (wy, 1) - - >ﬁ .

where w =z + ¢ and w = x — t are coordinates on the cylinder, which are
similar as the setup in the above subsection. For the JT deformation, one
has to replace the T" operator in the eq.(d8]) with the conserved current J to
obtain the deformed OTOC
Corv(t) = (W (wy, w1)W (ws, wa)V (w3, w3)V (wy, Wy))
(W (wy, wy)W (w, @2)><Y(w3,w3)v(w4, wy))
" [1 _)\/dgz%z (J(T'(z) - W)_W(leil)_w(zz,iz»
57 <W(ZI7ZI>W(227Z2)>
_)\/d222ﬂ'2< ( ( ) 2422) (Z37'Z3)V(Z4724)>
B (V (23, 23)V (24, 21))
+ )\/d2 2nz <J(T(2) 2452)W(21>EI)W(Z%EQ)V(Z3>23)V(Z4724)>
B (W (21, 21)W (22, 22)V (23, 23)V (24, 24))

+0()]
(64)

where the w1, ws, w3, w4 are the operator positions on the cylinder and 21, 25, 23, 24

are the corresponding coordinates on the plane and the map between w—

plane and z—plane is given by the eq.(47). The first oder correction to the
OTOC is following

~ 2rz q3 44 zZ
_ 2 12
6OWV(t) B )\/d : B [(Z — Z3 * Z— 24)hw (5 - 51)2(5 - 52)2
=2
Q1 q2 234
+<z—z1 +Z—Zg)hv(5—23) 2(z — zy)? (65)
4
qi ZiaZes  N0pG(n,7)
+ - )
<;z—zi)1_[§:1(z—zi) G(n,7) ]
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One can apply similar approach given in the above subsection and im-

pose the equations (B3]) (B0) (5I)) (52)) to the eq.(63]). Finally, one can expand

around 6_% to obtain the late time behavior of the first order JT deforma-
tion to the OTOC as following

2mieg

~ 2 - 27t
5caa(t) — AT (Q1 + Q2)‘3 E 6—7)
QﬁEO
>\ 2( ) _47r(i€3+:c)( ey 1) (66)
(g1 + g2)€e B er — _2mt 2mt
S (52 +o((F)),
4r(ieg+x)
~ ~ 2\ 2 B 2mt 2mt
3o = 80,1 = 2RI (o). o

Up to the first order JT deformation, one can see the late time limit of OTOC
(G6)) ([67)) associated with different operators is not changed. In this sense, the
JT deformation preserves the integrable property of the un-deformed Ising
model.

4 Conclusions and discussions

In this paper, we apply perturbative CFTs approach to calculate the
first order correction to the generic n-point correlation function in 77 and
JT deformed CFTs following the approach [67, [74] [73]. Since the conformal
symmetry can be regarded as an approximate symmetry in the first order
TT and JT deformations to the CFTs, one can make use of the conformal
Ward identities to construct the first order deformation of the n-point corre-
lation function in CFTs. Since the OTOC has been regarded as a diagnostic
of quantum chaos [64] [65 [66] and its late time behavior charaterizes the
quantum chaos signal of the theory, we calculate the late time behavior of
the OTOC in TT and JT deformed Ising model. It turns out that the late
time limit of the OTOC is not changed by the deformations and the physics
situation is similar to the situation in the one dimensional 7T deformation
of the SYK, model [77]. That is to say the 7T and JT indeed preserve the
integrable property of the un-deformed 2D Ising model in terms of the late
time limit of the OTOC. This is an apparent evidence that deforming a the-
ory by quadratic composites of KdV currents [4] preserve these un-deformed
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symmetries. As suggested in [4], the important property of the these irrele-
vant deformations is that they preserve many symmetries of the un-deformed
theory: any current whose charge commutes with the charges of the currents
building the deformation can be adjusted so that it remains conserved in the

new theory. Our current investigation support the statement by probing the
OTOC in TT and JT deformed theories.
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A The useful integration

It is convenient to define the following notations

:Z’.al7"'7am7b17"'7bn (Z'ilﬁ U 7Zim? Zjl’ U 72]n)
/ d*z (68)
(2= 2)™ (2= 20,)" (2= 2)" - (2= 2,)"

For examples, we can write

o d*z
L2992 (21722721722):/ 4 1
|z — 21| |z — 22
d?z
7 21, %29, 23, Z :/
2222( 1, %2, <3, 4) (2—21)2 (2_22)2 (2_23)2 (2_24)2

d?z

Toori11 (21, 22, 21, 22, 23, Z4) = /
d?z

— .

(z—2) [, (Z— %)

T (21, 22, 23, 24, 21, 2o, 23, Z4) = / I
i=1

22

(Z - 21)2 (Z - 22)2 (5 - 21) (Z - Zg) (Z - 23) (Z - 24)



The first particular integral is

_ d224
Tij(2,%) = / =

R45R45

For definiteness, one can compute Zy5 (21, Z2)

T -\ d? 242’412’42 d? 24Za1 249
1,2 (217 22) =

2| |Z42| |z41| + (1 — ) |240] }
/ / d2 Z 1 — U)Zlg) (24 + U212)
+U 1—U>‘212| ]
Changing the dimension to d one can find

1— 2
Ty o =2Vga- / du/ —u(l—u) |212| )
(p? +U(1—U)|212| )
1

i [ S () 1)

d—2 [(d/2)°T'(1 —
T(d—1)

(69)

:27Td/2 ‘212‘

d/2 2
/2) =927 <E +ln\z12\2 +veg+Inm+ (’)(e))
(70)

Differentiating this result, one can obtain following simple integrals

d?zy 2 d*zy 92
5= — — 5 =5 — 4720 (213>
243741 Z13 24374

where one uses 91 = 01 = 270(2)d(2).
To define Zy999, one can do the Feynman parametrization to integrate

= 2
Too9o (21, 22, 21, 22) = [ dz
(=6 |z =[?)?

= 6f01 du [ dz? u(d—u)

(u|z—z1\2+(l—u)|z—zg|2)

=6 [ duf d22 u(l-v)

4
(1212+u(1—u)|212])

= 12Vg21 fo duu(1 fo P> dp

2—|—u(1 u)|z12] )

(71)
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To regulate the divergence, we use the dimensional regularization by replac-
ing 2D to dD

d 1 o0 pd—ldp
152)22 (21, 22, 21, 22) = 12V5d1/ duu(1l — u)/ I
0 0 (p2 + U(l - U) ‘212| )

— Vgual (2 - g) r <g) P /01 duw(u(l )i

d d d _

—24¢ 8 4
d=2e OT (t+210g|212|2+210g7r+27—5).

|212° \ €
(72)
We have also used the following integral
1
Too1 (21,22, 21) = /d22 —
(z—21)" (2 —22)" (2 — Z1)
1 (73)
Too1 (21,22, 23) = /d22 —
(z—21)" (2 — 22)" (2 — Z3)
. 1 1 1 _ 1
By using 0., 0., (E (2—21 — Z_@)) = ey e find

Too1 (21, 22, Z1)

:/ (z— =) (zdj;)? (z—2)

22_;2/ (Zdjzzl) ((z —121)2 - (2 —122)2 C(z— 21)2(2 - 22)) "

1 2
=011 (22, 21) — = (T11 (21, 21) — Lo (22, 21)) -
%12 212

Moreover, we have

1 1/ 1 1
1221 (Z1722723) = /d22(2 _ _3)821822 (Z_IZ (Z — 21 N z — 32))
0

zzﬁ@(i oL ( 11 ))
219 (Zz—2Z3) \z—21 2z—2

— (13 (21, 23) — Zo3 (22, 23))) .

24



One makes use of above notations to reproduce the 7T and JT deformed
four-point function given in [67]. For an example, the JT— first order de-
formed four point correlation function eq.(65) in [67] can be rephrased by Z; ;
given in eq.( 0] in terms of the following relations

1
7z ) 23, 24) = d2
2 (o, 7, 2) / oG- )

1
= 05,0z, <_— (Zh3 (21, 23) — Zy.4 (21, 24))) )

234
1

(z—2)(Z—7)(Z—2)°

Tioo (21, 21, 23) = /d22

1 2 2
= 3 <___Il,1 (21,21) + 05,113 (21, Z3) + —ZL13 (21, 53)) ;

Zi3 213 213
1
T 71, %0, 25, 24) = | d
i (21,21, 22, %5, 21) / Z(Z —2)(Z-2)(Z—-%)(2— %) (2 — Z)
1 _ 1 _
:<Tl—1,1 (2’1, Zl) - Tzlﬂ (2’1, 22)
212713714 212723224
1 _ 1 _
+———Ti3(%1,2) — ———TL1a (21, Z4))>
234213423 234214224

(75)
where Zy90 and Zj1111 presented in the [67] are expressed by the Z; ; given
here.
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