Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar DSI DOST-010
R. ABROTT, ¹ T. D. ABROTT, ² S. ABREAR, ¹ F. AGRESS, ¹² K. AGRESSON, ²¹ K. AGRESSON,

<text>

<page-header><page-header>

<text> D. ANTONOPOULOU,²⁸⁴ Z. ARZOUMANIAN,²⁸⁵ T. ENOTO,²⁸⁶ C. M. ESPINOZA,²⁸⁷ AND S. GUILLOT^{288,289}

¹LIGO, California Institute of Technology, Pasadena, CA 91125, USA

²Louisiana State University, Baton Rouge, LA 70803, USA

³Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India

⁴Dipartimento di Farmacia, Università di Salerno, I-84084 Fisciano, Salerno, Italy

⁵INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy

⁶OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia

⁷Christopher Newport University, Newport News, VA 23606, USA

⁸LIGO Livingston Observatory, Livingston, LA 70754, USA

⁹OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia

¹⁰Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany

¹¹Leibniz Universität Hannover, D-30167 Hannover, Germany

GRAVITATIONAL WAVES FROM PSR J0537-6910

¹²University of Cambridge, Cambridge CB2 1TN, United Kingdom

¹³ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany

¹⁴University of Birmingham, Birmingham B15 2TT, United Kingdom

¹⁵Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA

¹⁶Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil

¹⁷Gravity Exploration Institute, Cardiff University, Cardiff CF24 3AA, United Kingdom

¹⁸Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy

¹⁹INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy

²⁰INFN, Sezione di Pisa, I-56127 Pisa, Italy

²¹ Università di Pisa, I-56127 Pisa, Italy

²²International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India

²³ Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan

²⁴Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan

²⁵California State University Fullerton, Fullerton, CA 92831, USA

²⁶NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

²⁷ Università di Napoli "Federico II", Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy

²⁸ Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France

²⁹ University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

³⁰Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

³¹Research Center for the Early Universe (RESCEU), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

³²SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom

³³Dipartimento di Matematica e Informatica, Università di Udine, I-33100 Udine, Italy

³⁴INFN, Sezione di Trieste, I-34127 Trieste, Italy

³⁵Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA

³⁶ Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France

³⁷ Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan

³⁸Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Ibaraki 305-0801, Japan

³⁹ Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan

⁴⁰ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

⁴¹European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy

⁴²University of Florida, Gainesville, FL 32611, USA

⁴³Chennai Mathematical Institute, Chennai 603103, India

⁴⁴Department of Mathematics and Physics, Hirosaki University, Hirosaki City, Aomori 036-8561, Japan

⁴⁵Columbia University, New York, NY 10027, USA

⁴⁶Kamioka Branch, National Astronomical Observatory of Japan (NAOJ), Kamioka-cho, Hida City, Gifu 506-1205, Japan

⁴⁷ The Graduate University for Advanced Studies (SOKENDAI), Mitaka City, Tokyo 181-8588, Japan

⁴⁸INFN, Sezione di Roma, I-00185 Roma, Italy

⁴⁹ Univ. Grenoble Alpes, Laboratoire d'Annecy de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France

⁵⁰Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands

⁵¹Korea Institute of Science and Technology Information (KISTI), Yuseong-gu, Daejeon 34141, Korea

⁵²National Institute for Mathematical Sciences, Daejeon 34047, South Korea

⁵³INFN Sezione di Torino, I-10125 Torino, Italy

⁵⁴International College, Osaka University, Toyonaka City, Osaka 560-0043, Japan

⁵⁵School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba City, Ibaraki

305-0801, Japan

⁵⁶University of Oregon, Eugene, OR 97403, USA

⁵⁷Syracuse University, Syracuse, NY 13244, USA

⁵⁸ Université de Liège, B-4000 Liège, Belgium

⁵⁹University of Minnesota, Minneapolis, MN 55455, USA

⁶⁰ Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy

⁶¹INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy

⁶²INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy

⁶³LIGO Hanford Observatory, Richland, WA 99352, USA

⁶⁴Institut de Ciències del Cosmos, Universitat de Barcelona, C/ Martí i Franquès 1, Barcelona, 08028, Spain

⁶⁵LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abbott et al.

⁶⁶Dipartimento di Medicina, "Chirurgia e Odontoiatria Scuola Medica Salernitana", Università di Salerno, I-84081 Baronissi, Salerno, Italy

⁶⁷SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

⁶⁸ Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary

⁶⁹Stanford University, Stanford, CA 94305, USA

⁷⁰INFN, Sezione di Perugia, I-06123 Perugia, Italy

⁷¹ Università di Perugia, I-06123 Perugia, Italy

⁷² Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy

⁷³INFN, Sezione di Padova, I-35131 Padova, Italy

⁷⁴Montana State University, Bozeman, MT 59717, USA

⁷⁵Institute for Plasma Research, Bhat, Gandhinagar 382428, India

⁷⁶Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland

⁷⁷Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy

⁷⁸OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia

⁷⁹California State University, Los Angeles, 5151 State University Dr, Los Angeles, CA 90032, USA

⁸⁰INFN, Sezione di Genova, I-16146 Genova, Italy

⁸¹RRCAT, Indore, Madhya Pradesh 452013, India

⁸²Missouri University of Science and Technology, Rolla, MO 65409, USA

⁸³ Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

⁸⁴SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom

⁸⁵Bar-Ilan University, Ramat Gan, 5290002, Israel

⁸⁶ Università degli Studi di Urbino "Carlo Bo", I-61029 Urbino, Italy

⁸⁷INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy

⁸⁸Artemis, Université Côte d'Azur, Observatoire Côte d'Azur, CNRS, F-06304 Nice, France

⁸⁹Caltech CaRT, Pasadena, CA 91125, USA

⁹⁰OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia

⁹¹Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy

⁹²INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

⁹³ Università di Roma "La Sapienza", I-00185 Roma, Italy

⁹⁴Univ Rennes, CNRS, Institut FOTON - UMR6082, F-3500 Rennes, France

⁹⁵Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

⁹⁶Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France

⁹⁷ Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

⁹⁸Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland

⁹⁹ VU University Amsterdam, 1081 HV Amsterdam, Netherlands

¹⁰⁰ University of Maryland, College Park, MD 20742, USA

¹⁰¹Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany

¹⁰²School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

¹⁰³ Villanova University, 800 Lancaster Ave, Villanova, PA 19085, USA

¹⁰⁴ Faculty of Science, Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

¹⁰⁵Stony Brook University, Stony Brook, NY 11794, USA

¹⁰⁶Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA

¹⁰⁷NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

¹⁰⁸Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy

¹⁰⁹ Tsinghua University, Beijing 100084, China

¹¹⁰Department of Astronomy, Beijing Normal University, Beijing 100875, China

¹¹¹OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia

¹¹² Università degli Studi di Sassari, I-07100 Sassari, Italy

¹¹³ INFN, Laboratori Nazionali del Sud, I-95125 Catania, Italy

¹¹⁴ Università di Roma Tor Vergata, I-00133 Roma, Italy

¹¹⁵INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy

¹¹⁶ University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy

¹¹⁷Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands

¹¹⁸Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain

¹¹⁹Rochester Institute of Technology, Rochester, NY 14623, USA

¹²⁰ National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China

¹²¹Department of Applied Physics, Fukuoka University, Jonan, Fukuoka City, Fukuoka 814-0180, Japan

GRAVITATIONAL WAVES FROM PSR J0537-6910

¹²²OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia

¹²³Department of Physics, Tamkang University, Danshui Dist., New Taipei City 25137, Taiwan

¹²⁴Department of Physics and Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan

¹²⁵University of Chicago, Chicago, IL 60637, USA

¹²⁶Department of Physics, Center for High Energy and High Field Physics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan

¹²⁷Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy

¹²⁸Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

¹²⁹Institut de Physique des 2 Infinis de Lyon (IP2I), CNRS/IN2P3, Université de Lyon, Université Claude Bernard Lyon 1, F-69622

 $Villeurbanne, \ France$

 $^{130}Seoul \ National \ University, Seoul 08826, South \ Korea$

¹³¹Pusan National University, Busan 46241, South Korea

¹³²King's College London, University of London, London WC2R 2LS, United Kingdom

¹³³INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy

¹³⁴University of Arizona, Tucson, AZ 85721, USA

¹³⁵Rutherford Appleton Laboratory, Didcot OX11 0DE, United Kingdom

¹³⁶Université libre de Bruxelles, Avenue Franklin Roosevelt 50 - 1050 Bruxelles, Belgium

¹³⁷ Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain

¹³⁸ Université Libre de Bruxelles, Brussels 1050, Belgium

¹³⁹Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain

¹⁴⁰ Texas Tech University, Lubbock, TX 79409, USA

¹⁴¹ The Pennsylvania State University, University Park, PA 16802, USA

¹⁴²University of Rhode Island, Kingston, RI 02881, USA

¹⁴³ The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

¹⁴⁴Bellevue College, Bellevue, WA 98007, USA

¹⁴⁵Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy

¹⁴⁶MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary

¹⁴⁷Maastricht University, 6200 MD, Maastricht, Netherlands

¹⁴⁸ Universität Hamburg, D-22761 Hamburg, Germany

¹⁴⁹IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain

¹⁵⁰ University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom

¹⁵¹ The University of Sheffield. Sheffield S10 2TN, United Kingdom

¹⁵²Laboratoire des Matériaux Avancés (LMA), Institut de Physique des 2 Infinis (IP2I) de Lyon, CNRS/IN2P3, Université de Lyon,

Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France

¹⁵³Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy

¹⁵⁴INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy

¹⁵⁵ Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

¹⁵⁶ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

¹⁵⁷West Virginia University, Morgantown, WV 26506, USA

¹⁵⁸Montclair State University, Montclair, NJ 07043, USA

¹⁵⁹Colorado State University, Fort Collins, CO 80523, USA

¹⁶⁰Institute for Nuclear Research, Hungarian Academy of Sciences, Bem t'er 18/c, H-4026 Debrecen, Hungary

¹⁶¹CNR-SPIN, c/o Università di Salerno, I-84084 Fisciano, Salerno, Italy

¹⁶²Scuola di Ingegneria, Università della Basilicata, I-85100 Potenza, Italy

¹⁶³Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain

¹⁶⁴ The University of Utah. Salt Lake City. UT 84112. USA

¹⁶⁵Kenyon College, Gambier, OH 43022, USA

¹⁶⁶ Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands

¹⁶⁷Department of Astronomy, The University of Tokyo, Mitaka City, Tokyo 181-8588, Japan

¹⁶⁸ Faculty of Engineering, Niigata University, Nishi-ku, Niigata City, Niigata 950-2181, Japan

¹⁶⁹State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement

Science and Technology (APM), Chinese Academy of Sciences, Xiao Hong Shan, Wuhan 430071, China

¹⁷⁰ University of Szeged, Dóm tér 9, Szeged 6720, Hungary

¹⁷¹ Universiteit Gent, B-9000 Gent, Belgium

¹⁷² University of British Columbia, Vancouver, BC V6T 1Z4, Canada

¹⁷³ Tata Institute of Fundamental Research, Mumbai 400005, India

¹⁷⁴INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy

Abbott et al.

¹⁷⁵ Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy

¹⁷⁶ INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy

¹⁷⁷ The University of Mississippi, University, MS 38677, USA

¹⁷⁸ University of Michigan, Ann Arbor, MI 48109, USA

¹⁷⁹Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan

44919, Korea

¹⁸⁰Applied Research Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Ibaraki 305-0801, Japan

¹⁸¹Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

¹⁸²Chinese Academy of Sciences, Shanghai Astronomical Observatory, Shanghai 200030, China

¹⁸³American University, Washington, D.C. 20016, USA

¹⁸⁴Faculty of Science, University of Toyama, Toyama City, Toyama 930-8555, Japan

¹⁸⁵Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kamioka-cho, Hida City, Gifu 506-1205,

Japan

¹⁸⁶Carleton College, Northfield, MN 55057, USA

¹⁸⁷ University of California, Berkeley, CA 94720, USA

¹⁸⁸College of Industrial Technology, Nihon University, Narashino City, Chiba 275-8575, Japan

¹⁸⁹Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata City, Niigata 950-2181, Japan

¹⁹⁰Department of Physics and Astronomy, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, USA

¹⁹¹Department of Physics, National Taiwan Normal University, sec. 4, Taipei 116, Taiwan

¹⁹²Astronomy & Space Science, Chungnam National University, Yuseong-au, Daejeon 34134, Korea, Korea

¹⁹³Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara City, Kanagawa 252-5258, Japan

¹⁹⁴Kavli Institute for Astronomy and Astrophysics, Peking University, Haidian District, Beijing 100871, China

¹⁹⁵ Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan

¹⁹⁶ Graduate School of Science and Engineering, University of Toyama, Toyama City, Toyama 930-8555, Japan

¹⁹⁷Department of Physics, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan

¹⁹⁸Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Sumivoshi-ku, Osaka City, Osaka

558-8585, Japan

¹⁹⁹Institute of Space and Astronautical Science (JAXA), Chuo-ku, Sagamihara City, Kanagawa 252-0222, Japan

²⁰⁰Directorate of Construction, Services & Estate Management, Mumbai 400094 India

²⁰¹ Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerpen, Belgium

²⁰² University of Białystok, 15-424 Białystok, Poland

²⁰³Department of Physics, Ewha Womans University, Seodaemun-qu, Seoul 03760, Korea

²⁰⁴ National Astronomical Observatories, Chinese Academic of Sciences, Chaoyang District, Beijing, China

²⁰⁵School of Astronomy and Space Science, University of Chinese Academy of Sciences, Chaoyang District, Beijing, China

²⁰⁶ University of Southampton, Southampton SO17 1BJ, United Kingdom

²⁰⁷Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan

²⁰⁸ Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, and ICREA, E-08193 Barcelona, Spain

²⁰⁹Graduate School of Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

²¹⁰ University of Washington Bothell, Bothell, WA 98011, USA

²¹¹Institute of Applied Physics, Nizhny Novqorod, 603950, Russia

²¹²Ewha Womans University, Seoul 03760, South Korea

²¹³Inje University Gimhae, South Gyeongsang 50834, South Korea

²¹⁴Department of Physics, Myongji University, Yongin 17058, Korea

²¹⁵Korea Astronomy and Space Science Institute (KASI), Yuseong-gu, Daejeon 34055, Korea

²¹⁶Department of Physical Science, Hiroshima University, Higashihiroshima City, Hiroshima 903-0213, Japan

²¹⁷Bard College, 30 Campus Rd, Annandale-On-Hudson, NY 12504, USA

²¹⁸Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kamioka-cho,

Hida City, Gifu 506-1205, Japan

²¹⁹Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland

²²⁰National Center for Nuclear Research, 05-400 Świerk-Otwock, Poland

²²¹Cornell University, Ithaca, NY 14850, USA

²²²Institute for Advanced Research, Nagoya University, Furocho, Chikusa-ku, Nagoya City, Aichi 464-8602, Japan

²²³ Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada

²²⁴Laboratoire Lagrange, Université Côte d'Azur, Observatoire Côte d'Azur, CNRS, F-06304 Nice, France

²²⁵Department of Physics, University of Texas, Austin, TX 78712, USA

²²⁶Department of Physics, Hanyang University, Seoul 04763, Korea

²²⁷ NAVIER, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

228 National Center for High-performance computing, National Applied Research Laboratories, Hsinchu Science Park, Hsinchu City

30076, Taiwan

²²⁹Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands

²³⁰NASA Marshall Space Flight Center, Huntsville, AL 35811, USA

²³¹ University of Washington, Seattle, WA 98195, USA

²³²Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, I-00146 Roma, Italy

²³³INFN, Sezione di Roma Tre, I-00146 Roma, Italy

²³⁴ESPCI, CNRS, F-75005 Paris, France

²³⁵Concordia University Wisconsin, Mequon, WI 53097, USA

²³⁶ Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy

²³⁷Southern University and A&M College, Baton Rouge, LA 70813, USA

²³⁸Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco

²³⁹Institute for Photon Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

²⁴⁰Indian Institute of Technology Madras, Chennai 600036, India

²⁴¹Saha Institute of Nuclear Physics, Bidhannagar, West Bengal 700064, India

²⁴² The Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology (NICT), Koganei

City, Tokyo 184-8795, Japan

²⁴³Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

²⁴⁴ Faculty of Law, Ryukoku University, Fushimi-ku, Kyoto City, Kyoto 612-8577, Japan

²⁴⁵Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741252, India

²⁴⁶Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands

²⁴⁷Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

²⁴⁸Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

²⁴⁹GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands

²⁵⁰Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, I-00185 Roma, Italy

²⁵¹Hobart and William Smith Colleges, Geneva, NY 14456, USA

²⁵²International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil

²⁵³Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", I-00184 Roma, Italy

²⁵⁴Department of Engineering, University of Sannio, Benevento 82100, Italy

²⁵⁵Lancaster University, Lancaster LA1 4YW, United Kingdom

²⁵⁶OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia

²⁵⁷ Università di Trento, Dipartimento di Matematica, I-38123 Povo, Trento, Italy

²⁵⁸ Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India

²⁵⁹Dipartimento di Fisica, Università degli Studi di Torino, I-10125 Torino, Italy

²⁶⁰Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India

²⁶¹Department of Physics, Kyoto University, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan

²⁶²Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College, Nagaoka City, Niigata 940-8532,

Japan

263 Centro de Astrofísica e Gravitação (CENTRA), Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,

1049-001 Lisboa, Portugal

²⁶⁴ Marquette University, 11420 W. Clybourn St., Milwaukee, WI 53233, USA

²⁶⁵Graduate School of Science and Engineering, Hosei University, Koganei City, Tokyo 184-8584, Japan

²⁶⁶ Faculty of Science, Toho University, Funabashi City, Chiba 274-8510, Japan

²⁶⁷ Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

²⁶⁸Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India

²⁶⁹ iTHEMS (Interdisciplinary Theoretical and Mathematical Sciences Program), The Institute of Physical and Chemical Research

(RIKEN), Wako, Saitama 351-0198, Japan

²⁷⁰INAF, Osservatorio di Astrofisica e Scienza dello Spazio, I-40129 Bologna, Italy

²⁷¹Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Sagamihara,

Kanagawa 252-5210, Japan

²⁷²Andrews University, Berrien Springs, MI 49104, USA

²⁷³Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka City, Niigata

940-2188, Japan

²⁷⁴Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan

²⁷⁵National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba City, Ibaraki 305-8568, Japan Abbott et al.

²⁷⁶Dipartimento di Scienze Aziendali - Management and Innovation Systems (DISA-MIS), Università di Salerno, I-84084 Fisciano, Salerno, Italy

²⁷⁷ Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands

²⁷⁸ Department of Communications Engineering, National Defense Academy of Japan, Yokosuka City, Kanagawa 239-8686, Japan

²⁷⁹Department of Physics, University of Florida, Gainesville, FL 32611, USA

²⁸⁰ Trinity University, San Antonio, TX 78212, USA

²⁸¹Department of Physics and Astronomy, Sejong University, Gwangjin-gu, Seoul 143-747, Korea

²⁸²Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

²⁸³Department of Physics, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan

²⁸⁴Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

²⁸⁵X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

²⁸⁶Extreme Natural Phenomena RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, 2-1 Hirasawa, Wako, Saitama 351-0198, Japan

287 Departamento de Física, Universidad de Santiago de Chile, Avenida Ecuador 3493, 9170124 Estación Central, Santiago, Chile

²⁸⁸ IRAP, CNRS, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France

289 Université de Toulouse, CNES, UPS-OMP, F-31028 Toulouse, France

(Dated: December 25, 2020)

ABSTRACT

We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using *NICER* data. The *NICER* ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3×10^{-5} , which is the third best constraint for any young pulsar.

 $\label{eq:Keywords: gravitational waves — pulsars: general — pulsars: individual (PSR J0537-6910) — stars: neutron$

1. INTRODUCTION

The young (1-5 kyr) energetic pulsar PSR J0537-6910 (Wang & Gotthelf 1998; Chen et al. 2006) resides in the Large Magellanic Cloud at a distance of 49.6 kpc (Pietrzyński et al. 2019). Its pulsations are only detectable at X-ray energies, and the pulsar was first observed by Marshall et al. (1998) using the Rossi X-ray Timing Explorer (RXTE) during searches for pulsations from the remnant of SN1987A. Further observations with RXTE, prior to its decommissioning in early 2012, revealed that PSR J0537-6910 often undergoes sudden changes in rotation frequency, i.e., glitches, at a rate of more than three per year, and exhibits interesting inter-glitch behavior (Marshall et al. 2004; Middleditch et al. 2006; Andersson et al. 2018; Antonopoulou et al. 2018; Ferdman et al. 2018). Observations of the pulsar resumed in 2017 using the *Neutron star Interior Composition Explorer* (*NICER*) on board the International Space Station (Gendreau et al. 2012), and these observations from 2017–2020 revealed further glitches and continuation of timing behavior seen with *RXTE* (Ho et al. 2020b).

PSR J0537-6910 is a particularly intriguing potential gravitational-wave source. It is the fastest-spinning known young pulsar (with rotation frequency $f_{\rm rot} =$ 62 Hz), which places its gravitational-wave frequency f(e.g., at twice $f_{\rm rot}$; see Section 2.1) in the most sensitive band of ground-based gravitational-wave detec-

^{*} Deceased, August 2020.

tors. PSR J0537-6910 also has the highest spin-down luminosity ($\dot{E} = 4.9 \times 10^{38} \text{ erg s}^{-1}$) among the ~2900 known pulsars in the ATNF Pulsar Catalogue (Manchester et al. 2005). Its spin-down behavior appears to be driven by a process other than pure electromagnetic dipole radiation loss (at constant stellar magnetic field and moment of inertia). Specifically, its (long-term) braking index $n \equiv f_{\rm rot} \dot{f}_{\rm rot} / \dot{f}_{\rm rot}^2 = -1.25 \pm 0.01$, as measured over more than 20 yr (Ho et al. 2020b), indicates an accelerating spin-down rate and significantly deviates from the canonical value of 3 for dipole radiation (Shapiro & Teukolsky 1983), as is true for most pulsars with measurable braking indices.

More importantly, observations of PSR J0537–6910 show the pulsar's (short-term) interglitch braking index n_{ig} , as measured during intervals between ~ 50 glitches, has values typically > 10 and approaches an asymptotic value of ≤ 7 at long times after a glitch, i.e., when the effects of a preceding glitch are diminished (see Figure 1; see also Andersson et al. 2018). It is this behavior that provides tantalizing suggestions that perhaps PSR J0537–6910 is losing some of its rotational energy to gravitational-wave emission. In particular, a slightly deformed pulsar can emit gravitational waves that results in n = 5, and a r-mode fluid oscillation in a pulsar can emit gravitational waves that results in n = 7 (see, e.g., Riles 2017; Andersson et al. 2018; Glampedakis & Gualtieri 2018).

In this work, we search for mass quadrupolar gravitational-wave emission from PSR J0537-6910 that follows the same phase as that of the pulsar's rotation. Previously, data from initial LIGO's fifth and sixth science runs (S5 and S6) and Virgo's second and fourth science runs (VSR2 and VSR4), in conjunction with RXTE timing measurements, were used to set limits on gravitational-wave emission by PSR J0537-6910 that closely approached the spin-down limit (Abbott et al. 2010; Aasi et al. 2014). Here, we analyze data from the second and third observing runs (O2 and O3) of LIGO and Virgo, tracking the rotation phase with the contemporaneous *NICER* timing ephemeris. In doing so, we also provide an updated ephemeris that includes the latest six months of NICER observations of PSR J0537-6910. Investigations of r-mode gravitational-wave emission (n = 7) are not presented here; such searches are more technically challenging and require different methods that search over a range of frequencies (see, e.g., Mytidis et al. 2015, 2019; Abbott et al. 2019b; Fesik & Papa 2020a,b) due to uncertainty in gravitational-wave frequency for a given rotation frequency (Andersson et al. 2014; Idrisy et al. 2015; Caride et al. 2019). Nevertheless, we are able to reach below

the spin-down limit of PSR J0537-6910 for the first time, which means that the minimum amplitude we could detect in our analysis is lower than the one given by assuming all of the pulsar's rotational energy loss is converted to gravitational waves (see Section 2.1). In other words, we can now obtain physically meaningful constraints.

Figure 1. Interglitch braking index n_{ig} calculated from the spin parameters of each segment between glitches as a function of time since the last glitch. Large and small circles denote *NICER* and *RXTE* values, respectively, with the former from Tables 1 and 2 and from Ho et al. (2020b) and latter from Antonopoulou et al. (2018). Errors in n_{ig} are 1σ uncertainty. Orange horizontal dotted lines indicate braking index n = 5 and 7, which are expected for pulsar spin-down by gravitational-wave emission due to an ellipticity and rmode oscillation, respectively. Green dot-dashed and dashed lines indicate exponential decay to n = 5 with best-fit timescale of 24 d and to n = 7 with best-fit time-scale of 21 d, respectively.

2. SEARCH METHOD

2.1. Model of gravitational-wave emission

The first model considered here allows for gravitationalwave emission at once and twice the spin frequency simultaneously, which has been searched for previously (Pitkin et al. 2015; Abbott et al. 2017, 2019a, 2020), and can result from a triaxial star spinning about an axis that is not its principal axis (Jones 2010, 2015). The amplitudes of each harmonic at once and twice the spin frequency of the star, denoted $h_{21}(t)$ and $h_{22}(t)$, respectively, can be written as

$$h_{21} = -\frac{C_{21}}{2} \Big\{ F^{D}_{+}(\alpha, \delta, \psi; t) \sin \iota \cos \iota \cos \left[\Phi(t) + \Phi^{C}_{21} \right] \\ + F^{D}_{\times}(\alpha, \delta, \psi; t) \sin \iota \sin \left[\Phi(t) + \Phi^{C}_{21} \right] \Big\},$$
(1)

$$h_{22} = -C_{22} \Big\{ F^D_+(\alpha, \delta, \psi; t) (1 + \cos^2 \iota) \cos \left[2\Phi(t) + \Phi^C_{22} \right] \\ + 2F^D_\times(\alpha, \delta, \psi; t) \cos \iota \sin \left[2\Phi(t) + \Phi^C_{22} \right] \Big\}.$$
(2)

Here, C_{21} and C_{22} are dimensionless constant component amplitudes, and Φ_{21}^C and Φ_{22}^C are phase angles. F_+^D and F_{\times}^D are antenna or beam functions and describe how the two polarization components of the signal project onto the detector (see, e.g., Jaranowski et al. 1998). Angles (α, δ) are the right ascension and declination of the source, while angles (ι, ψ) specify the orientation of the star's spin axis relative to the observer. $\Phi(t)$ is the rotational phase of the source.

The second model is a special case of the first model and is used for gravitational-wave emission at only twice the rotational frequency $(C_{21} = 0)$, implying a triaxial star that is spinning about a principal axis, such as its z-axis. In this case, it is simpler to write the gravitational-wave amplitude in terms of the dimensionless value h_0 , where in equation (2) the substitution $C_{22} = -h_0/2$ would be made (Abbott et al. 2019a) with the sign change just to maintain consistency with the model from Jaranowski et al. (1998). The cause of such gravitational-wave emission is a deviation from axial symmetry, which can be written in terms of a dimensionless equatorial ellipticity ε , defined in terms of the star's principal moments of inertia (I_{xx}, I_{yy}, I_{zz}) :

$$\varepsilon \equiv \frac{|I_{xx} - I_{yy}|}{I_{zz}}.$$
(3)

The gravitational-wave amplitude is directly proportional to the ellipticity:

$$h_0 = \frac{16\pi^2 G}{c^4} \frac{I_{zz} \varepsilon f_{\rm rot}^2}{d},$$
 (4)

where d is the star's distance from the Earth. When setting upper limits, we use a fiducial value for the z-component of the moment of inertia, *i.e.*, $I_{zz}^{\text{fid}} = 10^{38} \text{ kg m}^2$. The combination of the ellipticity and fiducial moment of inertia can be cast in terms of the mass quadrupole moment of the l = m = 2 mode of the star via $Q_{22} = \sqrt{15/8\pi}I_{zz}\varepsilon$ (Owen 2005). The gravitationalwave amplitude h_0 can be compared to the spin-down limit amplitude h_0^{sd} , which is the gravitational-wave amplitude produced assuming that the entire rotational energy loss of the pulsar is converted into gravitational waves:

$$h_0^{\rm sd} = \frac{1}{d} \left(\frac{5GI_{zz}}{2c^3} \frac{|\dot{f}_{\rm rot}|}{f_{\rm rot}} \right)^{1/2}.$$
 (5)

Our results for the single harmonic case are quoted in terms of $h_0^{\rm sd}$.

NICER observations of PSR J0537-6910 allow for the ephemeris of the pulsar to be determined, which means we know the expected signal frequency and its evolution. With this information, we can perform a targeted search for gravitational waves from this pulsar based on the two signal models discussed, with the phase tracking that of the pulsar rotation.

2.2. NICER data

In Ho et al. (2020b), timing analysis is performed on NICER data of PSR J0537-6910 from 2017 August 17 to 2020 April 25, with eight glitches detected during this timespan and the last three glitches during O3. Here we present an update and results on timing analysis since the work of Ho et al. (2020b). In particular, data from 2020 May 12 to October 29 is analyzed using the methodology as described in Ho et al. (2020b). Our analysis reveals continuing accelerated spin-down (see Table 1) and three subsequent glitches (see Table 2 and Figure 2), including the smallest glitch of PSR J0537-6910 yet detected using NICER. Note that the timing model of segment 8 uses three additional subsequent times-of-arrival (TOAs) beyond those in Table 1 of Ho et al. (2020b) and, as a result, the epoch and other parameters of the model differ; e.g., the longer timespan and lower n_{ig} of segment 8 result in a different position in Figure 1 compared to Figure 6 of Ho et al. (2020b). Meanwhile, the relatively short timespan of segment 9 means the timing model for this segment is not able to constrain $f_{\rm rot}$. For the most recent glitch 11, its magnitude is large ($\Delta f_{\rm rot} = 33.9 \ \mu {\rm Hz}$), which suggests the time to the next glitch will be long $(\sim 200 \pm 20 \text{ d}; \text{Ho et al. } 2020\text{b})$. If the interglitch period is indeed long, then NICER measurements could eventually yield $n_{ig} \lesssim 7$ for segment 11, which would lend further support for gravitational-wave emission (see Section 1 and Figure 1).

The gravitational-wave search performed here uses the timing model of Ho et al. (2020b). The differences between the model of Ho et al. (2020b) and the model presented here are well within the former's uncertainties, and thus use of the latter would not yield significantly different results.

Table 1. Timing model parameters for segments between epochs of new glitches of PSR J0537–6910. Columns from left to right are segment number, timing model epoch, segment start and end dates, number of times-of-arrival, rotation frequency and its first two time derivatives, interglitch braking index, and timing model residual and goodness-of-fit measure. Number in parentheses is 1σ uncertainty in last digit. Segments 1–7 are presented in Ho et al. (2020b).

Segment	Epoch	Start	End	TOAs	$f_{ m rot}$	$\dot{f}_{ m rot}$	$\ddot{f}_{ m rot}$	$n_{ m ig}$	Residual RMS	$\chi^2/{ m dof}$
	(MJD)	(MJD)	(MJD)		(Hz)	$(10^{-10} \text{ Hz s}^{-1})$	$(10^{-20} \text{ Hz s}^{-2})$		$(\mu { m s})$	
8	58931	58871.5	58991.2	17	61.908808739(3)	-1.997535(7)	1.06(8)	16(1)	173.7	9.9
9	59020	58995.6	59046.3	11	61.907273376(2)	-1.99699(4)	$[1]^{a}$		147.8	6.7
10	59074	59050.4	59098.7	10	61.906349948(5)	-1.99762(2)	3.6(8)	56(13)	60.9	1.5
11	59129	59108.7	59150.7	11	61.905434556(6)	-1.99809(3)	2.2(13)	34(20)	72.3	2.1

^a $\ddot{f}_{\rm rot}$ is fixed at 10⁻²⁰ Hz s⁻².

Table 2. Parameters of new glitches of PSR J0537-6910. Columns from left to right are glitch number and epoch, change in rotation phase and changes in rotation frequency and its first two time derivatives at each glitch. Number in parentheses is 1σ uncertainty in last digit. Glitches 1-7 are presented in Ho et al. (2020b).

Glitch	Glitch epoch	$\Delta \phi$	$\Delta f_{\rm rot}$	$\Delta \dot{f}_{ m rot}$	$\Delta \ddot{f}_{ m rot}$
	(MJD)	(cycle)	(μHz)	$(10^{-13} \text{ Hz s}^{-1})$	$(10^{-20} \text{ Hz s}^{-2})$
8	58868(5)	0.08(12)	24.0(1)	-2.3(6)	-5(1)
9	58993(3)	0.06(12)	0.4(1)	-0.3(8)	—
10	59049(3)	-0.22(2)	8.46(3)	-1.3(5)	—
11	59103(5)	0.42(2)	33.958(7)	-2.0(3)	—

2.3. LIGO and Virgo data

We use a combination of data from the second and third observing runs of the Advanced LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2015) gravitational wave detectors. During O2, LIGO Livingston (L1) and LIGO Hanford (H1) took data from 2016 November 30 to 2017 August 25 and had duty factors of $\sim 57\%$ and $\sim 59\%$, respectively (including commissioning breaks), while Virgo took data from 2017 August 1 to 2017 August 25 with a duty factor of $\sim 85\%$. As noted in Section 2.2, NICER data start on 2017 August 17, and thus one set of searches we undertake uses only about six days of O2 data overlapping with the NICER data in addition to the O3 data. Alternatively, we can consider a more optimistic and much longer time-series of O2 data by taking advantage of the correlation between glitch size and time-to-next-glitch seen for PSR J0537-6910 (Middleditch et al. 2006; Antonopoulou et al. 2018; Ferdman et al. 2018; Ho et al. 2020b). Assuming a (unobserved) glitch occurred on 2017 March 22 with the same size as the largest NICER glitch (i.e., glitch 2 with $\Delta f_{\rm rot} = 36 \ \mu {\rm Hz}$), we would expect a subsequent glitch

224 d later (at 68% confidence) on 2017 November 1, which is the earliest estimated date at which glitch 1 occurred (see Figure 2 and Ho et al. 2020b). Thus 2017 March 22 to November 1 is the longest period over which we would expect PSR J0537–6910 to not have undergone a glitch and the *NICER* ephemeris to be valid. O3 lasted from 2019 April 1 to 2020 March 27, with a one-month pause in data collection in October 2019. The three detectors' datasets H1, L1, and V1 had duty factors of ~ 76%, ~ 77%, and ~ 76% respectively during O3.

In the case of a detection, calibration uncertainties limit our ability to provide robust estimates of the amplitude of the gravitational-wave signal and corresponding ellipticity (Abbott et al. 2017). Even without a detection, these uncertainties affect the estimated instrument sensitivity and inferred upper limits. The uncertainties vary over the course of a run but do not change by large values, so we do not explicitly consider time-dependent calibration uncertainties in our analysis. For further information on O2 calibration techniques, see discussions in Abbott et al. (2019a).

Figure 2. Glitch $\Delta f_{\rm rot}$ (top) and $\Delta \dot{f}_{\rm rot}$ (bottom) as functions of time. Glitch numbers and values from Table 2 and Ho et al. (2020b). Errors in $\Delta \dot{f}_{\rm rot}$ are 1σ uncertainty, while errors in $\Delta f_{\rm rot}$ are not shown because they are generally smaller than the symbols. Shaded regions denote second observing run (O2) and third observing run (O3) of LIGO/Virgo. Vertical long and short-dashed lines indicate two possible start dates of O2 data used in present work (see Section 2.3).

The full raw strain data from the O2 run is publicly available from the Gravitational Wave Open Science Center¹ (Vallisneri et al. 2015; Abbott et al. 2019c). For the LIGO O3 data set, the analysis uses the "C01" calibration. The C01 calibration has estimated maximum amplitude and phase uncertainties of ~ 7% and ~ 4 deg, respectively (Sun et al. 2020), which we use as conservative estimates of the true calibration uncertainty near the frequencies analyzed here. For the Virgo O3 data set, we use the "V0" calibration with estimated maximum amplitude and phase uncertainties of 5% and 2 deg, respectively. We note that the signal frequencies analyzed in L1 and H1 data are close to the US powerline frequencies of 60 and 120 Hz. However, these disturbances do not affect our analysis and results since we consider only a narrow band around the expected signal frequency, as can be seen in the relatively clean amplitude spectral densities of Figure 3.

2.4. Search pipeline

The time-domain Bayesian method performs a coherent analysis of the interferometers' data, meaning that we analyze the entire data set with an effective single Fourier Transform, thereby preserving the phase information. First, the raw strain data are heterodyned (Dupuis & Woan 2005) using the expected signal phase evolution, known precisely from the electromagnetic timing ephemeris. Then a low-pass filter with a knee frequency of 0.25 Hz is applied, and the data are downsampled so that the sampling time is one minute, compared to 60 microseconds originally. This heterodyning is performed for an expected signal whose frequency is at once or twice the rotational frequency of the pulsar. The heterodyned data is the input to a nested sampling algorithm that is a part of the LALIN-FERENCE package (Veitch & Vecchio 2010; Veitch et al. 2015), which infers the unknown signal parameters depending on the model of gravitational-wave emission.

PSR J0537-6910 glitched three times over the course of the gravitational-wave observations (see Figure 2). For each glitch, we assume an unknown phase offset between the electromagnetic and gravitational-wave phase. The individual phase offsets of multiple glitches that occurred between O2 and O3 cannot be disentangled, so only one phase offset is included for these glitches. This means that we introduce four additional phase parameters when performing parameter estimation.

We also make use of restricted and unrestricted priors when performing the analysis. In the first case, we use estimates of the orientation of the pulsar relative to the Earth based on a model fit of the observed pulsar wind nebulae torus (Ng & Romani 2008), which imply narrow priors in our analysis on the polarization and inclination angles. From these we use a Gaussian prior on ψ of 2.2864±0.0384 rad and a bimodal Gaussian prior on ι with modes at 1.522 ± 0.016 and $1.620\pm0.016\,\mathrm{rad}$ (see Jones 2015, for reasons behind the bimodality). This range of ι would suggest the pulsar's rotation axis is almost perpendicular to the line-of-sight, which would in turn lead to a linearly polarized gravitational-wave signal dominated by the '+' polarization mode. The second case assumes a uniform isotropic prior on the axis direction, which therefore does not rely on the above modeling of observations. The initial signal phase and glitch phase offsets all use uniform priors over their full ranges. For the single harmonic search, we parameterize

¹ https://www.gw-openscience.org/data

the signals using the mass quadrupole Q_{22} and distance. As a conservative approach, we use an unphysical flat prior on Q_{22} with a lower bound at zero and an upper bound of 5×10^{37} kg m², which is well above the largest upper limits found in Abbott et al. (2019a). For the distance, we use a Gaussian prior with mean of 49.59 kpc and standard deviation of 0.55 kpc based on the value given in Pietrzyński et al. (2019), combining the statistical and systematic errors in quadrature. For the dual harmonic search, which uses the amplitudes C_{21} and C_{22} rather than the physical parameters of Q_{22} and d, we use flat priors that are bounded between zero and 1×10^{-22} , which is again well above the limit implied in Abbott et al. (2019a). To analyze multiple detectors' data sets simultaneously, we combine the product of the likelihoods calculated for each detector (Dupuis & Woan 2005).

The outputs of the analysis are posterior distributions of the parameters of interest, which are $h_0/Q_{22}/\varepsilon$ for the single harmonic search and C_{21} and C_{22} for the dual harmonic search, and of the angles $\cos \iota$ and ψ for both choices of priors. In Section 3, we present results on the amplitude parameters marginalized over the rest of the parameter space.

3. RESULTS

Results from our searches do not show evidence for gravitational-wave emission from PSR J0537-6910 via the two models that we assume. An amplitude spectral density obtained after the heterodyne correction is displayed in Figure 3 for each of the three detectors. If a loud continuous gravitational-wave signal was present, we would expect to see a narrow line feature in the spectrum. The amplitude spectral densities also give an estimation of the sensitivity of the search.

Though no gravitational waves are detected, we can still determine upper limits on possible gravitationalwave emission from PSR J0537-6910. Here we use 95% credible upper bounds on the amplitude parameters based on their marginalized probability distributions. The dimensionless gravitational-wave amplitude h_0 and coefficients C_{21} and C_{22} are constrained for the single and dual harmonic searches, respectively. For the single harmonic search, h_0 can be mapped to a limit on the maximum ellipticity ε using equation (4). In Table 3 we show the different constraints for both searches using all O3 data and the last ~ 6 days of O2 data (see Section 2.3). In addition to the detector calibration uncertainties discussed in Section 2.3, we estimate that the statistical uncertainty on the upper limits due to the use of a finite number of posterior samples is on the order of 1%.

Figure 3. Two-sided amplitude spectral density (ASD) after heterodyning, low pass filtering, and downsampling the raw strain data for the l = m = 2 gravitational-wave mode. Different color lines indicate the Hanford (H1), Livingston (L1), and Virgo (V1) detectors.

Table 3. 95% upper limits on gravitational-wave strain, ellipticity, and other quantities based on unrestricted (UR) and restricted (R) choices for priors on polarization and inclination angles. Results here come from analyzing all O3 data and the last 6 days of O2 data.

Prior	$h_0^{95\%}$	$\varepsilon^{95\%}$	$h_0^{95\%}/h_0^{ m sd}$	$C_{21}^{95\%}$	$C_{22}^{95\%}$	
	(10^{-26})	(10^{-5})		(10^{-26})	(10^{-27})	
UR	1.1	3.4	0.37	2.2	5.6	
R	1.0	3.1	0.33	1.8	5.0	

Figure 4 shows the marginalized posterior probability distributions on the pulsar ellipticity and h_0 for the single harmonic search with unrestricted and restricted source orientation priors. The posteriors show significant support at ellipticities of zero, indicating no evidence of a signal at current sensitivities. We therefore show 95% credible upper limits on the ellipticity for both prior choices along with the fiducial spin-down limit.

Figure 5 shows a similar posterior distribution on the dimensionless amplitudes C_{21} and C_{22} for the dual harmonic model. For this model, no evidence of gravitational waves is found, so an upper limit at 95% is indicated in both panels of this figure. The model given

by Equation (1) means that the value of C_{21} becomes completely unconstrained when $\sin \iota = 0$. For the unrestricted orientation prior result shown in the left panel of Figure 5, this leads to a long high amplitude tail in the C_{21} posterior distribution. In Figures 4 and 5, we see that the amplitude posteriors can peak away from zero. This behavior was unsurprising and can occur even for pure Gaussian noise. Even with these peaks, the posteriors are still entirely consistent with zero ellipticity. For example, for the unrestricted posterior distribution shown in Figure 4, a value of zero ellipticity is within the minimum 66% credible interval around the mode.

The results presented above use all O3 data in combination with about 1 week of O2 data, when *NICER* was operating and monitoring PSR J0537-6910. We also conducted searches using only O3 data or using O3 data plus O2 data from 2017 March 22 to the end of O2. The latter analysis assumes no glitches occurred during the additional time and represents the estimated maximum time that can be safely included without a contemporaneous timing model (see Section 2.3). For only O3 data, we obtain h_0 and ε limits that are worse by ~ 7% for UR and unchanged for R from those shown in Table 3 for which a small amount of O2 data is used. For O3 data plus the extra O2 data, we obtain amplitude limits that are improved by $\leq 20\%$ compared to those shown in Table 3.

4. CONCLUSIONS

Figure 4. Posterior probability distribution for ellipticity and h_0 for the analyses with unrestricted and restricted priors on the pulsar orientation. The 95% credible upper limits are shown as vertical colored lines, while the spin-down limit is given by the vertical dashed black line.

Using data from LIGO/Virgo's second and third observing runs, we searched for mass quadrupolarsourced gravitational waves from the young, dynamic PSR J0537-6910 at once or twice the pulsar's rotational frequency of 62 Hz. For the first time we reached below the gravitational-wave spin-down limit for PSR J0537-6910 and showed that gravitationalwave emission for a pure l = m = 2 mode accounts for less than 14% of the pulsar's spin-down energy budget. We placed the third most stringent constraint on the ellipticity ($\varepsilon < 3 \times 10^{-5}$) of any young pulsar (behind only the Crab pulsar and B1951+32/J1952+3252; Abbott et al. 2019a, 2020). While this limit is much higher than those of old recycled millisecond pulsars (for which $\varepsilon < 10^{-8}$; Abbott et al. 2020), young pulsars such as PSR J0537-6910 and the Crab pulsar are important because they have much stronger magnetic fields (and are hotter) and thus might have greater ellipticities. The ellipticity constraint of PSR J0537-6910 is also near estimates of the maximum ellipticity that can be sustained by an elastically deformed neutron star crust (Johnson-McDaniel & Owen 2013; Caplan et al. 2018).

PSR J0537-6910 is a frequently glitching pulsar and potential source of continuous gravitational waves. The X-ray data from *NICER* gives us the necessary tools to account for the phase evolution of a gravitational-wave signal over time, which allows us to perform a fully coherent and sensitive search for such a signal. While our multi-messenger analysis focuses on gravitational waves from a time-varying mass quadrupole (n = 5), another search could be performed for gravitational waves from a r-mode fluid oscillation (n = 7) using wider-band techniques (e.g., Fesik & Papa 2020a,b, using O2 data). The strain sensitivity achieved in our analysis (1×10^{-26}) is also comparable to the $(2 - 3) \times 10^{-26}$ estimated in Andersson et al. (2018) for r-mode emission from PSR J0537-6910.

Finally, from the observed correlation between glitch size and time-to-next-glitch for PSR J0537-6910 (Middleditch et al. 2006; Antonopoulou et al. 2018; Ferdman et al. 2018; Ho et al. 2020b), we can hope to measure in the future low braking indices (7 or even lower) after the largest glitches. As noted above, braking indices of 5 and 7 are predicted by gravitational wave-emitting mechanisms. The observed evolution of n_{ig} to lower values than shown in Figure 1, which may occur after the effects of glitches on the pulsar's spin-down behavior have decayed, may indicate that gravitational waves are continuously emitted between glitches. On the other hand, glitches may trigger detectable transient gravitational waves (Prix et al. 2011; Ho et al. 2020a; Yim & Jones 2020), and gravitational-wave searches at glitch epochs

Figure 5. Posterior probability distributions for the amplitudes C_{21} and C_{22} with unrestricted and restricted priors on the pulsar orientation. The 95% credible upper limits are shown as vertical colored lines.

of other pulsars have been conducted (Keitel et al. 2019). It is therefore vital to continue to monitor the spin evolution of PSR J0537-6910, not only to obtain the timing ephemeris and measure braking indices, but also to know when this pulsar undergoes a glitch. Since the spin period of PSR J0537-6910 is only detectable at X-ray energies, *NICER* is the only effective means to perform the necessary observations. Fortunately *NICER* is anticipated to operate until at least late 2022, overlapping with the fourth observing run of LIGO/Virgo and KA-GRA (Aso et al. 2013), which is likely to begin in 2022 and continue into 2023.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India,

the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d'Innovació, Recerca i Turisme and the Conselleria d'Educació i Universitat del Govern de les Illes Balears, the Conselleria d'Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources.

This work was supported by MEXT, JSPS Leadingedge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK.

We thank all essential workers who put their health at risk during the COVID-19 pandemic, without whom we would not have been able to complete this work.

W.C.G.H. acknowledges support through grants 80NSSC19K1444 and 80NSSC21K0091 from NASA. C.M.E. acknowledges support from FONDECYT/Regular 1171421 and USA1899-Vridei 041931SSSA-PAP (Universidad de Santiago de Chile, USACH). This work is supported by NASA through the *NICER* mission and the Astrophysics Explorers Program and uses data and software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory.

Facility: NICER

REFERENCES

- Aasi, J., Abadie, J., Abbott, B. P., et al. 2014, ApJ, 785, 119, doi: 10.1088/0004-637X/785/2/119
- Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, CQGra, 32, 074001, doi: 10.1088/0264-9381/32/7/074001
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019a, ApJ, 879, 10, doi: 10.3847/1538-4357/ab20cb
- Abbott, B. P., Abbott, R., Acernese, F., et al. 2010, ApJ, 713, 671, doi: 10.1088/0004-637X/713/1/671
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJ, 839, 12, doi: 10.3847/1538-4357/aa677f
- Abbott, B. P., et al. 2017, Phys. Rev. D, 96, 122004, doi: 10.1103/PhysRevD.96.122004
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019b, PhRvD, 99, 122002, doi: 10.1103/PhysRevD.99.122002
- Abbott, R., Abbott, T. D., Abraham, S., et al. 2019c, arXiv:1912.11716
- --. 2020, ApJL, 902, L21, doi: 10.3847/2041-8213/abb655
- Acernese, F., Agathos, M., Agatsuma, K., et al. 2015,CQGra, 32, 024001, doi: 10.1088/0264-9381/32/2/024001
- Andersson, N., Antonopoulou, D., Espinoza, C. M.,
 Haskell, B., & Ho, W. C. G. 2018, ApJ, 864, 137,
 doi: 10.3847/1538-4357/aad6eb
- Andersson, N., Jones, D. I., & Ho, W. C. G. 2014, MNRAS, 442, 1786, doi: 10.1093/mnras/stu870

Antonopoulou, D., Espinoza, C. M., Kuiper, L., & Andersson, N. 2018, MNRAS, 473, 1644, doi: 10.1093/mnras/stx2429

- Aso, Y., Michimura, Y., Somiya, K., et al. 2013, Phys. Rev. D, 88, 043007, doi: 10.1103/PhysRevD.88.043007
- Caplan, M. E., Schneider, A. S., & Horowitz, C. J. 2018, PhRvL, 121, 132701,

doi: 10.1103/PhysRevLett.121.132701

- Caride, S., Inta, R., Owen, B. J., & Rajbhandari, B. 2019, PhRvD, 100, 064013, doi: 10.1103/PhysRevD.100.064013
- Chen, Y., Wang, Q. D., Gotthelf, E. V., et al. 2006, ApJ, 651, 237, doi: 10.1086/507017
- Dupuis, R. J., & Woan, G. 2005, PhRvD, 72, 102002, doi: 10.1103/PhysRevD.72.102002
- Ferdman, R. D., Archibald, R. F., Gourgouliatos, K. N., & Kaspi, V. M. 2018, ApJ, 852, 123, doi: 10.3847/1538-4357/aaa198
- Fesik, L., & Papa, M. A. 2020a, ApJ, 895, 11, doi: 10.3847/1538-4357/ab8193
- —. 2020b, ApJ, 897, 185, doi: 10.3847/1538-4357/aba04e
- Gendreau, K. C., Arzoumanian, Z., & Okajima, T. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 844313, doi: 10.1117/12.926396
- Glampedakis, K., & Gualtieri, L. 2018, Astrophysics and Space Science Library, Vol. 457, Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey, ed. L. Rezzolla, P. Pizzochero, D. I. Jones, N. Rea, & I. Vidaña, 673, doi: 10.1007/978-3-319-97616-7_12

19

Ho, W. C. G., Jones, D. I., Andersson, N., & Espinoza,
C. M. 2020a, PhRvD, 101, 103009,
doi: 10.1103/PhysRevD.101.103009

- Ho, W. C. G., Espinoza, C. M., Arzoumanian, Z., et al. 2020b, MNRAS, 498, 4605, doi: 10.1093/mnras/staa2640
- Idrisy, A., Owen, B. J., & Jones, D. I. 2015, PhRvD, 91, 024001, doi: 10.1103/PhysRevD.91.024001
- Jaranowski, P., Królak, A., & Schutz, B. F. 1998, PhRvD, 58, 063001, doi: 10.1103/PhysRevD.58.063001
- Johnson-McDaniel, N. K., & Owen, B. J. 2013, PhRvD, 88, 044004, doi: 10.1103/PhysRevD.88.044004
- Jones, D. I. 2010, MNRAS, 402, 2503, doi: 10.1111/j.1365-2966.2009.16059.x
- —. 2015, MNRAS, 453, 53, doi: 10.1093/mnras/stv1584
- Keitel, D., Woan, G., Pitkin, M., et al. 2019, PhRvD, 100, 064058, doi: 10.1103/PhysRevD.100.064058
- Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993, doi: 10.1086/428488
- Marshall, F. E., Gotthelf, E. V., Middleditch, J., Wang, Q. D., & Zhang, W. 2004, ApJ, 603, 682, doi: 10.1086/381567
- Marshall, F. E., Gotthelf, E. V., Zhang, W., Middleditch, J., & Wang, Q. D. 1998, ApJL, 499, L179, doi: 10.1086/311381
- Middleditch, J., Marshall, F. E., Wang, Q. D., Gotthelf,
 E. V., & Zhang, W. 2006, ApJ, 652, 1531,
 doi: 10.1086/508736
- Mytidis, A., Coughlin, M., & Whiting, B. 2015, ApJ, 810, 27, doi: 10.1088/0004-637X/810/1/27
- Mytidis, A., Panagopoulos, A. A., Panagopoulos, O. P., Miller, A., & Whiting, B. 2019, PhRvD, 99, 024024, doi: 10.1103/PhysRevD.99.024024

- Ng, C.-Y., & Romani, R. W. 2008, ApJ, 673, 411, doi: 10.1086/523935
- Owen, B. J. 2005, PhRvL, 95, 211101, doi: 10.1103/PhysRevLett.95.211101
- Pietrzyński, G., Graczyk, D., Gallenne, A., et al. 2019, Nature, 567, 200, doi: 10.1038/s41586-019-0999-4
- Pitkin, M., Gill, C., Jones, D. I., Woan, G., & Davies, G. S. 2015, MNRAS, 453, 4399, doi: 10.1093/mnras/stv1931
- Prix, R., Giampanis, S., & Messenger, C. 2011, PhRvD, 84, 023007, doi: 10.1103/PhysRevD.84.023007
- Riles, K. 2017, Modern Physics Letters A, 32, 1730035, doi: 10.1142/S021773231730035X
- Shapiro, S. L., & Teukolsky, S. A. 1983, Black holes, white dwarfs, and neutron stars : the physics of compact objects
- Sun, L., Goetz, E., Kissel, J. S., et al. 2020, Classical and Quantum Gravity, 37, 225008, doi: 10.1088/1361-6382/abb14e
- Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., & Stephens, B. 2015, JPhCS, 610, 012021, doi: 10.1088/1742-6596/610/1/012021
- Veitch, J., Raymond, V., Farr, B., et al. 2015, PhRvD, 91, 042003, doi: 10.1103/PhysRevD.91.042003
- Veitch, J., & Vecchio, A. 2010, PhRvD, 81, 062003, doi: 10.1103/PhysRevD.81.062003
- Wang, Q. D., & Gotthelf, E. V. 1998, ApJ, 494, 623, doi: 10.1086/305214
- Yim, G., & Jones, D. I. 2020, MNRAS, 498, 3138, doi: 10.1093/mnras/staa2534