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Abstract

The LALSuite data analysis libraries, written in C, implement key routines criti-
cal to the successful detection of gravitational waves, such as the template wave-
forms describing the merger of two black holes or two neutron stars. SWIGLAL
is a component of LALSuite which provides interfaces for Python and Octave,
making LALSuite routines accessible directly from scripts written in those lan-
guages. It has enabled modern gravitational-wave data analysis software, used
in the first detection of gravitational waves, to be written in Python, thereby
benefiting from its ease of development and rich feature set, while still having
access to the computational speed and scientific trustworthiness of the routines
provided by LALSuite.
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1. Motivation and Significance

The choice of programming language is a critical decision in the design of sci-
entific software. Languages such as C provide a low level of abstraction between
the programmer and the machine architecture, and are compiled to machine
code for best performance. The lack of abstraction, however, places a higher
burden on the developer to manually handle low-level tasks, such as memory
management, which detracts from the scientific problem at hand. High-level
scripting languages, of which Python [1] and Octave [2] are two examples, pro-
vide a higher level of abstraction from the machine architecture, freeing the
developer to focus on the algorithm, reducing development time, and facilitat-
ing the rapid prototyping of new ideas. They also provide a richer set of features,
either built into the language or else available through easy-to-install packages
downloaded from a central repository. They are generally not compiled to ma-
chine code, however, and therefore performance may not match that provided
by low-level machine code.

Often, a new software package will want to make use of existing libraries
which provide routines which are particularly efficient, well-tested and trusted
by the wider scientific community, and/or difficult to re-implement. In such
cases, the developer may be constrained to use a particular language – the same
language as the existing library – and therefore be forced to accept the costs
and benefits of that particular language. A solution to this problem is to write
a software wrapper around the existing library, which then exposes its routines
so that it can be used from the programming language of choice. For example,
software wrappers can enable the developer to make use of libraries written in C,
while also benefiting from the ease of development and rich feature set provided
by high-level languages such as Python.

The first detections of gravitational waves, from the merger of two black
holes [3] and from two neutron stars [4], were made possible through, amid many
other advances, the careful implementation and rigorous testing of data analysis
software. LALSuite (LSC Algorithm Library Suite; [5]) is a collection of software
routines for gravitational-wave data analysis, written in C, and developed since
2000. As of version 6.67 [6], LALSuite provides, along with ∼ 230 executables,
9 libraries which collectively export a large number of symbols, and represents
a significant code base of hundreds of thousands of lines of C code (Table 1). It
provides atomic data types for fixed-width integer, floating-point, and complex
numbers; and compound data types called “structs”, accompanied by functions
which create, destroy, and manipulate them. (Structs in C are conceptually
equivalent to classes in Python and other high-level languages; this paper will
hereafter use the term “class” to refer to both low-level structs and high-level
classes.)

The LALSuite libraries provide extensive, well-tested routines for gravitational-
wave data analysis, in particular for searches for binary black holes and binary
neutron stars, which have been carefully vetted by members of the LIGO Scien-
tific Collaboration and Virgo Collaboration. These include the template signal
waveforms for such events, as predicted by general relativity, which tend to
be complicated mathematical expressions [e.g. 7] which are time-consuming to
implement and verify. More recent gravitational-wave data analysis software
has sought to take advantage of the ease of development and extensive package
library of Python; without access to LALSuite routines, however, developers
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Constants Variables Functions Classes LOC
LAL(Support) 712 64 1745 182 38k
LALBurst 9 4 23 2 2k
LALFrame 54 4 254 12 7k
LALInference 45 41 416 22 28k
LALInspiral 204 5 358 58 33k
LALMetaio 55 4 51 18 3k
LALPulsar 156 9 623 148 32k
LALSimulation 209 42 714 12 92k
Total 1444 173 4184 454 236k

Table 1: Number of constants, variables, functions, and classes exported by the
SWIGLAL interfaces to the libraries of LALSuite, version 6.67, and an estimate
of the total (non-blank, non-comment) lines of C code (LOC) of each library.
Note that SWIGLAL provides a single interface to the LAL and LALSupport
libraries, which are therefore counted together.

would have faced a significant additional burden in re-implementing and re-
verifying the routines in Python.

This paper describes SWIGLAL, which provides Python and Octave inter-
faces to the libraries provided by LALSuite. These interfaces have enabled mod-
ern gravitational-wave data analysis software to benefit from the advantages of
programming in high-level languages, while retaining access to the trusted code
base and computational efficiency of the LALSuite code base.

2. Software Description and Illustrative Examples

Generation of the SWIGLAL interface uses SWIG (Simplified Wrapper and
Interface Generator; [8]), a software development tool. SWIG parses the header
files of a C/C++ library and identifies the symbols the library exports. It
then generates the wrapper code required to interface the library with a va-
riety of high-level languages, including Python and Octave. Because it takes
C/C++ header files directly as input, SWIG does not require additional code
to be written specifically for each exported symbol. Given the large number of
symbols exported by LALSuite (Table 1), the automation provided by SWIG re-
lieves LALSuite developers of a significant maintenance burden. SWIG wrapper
code can be further customised by adding directives which modify the SWIG-
generated wrapper code. For example, specific directives can be applied to every
class in order to add constructors and destructors. SWIG does not, however,
provide a general framework for automating the application of many directives
to arbitrary classes of symbols. To fully automate interface generation, SWIG-
LAL runs SWIG twice: first as a simple C/C++ header parser, then as an
wrapper code generator. The workflow is as follows:

1. For each LALSuite library, SWIGLAL generates a basic SWIG interface
which simply incorporates all the C header files provided by that library.

2. The basic SWIG interface is input to SWIG with its -xml option, which
generates an XML file containing a syntax tree of all symbols exported by
the LALSuite library headers.
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typedef s t ruc t tagREAL4Vector {
#i f d e f SWIG

SWIGLAL(ARRAY STRUCT 1D(REAL4Vector , REAL4 , data ,
↪→ UINT4 , l e n g t h ) ) ;

#end i f
UINT4 l e n g t h ;
REAL4 ∗ data ;

} REAL4Vector ;

Figure 1: Example usage of the SWIGLAL() macro in the wrapping of the LAL class
REAL4Vector. The ARRAY STRUCT 1D() macro exposes the “data” field of the REAL4Vector
class as a native scripting-language array of length “length”.

3. The XML syntax tree is input to a custom Python script, generate swig-

iface.py. It parses the XML syntax tree, gathers information about the
exported symbols, and generates the full SWIG interface, which augments
the basic interface with additional SWIG directives to implement desired
functionalities.

4. The full SWIG interface is input to SWIG with its -python or -octave

options to generate wrapper code for Python or Octave respectively, which
are then compiled into dynamically loadable modules. Python modules are
loaded using the import directive; Octave modules are loaded by simply
calling the name of the library, e.g. “ lal ;” for the LAL library.

The workflow is implemented as a collection of macros and build rules in the
GNU Autoconf/Automake build system used by LALSuite. Autoconf macros
perform configuration tasks, e.g. finding a compatible version of the swig binary,
and determining the C/C++ preprocessor/compiler/linker flags needed to build
the Python/Octave modules. Automake macros implement the workflow to
build the basic and full SWIG interfaces, and the Python/Octave modules, as
described above.

A key design objective of SWIGLAL is that the interfaces should resemble
and behave, in the supported high-level language, as close to native code written
in that language as possible. To that end, SWIGLAL provides a library of cus-
tom SWIG directives which modify the wrapper code to mediate between the
expected behaviour of native Python/Octave code and the semantics of the C-
language LALSuite libraries. The interface file SWIGCommon.i provides common
directives used in all languages, while SWIGPython.i and SWIGOctave.i pro-
vide directives specific to the Python and Octave interfaces respectively. Each
LALSuite library may also provide library-specific directives.

It is also sometimes necessary to add SWIG directives directly to the C
header files, in order to further modify the wrapper code for particular functions
or classes. SWIGLAL provides numerous macros, defined in SWIGCommon.i

which are then added to the C header files within #ifdef SWIG . . . #endif
blocks and wrapped in a common macro, SWIGLAL(); Figure 1 shows an example
usage. This approach keeps SWIG-related code added to the C header files as
succinct as possible. Figure 1 provides an example: the extensive code required
to expose the LAL REAL4Vector class as a native scripting-language array is
hidden within the ARRAY STRUCT 1D() macro.
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%extend tagLIGOTimeGPS {
tagLIGOTimeGPS ( ) {

return %s w i g l a l n ew i n s t a n c e ( s t ruc t tagLIGOTimeGPS ) ;
}
tagLIGOTimeGPS ( const s t ruc t tagLIGOTimeGPS ∗ s r c ) {

return %sw i g l a l n ew cop y (∗ s r c , s t ruc t
↪→ tagLIGOTimeGPS ) ;

}
∼tagLIGOTimeGPS ( ) {

%s w i g l a l s t r u c t c a l l d t o r ( XLALFree , $ s e l f ) ;
}

}

Figure 2a: Example expansion of the % swiglal struct extend () macro for the LAL class
LIGOTimeGPS. This class contains only static fields, and so SWIGLAL provides a con-
structor, copy constructor, and destructor for this class. The SWIG %extend directive adds
methods to an existing class; methods named after the class are interpreted as constructors,
while methods named after the class with the prefix “∼” are interpreted as destructors. The
%swiglal new instance() macro allocates a new LIGOTimeGPS instance using XLALCalloc();
the %swiglal new copy() macro creates a copy of an existing LIGOTimeGPS instance; and the
% swiglal struct call dtor () macro calls the destructor function XLALFree().

%extend tagREAL4Vector {
∼tagREAL4Vector ( ) {

%s w i g l a l s t r u c t c a l l d t o r ( XLALDestroyREAL4Vector ,
↪→ $ s e l f ) ;

}
}

Figure 2b: Example expansion of the % swiglal struct extend () macro for the LAL
REAL4Vector class. Since this class points in dynamically-allocated memory in its “data”
field (Figure 1), only the destructor is provided, which calls the destructor function
XLALDestroyREAL4Vector().

The remainder of this section describes some of the issues encountered in
fulfilling the objective of the SWIGLAL interface to closely resemble native
Python/Octave code, and how those issues are addressed.

2.1. Class constructors and destructors

LALSuite classes can be separated into two groups, based on their mem-
ory requirements. Classes which contain only static fields, and do not point
to dynamically-allocated memory, can be straightforwardly allocated and freed
with XLALMalloc()/XLALCalloc() and XLALFree()1. For classes which point to
dynamically-allocated memory, custom constructor and destructor functions are
provided; they are generally named after the class prefixed with “XLALCreate. . . ”
and “XLALDestroy. . . ”. The SWIGLAL generate swig iface.py script deter-
mines to which group each LALSuite class belongs, by using the XML parse

1These are LALSuite’s equivalents to the C functions malloc()/ calloc () and free (), but
which also provide optional memory debugging features.
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typedef s t ruc t tagREAL4TimeSer ies {
CHAR name [ LALNameLength ] ;
LIGOTimeGPS epoch ;
REAL8 de l taT ;
REAL8 f0 ;
LALUnit samp l eUn i t s ;
REAL4Vector ∗ data ;

} REAL4TimeSeries ;
REAL4TimeSeries ∗XLALCreateREAL4TimeSeries ( const CHAR

↪→ ∗name , const LIGOTimeGPS ∗epoch , REAL8 f0 , REAL8
↪→ de l taT , const LALUnit ∗ sampleUn i t s , s i z e t l e n g t h ) ;

void XLALDestroyREAL4TimeSeries ( REAL4TimeSeries ∗ s e r i e s ) ;

Figure 3a: Illustration of memory ownership tracking in SWIGLAL: Definition of the
LAL REAL4TimeSeries class. The “data” field of this class points to an instance of the
REAL4Vector class. The XLALCreateREAL4TimeSeries() function allocates memory for a
new REAL4TimeSeries instance, and for a new REAL4Vector instance which is pointed
to by the “data” field. The XLALDestroyREAL4TimeSeries() function destroys both the
REAL4TimeSeries instance and the pointed-to REAL4Vector instance.

tree to determine if a destructor “XLALDestroy. . . ” exists for a particular class.
The script then outputs calls to the macro % swiglal struct extend () as part of
the full SWIG interface. Figures 2a and 2b show two examples of the expansion
of % swiglal struct extend () for a class with only static fields (LIGOTimeGPS)
and a class with dynamically-allocated memory (REAL4Vector). The provision
of correct destructors is necessary to free the user from manual memory man-
agement, which high-level languages are expected to handle. The provision of
constructors for classes with static fields provides methods for creating new
classes from high-level languages without access to low-level memory functions
like XLALMalloc().

2.2. Memory ownership paradigms

LALSuite assumes that all class instances are referred to exactly once. When
a class instance is destroyed, all dynamically-allocated memory associated with
the instance is freed, including any instances of other classes that are pointed
to by the parent instance; put another way, the parent instance “owns” the
memory of the child instances it points to. High-level languages, however, allow
multiple references to be taken to a particular class instance, and memory is only
freed once no references to that instance remain. Class instances are responsible
for freeing their own memory, but do not “own” the memory of any instances
of other classes they point to.

Figures 3a and 3b illustrate how the tension between these different paradigms
of memory ownership could potentially cause problems. The LAL REAL4TimeSeries
class contains a pointer to an instance of the REAL4Vector class2, and its con-
structor and destructor functions create and destroy all dynamic memory associ-
ated with a REAL4TimeSeries instance, including the REAL4Vector pointer (Fig-

2Strictly speaking, REAL4TimeSeries is defined with a pointer to REAL4Sequence, a syn-
onym for REAL4Vector.
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1 >>> import l a l
2 >>> t s = l a l . CreateREAL4TimeSer ies ( ” t i m e s e r i e s ” ,

↪→ 1234567890.0 , 0 , 1 ./100 , l a l . Vo l tUn i t , 10)
3 >>> t s . data . data = range (0 , 10 )
4 >>> p r i n t ( t s . data . data )
5 [ 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . ]
6 >>> t s d a t a = t s . data
7 >>> del t s
8 >>> p r i n t ( t s d a t a . data )
9 [ 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . ]

10 >>> del t s d a t a

Figure 3b: Illustration of memory ownership tracking in SWIGLAL: Example usage in
Python. The user creates a new REAL4TimeSeries instance at line 2, and assigns values to
the data array pointed to by the REAL4Vector instance in lines 3 and 4. The user stores
a reference to the “data” member of the REAL4TimeSeries instance in line 5, and attempts
to delete the REAL4TimeSeries instance in line 6 using the Python del operator. This does
not, however, trigger an immediate call to XLALDestroyREAL4TimeSeries(), since SWIGLAL
knows that the user retains a reference to the REAL4Vector instance in the variable “ts data”.
The data contained in the REAL4Vector instance therefore remains accessible (line 8), and
XLALDestroyREAL4TimeSeries() is called only when “ts data” is destroyed (line 9).

ure 3a). In Python, however, the REAL4TimeSeries and REAL4Vector instances
have no parent–child relationship; the user is free to create a REAL4TimeSeries
instance (Figure 3b, line 2), store a reference to the REAL4Vector instance it
points to [line 6], then delete the REAL4TimeSeries instance [line 7] and assume
the REAL4Vector instance will continue to be valid [line 8]. This is incom-
patible with the LALSuite memory ownership model, which would destroy the
REAL4Vector instance along with the REAL4TimeSeries that pointed to it, cor-
rupting the reference stored to the REAL4Vector by the user.

To resolve this tension, the SWIGLAL interface implements a system which
tracks the memory ownership relationship between instances. In Figure 3b,
line 6, SWIGLAL modifies the wrapper code for the “data” field of “ts” to
record that the REAL4Vector instance “ts .data”, assigned to “ts data”, is owned
by the REAL4TimeSeries instance. This record is stored in an associative array
called the parent map. The parent map also records a reference count of the
number of times “ts .data” has been accessed. Then, in line 7, the Python
del operator is called on “ts”, which would normally immediately call the
REAL4TimeSeries destructor; here SWIGLAL intervenes to check whether “ts”
exists in the parent map, i.e. whether it owns the memory of another class
instance. Since “ts” owns the memory of “ts .data”, the destructor function
XLALDestroyREAL4TimeSeries() is not called, and so the memory allocated for
the REAL4Vector instance stored by “ts data” is not destroyed. Finally, in
line 10, the Python del operator is called on “ts data”; here SWIGLAL checks
who owns the memory of “ts data” (i.e. the original “ts” object) and whether
there are any outstanding references to that memory. Since both “ts” and
“ts data” have been destroyed, it is safe for SWIGLAL to call the now call the
destructor function XLALDestroyREAL4TimeSeries() for the REAL4TimeSeries
instance created in line 2.

The SWIGLAL memory ownership tracking system, combined with the na-
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tive reference counting of objects in Python and Octave, completely frees the
user from any manual memory management, as is appropriate for a high-level
language, while respecting the LALSuite memory management paradigm. Mem-
ory allocated by LALSuite functions is only freed once it is no longer used, and
conversely is retained only as long as needed, thus minimising memory usage.

2.3. Fixed-length and dynamically-sized arrays
Gravitational-wave data analysis frequently involves operations on large time-

and/or frequency-domain data series, and LALSuite provides many functions
and classes to represent such data, such the REAL4Vector (Figure 1) and REAL4TimeSeries
(Figure 3a) classes. Such data should be accessible from within the SWIGLAL
interface as native array objects, and in an efficient manner without copying of
data between the C class instance and its high-level language representation.

SWIGLAL provides several typemaps for converting numerical arrays to/from
native array objects; for Python, NumPy [9] arrays are used, while for Octave
the native matrix type (or subclasses thereof) are used. For fixed-length C
arrays, SWIGLAL supports both one- and two-dimensional arrays; typemaps
are provided for both function arguments and C structure fields. Dynamically-
allocated arrays are typically implemented as specific classes in LALSuite; SWIG-
LAL provides directives which are added to those classes to provide the type con-
version. For the REAL4Vector class, for example (Figure 1), the ARRAY STRUCT 1D()
macro modifies the wrapper code for the “data” field, so that e.g. in Python it
accepts any valid sequence of floating-point numbers on assignment, and ex-
poses the “data” field as a NumPy array [10] view which directly accesses the
underlying C memory.

Some LALSuite array classes store only array data, and nothing else: REAL4Vector
(Figure 1) is such a class, while REAL4TimeSeries (Figure 3a) contains additional
fields. SWIGLAL provides additional typemaps for pure-array classes such as
REAL4Vector so that functions can accept both class instances and native array
objects as arguments. For example, the Python interface to a function which
takes a REAL4Vector instance as an argument will also accept a NumPy array
of the appropriate type.

2.4. Example: extract strain data at time of GW 150914
Figure 4 shows the output of an example Python script, listed in the Ap-

pendix, which extracts the strain data at the time of the first detected gravita-
tional wave event GW 150914 [cf. Figure 1 of 3]. The script reads in strain
data from the LIGO Hanford detector [11] at the time of the event, available
from [12]; whitens and band-pass-filters the data so that the event is clearly visi-
ble; and plots the processed strain data in the vicinity of the event. The script is
not intended as an example of best-practise signal processing for gravitational-
wave data analysis, but as an illustration of what may be accomplished in 35
lines of Python code, by harnessing the power of LALSuite routines through the
SWIGLAL interface.

3. Impact

3Includes the packages: GstLAL Ugly, version 1.6.6, GstLAL Inspiral, version 1.6.9; Gst-
LAL Calibration, version 1.2.11, GstLAL Burst, version 0.2.0 [19].
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Sources Constants Variables Functions (LOC) Classes
LALSuite, version 6.67 [5]. LOC: C ∼ 95%, Python ∼ 5%.

LAL(Support) 71/222 25 3 32 (3k) 18
LALBurst 39/222 0 0 1 (0.5k) 0
LALFrame 8/222 0 0 20 (4k) 4
LALInference 27/222 7 3 24 (93k) 4
LALInspiral 7/222 0 0 5 (1k) 1
LALMetaio 8/222 0 0 0 (0) 2
LALPulsar 10/222 9 0 43 (16k) 21
LALSimulation 20/222 0 0 40 (60k) 0

PyCBC, version 1.15.4 [13]. LOC: Python ∼ 100%.
LAL(Support) 41/309 16 0 32 (3k) 20
LALFrame 2/309 2 0 25 (6k) 1
LALPulsar 1/309 1 0 5 (2k) 2
LALSimulation 14/309 4 1 50 (61k) 1

GstLAL, version 1.5.1 3. LOC: C ∼ 52%, Python ∼ 48%.
LAL(Support) 41/117 6 1 16 (2k) 11
LALSimulation 9/117 0 0 7 (59k) 0

Bilby, version 0.6.5 [14]. LOC: Python ∼ 100%.
LAL(Support) 8/83 3 0 5 (1k) 8
LALSimulation 5/83 0 0 18 (59k) 0

GWpy, version 1.0.1 [15]. LOC: Python ∼ 100%.
LAL(Support) 10/267 10 8 3 (1k) 4
LALFrame 2/267 0 0 9 (3k) 2

PyFstat, version 1.3 [16]. LOC: Python ∼ 100%.
LAL(Support) 6/28 8 1 5 (1k) 6
LALPulsar 6/28 10 1 22 (14k) 21

CWInPy, version 0.2.1 [17]. LOC: Python ∼ 100%.
LAL(Support) 3/42 2 0 4 (1k) 4
LALInference 14/42 0 1 0 (0) 0
LALPulsar 2/42 0 0 1 (1k) 0
LALSimulation 1/42 0 0 9 (1k) 0

OctApps, version 0.2 [18]. LOC: Octave ∼ 100%.
LAL(Support) 9/243 7 0 9 (1k) 5
LALPulsar 7/243 29 1 22 (13k) 20

Table 2: Usage of the SWIGLAL interfaces by LALSuite itself, and by the Py-
CBC, GstLAL, Bilby, GWpy, PyFstat, CWInPy, and OctApps packages. The
header for each table section gives the package name and version, and the per-
centage of (non-blank, non-comment) lines of code (LOC) written in C, Python,
and/or Octave. The columns give the number of source files (out of the total
in each package) which reference the SWIGLAL interfaces of each LALSuite
library, as well as the number of distinct constants, variables, functions, and
classes exported by the SWIGLAL interfaces that are referenced by each pack-
age. For functions, an estimate of the total (non-blank, non-comment) lines
of C code (LOC) represented, including nested calls, is given in parentheses.
Note that SWIGLAL provides a single interface to the LAL and LALSupport
libraries, which are therefore counted together.
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Figure 4: Whitened, band-pass-filtered strain data from the LIGO Hanford detector at the
time of the gravitational-wave event GW 150914, as output by the example Python script
listed in the Appendix.

Table 2 show the usage of the SWIGLAL interfaces by Python code within
LALSuite itself, and by seven other gravitational-wave data analysis packages.
The table gives, for each LALSuite library: the number of source files (out of the
package total) which reference the SWIGLAL interface for that library (e.g. by
importing the interface in Python using “import”), and the number of distinct
symbols referred to by the package. The table also lists an estimate of the total
lines of C code represented by the LALSuite functions referenced from each
package; the estimates include any nested calls to other LALSuite functions.
Python code within LALSuite is a substantial user of SWIGLAL, in terms of
source files (∼ 3–30%), and lines of C code utilised (∼ 180k).

The PyCBC [20, 21, 22, 23] and GstLAL [24, 25] data analysis packages were
used in the first detections of gravitational waves [3, 4]. PyCBC makes use of
the LAL library in over 10% of its source files, mostly for manipulating time-
and frequency-domain data series. It uses 25 functions from LALFrame to read
and write gravitational wave data in the standard Frame format [26] produced
by gravitational-wave observatories. It uses 50 functions from LALSimulation
to generate template waveforms for matched filtering of the gravitational-wave
data. It uses a few functions from LALPulsar for template bank generation [27].
The total lines of LALSuite code utilised by PyCBC is ∼ 72k. While primarily
written in C, GstLAL uses 16 functions from the LAL library to manipulate
time- and frequency-domain data, and compute the geocentric time delay to
the gravitational-wave observatories, from Python scripts. It uses 7 functions
from LALSimulation to generate template waveforms in Python. The total lines
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of LALSuite code utilised by GstLAL from Python is ∼ 61k.
Bilby [28] aims to be a user-friendly package for Bayesian inference for use

in gravitational-wave data analysis [e.g. 29]. It accesses LALSuite through the
SWIGLAL interfaces in ∼ 5–10% of its source files. The LAL library is used
to handle time- and-frequency domain gravitational-wave data, and LALSim-
ulation is used to generate template waveforms for computing the Bayesian
likelihood function. A total of ∼ 60k lines of LALSuite code are utilised.

GWpy [30] is a general package for easily accessing, visualising, and studying
gravitational-wave data. It makes use of the LAL and LALFrame libraries, pri-
marily for manipulating gravitational-wave data in the Frame format, in about
∼ 5% of its source files. It uses ∼ 4k lines of LALSuite code in total.

PyFstat [31], CWInPy [32], and OctApps [33] are data analysis packages
focused on the search for continuous gravitational waves from rapidly rotating
neutron stars; this class of gravitational wave signals has not yet been detected.
PyFstat uses LAL and LALPulsar (in ∼ 20% of its source files) to compute
the F-statistic [34], a standard data analysis routine for continuous gravita-
tional wave searches. CWInPy uses a few LALSuite routines to e.g. handle
frequency-domain data, convert between time standards, and access properties
of the gravitational-wave observatories. OctApps uses routines, predominately
from LALPulsar, to compute the F-statistic and its associated parameter space
metric [35] for designing continuous gravitational wave searches. Both PyFstat
and OctApps use ∼ 14–15k lines of LALSuite code, which CWInPy uses ∼ 3k.

4. Conclusions

LALSuite is an important, well-tested component of the gravitational-wave
data analysis software stack. SWIGLAL makes innovative use of SWIG to
provide automatically-generated interfaces to LALSuite for Python and Octave,
with an emphasis on modelling native code behaviour in those languages. The
interfaces have facilitated the development of modern gravitational-wave data
analysis software written in Python, in particular PyCBC which was used in
the first discovery of gravitational waves. The extensive use of the interfaces
by a wide variety of Python and Octave packages for gravitational-wave data
analysis demonstrates the impact and usefulness of SWIGLAL.
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Appendix: Example Python script to extract strain data at time of
GW 150914

import l a l
import l a l f r am e as l a l f r
import numpy as np
import ma t p l o t l i b . p yp l o t as p l t

# read s t r a i n data at t ime o f GW 150914
# − f rame f i l e downloaded from

↪→ h t t p s : //www. gw−open s c i e n c e . org /
f r a m e f i l e =

↪→ l a l f r . FrFi leOpenURL ( ” . /H−H1 GWOSC 4KHZ R1−1126259447−32. gwf” )
gw s t r a i n = l a l f r . FrF i l eReadREAL8TimeSer ies ( f r am e f i l e ,

↪→ ”H1 :GWOSC−4KHZ R1 STRAIN” , 0)

# compute ave rage power s p e c t r a l d e n s i t y o f s t r a i n data
p sd s egmen t l e n = i n t ( 4 . 0 / gw s t r a i n . de l t aT )
psd window = l a l . CreateTukeyREAL8Window ( psd segment l en ,

↪→ 0 . 5 )
f f t p l a n =

↪→ l a l . CreateForwardREAL8FFTPlan ( p sd s egment l en , 0)
gw psd l eng th = psd s egmen t l e n // 2 + 1
gw psd = l a l . CreateREAL8FrequencySer i e s ( ” psd” ,

↪→ gw s t r a i n . epoch , 0 , 0 , l a l . D imen s i on l e s sUn i t ,
↪→ gw psd l eng th )

l a l . REAL8AverageSpectrumWelch ( gw psd , gw s t r a i n ,
↪→ psd segment l en , p sd s egment l en , psd window ,
↪→ f f t p l a n )

gw psd f = gw psd . f 0 + np . a range ( gw psd . data . l e n g t h ) ∗
↪→ gw psd . d e l t aF ;

# tran s f o rm s t r a i n data to F o u r i e r domain
gw f o u r i e r l e n g t h = gw s t r a i n . data . l e n g t h // 2 + 1
gw f o u r i e r d e l t a F = 0 .5 / gw s t r a i n . de l t aT /

↪→ ( gw f o u r i e r l e n g t h − 1)
f f t p l a n =

↪→ l a l . CreateForwardREAL8FFTPlan ( gw s t r a i n . data . l eng th ,
↪→ 0)

gw f o u r i e r =
↪→ l a l . CreateCOMPLEX16FrequencySeries ( ” f o u r i e r ” ,
↪→ gw s t r a i n . epoch , 0 , gw f o u r i e r d e l t a F ,
↪→ l a l . D imen s i on l e s sUn i t , g w f o u r i e r l e n g t h )

g w f o u r i e r f = gw f o u r i e r . f 0 +
↪→ np . a range ( gw f o u r i e r . data . l e n g t h ) ∗
↪→ gw f o u r i e r . d e l t aF ;

l a l . REAL8ForwardFFT ( gw f o u r i e r . data , gw s t r a i n . data ,
↪→ f f t p l a n )

# whi ten s t r a i n data i n F o u r i e r domain
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gw p s d a t f o u r i e r f = np . i n t e r p ( gw f o u r i e r f , gw psd f ,
↪→ gw psd . data . data )

gw f o u r i e r . data . data = gw f o u r i e r . data . data /
↪→ np . s q r t ( g w p s d a t f o u r i e r f )

# tran s f o rm whi tened s t r a i n data back to t ime domain
f f t p l a n =

↪→ l a l . CreateReverseREAL8FFTPlan ( gw s t r a i n . data . l eng th ,
↪→ 0)

l a l . REAL8ReverseFFT ( gw s t r a i n . data , gw f o u r i e r . data ,
↪→ f f t p l a n )

# band−pas s f i l t e r wh i tened t ime s e r i e s between 50 and
↪→ 300 Hz

l a l . HighPassREAL8TimeSer ies ( gw s t r a i n , 50 , 0 . 1 , 6)
l a l . LowPassREAL8TimeSeries ( gw s t r a i n , 300 , 0 . 1 , 6)

# ex t r a c t s t r a i n data [ −0 . 15 , 0 . 10 ] s econds around GW
↪→ 150914

t ime of GW150914 = l a l . LIGOTimeGPS( ” 1126259462.4 ” )
f i r s t s am p l e = i n t ( ( ( t ime of GW150914 − 0 . 15 ) −

↪→ gw s t r a i n . epoch ) / gw s t r a i n . de l t aT )
num samples = i n t ( 0 . 25 / gw s t r a i n . de l t aT )
gw s t r a i n = l a l . CutREAL8TimeSeries ( gw s t r a i n ,

↪→ f i r s t s amp l e , num samples )
gw s t r a i n t = f l o a t ( gw s t r a i n . epoch − t ime of GW150914 )

↪→ + np . a range ( gw s t r a i n . data . l e n g t h ) ∗
↪→ gw s t r a i n . de l t aT

# p l o t s t r a i n data
p l t . p l o t ( gw s t r a i n t , gw s t r a i n . data . data /

↪→ max( gw s t r a i n . data . data ) , ”k−” )
p l t . t i t l e ( ”Demonst rat ion o f SWIGLAL : s t r a i n data at GW

↪→ 150914” )
p l t . x l a b e l ( f ”Time r e l a t i v e to GPS { t ime of GW150914}” )
p l t . y l a b e l ( ”Ampl i tude / maximum amp l i tude ” )
p l t . show ( )
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