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An example of a consistent theory with massive higher spin fields is constructed in flat space-time of
dimension three. The action is written in the light-cone gauge. The theory has certain stringlike features,
e.g., its spectrum is unbounded in spin and mass; the theory admits Chan-Paton factors. The quartic and the
higher tree-level amplitudes vanish, which softens the UV behavior at the loop level and provides a new
mechanism of how massive higher spin states can resolve the quantum gravity problem.
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I. INTRODUCTION

Higher spin states are of crucial importance for con-
structing viable models of quantum gravity, at least within
certain approaches. Indeed, lower spin extensions of
gravity like supergravities seem to suffer from UV diver-
gences sooner or later [1]. Therefore, higher spin states
are needed, if there is a solution at all along these lines.
The consistency of string theory relies on a very specific
spectrum of higher spin states. Last, in d ≥ 3, even the
smallest conformal field theories (CFTs) like the critical
vector model have single-trace operators of arbitrarily high
spin. Therefore, for any such CFTd, the holographically
dual gravitation description in AdSdþ1 would have to
contain higher spin states [3].
The general question we would like to address is whether

or not there are consistent theories of quantum gravity that
are much smaller than string theory and are as close to field
theories as possible. These theories, if any, will have to
contain infinitely many higher spin states and the spectrum
has to be unbounded in spin [11]. Having infinitely many
fields in a theory is slightly outside the scope of field theory
in that the sum rules have to be prescribed by hand unless a
more fundamental principle is understood; e.g., in string
theory, the worldsheet performs this role.

In looking for consistent theories with higher spin fields
(ideally, for quantum gravity), one has to start from a point
in the theories’ space that is far enough from string theory
itself, the reason being that the Veneziano [20] and the like
amplitudes seem to be quite unique [21]. We will use the
light-front bootstrap—the most general approach to local
field theory where the constraints on the spectrum and
amplitudes result from the closure of the Poincaré (or any
other) space-time symmetry algebra. The light-cone gauge
allows one to directly deal with the dynamical degrees of
freedom avoiding covariant descriptions that are usually
ambiguous. For example, with the help of the light-cone
approach, one avoids dealing with the gauge symmetry,
which is just a redundancy, whenever massless states are
present.
One approach to the quantum gravity problem that

systematically probes the most minimal higher spin exten-
sions of gravity is higher spin gravity (HSGRA). The main
idea is to look for a completion of gravity with massless
higher spin fields. The masslessness is expected to be
equivalent to considering the high energy limit and the
associated gauge symmetry is supposed to impose severe
constraints on the structure of interactions and on possible
counterterms. Since constructing a quantum gravity model
has never been a simple task, many attempts to look for
HSGRA s have faced numerous difficulties that can
eventually be attributed to many no-go results against field
theories with massless higher spin fields both in flat [22]
and anti–de Sitter (AdS) spaces [28].
The HSGRA programme has already been successful in

giving a handful of classical theories that avoid the no-go
results and provide rather simple models of quantum
gravity, with the progress in proving the quantum consis-
tency varying from model to model. At present, there are
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higher spin extensions of usual [30–33] and conformal
gravity [34–36] in 3d that can all be formulated [37] as
Chern-Simons theory with certain additional data [38].
There exists also a higher spin extension of the 4d
conformal gravity [39–41] with encouraging checks of
the quantum corrections [42,43]. Another useful model is
the 4d chiral theory [17–19] that exists both in flat and
AdS4 [44,45] backgrounds, being related to SDYM (self-
dual Yang-Mills theory) and QCD in the former [46] and to
Chern-Simons matter theories and dualities therein [47–52]
in the latter [45]. The theory is one-loop finite [53].
In the present paper, we construct the first example of a

theory with massive higher spin fields with the help of
the light-front approach. We chose to do this in three
dimensions which is the lowest dimension where massive
higher spin fields have propagating degrees of freedom. At
the same time, massless higher spin fields, including the
graviton, do not have any local degrees of freedom in 3d.
Therefore, they do not exist in the light-cone approach.
The outline is that we first review the basics of the light-

cone approach and then apply it to massive spinning fields
in 3d, where an exhaustive classification of cubic vertices
has very recently been obtained by Metsaev [56].

II. LIGHT-FRONT BOOTSTRAP

The main idea dating back to Dirac [57] is that the
combination of relativity with Hamiltonian dynamics
implies that any classical or quantum field theory should
deliver a realization of the space-time symmetry algebra,
e.g., of the Poincaré algebra if we are in flat space,

½PA; PB� ¼ 0; ð1Þ

½JAB; PC� ¼ PAηBC − PBηAC; ð2Þ

½JAB; JCD� ¼ JADηBC þ 3more: ð3Þ

Once a field theory is already known, the charges result
from contracting the stress-tensor TAB with the Killing
vector of the Poincaré algebra and integrating over the
Cauchy surface. Alternatively, one can attempt to construct
PA and JAB directly. Most of the generators, those that
preserve the Cauchy surface, stay quadratic in the fields.
What Dirac also noticed is that the number of the dynamical
generators, i.e., those that are deformed by interactions, is
minimal for the light-front quantization. They are the
Hamiltonian and (d − 2) of the boost generators, Ja−,
A ¼ a;þ;−. Therefore, one needs to solve

½Ja−; P−� ¼ 0; ½Ja−; Jc−� ¼ 0: ð4Þ

These are exactly the equations that fix the critical
dimension and intercept of string theory in the light-cone
quantization [58]. At the classical level, the second equa-
tion is a consequence of the first one [59].

The light-cone gauge is a convenient method to work
with the theory, check its consistency and unitarity. What
has not been much appreciated is that the light-front
approach is an efficient tool to bootstrap new theories
[17,18,60–62]. It also works in anti–de Sitter space [44]
and for conformal field theories [45].
What one needs to do is to start out with a putative

spectrum of fields and some basic interactions. Equation (4)
will tell us if the spectrum needs to be enlarged and/or if
more interactions should be added. Eventually, it fixes both
the spectrum and all the couplings. To the lowest order, the
equations to be solved are

½H2; Ja−3 � þ ½H3; Ja−2 � ¼ 0; ð5Þ

where H ≡ P− is the light-cone Hamiltonian and the
subscript means the order of expansion. Free fields give
H2 and J2 that are bilinear in the fields and are, of course,
known [63], e.g.,

H2 ¼ −
1

2

Z
dd−1pΦ†

μðxþ; pÞ½papa þm2�Φμðxþ; pÞ: ð6Þ

In the light-cone gauge and in the momentum space, each
field is represented by Φμðxþ; pÞ, where μ is an abstract
spin label to distinguish between different irreducible
fields, xþ is the light-cone time and will be omitted in
the following discussion [64]. Momentum p consists of the
transverse part pa and pþ, which we abbreviate as β.
Equation (5) fixes the cubic vertices, i.e., determine what

are possible interactions among a given set of fields [65]. It
does not yet fix the spectrum and the coupling constants in
front of various independent cubic vertices. Usually, the
decisive equation is the quartic one,

½H3; Ja−3 � þ ½H4; Ja−2 � þ ½H2; Ja−4 � ¼ 0: ð7Þ

In most cases, it fixes the spectrum and the cubic couplings
up to a few coupling constants. While in Yang-Mills-type
theories, the deformation stops at the quartic order; this is
not so for generic gravitational theories. Therefore, finding
H4, Ja−4 and the higher ones can be tedious. Nevertheless,
one expects that (7) is constraining enough as to fix the
spectrum of a theory and to resolve the question of whether
it exists or not. In some lucky cases,H4, Ja−4 , and the higher
ones vanish. Then, H3 leads to an action that stops at the
cubic level. One such example is the 4d chiral theory
[17–19].
The light-front bootstrap should eventually be equivalent

to the generalized unitarity methods, see e.g., [66], but it
can be more handy and efficient sometimes.

III. MICRO STRING THEORY

In this paper, we will look for the simplest solutions to
the equations of the light-front bootstrap. Namely, we will
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look for theories with massive higher spin fields that do not
require higher order corrections, i.e., we will attempt to
solve

½H3; Ja−3 � ¼ 0: ð8Þ

In order to proceed, we need the standard representation for
H3 and Ja−3 in terms of densities h3 and ja−3 ,

H3 ¼
Z

dΓ3h3ðP; βi; μiÞTr
Y3
k¼1

Φ†
μkðpkÞ;

Ja−3 ¼
Z

dΓ3

�
ja−3 −

1

3
h3
X
j

∂
∂pa

j

�
Tr

Y3
k¼1

Φ†
μkðpkÞ;

where dΓn ¼ δd−1ðPj pjÞ
Q

j d
d−1pj. The formulas are

valid in any d. The sum over all μ1;2;3 that belongs to
the spectrum is implicit. The densities are functions of μi,

βi, P, where Pa ¼ 1
3

P
j β̌jp

a
j and β̌j ¼ βjþ1 − βj−1 modulo

3. The trace Tr is a trace over the color indices, if present.
Now, with the help of the momentum conservation and of
the canonical Dirac bracket,

½ΦμðpÞ;Φμ0 ðp0Þ� ¼ δd−1ðpþ p0Þ
2pþ Kμ;μ0 ; ð9Þ

where Kμ;μ0 is a symmetric matrix, commutator (8) can be
evaluated to

½H3; Ja−3 � ¼
Z

dΓ4Eaðμi; pi; βiÞTr
Y4
j¼1

Φ†
μjðpjÞ: ð10Þ

The equation Ea ¼ 0 is the main equation to be solved and
Ea can be represented as (β ¼ β1 þ β2),

Ea ¼
X

h3ðP12; β1; β2;−β; μ1; μ2;ω0ÞKω;ω0

2β

�
ja−3 ðP34; β3; β4; β; μ3; μ4;ωÞ −

1

3
ðβ3 − β4Þ

∂
∂Pa h3ðP34; β3; β4; β; μ3; μ4;ωÞ

�
:

The
P

corresponds to summation over (i) the exchanged
states ω, ω0 and (ii) permutations of the external legs, e.g.,
over the cyclic permutations of the arguments if the trace Tr
over the color indices is retained or over all permutations if
there are no color indices and the fields on the external lines
are the same.
Our study [67] shows that generic interactions cannot

satisfy (8) or Ea ¼ 0 for a very simple but technical reason.
Therefore, we turn to the interactions that are specific to
three dimensions. In 3d, the label μ is a pair ðs;mÞ where s
is the spin, s ≥ 0, and m is a mass, i.e., we have ϕs;mðpÞ.
For s > 0, the two signs of the mass, m > 0 and m < 0,
correspond to different irreducible fields, which are called
massive (anti)self-dual fields. It is more convenient to
introduce complex conjugate fields

Φ†
λ;mðpÞ ¼ Φ−λ;mð−pÞ ð11Þ

that obey (9) with Kλ;m;λ0;m0 ¼ δm;m0δλþλ0;0. The scalar field
Φ0;m is real. A complete classification of all cubic inter-
action vertices in 3d is available [68].
One of the main results of the present paper is that the

following Hamiltonian solves Ea ¼ 0 and, hence, gives an
example of a consistent theory,

h3 ¼
Xþ∞

λi¼−∞

X
ki

Cðki; λiÞVðP; βi; ki; λiÞ;

where i ¼ 1, 2, 3. The coupling constants are

C ¼
δP

i
kiϵi;0

Γ½Λ� ; Λ ¼
X
i

λi; ð12Þ

and the vertex reads [69]

V ¼ ðPþ PλÞΛ
Y
i

β−λii : ð13Þ

Here we also define

Pλ ¼
i
3
m
X

β̌jϵjkj; ϵi ¼ signðλiÞ: ð14Þ

The spectrum of the theory contains all spins s ¼
0; 1; 2; 3;… and all masses that are integer multiples,
km, of some basic mass m. It is also possible to introduce
color factors, Φ≡ΦαTα, by making Φ matrix-valued. It is
easy to see that UðNÞ, OðNÞ, and USpðNÞ gaugings are
possible [70].
What should be remembered is that, even though free

massive fields can be obtained via dimensional reduction
from the massless ones, this may be not so for interactions.
There can be more vertices among massive higher spin
fields than can be obtained via a compactification [72].
Nevertheless, the present theories are relatives of the 4d
chiral theory. Indeed, one can obtain the Hamiltonian above
as a compactification on the circle along x3 via [74]

Ψλðp; x3Þ ¼
X
k

exp½ikmx3signðλÞ�Φλ;mkðpÞ:
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Due to the somewhat formal nature of such a compacti-
fication, e.g., there are no massless fields with s > 0 in 3d
[75], it is necessary to check the closure of the algebra
again. In fact, it is more illuminating to start out in 3d and
investigate the constraints imposed by Ea ¼ 0.
Generic interactions, i.e., without fine-tuned masses,

require higher orders and cannot solve Ea ¼ 0. Non-
generic cubic interactions (14) require [76]

X
j

ϵjmj ¼ 0; ϵj ∈ f�1g: ð15Þ

Therefore, masses tend to form a lattice. Still, one needs to
achieve Ea ¼ 0. Under very mild assumptions that at least
some couplings Cðki; λiÞ do not vanish identically [78], the
only possibility to satisfy Ea ¼ 0 is when each spin-s
“exchange” that contributes to Ea (the sum over ω;ω0) is a
member of a family of exchanges that start at the lowest
possible spin and end at the highest possible spin. This
implies a formation of Regge-like trajectories. Therefore,
certain crucial features of string theory are already visible
in the smallest theories with higher spin states.
A straightforward computation shows that the quartic

amplitude vanishes on-shell and the sum over the KK-
modes does not create any problem due to the conservation
of the lattice momentum [79]. The cubic amplitude does
vanish as well, but the cubic vertices are nontrivial [80].
Using the Berends-Giele currents [81] as in [54,55], one
can show that the higher tree-level amplitudes vanish as
well, i.e., we have An;treeðp1;…; pnÞ ¼ 0 [82].
The vanishing of the tree-level amplitudes An;tree has to

soften the UV-behavior of the loop corrections [83].
Therefore, as in the 4d chiral theory, we expect the
n-point one-loop amplitudes to be UV-finite [46,54,55].
We note in passing that in the chiral theory the one-loop
amplitudes are closely related to those of QCD and SDYM
[46,55]. The UV-finiteness strengthens the importance of
higher spin states present in the form of Regge-like
trajectories for the UV-consistency of the theory.
In addition, each loop diagram is accompanied by a

purely numerical and divergent factor ν ¼ P
λ 1. In the 4d

case, the Weinberg low energy theorem instructs us to set
ν ¼ 0, which is also consistent with a web of results on
one-loop determinants [84–93] and especially with [90].
For massive higher spin fields, we are not obliged to set
ν ¼ 0 and it would be interesting to see if there are other
consistent choices.

IV. CONCLUSIONS

We have looked for the most minimal theories (those that
do not need higher corrections, Hn, n ≥ 4, to the
Hamiltonian) with massive higher spin fields in 3d, but
even in this case the complete classification of solutions to
the light-front equations is not yet known [94]. In addition,
there should exist theories that do not stop at the cubic order

and where the present one is as a closed subsector [96].
Massive higher spin fields can resolve some of the
singularities faced for massless fields [99]. In particular,
massive higher spin fields in Minkowski space can, in some
sense, model massless higher spin fields in AdS since the
latter also has masslike terms.
There is one more consistent higher spin theory that

immediately follows from [19]: its spectrum consists of
spin-two and spin-s fields (here s is fixed) with KK-masses
km. It results from reducing a consistent gravitational
coupling of the 4d massless spin-s field that includes the
spin-two self-coupling as well. As is known [100], the
consistency of dimensionally reduced theories is a non-
trivial issue and requires careful regularization.
Another interesting application is motivated by the zoo

of the massive spin-two theories in 3d; see e.g., [101] for a
review of all known cases. It is obvious that many of the
ideas and approaches admit a generalization to higher spin
fields. It would be important to explore this direction
further and to construct Lorentz covariant examples of
theories with massive higher spin fields. In particular, we
cannot see in the light-cone gauge if the theory discussed
above can be coupled to 3d gravity since the latter has no
local degrees of freedom.
It would also be important to pursue the programme of

bootstrapping theories with massive higher spin fields
further. In particular, the most interesting applications
are expected to be in four dimensions. Here, one should
start out with a graviton, as a massless spin-two field, and at
least one massive higher spin field, assuming them to be
minimally coupled. Our preliminary considerations indi-
cate that there should exist such a theory with a graviton
and massive higher spin fields [102]
More generally, one should investigate further if there are

consistent theories with higher spin fields that are much
smaller than string theory, which should shed more light on
the quantum gravity problem. One advantage of the
bottom-up approach, in particular of the light-front one,
is that it should eventually be possible to chart out the
landscape of all consistent theories.
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