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In two-dimensional turbulent systems the redistribution of energy can be described by quadratic
non-linear three-wave interactions, which are limited by resonance conditions. The set of coupling
modes can be understood as resonant manifold. It has been predicted by theory that in the presence
of a shear flow the resonant manifold in wavenumber space shrinks in time favoring large scale
structures. The phenomenon of manifold shrinking in the presence of shear flows is studied the first
time experimentally in drift wave turbulence at the stellarator TJ-K by bicoherence analysis. By
estimating effective mode numbers characterizing the width of the manifold, it is demonstrated that
increasing shear leads to a shrinking of the resonance manifold.

In wave turbulence the nonlinear interaction can be ap-
proximately described by resonant N-wave interactions,
where the resonance is restricted by the dispersion rela-
tion of the wave [1]. Sheared flows can impact the res-
onance of the wave coupling process. In turbulent 2D
systems, as, e.g., MHD turbulence in the plane trans-
verse to the external magnetic field [2, 3] and Rossby
waves in the atmosphere [4, 5], mesoscopic shear flows
are generated by a self-enhancing mechanism akin to an
inverse cascade process. A prominent example is the
zonal flow (ZF) which reacts back on the turbulence and
suppresses its own driver, leading to predator-prey-like
limit cycle oscillations [6, 7]. These large-scale flows can
regulate turbulent transport perpendicular to their flow
direction [8, 9]. For magnetized fusion plasmas it is be-
lieved that ZFs could play an important role in the for-
mation of the transport barrier, which manifests itself in
a strong stationary shear flow in the edge of the confined
region, during the transition from low to high confine-
ment regime [10–14]. Therefore, the effect of shear flows
on the turbulence and their nonlinear wave interaction
becomes the focus of attention. In this work, for the first
time, the effect of self generated sheared flows (ZFs) on
the resonant three-wave interaction of drift waves is stud-
ied experimentally. For this investigation, the temporal
evolution of the resonance coupling manifold is resolved
in wavenumber space enabled by measurements with a
probe array in the low-temperature plasmas of stellarator
experiment TJ-K [15]. We find that the resonance mani-
fold shrinks with increasing shear and extends back when
the shear vanishes. The experimental results agree well
with model calculations relying on experimental shear
data.

Drift-wave turbulence can be described by the
Hasegawa-Wakatani equations [16] or, in the adiabatic
limit, by the Hasegawa-Mima equation [17]. A Fourier

transformation leads to the wave-coupling equation
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with the nonlinear coupling term on the right-hand
side originating from the convective derivative. Here,
φ̂ki is the dimensionless potential in Fourier space and
ω(k3) the drift wave dispersion relation. The po-
tential is related to the flow by the E × B drift
v = −∇φ×B/B2. The coupling coefficient Λk1,k2

=
k1 × k2 · z

(
k2

2 − k2
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)
/(1 + k2

3) determines the strength
and direction of the individual couplings. The constraint,
under which coupling takes place, is

k1 + k2 = k3 , (2)

the resonance condition for three-wave interaction. It
expands to the resonance condition in frequency space,
ω(k1) + ω(k2) − ω(k3) = ∆ω ≈ 0, via the dispersion
relation ω(ki) = ki,y/(1 + k2

i ), and limits the set of pos-
sible couplings in k-space [18]. Thus, for a specific mode
only a distinct coupling space is permitted, the resonant
manifold. The theoretical effect of flow shear on the man-
ifold is examined by Gürcan [19]. The implementation of
a constant shear v′ in x-direction, i.e. flow in y-direction,
leads to a time dependent kx-component,

k′i,x = ki,x − v′τki,y with τ = t+ t0 . (3)

The initial time t0 can be chosen freely. Equation (3) en-
ters the dispersion relation such that the coupling space
is reduced with increasing time. Therefore, small scale
turbulent structures are forced to couple to the large flow
structures, especially the ZF [19]. It is argued that this
is the mechanism behind large-scale structure formation
in quasi 2D turbulent systems [20], such as atmospheric
turbulence or plasma turbulence in toroidal fusion de-
vices. ZFs (ky = 0) hold a special position as they sat-
isfy the resonance condition (2) in a trivial way. These
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FIG. 1. Illustration of the effect of shear flow on the extent
of the resonance manifold. Left: The manifold (black band),
k1 = (0.6, 0.4) coupling with k3, shrinks with time τ in sec-
tions I and III. Right: A temporal varying shear v′ (black
solid line) leads to a dip in the extent of the manifold with
respect to k3,y.

mesoscopic turbulent flows are, therefore, always part of
the resonance manifold as persisting component coupling
with the drift waves. As being shear flows themselves,
this leads to a self-amplification of the ZF and a suppres-
sion of the primary instability. Physically, the mechanism
is similar to the straining-out process of eddies, which
explains the turbulence suppression by tilting and incor-
poration, rather than a breakup, of the vortices [14, 21].
Also when the background shear is controlled externally,
e.g. by plasma biasing, ZF drive is enhanced as the time
averaged resonant manifold is effectively weakened.

In order to account for dynamic variations in the flow
shear, for comparison with the experiment, the coupling
manifold is recalculated for a flow shear modelled as
v′(τ) ∝ exp(−τ2). The effect on the resonance man-
ifold is illustrated in Fig. 1. For the specific mode
k1 = (0.6, 0.4) the manifold is shown on the left side as a
black band for the three time points τ = 0, 0.3, and 0.6.
With increasing time the manifold shrinks in its extent
(marked as sec. I and III). Because of the stationary solu-
tions of the ZF (k2,y = 0, k3,y = 0), the manifold does not
shrink further into sec. II. From Fig. 1 (right), it can be
seen that for finite lifetimes of the shear also the shrink-
ing effect is temporally limited, which allows for analyses
of manifold shrinking in correlation with zonal potential
events. Since flow shear takes effect over time, a time
lag between maximum shear as precursor and maximum
shrinking may be expected from Fig. 1, too.

For a direct experimental test of the manifold shrink-
ing effect the turbulent fluctuations have to be resolved in
k-space. At the stellarator experiment TJ-K fluctuations
in the floating potential can be accessed in wavenumber
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FIG. 2. Schematic cross section of TJ-K visualizing the exper-
imental setup. For better comparison measurement positions
are shown in the same plane. The probe array (blue cross) is
positioned in the edge of the confined region. With a mov-
able probe system radial profiles are obtained from the plasma
center across the separatrix.

and frequency space, simultaneously, by means of multi-
probe configurations. The low-temperature plasmas al-
low the use of Langmuir probes throughout the plasma,
making it possible to acquire long time traces (220 sam-
ples) with up to 1 MHz sampling frequency. As temper-
ature fluctuations are small in TJ-K [22], fluctuations in
the floating potential can be associated with plasma po-
tential fluctuations, i.e. φ̃fl ≈ φ̃pl. For the current anal-
ysis, a poloidal probe array was used consisting of 128
Langmuir probes positioned in the edge of the confined
region. The probe positions are visualized in Fig. 2 as
crosses. With a spatial uncertainty of 2 mm, the averaged
poloidal probe spacing of ∆y ≈ 1.55 cm is well below the
typical structure size of 3 to 5 cm [23–25]. For normaliza-
tion the wavenumbers are multiplied by the drift scale,
ρs =

√
miTe/eB, where the electron temperature Te is

obtained by a radially movable swept Langmuir probe
(see Fig. 2). At a 2.45 Hz microwave frequency, corre-
sponding to a magnetic field of B = 72 mT on axis, the
hydrogen plasma is heated with 2.4 kW. This results in
a maximum electron temperature of around Te ≈ 7 eV
and a line-averaged density of n̄e = 1.67 · 1017m−3, with
the latter determined from a microwave interferometer.
It has been shown that the normalized quantities of
TJ-K plasmas are similar to those in fusion edge plas-
mas [26] and turbulence is drift wave dominated [27, 28].
Two strong identifiers of drift-wave turbulence, which
amongst others could be experimentally verified for TJ-K
plasmas: A finite structure size l‖ parallel to magnetic
field lines with l‖ � l⊥ [28] and l⊥ typical perpendicu-
lar length scales of turbulent structures as well as a zero
phase delay between density and potential fluctuations in
a broad range of spatial scales [27]. The cross-phase re-
sults from the adiabatic parallel response of electrons to
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FIG. 3. Scheme of the bicoherence spectrum in k-space,
where the projection of the resonance manifold on ky can
be identified (see text for further information). For a spe-
cific wavenumber k1 = const. the manifold (dashed line) is
suspected to shrink in section I (positive wavenumbers) and
section III (negative wavenumbers).

the density perturbation. Self-generated flows have been
detected as zonally averaged time varying potential per-
turbations [29]. Scans in the poloidal cross section and
probe array measurements reveal their spatial structure
and turbulent Reynolds stress drive [30]. In particular
their radial localization gives rise to sheared zonal flows.
This makes the experiment ideal for comparison with the
theory presented above.

An experimental proof of the change in coupling mani-
fold turns out to be quite challenging since the dispersion
relation is subject to statistical scatter. Therefore, the
coupling space itself is analyzed by a bicoherence spec-
trum in wavenumber and frequency space. This method
intrinsically represents three-wave interactions which fol-
low the resonance condition (Eq. (2)) in accordance with
the dispersion relation. Due to the low spatial resolu-
tion in radial direction, only the size of the manifold
in ky is regarded and we refer to ki,y as ki, from here
on. The (auto) bicoherence applied on the potential
fluctuations is

b2(k1, k2,ω1,ω2, τ) =

|〈φ̂j(k1,ω1, τ)φ̂j(k2,ω2, τ)φ̂∗j (k3,ω3, τ)〉|2

〈|φ̂j(k1,ω1, τ)φ̂j(k2,ω2, τ)|2〉〈|φ̂j(k3,ω3, τ)|2〉
. (4)

As the study of the coupling space requires a time depen-
dent bicoherence, the coefficients φ̂j are calculated with a
wavelet transformation [31], analogous to references [32].
The asterisk denotes the complex conjugate and 〈·〉 the
ensemble average. The triple product of the wavelet co-
efficients (numerator in Eq. (4)) is a measure of the phase
coupling between the three components (k1,ω1), (k2,ω2),
and (k3,ω3). For statistically independent modes, the
sum of the individual phases average out and the bico-
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FIG. 4. Measurement of the effective extent of the resonant
manifold during ZF occurrence. Top: Conditionally averaged
ZF potential with uncertainty (light grey), which evolution
can be regarded equivalent to the radial shear. Below: Time
evolution of the effective wavenumber keff in section I (middle)
and section III (bottom) shown as filled dots and uncertainty.
Both time traces exhibit a drop of the effective wavenumber
when the shear increases. The results are compared to nu-
merical calculations (black solid lines).

herence vanishes. With the normalization to the cross
and auto power spectrum (denominator in Eq. (4)), the
bicoherence is limited to the range [0, 1], resulting from
the Cauchy-Schwarz inequality. The resultant bicoher-
ence spectrum spans in a four-dimensional coupling space
(k1, k2,ω1,ω2). As we are interested in the extent of the
manifold in k-space, the spectrum is averaged over all
frequencies where the bicoherence is above the signifi-
cance level, i.e. greater than 1/

√
N [33, 34], leading to

the reduced bicoherence spectrum b2(k1, k2, τ).In Fig. 3
a common representation of such a spectrum for a sin-
gle time point is shown schematically. For discrete time
traces the domain of definition is restricted to the out-
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lined part. The wavenumbers k1, k2, and k3 = k1 + k2

are limited to wavenumbers below the Nyquist wavenum-
ber ±kNy. The diagonal and counter diagonal are distin-
guished with the requirement k1−k2 = 0 and k1+k2 = 0,
respectively. Because of symmetry to these axes, i.e.
b2(k1, k2) = b2(k2, k1) = b2(−k1,−k2) [35], only one
quarter of the plane contains independent information
(shaded area in Fig. 3). For an arbitrarily chosen mode
k1 all corresponding interactions are located on the ver-
tical line k1 = const. (dashed line). This is the coupling
manifold for the respective mode k1 in a projection onto
the ky-axis (cf. Fig. 1). The points k2 = 0 and k3 = 0
(white dots) mark the interaction with the ZF. Hence, the
sections described before can be identified in the bicoher-
ence spectrum. The segment k2 > 0 refers to section I,
0 ≥ k2 ≥ −k1 to section II, and k2 < −k1 to section
III. Only section I (positive wavenumbers) and III (neg-
ative wavenumbers) are of interest for the analysis of the
shrinking effect, because only here a statement about the
behavior of the manifold can be made. For each section
an effective wavenumber keff is calculated as a measure
for the width of the coupling space,

keff =
∑
k2

w(k2) · k2 with w =
b(k2)∑
k2
b(k2)

. (5)

The weighting factor w accounts for the individual cou-
pling strength each mode exhibits. High and low absolute
values of keff indicate a broad and narrow coupling space,
respectively.

To study the temporal evolution of the flow shear a
conditional averaging technique is used to create the
ensemble average in the calculation of the bicoherence
(Eq. (5)). The ZF, regarded as poloidal shear flow, is
linked to a coherent potential fluctuation on the com-
plete flux surface (kθ = 0), which the experiment di-
rectly gives access to. Hence the zonal potential is used
as trigger signal with the condition +2σ, triggering on
the signal maximum as previously done in studies on re-
lated particle [29] and momentum [30] transport. With
subwindows of 256µs, the ensemble average is build from
more than 1000 realizations to reflect the averaged dy-
namics around the ZF event. The temporal evolution of
the zonal potential 〈φ〉FS is shown on the top of Fig. 4.
For the quantification of the size of the coupling mani-
fold, the effective wavenumber is calculated for each time
point τ , according to Eq. (5). The evolution of keff(τ) for
k1ρs = 0.48, as an example, is shown in Fig. 4 in the two
lower plots for both of the meaningful sections. When
the ZF advances, and thus the shear increases, the effec-
tive wavenumber in section I decreases. Vice versa, the
effective wavenumber in section III increases, thus the
manifold shrinks. The minimum extent is reached when
the zonal potential is maximal (τ ≈ 128µs). A possible
shift between both is small and hard to identify. This is
due to the fact that the overall time duration of the ZF is

short and the connected shear is relatively weak, with the
same fluctuation amplitude as the ambient turbulence.
At falling ZF amplitude the manifold increases again to
the original size. The solid lines in the plots represent
the shrinking that would be expected from the manifold
shrinking model (Eq. (3)), using the time dependent ex-
perimental shear as estimated from the zonal potential in
Fig. 4 (top). The initial wavenumber for the calculation
is estimated to kρs ≈ (0.40, 0.48). Both time traces taken
together reveal the drop in the size of the manifold, fol-
lowing the dynamics of the ZF. The temporal behaviour
of the experimentally found effective wavenumbers agree
qualitatively well with the model calculations.

In Summary, a reduction of the coupling manifold by
shear flows has been experimentally observed for the first
time. In wave turbulence, wave coupling takes place
among modes of a resonant manifold in consequence of
the waves’ dispersion relation. According to Gürcan [19],
this manifold in drift-wave turbulence is predicted to
shrink under flow shear. A combined conditional wavelet-
based bispectral analysis method in wavenumber and fre-
quency space, applied to multiprobe measurements of
the plasma potential in the stellarator experiment TJ-K,
has been used to demonstrate that the resonant man-
ifold indeed shrinks in correlation with occurring ZF
activity. Physically, this corresponds to the straining-
out process of eddies, in which the dynamics evolves in
favour of large-scale structures. As a persisting con-
tribution within the shrinking manifold, ZFs gain rela-
tive importance in the turbulence’s three-wave interac-
tions, which may be reflected in an enhanced efficiency
in turbulence-flow energy transfer. Moreover, the mech-
anism is not limited to time varying flow shear but also
applies to background shear flows as well, which demon-
strates the important role equilibrium shear flows may
play in the coupling process between small-scale turbu-
lence and large-scale structures – in particular in the tur-
bulence suppression and transport barrier formation sce-
nario in magnetically confined fusion plasmas. In future
steps, quantitative aspects of turbulence reduction as re-
flected in turbulent amplitudes or growth rates should be
addressed in comparison with changes in the non-linear
coupling behaviour.

∗ til.ullmann@igvp.uni-stuttgart.de
[1] S. Nazarenko, Wave Turbulence, Lecture Notes in

Physics, Vol. 825 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011).

[2] C. S. Ng and A. Bhattacharjee, Physics of Plasmas 4,
605 (1997).

[3] S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pou-
quet, Journal of Plasma Physics 63, 447 (2000).

[4] D. Y. Manin and S. V. Nazarenko, Physics of Fluids 6,
1158 (1994).

mailto:til.ullmann@igvp.uni-stuttgart.de
https://doi.org/10.1007/978-3-642-15942-8
https://doi.org/10.1063/1.872158
https://doi.org/10.1063/1.872158
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1063/1.868286
https://doi.org/10.1063/1.868286


5

[5] A. Hasegawa, C. G. Maclennan, and Y. Kodama, Physics
of Fluids 22, 2122 (1979).

[6] P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm,
Plasma Physics and Controlled Fusion 47, R35 (2005).

[7] P. Manz, M. Ramisch, and U. Stroth, Physical Review E
82, 056403 (2010).

[8] P. W. Terry, Reviews of Modern Physics 72, 109 (2000).
[9] M. Leconte and R. Singh, Plasma Physics and Controlled

Fusion 61, 095004 (2019).
[10] G. D. Conway, C. Angioni, F. Ryter, P. Sauter, and J. Vi-

cente, Physical Review Letters 106, 065001 (2011).
[11] T. Estrada, T. Happel, L. Eliseev, López-Bruna, et al.,
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