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CYCLOTOMIC POLYNOMIALS WITH PRESCRIBED HEIGHT
AND PRIME NUMBER THEORY

ALEXANDRE KOSYAK, PIETER MOREE, EFTHYMIOS SOFOS AND BIN ZHANG

Abstract. Given any positive integer n, let A(n) denote the height of the nth cyclotomic polynomial,
that is its maximum coefficient in absolute value. It is well known that A(n) is unbounded. We
conjecture that every natural number can arise as value of A(n) and prove this assuming that for every
pair of consecutive primes p and p′ with p � 127, we have p′ − p <

√
p + 1. We also conjecture

that every natural number occurs as the maximum coefficient of some cyclotomic polynomial and
show that this is true if Andrica’s conjecture holds, that is, that

√
p′ − √

p < 1 always holds. This
is the first time, as far as the authors know that a connection between prime gaps and cyclotomic
polynomials is uncovered. Using a result of Heath–Brown on prime gaps, we show unconditionally
that every natural number m � x occurs as A(n) value with at most Oε (x3/5+ε ) exceptions. On the
Lindelöf Hypothesis, we show there are at most Oε (x1/2+ε ) exceptions and study them further by using
deep work of Bombieri–Friedlander–Iwaniec on the distribution of primes in arithmetic progressions
beyond the square-root barrier.

§1. Introduction. Let n � 1 be an integer. The nth cyclotomic polynomial

�n(x) =
ϕ(n)∑
j=0

an( j)x j,

is a polynomial of degree ϕ(n), with ϕ Euler’s totient function. For j > ϕ(n), we put an( j) =
0. The coefficients an( j) are usually very small. In the 19th century, mathematicians even
thought that they are always 0 or ±1. The first counterexample to this claim occurs at n = 105:
indeed, a105(7) = −2. The number 105 is the smallest ternary number (see Definition 1)
and these will play a major role in this article. Issai Schur proved that every negative even
number occurs as a cyclotomic coefficient. Emma Lehmer [28] reproduced his unpublished
proof. Schur’s argument is easily adapted to show that every integer occurs as a cyclotomic
coefficient; see Suzuki [34] or Moree and Hommersom [30, Proposition 5]. Let m � 1 be
given. Ji, Li and Moree [23] adapted Schur’s argument and proved that

{amn( j) : n � 1, j � 0} = Z. (1)

Fintzen [11] determined the set of all cyclotomic coefficients an( j) with j and n in prescribed
arithmetic progression, thus generalizing (1).

We put

A(n) = max
k�0

|an(k)|, A = ∪n∈NA(n), A{n} = {an(k) : k � 0},
in particular A(n) is the height of the cyclotomic polynomial �n.
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It is a classical result that if n has at most two distinct odd prime factors, then A(n) = 1,
cf. Lam and Leung [26]. The first non-trivial case arises where n has precisely three distinct
odd prime divisors and thus is of the form n = peq f rg, with 2 < p < q < r prime numbers.
It is easy to deduce that A{peq f rg} = A{pqr} using elementary properties of cyclotomic
polynomials (as given, e.g., in [30, Lemma 2]). It thus suffices to consider only the case
where e = f = g = 1 and so n = pqr. This motivates the following definition.

Definition 1. A cyclotomic polynomial �n(x) is said to be ternary if n = pqr, with 2 <

p < q < r primes. In this case, we call the integer n = pqr ternary. We put At = {A(n) :
n is ternary}.

Note that At ⊆ A. In this article, we address the nature of the sets A,At and Aopt (see
Definition 2).

CONJECTURE 1. We have A = N, that is for any given natural number m, there is a
cyclotomic polynomial having height m.

CONJECTURE 2. We haveAt = N, that is for any given natural number m, there is a ternary
n such that �n has height m.

The argument of Schur cannot be adapted to resolve Conjecture 1, as it allows one to control
only the coefficients in a tail of a polynomial that quickly becomes very large if we want to
show that some larger number occurs as a coefficient, and typically will have much larger
coefficients than the coefficient constructed. Instead, we will make use of various properties
of ternary cyclotomic polynomials. This class of cyclotomic polynomials has been intensively
studied as it is the simplest one where the coefficients display non-trivial behavior. For these,
we still have {an( j) : n is ternary, j � 0} = Z, as a consequence of the following result.

THEOREM 1 [3]. For every odd prime p, there exists an infinite family of polynomials
�pqr such that A{pqr} = [−(p−1)/2, (p+1)/2] ∩ Z and another one such that A{pqr} =
[−(p+1)/2, (p−1)/2] ∩ Z.

If n is ternary, then A{n} consists of consecutive integers. Moreover, we have |an( j + 1) −
an( j)| � 1 for j � 0; see [15]. Note that for each of the members �pqr of the two families,
the cardinality of A{pqr} is p + 1. This is not always the case for arbitrary ternary n and even
best possible in the sense that #A{pqr} � p + 1 for arbitrary ternary n (by [2, Corollary 3]).

Definition 2. If the cardinality of A{pqr} is exactly p + 1, we say that �pqr is ternary
optimal and call n = pqr optimal. We denote the set of all A(n) with n optimal by Aopt .

Note that the bound for the size of A{pqr} depends only on the smallest prime factor, p.
Similarly, it has been known since the 19th century that A(pqr) � p − 1.

We expect the following to be true regarding ternary optimal polynomials.

CONJECTURE 3. We have Aopt = N\{1, 5}.

We will see that this conjecture is closely related to the following prime number conjecture
we propose (with pn the nth prime number).
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CONJECTURE 4. Let n � 31 (and so pn � 127). Then

pn+1 − pn <
√

pn + 1. (2)

Although prime gaps dn := pn+1 − pn have been studied in extenso in the literature, we
have not come across this particular conjecture. It is a bit stronger than Andrica’s conjecture
(see [35] for some numerics).

CONJECTURE 5 (Andrica’s conjecture). For n � 1, pn+1 − pn <
√

pn + √
pn+1, or

equivalently
√

pn+1 − √
pn < 1, or equivalently pn+1 − pn < 2

√
pn + 1.

Both conjectures seem to be far out of reach, as under RH the best result is due to Cramér
[9] who showed in 1920 that dn = O(

√
pn log pn). More explicitly, Carneiro et al. [8] showed

under RH that dn � 22
25

√
pn log pn for every pn > 3.

There is a whole range of conjectures on gaps between consecutive primes. The most
famous one is Legendre’s that there is a prime between consecutive squares is a bit weaker,
but, for example, Firoozbakht’s conjecture that p1/n

n is a strictly decreasing function of n is
much stronger. Firoozbakht’s conjecture implies that dn < (log pn)

2 − log pn + 1 for all n
sufficiently large (see [33]), contradicting a heuristic model; see Banks et al. [5], suggesting
that given any ε > 0 there are infinitely many n such that dn > (2e−γ − ε)(log pn)

2, with γ

Euler’s constant.
This is in line with the famous conjecture that

0 < lim inf
x→∞

max{dn : pn � x}
(log x)2

� lim sup
x→∞

max{dn : pn � x}
(log x)2

< ∞,

stated in 1936 by Cramér [10], who also provided heuristic arguments in support of it. His
conjecture implies that dn = O((log pn)

2), which if true, clearly shows that the claimed
bound in Conjecture 4 holds for all sufficiently large n. Further work on dn can be found in
[5, 13, 18].

We denote the set of natural numbers � h by Nh.

THEOREM 2. Let h be an integer such that (2) holds for 127 � pn < 2h. Then

Nh ⊆ At ⊆ A, Nh\{1, 5} ⊆ Aopt .

Moreover, 1, 5 
∈ Aopt .

COROLLARY 1. If Conjecture 4 is true, then so are Conjectures 1–3.

Theorem 2 is in essence a consequence of a result of Moree and Roşu [31] (Theorem 6)
generalizing Theorem 1, as we shall see in § 2.

A lot of numerical work on large gaps has been done (see the website [32]). This can be
used to infer that the inequality (2) holds whenever 127 � pn � 2 · 263 ≈ 1.8 · 1019; see [35].
This in combination with Theorem 2 leads to the following proposition.

PROPOSITION 1. Every integer up to 9 · 1018 occurs as the height of some ternary
cyclotomic polynomial.
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The following theorem is the main result of our paper. Its proof rests on combining Lemma 3
b, the key lemma used to prove Theorem 2, with deep work by Heath–Brown [21] and Yu
[37] on gaps between primes.

THEOREM 3. Almost all positive integers occur as the height of an optimal ternary
cyclotomic polynomial. Specifically, for any fixed ε > 0, the number of positive integers � x
that do not occur as a height of an optimal ternary cyclotomic polynomial is �ε x3/5+ε . Under
the Lindelöf Hypothesis, this number is �ε x1/2+ε .

(Readers unfamiliar with the Lindelöf Hypothesis are referred to the paragraph in § 3 before
the statement of Lemma 7.)

In addition to Conjecture 4, there are two further prime number conjectures of relevance for
the topic at hand: Conjecture 5, that we have not come across in the literature, and Andrica’s
conjecture (Conjecture 5).

CONJECTURE 6. Let h > 1 be odd. There exists a prime p � 2h − 1, such that 1 + (h −
1)p is a prime too.

The widely believed Bateman–Horn conjecture [1] implies that given an odd h > 1, there
are infinitely many primes p such that 1 + (h − 1)p is a prime too, and thus Conjecture 6 is
a weaker version of this.

THEOREM 4. If Conjecture 6 holds true, then At contains all odd natural numbers.
Unconditionally At contains a positive fraction of all odd natural numbers.

The first assertion is a consequence of work of Gallot et al. [17] and involves ternary
cyclotomic polynomials that are not optimal. The second makes use of deep work of Bombieri
et al. [6] on the level of distribution of primes in arithmetic progressions with fixed residue
and varying moduli. The level of distribution that is needed here goes beyond the square root
barrier (that is studied in the Bombieri–Vinogradov theorem, for example) and this is due to
the condition p � 2h − 1 in Conjecture 6; see Remark 3 for more details. As far as we know,
this is the first time that this kind of level of distribution is used in the subject of cyclotomic
coefficients (see § 4 for the details). We would like to point out though that Fouvry [14]
has used the classical Bombieri–Vinogradov theorem in a rather different way and context,
namely, for studying the number of nonzero coefficients of cyclotomic polynomials �n with
n having two distinct prime factors.

In the final section, we consider cyclotomic polynomials with prescribed maximum or
minimum coefficient. We will prove the following result.

THEOREM 5. Andrica’s conjecture implies that every natural number occurs as the
maximum coefficient of some cyclotomic polynomial.

That prime numbers play such an important role in our approach is a consequence of working
with ternary cyclotomic polynomials. One would want to work with �n with n having at least
four prime factors, however, this leads to a loss of control over the behavior of the coefficients
in general and the maximum in particular.
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§2. More on ternary cyclotomic polynomials. Given any m � 1, Moree and Roşu [31]
constructed infinite families of ternary optimal �pqr such that A(pqr) = (p + 1)/2 + m,
provided that p is large enough in terms of m. This result, Theorem 6, allows one to show that for
p � 11 there are cyclotomic polynomials having heights (p + 1)/2 + 1, . . . , (p + 1)/2 + k,
with k an integer close to

√
p/2. If the gaps between consecutive primes are always small

enough, these heights cover all integers large enough and this would allow one to prove
Conjecture 2. If large prime gaps do occur, then we are led to study the total length of prime
gaps large enough up to x (cf. E (x) in Lemma 5). Conveniently for us a good upper bound
for this was recently obtained by Heath–Brown [21]; see Lemma 6.

The remainder of this section is devoted to deriving consequences of Theorem 6 and proving
Theorem 2.

THEOREM 6 [31, Theorem 1.1]. Let p � 4m2 + 2m + 3 be a prime, with m � 1 any integer.
Then there exists an infinite sequence of prime pairs {(q j, r j )}∞j=1 with q j < q j+1, pq j < r j ,
such that

A{pq jr j} =
{
− (p − 1)

2
+ m, . . . ,

p + 1

2
+ m

}
.

We note that the two families of Theorem 1 are also infinite in the sense of this theorem.
Thus Theorem 6 also holds for m = 0.

Put

R =
{

p + 1

2
+ m : p is a prime, m � 0, 4m2 + 2m + 3 � p

}
. (3)

LEMMA 1. We have R ⊆ Aopt .

Proof. For the elements of R with m = 0, this follows from Theorem 1, for those with
m � 1 it follows from Theorem 6. �

LEMMA 2. If pn+1 − pn <
√

pn + 1 holds for 127 � pn < 2h with h an integer, then we
have Nh\{1, 5, 63} ⊆ R.

The proof is a consequence of part (a) of the following lemma and the computational
observation that 1,5 and 63 are the only natural numbers < 64 that are not in R.

By 
r�, we denote the entire part of a real number r.

LEMMA 3. Let n � 5.
(a) If pn+1 − pn <

√
pn + 1, then In ∩ N ⊂ R, where In := [ pn+1

2 ,
pn+1−1

2 ].
(b) If pn+1 − pn � √

pn + 1, then there are at most


(pn+1 − pn − √
pn + 1)/2� (4)

integers in the interval In that are not in R.

Proof. The assumption on n implies pn � 11. Put zn = (
√

pn − 1)/2. Note that 4z2
n +

2zn + 3 = pn − √
pn + 3 < pn. As 4x2 + 2x + 3 is increasing for x � 0, the inequality 4x2 +

2x + 3 < pn is satisfied for every real number 0 � x � zn. In particular it is satisfied for
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x = mn, with mn the unique integer in the interval [zn − 1, zn]. Thus mn � (
√

pn − 3)/2 and
4m2

n + 2mn + 3 � pn. It follows that

[
pn + 1

2
,

pn + 1

2
+ mn

]
∩ N ⊆ R.

As (pn+1 + 1)/2 is clearly in R, part (a) follows if we can show that the final number (pn +
1)/2 + mn is at least (pn+1 − 1)/2. Since both numbers are integers, we can express this as
(pn + 1)/2 + mn > (pn+1 − 3)/2. The validity of this inequality is obvious, since

pn + 1

2
+ mn � pn + 1

2
+

√
pn − 3

2
>

pn+1 − 3

2
,

where the second inequality is a consequence of our assumption dn <
√

pn + 1.
Part (b) follows on noting that the number of integers of R that are not in In is bounded

above by dn/2 − 1 − mn, which we see is bounded above by the integer in (4) on using
mn � (

√
pn − 3)/2. �

Since we believe that (2) holds for all pn � 127, Lemma 2 leads us to make the following
conjecture.

CONJECTURE 7. We have R = N\{1, 5, 63}.

The numbers 1,5 and 63 are special in our story.

LEMMA 4. The integers 1 and 5 are in At ⊆ A, but not in Aopt . The integer 63 is in
Aopt ⊂ At ⊆ A, but not in R.

Proof. If pqr is optimal, then A(pqr) � (p + 1)/2 � 2 and so 1 
∈ Aopt . It is also easy to
see that there is no optimal pqr such that A(pqr) = 5. If such an optimal pqr would exist,
then as A(pqr) � 3 for p � 5 and A(pqr) � 6 for p � 11 (for an optimal pqr), this would
force p = 7 and A{7qr} = [−5, 2] ∩ Z or A{7qr} = [−2, 5] ∩ Z, contradicting the result of
Zhao and Zhang [38] that A{7qr} ⊆ [−4, 4] ∩ Z.

The number 63 is in Aopt . This follows on applying Theorem 3.1 of [31]. The obvious
approach is to consider the largest prime p such that (p + 1)/2 < 63, which is p = 113,
and take l = 11 (here and below we use the notation of Theorem 3.1). For this combination,
the result does not apply, unfortunately. However, it does for p = 109 and l = 15, in which
case we obtain A{109 · 6803 · 12084113} = [−46, . . . , 63] ∩ Z (with q = 6803, ρ = 2870,
σ = 62, s = 46, τ = 18, w = 45, r1 = 12 084 113). �

Proof of Theorem 2. This follows on combining Lemmas 1, 2 and 4. �

§3. Proof of Theorem 3. The goal of this section is to prove Theorem 3. The quantity of
central interest, N (x), is defined below.

Definition 3. The number of integers � x that does not occur as a height of an optimal
ternary cyclotomic polynomial is denoted by N (x).
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LEMMA 5. We have N (x) � E (2x)/2 + O(1), where

E (x) =
∑
pn�x

pn+1−pn�√
pn+1

(pn+1 − pn − √
pn + 1).

Proof. By Lemma 1, it suffices to bound above the number of integers � x that are not in
R. By Lemma 3(b) this cardinality, in turn, is bounded above by E (2x)/2 + O(1). �

If Cramér’s conjecture, dn = O((log pn)
2) holds true, then this lemma implies N (x) =

O(1).
Heath–Brown [21] recently proved the following result which gives an upper bound for

E (x).

LEMMA 6 (Heath–Brown). We have∑
pn�x

pn+1−pn�√
pn

(pn+1 − pn) �ε x3/5+ε.

Proof of the conditional bound of Theorem 3. This follows on combining the latter upper
bound for E (x) with Lemma 5. �

In order to complete the proof of Theorem 3, we need to improve the exponent 3/5 in
Lemma 6 to 1/2, conditionally on the Lindelöf Hypothesis. The Lindelöf Hypothesis states
that for all fixed ε > 0, we have

ζ (1/2 + it ) = Oε (t
ε ), t ∈ R, t > 1,

where as usual ζ denotes the Riemann zeta function. It is well known that the Riemann
Hypothesis implies the Lindelöf Hypothesis, but not vice versa. There is a large body of work
concerning the Lindelöf Hypothesis (see, e.g., the recent work of Bourgain [7]), however, it
is still open.

We will make use of the following result of Yu [37].

LEMMA 7 (Yu). Fix any ε > 0. Under the Lindelöf Hypothesis, we have∑
pn�x

(pn+1 − pn)
2 �ε x1+ε.

From it one can easily derive a conditional improvement of Lemma 6.

LEMMA 8. Assume the Lindelöf Hypothesis and fix any ε > 0. Then we have∑
pn�x

pn+1−pn�√
pn

(pn+1 − pn) �ε x1/2+ε.

Proof. Using dyadic division of the interval [1, x], we obtain

∑
pn�x

dn�√
pn

dn � (log x) max
1�y�x

∑
y<pn�2y
dn�√

pn

dn � (log x) max
1�y�x

∑
y<pn�2y
dn�√

pn

d2
n√
pn

,
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which by Lemma 7 is at most

(log x) max
1�y�x

1√
y

∑
y<pn�2y

d2
n �ε x1/2+ε.

�

Proof of the conditional bound of Theorem 3. This follows on combining Lemma 5 with
Lemma 8. �

Remark 1. Although it is not required for the applications in the present paper, one can
prove slightly stronger variants of Lemmas 6 and 8, namely, that for every fixed C > 0 and
ε > 0, we have ∑

pn�x
pn+1−pn�C

√
pn

(pn+1 − pn) �C,ε xα+ε,

with α = 3/5 (unconditionally) and α = 1/2 under the Lindelöf Hypothesis (for details, see
[25]).

§4. A special case of the Bateman–Horn conjecture on average. The goal of this section is
to prove Theorem 4. Although the unconditional statement in Theorem 4 is surpassed by the
unconditional statement in Theorem 3, the proof of Theorem 4 is, in a way, “orthogonal” to
the one of Theorem 3; it thus has the potential of working in variations of the problem where
the method behind Theorem 3 would fail. Interestingly, like our prime gap criterion, it rests
on a variation (implicit in Lemma 9) of a certain very well-studied problem involving prime
numbers. Both prime number questions are, however, quite different. Lemma 9 allows one
to show that many odd heights occur among the ternary cyclotomic polynomials in a way
different from Theorem 6.

LEMMA 9. Let h > 1 be odd. If there exists a prime p � 2h − 1, such that the integer
q := 1 + (h − 1)p is a prime too, then A(pqr) = h for some prime r > q. For r, one can take
any prime r1 > q satisfying r1(p + q)/2 ≡ 1 (mod pq).

Proof. Define

M(p; q) = max
r>q

{A(pqr) : 2 < p < q < r}. (5)

Gallot et al. [17, Theorem 43] showed that if q ≡ 1 (mod p), then

M(p; q) = min

{
q − 1

p
+ 1,

p + 1

2

}
.

The conditions on p and h ensure that M(p; q) = h. By [17, Lemma 24], it follows that
A(pqr1) � h. This in combination with M(p; q) = h shows that A(pqr1) = h. �

In case p � 2h + 1, the ternary cyclotomic polynomials from Lemma 9 are not optimal.
We demonstrate this in the case h = 63 (with p = 131 and q = 8123).

Example 1. Using the latter result and [17, Lemma 24], we find that

A(131 · 8123 · 25497973) = 8123 − 1

131
+ 1 = 63

and a131·8123·25497973(13459462019674) = −63.
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We define the set G ⊂ N as follows:
G := {m ∈ N : ∃ p ∈ (4m, 32m) such that 1 + 2mp is prime}.
We would like to point out that the requirement p < 32m is not necessary for the proof of

Theorem 4, but is needed in the proof of Theorem 9.
In the remaining part of this section, we show that the density of G among all integers is

positive, that is, that there exists c0 > 0 such that

lim inf
M→+∞

#{m ∈ G ∩ [1, M]}
M

� c0. (6)

For any natural number m and any real number x, we define
πm(x) := #{p ∈ [ x

2 , x) : 1 + 2mp is prime}.
Further, for any x � 0, we define

G(x) := {m ∈ N ∩ [1, x/4) : ∃p ∈ (4m, x] such that 1 + 2mp is prime}.

LEMMA 10. For all x, M ∈ R with x > 8M and M � 1, we have

#{m ∈ G(x) ∩ (M/4, M]}
∑

1�m�M

πm(x)2 �

⎛
⎝ ∑

M/4<m�M

πm(x)

⎞
⎠

2

.

Proof. Put

um(x) =
{

1, if πm(x) 
= 0;
0, otherwise.

Fix x > 8M. By Cauchy’s inequality, we have∑
M/4<m�M

πm(x) =
∑

M/4<m�M

πm(x)um(x)

� #{M/4 < m � M : πm(x) > 0}1/2

⎛
⎝ ∑

1�m�M

πm(x)2

⎞
⎠

1/2

.

If m � M and p � x/2, then 4m � 4M < x/2 � p, hence

#M/4 < m � M : πm(x) > 0} � #{m ∈ G(x) ∩ (M/4, M]},
concluding the proof. �

We would like to estimate the sums
∑

M/4<m�M πm(x) and
∑

1�m�M πm(x)2 appearing
above. An upper bound, say A, for

∑
1�m�M πm(x)2 is easily obtained by using standard sieve

results. Now if we could derive a lower bound B for
∑

M/4<m�M πm(x), then by Lemma 10
we get

#{m ∈ G(x) ∩ (M/4, M]} � B2

A
.

Unfortunately the condition x > 8M makes it difficult to obtain a good lower bound for∑
M/4<m�M πm(x). We overcome this by using deep work of Bombieri et al. regarding the

level of distribution of primes in arithmetic progressions with fixed residue and varying moduli.
We start with estimating

∑
1�m�M πm(x)2, for which we need the following lemma, which

is obtained on putting b = k = l = 1 in [19, Theorem 3.12].
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LEMMA 11. Let a be a positive even integer. Then for all x > 1, we have, uniformly in a,
that

#{p � x : ap + 1 is prime} � 8C2x

(log x)2

∏
p|a
p>2

(
p − 1

p − 2

){
1 + O

(
log log x

log x

)}
,

where

C2 =
∏
p>2

(
1 − 1

(p − 1)2

)

is the twin prime constant.

Remark 2. Hardy and Littlewood conjectured, based on heuristic reasoning, that
asymptotically

#{p � x : p + 2 is prime} ∼ 2C2
x

(log x)2
.

A similar heuristic reasoning leads to the conjecture that asymptotically

#{p � x : ap + 1 is prime} ∼ C2

∏
p|a
p>2

(
p − 1

p − 2

)
x

(log x)2
.

Both conjectures are special cases of the Bateman–Horn conjecture, cf. [1].

LEMMA 12. Let x, M be any two positive real numbers. Then

∑
1�m�M

πm(x)2 � 64C1C
2
2 M

x2

(log x)4

{
1 + O

(
log log x

log x
+ 1√

M

)}
,

where

C1 :=
∏
p>2

(
1 + 2

p(p − 2)
+ 1

p(p − 2)2

)
,

C2 is the twin prime constant, and the implied constant is absolute.

Proof. By Lemma 11 with a = 2m, we get

πm(x)2 � 82C2
2

x2

(log x)4

∏
p|2m
p>2

(
p − 1

p − 2

)2{
1 + O

(
log log x

log x

)}
,

therefore, we conclude that
∑

1�m�M πm(x)2 is at most

82C2
2

x2

(log x)4

{
1 + O

(
log log x

log x

)} ∑
1�m�M

∏
p|m
p>2

(
p − 1

p − 2

)2

.

We define the multiplicative function f via

f (pe) := χp>2(p)χe=1(e)

(
2

p − 2
+ 1

(p − 2)2

)
, (e ∈ N, p prime).
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with χ the characteristic function. One can easily verify that

∏
p|k

p>2

(
p − 1

p − 2

)2

=
∑
d|k

f (d ) =
∑

d|k
2�d

f (d )

for all non-zero integers k. This shows that

∑
1�m�M

∏
p|2m
p>2

(
p − 1

p − 2

)2

=
∑

1�d�M
2�d

f (d )
∑

1�m�M
d|2m

1

= M
∑

1�d�M

f (d )

d
+ O

⎛
⎝ ∑

1�d�M

f (d )

⎞
⎠,

where we used several times that f (d ) = 0 if d is even. Noting that f (p) � C/p for some
absolute constant C > 0 yields the bound

f (d ) � μ(d )2 Cω(d )

d
� 1√

d
, (d ∈ N),

which can be used to obtain∑
1�d�M

f (d )

d
=

∞∑
d=1

f (d )

d
+ O

(∑
d>M

1

d3/2

)
= C1 + O

(
1√
M

)

and ∑
1�d�M

f (d ) �
∑

1�d�M

1√
d

�
√

M.

Putting everything together it follows that

∑
1�m�M

∏
p|2m
p>2

(
p − 1

p − 2

)2

= C1M + O(
√

M),

which is sufficient for our purposes. �

We now proceed to evaluate the sum
∑

1�m�M πm(x) appearing in Lemma 10. Writing
n = 1 + 2mp, we see that it equals∑

M/4<m�M

∑
x/2�p<x

1+2mp prime

1 =
∑

x/2�p<x

∑
M/4<m�M
1+2mp prime

1

=
∑

x/2�p<x

#{n prime : 1 + M p/2 < n � 1 + 2M p, n ≡ 1(mod p)}

� 1

log(1 + 2Mx)

∑
x/2�p<x

∑
n prime

1+M p/2<n�1+2M p
n≡1(mod p)

log n, (7)

where we used that log n � log(1 + 2M p) � log(1 + 2Mx).
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Remark 3. One now recognizes the argument in the latter sum as a counting function of
primes in an arithmetic progression of varying modulus p, as p runs through [x/2, x). We
would now use the Bombieri–Vinogradov theorem; however, the size of the primes n is of the
order of magnitude

1 + 2M p ≈ 2Mx,

since the moduli p have typical size x. Thus, owing to the condition x > 8M, we are counting
primes in a progression whose modulus exceeds the square-root of the size of the primes.
Therefore, the Bombieri–Vinogradov theorem cannot be applied in our case. To be more
precise, it can only be applied when the moduli are bounded by

√
z/(log z)A, where A > 0

and z is the length of the interval (0, z] we are counting primes in. This means that we need

p �
√

2M p

(log(2M p))A
,

for some fixed A > 0, and this can only happen when x = o(M). To deal with this problem,
we shall need a special case (Lemma 13), of the work of Bombieri, Friedlander and Iwaniec
[6].

As usual, let

θ (x; q, a) :=
∑
p�x

p≡a(mod q)

log p, ψ(x; q, a) :=
∑
n�x

n≡a(mod q)

�(n),

with � the von Mangoldt function.

LEMMA 13 (Bombieri–Friedlander–Iwaniec [6]). For any t � y � 3, we have

∑
√

ty/2�q<
√

ty

∣∣∣∣ψ(t; q, 1) − t

φ(q)

∣∣∣∣ � t

(
log y

log t

)2

(log log t )B,

where B is an absolute constant and the implied constant is absolute.

This estimate is obtained on setting a=1, x= t and Q=√
xy in [6, Main Theorem, p. 363].

LEMMA 14. For any t � y � 3 with y � t1/20, we have

∑
q prime√

ty/2�q<
√

ty

∣∣∣∣θ (t; q, 1) − t

φ(q)

∣∣∣∣ � t

(
log y

log t

)2

(log log t )B,

where B is an absolute constant and the implied constant is absolute.

Proof. Clearly

ψ(t; q, 1) = θ (t; q, 1) +
∞∑

k=2

∑
p�t1/k

pk≡1(mod q)

log p.

The inner sum vanishes if t1/k < 2, therefore only the integers k � (log t )/ log 2 need to be
taken into account. The contribution of all such integers with k � 3 is � t1/3 log t , since the
sum over p is � t1/k by the prime number theorem. The steps so far are the standard arguments
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that one performs when moving from asymptotics for ψ to asymptotics for θ ; however, in
our case, owing to the level of distribution being comparable to the square root of the length
of the interval, the term k = 2 cannot be controlled with the classical arguments. Instead, we
use the bound

1

log t

∑
p�√

t
p2≡1(mod q)

log p �
∑

m�√
t

m2≡1(mod q)

1 =
∑

m�√
t

m≡−1(mod q)

1 +
∑

m�√
t

m≡1(mod q)

1,

where we used the fact that q is prime. Each of the sums in the right side is trivially � √
t/q + 1

and therefore ∑
p�√

t
p2≡1(mod q)

log p � (log t )

(√
t

q
+ 1

)
.

We thus find that

ψ(t; q, 1) = θ (t; q, 1) + O

(
t1/3(log t ) +

√
t

q
log t

)
.

This shows that the sum over q in the statement of this lemma is

�
∑

√
ty/2�q<

√
ty

∣∣∣∣ψ(t; q, 1) − t

φ(q)

∣∣∣∣ +
∑

√
ty/2�q<

√
ty

(
t1/3(log t ) +

√
t

q
log t

)
.

The first sum can be bounded by Lemma 13. Noting that
∑

x/2<q�x 1/q = O(1), cf. (8), we
see that the second sum is

� √
ty t1/3(log t ) + √

t log t,

which is � t19/20 � t (log t )−2, as y � t1/20. �

LEMMA 15. Let ψ : (1, ∞) → (4, ∞) be any function satisfying ψ(M) � log M. For any
M > 1, we let x = Mψ(M) and have

∑
M/4<m�M

πm(x) � Mx

2 log(Mx)

log 2

log x

{
1 + O

(
(log log x)B+2

log x

)}
,

where B is the absolute constant from Lemma 14.

Proof. The condition p ∈ [x/2, x) in the definition of πm(x) ensures that the interval
(1 + Mx/2, 1 + Mx] is contained in the interval (1 + M p/2, 1 + 2M p]. Therefore, by (7) we
see that the sum in our lemma is at least

1

log(1 + 2Mx)

∑
x/2�p<x

∑
n prime

1+Mx/2<n�1+Mx
n≡1(mod p)

log n.

Using Lemma 14 with t = Mx and y = ψ(M) shows that this is

(1 + Mx) − (1 + M x
2 )

log(1 + 2Mx)

∑
x/2�p<x

1

p − 1
+ O

(
Mx

log(Mx)

(
log ψ(M)

log x

)2

(log log x)B

)
.
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Using the standard estimate∑
p�x

1

p − 1
= log log x + C′ + O

(
1

(log x)2

)
,

we obtain ∑
x/2<p�x

1

p − 1
= log 2

log x

{
1 + O

(
1

log x

)}
. (8)

It follows that the main term is as claimed in our lemma. Furthermore, on using the bound
log ψ(M) � log log M � log log x, we see that the error term is

� Mx

log(Mx)

(log log x)B+2

(log x)2
,

as required. �

Proof of Theorem 4. The first assertion is a corollary of Lemma 9.
The inequalities obtained in Lemmas 12 and 15 with ψ(M) = 9 in combination with the

inequality in Lemma 10 give rise, on choosing x = 1 + 8M, to the inequality

#{m ∈ G(1 + 8M) ∩ (M/4, M]} 64C1C
2
2 M

x2

(log x)4
�

(
Mx

log(Mx)

log 2

2 log x

)2

(1 + o(1)).

In particular, the estimate log(Mx) � 2 log x yields

#{m ∈ G(1 + 8M) ∩ (M/4, M]} � c′M(1 + o(1)),

where

c′ = (log 2)2

1024C1C2
2

> 0.

Suppose m ∈ G(1 + 8M) ∩ (M/4, M]. Note that since M/4 < m, we have

p � x = 1 + 8M < 1 + 32m,

and hence p < 32m, therefore, the set G(1 + 8M) is contained in G. We conclude that (6)
holds with c0 = c′. It follows that a positive proportion of all integers m have the property
that there exists a prime p > 4m with also 1 + 2mp being a prime. By Lemma 9, we have
1 + 2m ∈ At for each of those m, and it thus follows that unconditionally At contains a
positive fraction of all odd natural numbers. �

Remark 4. The proof actually yields that a positive proportion of all integers m have the
property that there exists a prime 4m < p < 32m with also 1 + 2mp being a prime. This is
what we will use in the proof of Theorem 7.

§5. Some related issues.

5.1. Estimating the smallest n for which A(n) = h. Definition 4. Given a natural number
h, let nh be the smallest ternary integer, if it exists, such that A(nh) = h.

The entries in the column k/ϕ(pqr) in Table 1 suggest the following question.
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Table 1: Ternary examples with prescribed height

Height p q r k sign diff. k
φ(pqr)

log(pqr)

log h

1 3 7 11 0 + 2 0
2 3 5 7 7 – 3 0.146 6.714
3 5 7 11 119 – 5 0.496 5.418
4 11 13 17 677 – 7 0.353 5.623
5 11 13 19 1008 – 9 0.467 4.913
6 13 23 29 2499 – 10 0.338 5.060
7 17 19 53 6013 + 14 0.402 5.009
8 17 31 37 5596 – 14 0.324 4.750
9 17 47 53 14 538 – 17 0.379 4.848
10 17 29 41 4801 – 17 0.267 4.305
11 23 37 61 20 375 – 16 0.428 4.527
12 23 37 41 14 471 + 21 0.456 4.209
13 31 59 73 58 333 – 25 0.465 4.601
14 37 53 61 52 286 + 27 0.465 4.430
15 37 47 61 45 939 – 29 0.462 4.273
16 41 79 97 133 844 – 30 0.446 4.565
17 41 43 53 38 240 + 33 0.437 4.039
18 61 97 103 178 013 – 34 0.302 4.608
19 43 83 89 101 051 – 33 0.333 4.302
20 47 83 131 235 842 + 37 0.481 4.387
21 47 101 109 217 278 – 41 0.437 4.321
22 53 83 89 165 453 – 44 0.441 4.166
23 43 71 109 108 355 + 43 0.341 4.055
24 53 103 109 189 160 – 42 0.330 4.183
25 61 79 97 224 640 – 47 0.500 4.055
26 41 71 97 96 529 – 41 0.359 3.852
27 61 109 113 332 589 – 54 0.458 4.105
28 53 89 131 186 685 – 53 0.314 4.001
29 83 109 139 552 035 – 58 0.452 4.170
30 67 131 137 389 139 – 52 0.333 4.116
31 83 107 113 444 435 + 61 0.456 4.024
32 79 149 163 881 529 + 63 0.471 4.174
33 73 103 113 389 314 + 61 0.473 3.904
34 71 109 113 409 320 – 60 0.483 3.879
35 83 103 139 544 198 – 69 0.471 3.934
36 127 149 151 1 246 462 – 72 0.445 4.148
37 71 101 239 671 716 + 67 0.403 3.975
38 127 137 409 3 355 658 – 75 0.479 4.337
39 83 149 157 941 094 + 76 0.497 3.952
40 79 233 239 1 624 556 + 79 0.377 4.146

QUESTION 1. Let h > 1 be an integer. Does there exist an absolute constant 0 < c � 1/2
such that if |an(k)| = h, then k > c ϕ(nh)?

A further question is to relate the size of nh to h. See the final column of Table 1 for some
numerical data. The 19th century estimate A(pqr) � p − 1 implies nh � h3.

CONJECTURE 8. There are constants E1 and E2 such that hE1 � nh � hE2 and E1 � 3.

Theorem 7 shows that for a positive fraction of integers h the upper bound in the conjecture
holds true. Its formulation involves Linnik’s constant L.
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Definition 5. Let r � 0 be an arbitrary fixed real number. For coprime integers a and d , let
pr(a, d ) denote the smallest prime > dr in the progression a (mod d ).

Linnik proved in 1944 that there exist positive constants C and L such that p0(a, d ) � C dL.
The constant L is known as Linnik’s constant. Xylouris [36] proved that L � 5, heavily relying
on a fundamental paper by Heath–Brown [20], who obtained L � 5.5. On GRH, Lamzouri
et al. [27] showed that p(a, d ) � (ϕ(d ) log d )2 for d > 3.

The following result generalizes Linnik’s theorem.

LEMMA 16. There exists some absolute constant C such that pr(a, d ) � dr+C, where the
implied constant is also absolute.

Proof. We use Corollary 18.8 of the book of Iwaniec and Kowalski [22]. It states that there
exists an explicit effectively computable constant L1 > 0 such that for all sufficiently large d
and all x � dL1 , we have

ψ(x; d, a) � x

ϕ(d )
√

d
,

where the implied constant is absolute. Since ϕ(d ) � d , this implies

ψ(x; d, a) � x

d3/2
.

For all x > d6, we have
√

x � x3/4d−3/2 and hence,

ψ(x; d, a) − θ (x; d, a) � ψ(x) − θ (x) � √
x � x3/4

d3/2
.

Therefore, if x > dL1+6, we deduce that

θ (x; d, a) � x

d3/2
,

where the implied constant is absolute. To conclude our proof, we note that pr (a, d ) is bounded
by any real number x > dr which satisfies

θ (x; d, a) > θ(dr; d, a).

Since θ (dr; d, a) � θ (dr ) < 2dr by the prime number theorem, it suffices to find the least
x > dr for which θ (x; d, a) � 2dr . Clearly, this holds as long as x > dL1+6 and x d−3/2 > Cdr

for some large constantC. For both of these properties to hold, it is sufficient that x � dr+6+L1 ,
from which we infer that

pr(a, d ) � dr+6+L1,

with an absolute implied constant. �

The next result makes some progress toward Conjecture 8. It requires only Linnik’s theorem
for its proof. Under GRH, the estimate holds with L = 2.

THEOREM 7. Let ε > 0. Let nh be the smallest ternary integer, if it exists, such that
A(nh) = h. There exists a constant cε > 0 such that nh < cε h3(L+1+ε) for a positive proportion
of the odd natural numbers h.
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Proof. Let m be an integer such that there exists a prime 4m < p < 32m with also q :=
1 + 2mp being a prime. For any such m, we will show that h := 1 + 2m ∈ At and construct
a ternary n such that A(n) = h and n satisfies the required upper bound. Since, as we have
seen in the proof of Theorem 4 (cf. Remark 4), there is a positive proportion of such m, the
result follows.

We let 0 < r1 < pq be the unique solution of r1(p + q)/2 ≡ 1 (mod pq). If r1 is even, we
put r = p0(r1, pq). Note that r > pq. If r1 is odd, we let s be the smallest prime not dividing
r1 + pq. Let δ > 0 be arbitrary. Since the product of the primes not exceeding x is of size
e(1+o(1))x, we conclude that s < (pq)δ for all m large enough. Observe that r1 + pq and spq
are coprime. We put r = p0(r1 + pq, spq). Note that r > q. By Linnik’s theorem, we have
r � C(pq)(1+δ)L. By Lemma 9, we have A(pqr) = h. Since pqr > nh and

pqr = O(m · m2 · (m3(1+δ))L) = O(h · h2 · (h3(1+δ))L) = O(h3(L+1+ε)),

with ε = δL, the proof is completed. �

The next result can be seen as a supplement to Theorem 3. The proof requires Lemma 16
and a more precise version of Theorem 6 that is too long to be formulated here.

THEOREM 8. Let th be the smallest optimal ternary integer, if it exists, such that A(th) = h.
There exist positive constants c and T such that th < c hT for all h � x with at most �ε

x3/5+ε exceptions.

Proof. We will use [31, Theorem 3.1], the full version of Theorem 6. As Theorem 6 is used
in the proof of Theorem 3, we get the same number of possible exceptions h � x. In terms
of the m of Theorem 6, we have l = 2m − 1, with l � √

p. We take h = (p + l + 2)/2. The
prime q indicated in the theorem is bounded above by p2(a, p), with a an appropriate residue
class. The prime r has to exceed pq and be in an appropriate residue class modulo pq. By
Lemma 16, we have pq � pp2(a, p) � pT1 for some constant T1. Thus by Lemma 16 again, r
is � pT2 for some constant T2. Thus pqr � pT1+T2 . The result then follows with T = T1 + T2

on noticing that p = O(h). �

5.2. Prescribed maximum or minimum coefficient. So far we focused on possible heights of
cyclotomic polynomials. Instead one can ask for possible maxima and minima. In this section,
we will argue why the following conjecture is reasonable.

CONJECTURE 9. Each non-zero integer occurs either as the maximum or as the minimum
coefficient of some cyclotomic polynomial.

Definition 6. We denote the maximum and minimum coefficients of �n by A+(n),
respectively, A−(n). We put A+

t = {A+(n) : n is ternary} and define A−
t analogously. We

denote by A+
opt the set of all A+(n), with n optimal and define A−

opt analogously.

Remark 5. Using the elementary identity �n(1) = e�(n) (valid for n > 1), we infer that

A−(n) =
{

1 if n = pk for some prime p and k � 1;
< 0 otherwise.



CYCLOTOMIC POLYNOMIALS WITH PRESCRIBED HEIGHT AND PRIME NUMBER THEORY 231

Since our arguments rest on properties of ternary cyclotomic polynomials, the next result
due to Kaplan makes it plausible that asking which maximal coefficients can occur is in
essence the same as asking which possible minimum coefficients can occur.

PROPOSITION 2 (Implicit in Kaplan [24], explicit in Bachman and Moree [4]). If r, s > pq,
then

A{pqr} =
{

A{pqs} if s ≡ r (mod pq);
−A{pqs} if s ≡ −r (mod pq).

This proposition can be used to prove the following lemma (recall that M(p; q) is defined
in (5)).

LEMMA 17. If A(pqr) = M(p; q), then there exist primes r1 and r2 such that A+(pqr1) =
M(p; q) and A−(pqr2) = −M(p; q).

Proof. The integers in [−M(p; q), M(p; q)] ∩ Z are precisely those that appear in �pqr as
r ranges over the primes exceeding q; see Gallot, Moree and Wilms [17, Proposition 1]. �

In the proof of Theorem 4 exclusively heights are considered that are of the form M(p; q).
This observation together with Lemma 17 then leads to a proof of the following variant of
Theorem 4.

THEOREM 9. If Conjecture 6 holds true, then A−
t ∪ A+

t contains all odd integers.
Unconditionally both A−

t and A+
t contain a positive fraction of all odd integers.

In our proof of Theorem 2, we actually show that R ⊆ A+
opt (recall that R is defined in (3)).

The optimal ternary cyclotomic polynomials �pqr used come from Theorem 6 and satisfy
r > pq. This allows one then to invoke Proposition 2 and conclude that −R ⊆ A−

opt .
The following result is analogous to Theorem 3. The proof of that result (given in § 3) rests

on bounding above the integers � x that are not in R. Likewise the proof of Theorem 10 rests
on bounding above the integers in [−x, x] that are not in −R ∪ R.

THEOREM 10. The set A−
opt ∪ A+

opt contains almost all integers. Specifically, for any fixed
ε > 0, the number of integers with absolute value � x that do not occur in A−

opt ∪ A+
opt is

�ε x3/5+ε . Under the Lindelöf Hypothesis, this number is �ε x1/2+ε .

Finally, we will derive a variant of Theorem 2, namely Lemma 18.
We put

R± =
{

p − 1

2
− m : p is a prime, m � 0, 4m2 + 2m + 3 � p

}

∪
{

p − 1

2
+ m : p is a prime, m � 0, 4m2 + 2m + 3 � p

}
.

We saw that R ⊆ A+
opt and −R ⊆ A−

opt . However, more is true.

LEMMA 18. We have R± ⊆ A+
opt and −R± ⊆ A−

opt .
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Proof. For the elements of R± with m = 0, this follows from Theorem 1, for those with
m � 1 it follows from Theorem 6 in combination with Proposition 2. �

Taking p = 3, 11, 127 and m = 0 we see that {1, 5, 63} are in R±. This in combination
with Conjecture 7 and Lemma 18 leads to the following conjecture.

CONJECTURE 10. We have R± = N, A+
opt = N and A−

opt = −N.

5.3. Connection with Andrica’s conjecture. The aim of this subsection is to prove
Theorem 5. Our proof is a consequence of the following lemma that is analogous to Lemma 3.

LEMMA 19. Let n � 5 and In := [ pn+1
2 ,

pn+1−1
2 ].

(a) If pn+1 − pn <
√

pn + √
pn+1, then In ∩ N ⊆ R±.

(b) If pn+1 − pn <
√

pn + √
pn+1 holds for 11 � pn < 2h with h an integer, then we have

Nh ⊆ R±.

Proof. We let the integer mn be as in the proof of Lemma 3 and recall that mn � (
√

pn −
3)/2. Part (a) follows if we can show that the final number (pn + 1)/2 + mn is at least (pn+1 −
1)/2 − mn+1 − 1. Since both numbers are integers, it suffices to require that

pn + 1

2
+ mn >

pn+1 − 1

2
− mn+1 − 2.

This is equivalent with dn/2 < mn + mn+1 + 3. Now our assumption on dn implies

dn/2 < (
√

pn − 3)/2 + (
√

pn+1 − 3)/2 + 3 � mn + mn+1 + 3,

as wanted.
(b) This is a consequence of part (a) and the observation that 1,2,3,4 and 5 are in R±. �

Proof of Theorem 5. A consequence of Lemma 19 part (b) and the observation that we also
have p′ − p <

√
p + √

p′ for p � 11. �

§6. Ternary cyclotomic polynomials of small height. Table 1 gives the minimum ternary
integer n = pqr with p < q < r such that A(n) = m for the numbers m = 1, . . . , 40. The
integer k has the property that apqr(k) = ±m, with the sign coming from the sixth column.
The seventh column records the difference between the largest and smallest coefficient and
is in bold if this is optimal, that is, if the difference equals p (compare Definition 2). The
second-to-last column gives the relative position of k in �pqr . The final column gives, for
h > 1, the exponent e such that pqr = he.

The heights h in Table 1 satisfy h � 2p/3 with equality only in case h = 2. This is consistent
with the generalized Sister Beiter conjecture due to Gallot and Moree [16].
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