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Reliance on model‑based 
and model‑free control in obesity
Lieneke K. Janssen  1,2*, Florian P. Mahner2, Florian Schlagenhauf2,3, 
Lorenz Deserno1,2,4,5,6,8 & Annette Horstmann  1,2,7,8

Consuming more energy than is expended may reflect a failure of control over eating behaviour 
in obesity. Behavioural control arises from a balance between two dissociable strategies of 
reinforcement learning: model-free and model-based. We hypothesized that weight status relates to 
an imbalance in reliance on model-based and model-free control, and that it may do so in a linear or 
quadratic manner. To test this, 90 healthy participants in a wide BMI range [normal-weight (n = 31), 
overweight (n = 29), obese (n = 30)] performed a sequential decision-making task. The primary analysis 
indicated that obese participants relied less on model-based control than overweight and normal-
weight participants, with no difference between overweight and normal-weight participants. In line, 
secondary continuous analyses revealed a negative linear, but not quadratic, relationship between 
BMI and model-based control. Computational modelling of choice behaviour suggested that a mixture 
of both strategies was shifted towards less model-based control in obese participants. Our findings 
suggest that obesity may indeed be related to an imbalance in behavioural control as expressed in a 
phenotype of less model-based control potentially resulting from enhanced reliance on model-free 
computations.

Obesity is the result of systematically consuming more energy than is expended. This can be seen as a failure of 
control over eating behaviour1–3 and could result from altered processing of reward4. As a consequence, appeti-
tive and often high-caloric foods are over-consumed despite negative consequences, such as the uncomfortable 
feeling of being full, feelings of regret, or long-term health risks. Such failures of behavioural control in obesity 
may arise from alterations in reinforcement learning5. Indeed, obesity-related impairments in reward- and 
punishment-based cue-conditioning have been observed in the context of both food and monetary outcomes6, 
as well as impairments in appetitive conditioning in the context of chocolate rewards7 (but see8). Furthermore, 
obese participants exhibited impairments in learning from negative outcomes when money or points served as 
an incentive6,9,10. These studies have focused on forms of learning that mostly resemble retrospective model-free 
‘trial-and-error’ reinforcement learning. However, behavioural control arises from a balance between model-
based and model-free control11,12. Model-based control relies on an internal model of the environment to enable 
forward planning. As a result, this system is flexible (but cognitively costly), allowing us to be goal-directed 
even when the environment changes, e.g. abrupt change in the current outcome value, changes. In contrast, the 
model-free system is cognitively inexpensive and fast (but inflexible) and is thought to underlie habitual control. 
To better understand this balance in obesity, the current study investigates relative reliance on model-based and 
model-free control of choice behaviour.

Indirect evidence links obesity to reduced model-based, or rather, goal-directed control. Previous outcome 
devaluation studies tapping into goal-directed and habitual control of food choices in obesity have shown a 
negative correlation between goal-directed control and degree of obesity in humans13,14. That is, the higher the 
BMI, the less participants adjusted their food choices after devaluation of one of the two choices. Behavioural 
adjustment after outcome devaluation of non-food rewards related positively to model-based, but not model-free 
control, in healthy human participants performing a two-step decision-making task15–17 (but see18). Alterations 
in model-based vs. model-free control have been associated with behavioural inflexibility as observed in clinical 
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populations such as metamphetamine addiction, obsessive compulsive disorder, and binge eating disorder19,20, as 
well as in a general population sample reporting symptoms of the same disorders and of other eating disorders21. 
However, Voon et al.19 did not find differences in model-based and model-free control between obese partici-
pants without binge eating disorder and non-obese control participants. The absence of an association between 
obesity and model-based or model-free control seems surprising, given the above-mentioned obesity-related 
performance differences in simple reinforcement learning tasks and outcome devaluation tasks, resembling more 
model-free and model-based control, respectively.

We propose two reasons why the study by Voon et al.19 might have lacked power to detect obesity-related 
group differences in model-based and model-free control. First, rather subtle behavioural alterations are to 
be expected in obese individuals that are physically healthy. With a relatively low contrast in body mass index 
(BMI) between the obese and non-obese group (BMI [kg/m2]: obese: M = 31.49, SD = 3.6; non-obese: M = 23.54, 
SD = 2.9), and an average BMI for the obese group only slightly above the cutoff for obesity (> 30 kg/m2), such 
behavioural alterations may be difficult to detect. Second, the relationship between BMI and model-based and 
model-free control may in fact be quadratic in nature, thus masking potential obesity-related differences. A 
quadratic relationship with degree of obesity has indeed been observed for reward sensitivity22 and cognitive 
restraint of eating behaviour23. Furthermore, obesity may quadratically relate to alterations in striatal dopamine 
tone24. This is relevant because there is accumulating evidence that different measures and manipulations of 
dopamine transmission overall relate positively to model-based control as measured in the two-step task25–29.

In the current study, we aimed to address the two issues raised above by including (1) more highly obese indi-
viduals to boost the contrast between groups, and (2) an intermediate overweight group for more sensitivity to 
detect the existence of potential linear or quadratic relationships between weight status and behavioural control. 
The original two-step task was implemented to disentangle and directly compare the reliance on model-based 
and model-free control16,25,30. We hypothesized that weight status relates to the degree to which individuals rely 
on model-based and model-free learning, and that it may do so in a linear or quadratic manner.

Materials and methods
Participants.  The results reported in this study are based on data from 90 healthy right-handed participants in 
a wide BMI range (45 women; age [years]: M = 26.9; SD = 3.6; range 21–35; BMI [kg/m2]: M = 27.9, SD = 6.4, range 
18.4–47.6). Participants were recruited based on their BMI status, i.e., normal-weight [n(women) = 31(16), BMI 
[kg/m2] = 18.5–24.9], overweight [n(women) = 29(14), BMI [kg/m2] = 25–29.9] and obese [n(women) = 30(15), 
BMI > 30] (Table 1). Note that the reported data were acquired in two parts. Fifty-seven datasets were acquired 
as a part of several studies running in the department between October 2012 and August 2014. Data acquisition 
of overweight and obese participants was not completed at the time due to logistic reasons. To finally conclude 
the study, the remaining participants were tested between February and March 2018 (n = 37, for details see Sup-
plemental Figure S1). Part of the reported data have previously been published in a study comparing relative reli-
ance on model-based and model-free control to habit propensity in a slips-of-action task in specifically normal-
weight women and men (n = 28)16. Participants were tested at the Department of Neurology of the Max Planck 
Institute for Human Cognitive and Brain Sciences (Leipzig, Germany) and received monetary compensation on 
an hourly basis, as well as a bonus based on their task performance (between 3 and 10€; M = 6.5€, SD = 0.82). All 
participants gave written consent prior to the study. The study was carried out in accordance with the Declara-
tion of Helsinki and approved by the Ethics Committee at the University of Leipzig, Germany.

After having provided informed consent, weight and height of the participants was measured, followed by the 
two-step task (for details see “Experimental paradigm”). Participants were then asked to complete a number of 
self-report questionnaires—validated in German—for characterizing the sample: Beck’s Depression Inventory 
(BDI)31 to assess possible depressive symptoms (cut-off for exclusion > 18, indicating possibility of moderate 
to severe depression), the Behavioural Inhibition System/Behavioural Activation System questionnaire (BIS/
BAS)32,33 to assess punishment and reward sensitivity, the Three-Factor Eating Questionnaire (TFEQ)34,35 to 
assess eating behaviour in terms of cognitive restraint, disinhibition and hunger, the UPPS Impulsive Behaviour 
Scale36,37 to assess impulsive behaviour in terms of Urgency, lack of Premeditation, lack of Perseverance, and 
Sensation seeking, and the Yale Food Addiction Scale (YFAS)38,39 to assess symptoms that could be indicative 
of food addiction. Finally, participants performed several cognitive tests to examine their potential relation to 
performance on the task: the Viennese Matrices Test (VMT)40 to assess non-verbal IQ. We also administered 
a computerized version of the Visual Paired Associates test of the Wechsler Memory Scale (VPA)41,42 to assess 
visual short term memory. Participants were included if none of the following exclusion criteria applied: esti-
mated non-verbal IQ (< 85 based on the VMT), known metabolic disorders (e.g., diabetes), smoking, (history 
of) neurological, psychiatric, or eating disorders, symptoms of depression, drug or alcohol dependence, current 
pregnancy, and psychological treatment. In total 94 participants were tested of which three participants did not 
complete the experimental paradigm and one participant was excluded from analysis because of an estimated 
non-verbal IQ below 85.

Experimental paradigm.  We administered a sequential decision making task16,25,30, in which participants 
were asked to make two subsequent decisions on each trial to earn a monetary reward (20 cents) or no reward 
(Fig. 1a). At the first stage, participants were asked to choose between two grey stimuli, which would bring them 
to one of two second-stage stimulus pairs (the green or yellow pair). One of the grey first-stage stimuli was con-
nected commonly (70%) to the green and rarely (30%) to the yellow stimulus pair, and vice versa for the other 
grey stimulus (Fig. 1b). The first-stage stimuli and transition probabilities were fixed throughout the experi-
ment. After selecting one of the two second-stage stimuli, participants either received the monetary reward or 
not (Fig. 1c). The probability of receiving reward for each of the four second-stage stimuli changed slowly and 
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continuously according to Gaussian random walks to ensure continuous learning. The changes were kept con-
sistent for all participants performing the experiment. Participants completed a total of 201 trials. Prior to the 
experiment, participants went through elaborate computer-based instructions and were then asked to explain 
the task including its first-stage transition probabilities to the experimenter. Open questions were addressed by 
the experimenter. The instructions included a detailed knowledge of common (70%) and rare (30%) transitions 
after first-stage choices, and the slowly changing probabilities after second-stage choices. After the instructions 
participants performed 56 training trials with a different set of stimuli. Participants were made aware that the 
height of their financial bonus depended on the accumulated reward in the task. The bonus was based on a ran-
domly drawn subset of trials.

Data analysis.  Calculation of first-stage stay probabilities on the two-step task, as well as computational 
modeling of participants’ choice behaviour were performed using in-house scripts in Matlab (version 2017b, 
The MathWorks, Inc.). Statistical analyses of self-reported, behavioural, and computational data were run in R 
Studio (version 3.4.4., R Core Team, 201843) and SPSS (version 24, IBM Corp., 2018). The R package ggplot2 was 
used to plot the results44.

Shapiro–Wilk’s test of normality and Levene’s test of equality of variance were ran for all group characteristics, 
including scores on self-reported questionnaires and neuropsychological tests, as well as for the accumulated 
reward (i.e., number of rewarded trials), raw stay probabilities (per condition), reaction times, and for the esti-
mated model parameters.

The alpha level was set to 0.05 (α = 0.05) for all a priori analyses of interest. Note that for post hoc analyses, 
we did not correct for multiple comparisons as these results are exploratory and should be interpreted as such.

Partial η2 (ηp
2) is reported as an effect size for all parametric univariate analyses because it meaningfully 

describes effects in a design in which multiple measures have been experimentally manipulated (as in the two-
step task), and it yields very similar estimates as η2 for analyses that only include a between-group variable45,46. 
Note that ηp

2 does not depend on the number of variables in the model and, thus, can be compared across studies. 

Table 1.   Group characteristics displaying mean (standard deviation) and range if not otherwise stated, 
followed by the test-statistic and p-value of group comparison for each measure. N number of participants; 
F:M the ratio of females to males; VPA visual paired associates test of the Wechsler Memory Scale; BDI 
Beck’s Depression Inventory; BIS/BAS Behavioural Inhibition System/Behavioural Activation System; TFEQ 
Three-Factor Eating Questionnaire; UPPS Urgency, lack of Premeditation, lack of Perseverance, and Sensation 
seeking; YFAS Yale Food Addiction Scale. a Non-verbal IQ was calculated based on the Viennese Matrices Test 
(VMT). b Chi square test for frequency data (degrees of freedom: 2). c F-test with for normally distributed scores 
(degrees of freedom: 2.87). d Independent-Samples Kruskal–Wallis Test of distributions for non-normally 
distributed scores (degrees of freedom: 2).

Normal-weight Overweight Obese p Test-statistic

n 31 29 30

sex (F:M) 16:15 14:15 15:15 ns 0.07b

Age 26.9 (3.3) 21–34 26.0 (3.7) 21–35 27.8 (3.8) 22–34 0.166 1.8c

BMI (kg/m2) 21.6 (1.8) 18.4–24.8 26.9 (1.3) 25.1–29.9 35.4 (4.5) 30.2–47.6 < 0.001 79.1d

Cognitive tests

Non-verbal IQa 119.9 (12.1) 95.0–136.5 117.3 (10.6) 93.0–136.5 111.2 (16.4) 85.0–136.5 0.084 5.0d

VPA score 12 (3.9) 3–18 13.2 (3.1) 7–18 12.2 (3.2) 6–18 0.381 1.0c

Self-report questionnaires

BDI 3.6 (3.3) 0–14 4.9 (3.2) 0–11 6.8 (4.2) 0–17 0.003 11.5d

BIS/BAS

 BIS 20.0 (3.4) 14–28 19.8 (4.3) 11–27 19.5 (4.0) 7–27 0.884 0.1c

 BAS drive 12.1 (2.1) 7–16 12.0 (1.8) 9–16 11.5 (1.7) 8–16 0.449 0.8c

 BAS fun 12.1 (1.8) 9–16 12.0 (1.8) 8–15 12.0 (1.9) 8–16 0.972 0.03c

 BAS reward 16.8 (2.0) 12–20 17.0 (2.1) 11–20 16.0 (2.0) 10–19 0.141 2.0c

TFEQ

 Restraint 5.0 (3.2) 0–15 8.1 (4.6) 0–18 6.4 (4.7) 0–18 0.027 7.2d

 Disinhibition 4.9 (2.1) 0–9 6.3 (3.3) 2–15 8.3 (3.3) 3–16 < 0.001 16.9d

 Hunger 5.7 (3.3) 1–13 5.1 (4.1) 0–13 7.1 (3.4) 1–14 0.066 5.4d

UPPS

 Urgency 26.8 (5.8) 15–42 25.4 (5.1) 17–36 27.7 (6.6) 13–39 0.314 1.2c

 (lack of) Premeditation 22.2 (4.1) 12–31 22.7 (4.6) 16–36 22.3 (4.0) 12–29 0.904 0.1c

 (lack of) Perseverance 20.1 (6.0) 12–44 19.4 (5.6) 10–34 21.3 (5.3) 12–34 0.438 0.8c

 Sensation seeking 31.8 (6.6) 18–44 31.6 (8.5) 17–48 28.0 (7.4) 14–40 0.090 2.5c

 YFAS (#symptoms) 0.8 (0.7) 0–2 1.3 (1.4) 0–7 1.9 (1.0) 0–4 < 0.001 17.3d
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For non-parametric Kruskal–Wallis tests, η2
H was calculated as follows: (H − k + 1)/(n − k), with H reflecting the 

test statistic, k the number of groups, and n the total sample size47.
To check the robustness of our findings and rule out that any observed effect of group on behaviour could 

have been driven by age21,48,49 or IQ16,21,50,51 rather than weight status, we reran all models post hoc including age 
and non-verbal IQ as covariates of no interest.

Characterization of the groups.  We tested for group differences in age and sex to confirm that the groups were 
well-matched. BMI was analysed to confirm the grouping of participants into normal-weight, overweight and 
obese participants. Group analysis of cognitive tests (including non-verbal IQ) and self-reported questionnaire 
data were run to further characterize the sample.

For normally distributed data (age, VPA score, BIS/BAS, UPPS), we ran a one-way ANOVA with between-
subjects factor weight group for each measure. Upon violation of the assumption of normality or equality of vari-
ance (BMI, non-verbal IQ, BDI, TFEQ, YFAS symptom score), the Kruskal–Wallis test by ranks was performed. 
Sex distribution between groups was analysed using Chi-Square Test. Group differences were followed up by 
post hoc parametric (independent T-test) or nonparametric (Mann–Whitney U Test) pairwise comparisons.

Raw behaviour according to first‑stage stay probabilities.  Investigating the likelihood with which participants 
choose a first-stage stimulus depending on the previous trial type (Rewarded/Unrewarded, Common/Rare), 
gives an insight into how much they relied on model-based or model-free control. Therefore, we calculated first-
stage stay probabilities as the proportion of trials in which participants chose the same first-stage stimulus as in 
the previous trial (coded as ‘stay’) for each of the conditions (Rewarded Common, Rewarded Rare, Unrewarded 
Common, Unrewarded Rare). We then analysed participants’ stay probabilities using ANOVA with the between-
subject factor Group (Normal-weight, Overweight, Obese), and within-subject factors Reward (Rewarded, 
Unrewarded) and Transition (Common, Rare). Because the aim was to test for a three-way interaction and the 
group sizes are well balanced, type III sums of squares were calculated in this analysis.

Figure 1.   The two-step task25,30. (a) Trial structure of an example trial with a rare transition, which allows for 
the dissociation of model-based and model-free control of behaviour. (b) Transition structure showing how each 
first-stage stimulus (grey) leads to one of the two second-stage stimulus pairs (green or yellow) in 70% of the 
trials (common, blue arrows) and to the other pair in 30% of the trials (rare, red arrows). (c) Possible outcomes 
(reward, no reward). Reward probability for the four second-stage stimuli varies throughout the task according 
to random walks to encourage continuous learning.
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A purely model-free agent relies on whether or not the previous trial was rewarded, irrespective of transition 
probability (Common/Rare). If rewarded, the previous first-stage choice should be repeated. If not, it may be 
better for the model-free agent to switch to the other first-stage stimulus. As a consequence, model-free control 
is reflected in a main effect of Reward. On the other hand, a purely model-based agent optimally relies both 
on reward and transition probability of the previous trial. A model-based agent will also stay with a previous 
first-stage choice when a common trial was rewarded, and switch when a common trial was not rewarded. 
However, the model-based agent differs in choice behaviour following rare trials. That is, in contrast to a purely 
model-free agent, a model-based agent can infer that when a rare trial was rewarded, reward probability on the 
current trial is higher if one chooses the other first-stage stimulus (switch), and vice versa for unrewarded rare 
trials (stay). Model-based control is therefore reflected in the interaction between Reward and Transition. Here, 
we were mainly interested in group differences in model-based and model-free control and thus focused on 
the Group × Reward × Transition interaction and Group × Reward interaction on stay probabilities, respectively.

We hypothesized that the relationship between weight status and model-based or model-free control might 
be linear or quadratic in nature. To investigate the nature of these relationships, we next performed planned 
pairwise group comparisons on the Reward × Transition interaction term [i.e., (Rewarded Common − Rewarded 
Rare)  −  (Unrewarded Common − Unrewarded Rare)] and on the main effect of Reward [i.e., (Rewarded Com-
mon + Rewarded Rare) − (Unrewarded Common + Unrewarded Rare)] on stay probabilities.

Finally, we ran two post hoc linear models (lm() from the R stats package): (1) on the Reward × Transition 
interaction term, and (2) on the main effect of Reward to investigate the existence of a linear and quadratic 
relationship with BMI on a continuous scale. Both models included BMI and BMI2 as orthogonal predictors.

Computational modeling.  To investigate how participants’ choices were affected by reward and transition prob-
ability throughout the experiment rather than in the previous trial alone, we computationally modeled choice 
behaviour. We implemented a hybrid of a model-free and model-based reinforcement algorithm as is described 
in detail in our previous work16,25 and in the original paper30.

In short, the model-free algorithm (SARSA(λ)) included a learning rate for each stage (α1, α2) and a param-
eter λ, which allows the second stage prediction error to affect the next first-stage values (Q). The model-based 
algorithm learns values by planning forward and computes first-stage values by multiplying the value of the 
better second-stage option with the associated transition probabilities. Then, the model-free and model-based 
first-stage decision values are connected in the hybrid algorithm:

where Qnet

(

sA, aj
)

 denotes the decision value of the chosen stimulus aj from the first stage stimulus pair sA , and 
ω captures the relative weighting of the model-based ( QMB

(

sA, aj
)

 ) and model-free algorithm ( QMF

(

sA, aj
)

 ). The 
weighting parameter ω is the main parameter of interest and can take a value between 0 and 1. If ω = 1, first-stage 
choices are purely controlled by model-based control, and if ω = 0, they are purely controlled by model-free 
control. Note that at the second stage Qnet = QMB = QMF.

Finally, the decision values were transformed into action probabilities using the softmax function for Qnet:

where βi controls the stochasticity of choices at stage i = 1 or 2, and repetition parameter ρ reflects choice per-
severation at the first stage.

The model had a total of seven parameters that were bounded by transforming them to a logistic (α1,α2, �,ω) 
or exponential (β1,β2) distribution. To infer the maximum-a-posteriori estimate of each parameter for each 
subject, the (empirical) Gaussian prior distribution was set to the maximum-likelihood estimates given the data 
of all participants and then expectation–maximization was used52. We report the negative log-likelihood (− LL) 
as a measure of model fit.

We assessed group differences in ω using ANOVA with between-group factor weight status. Planned pairwise 
comparisons were performed as part of the ANOVA or using Mann–Whitney U test as a nonparametric alterna-
tive. For each of these analyses, the alpha level was set at 0.05. Finally, we investigated the relationship between 
ω and weight status on a continuous scale by running a post hoc linear regression model including BMI and 
BMI2 as orthogonal predictors.

After having detected between-group differences on the model parameters’ of interest, an important sanity 
check is whether the inferred parameters actually reproduce the observed behavioural data in terms of stay 
probabilities. To do so, we re-ran the model based on each individual’s inferred parameters to generate data for 
each individual (1000 simulations per subject) and performed the original ANOVA.

We then ran simulation recovery analyses for the model to assess whether the model parameters captured 
the observed behavioural data. Based on the estimated parameters, we simulated choice behaviour on the task 
and investigated stay probabilities. The reported significant Group × Reward × Transition interaction was fully 
reproduced indicating that the model captured important aspects of the data (Supplemental Figure S2).

Finally, to confirm that the chosen hybrid model including � was the best-fitting algorithm in this study, we 
compared the model to less complex models. To avoid inclusion of numerous combinations of parameters, we 
focus on models that capture distinct behaviour in this task by setting ω to 1 or 0, and � to 0 or fitting it as a free 
parameter. This gives four additional models: (1) a hybrid model without � ( ω = 0), (2) a model only including the 
model-based learning algorithm ( ω = 1, � can not be fitted), (3) a model only including the model-free learning 

Qnet

(

sA, aj
)

= ωQMB

(

sA, aj
)

+ (1− ω)QMF

(

sA, aj
)

P(ai,t = a|si,t) =
exp

(

βi
[

Qnet

(

si,t , a
)

+ ρ · rep(a)
])

∑

a′
exp

(

βi
[

Qnet

(

si,t , a′
)

+ ρ · rep(a′)
]
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algorithm with � ( ω = 0), and (4) the same model-free model without �(ω = 0) . Integrated Bayesian Information 
Criterion (BIC) is reported for all models52.

Results
Characterization of the groups.  Table  1 summarizes the weight groups [normal-weight (NW), over-
weight (OW), and obese (OB)] in terms of age, sex and BMI, as well as in terms of their scores on the cognitive 
tests and self-report questionnaires. The groups were well matched on sex and age, and did not differ in visual 
short-term memory (VPA), or non-verbal IQ as measured on the Viennese Matrices Test (VMT). However, a 
trend-level group difference was observed for non-verbal IQ, with numerically higher IQ scores for the normal-
weight and overweight relative to the obese group (Table 1). We did observe a group difference in the average 
number of depressive symptoms (KW(2) = 11.5, p = 0.003, η2

H = 0.11) even though the scores are not clinically 
relevant in the current sample. This difference was driven by the obese participants having a higher symptom 
score relative to normal-weight, but not overweight, participants (post hoc pairwise comparisons: NW vs. OB, 
p = 0.004; OW vs. OB, p = 0.137; NW vs OW, p = 0.254). Post hoc covariate analyses of behavioural and computa-
tional data controlling for BDI score did not change the primary effects of interest (see “Supplemental Materials” 
for statistics). The average number of food addiction symptoms also differed between the groups (KW(2) = 17.3, 
p < 0.001, η2

H = 0.18), again, driven by a higher number of symptoms for obese relative to normal-weight, but 
not overweight, participants (post hoc pairwise comparisons: NW vs. OB, p < 0.001; OW vs. OB, p = 0.159; 
NW vs OW, p = 0.242). In terms of self-reported eating behaviour (TFEQ) the groups differed in disinhibition 
(KW(2) = 16.9, p < 0.001, η2

H = 0.17) and restraint (KW(2) = 7.2, p = 0.027, η2
H = 0.06). Disinhibition scores were 

higher for obese relative to both normal-weight and overweight participants and somewhat higher for over-
weight relative to normal-weight participants (post hoc pairwise comparisons: NW vs. OB, p < 0.001; OW vs. 
OB, p = 0.010; NW vs OW, p = 0.076). Restraint scores were highest for overweight participants and lower for 
normal-weight, but not obese participants (post hoc pairwise comparisons: NW vs. OB, p < 0.375; OW vs. OB, 
p = 0.374; NW vs OW, p = 0.013). No other group differences were observed.

Raw behaviour according to first‑stage stay probabilities.  Analysis of stay probabilities (Fig. 2a) 
revealed that participants’ first-stage choices were significantly affected by reward (main effect Reward: 
F(1,87) = 27.2, p < 0.001, ηp

2 = 0.238) as well as by the combination of reward and transition probability (interac-
tion Reward × Transition: F(1,87) = 183.4, p < 0.001, ηp

2 = 0.678) on the previous trial. This is in line with previous 
research25,30 and suggests that, across groups, the participants relied on both model-based and model-free choice 
strategies, respectively. Transition probability alone did not significantly affect participants’ first-stage choices 
(Transition: F(1,87) = 3.4, p = 0.070, ηp

2 = 0.037).
The weight groups significantly differed in the use of a model-based choice strategy (Fig. 2b) as reflected by 

a significant three-way Group × Reward × Transition interaction on stay probabilities (F (2,87) = 4.3, p = 0.017, 
ηp

2 = 0.090), but not in the use of a model-free choice strategy (Group × Reward: F (2,87) = 1.8, p = 0.174, 
ηp

2 = 0.039, Fig. 2c). Planned comparisons of the Reward × Transition interaction between groups showed that 
the three-way interaction was driven by a significantly higher interaction term for normal-weight relative to obese 
(p = 0.017) and for overweight relative to obese (p = 0.010) participants, whereas normal-weight and overweight 
participants did not differ from each other (p = 0.817).

We observed no Group × Transition interaction (F (2,87) = 1.2, p = 0.297, ηp
2 = 0.028), nor a main effect of 

Group (F (2,87) = 1.7, p = 0.187, ηp
2 = 0.038) on stay probabilities. These results suggest that choices of obese par-

ticipants relied relatively less on model-based control than those of normal-weight and overweight participants.
Post hoc simple effects analyses were performed to further investigate the three-way interaction on stay prob-

abilities and revealed a striking difference between the groups. Interestingly, we observed a Group × Reward inter-
action for rare (F(2,87) = 4.2, p = 0.018), but not common trials (F(2,87) < 1, p = 0.497). This in turn was driven by 
a simple main effect of Group on stay probabilities following rewarded rare trials (F(2,87) = 4.6, p = 0.012), but not 
unrewarded rare trials (F(2,87) < 1, p = 0.688). The simple effect of Group was also reflected in a Group × Tran-
sition interaction for rewarded (F (2,87) = 3.8, p = 0.026), but not unrewarded trials (F (2,87) = 2.4, p = 0.100). 
Finally, pairwise group comparisons of rewarded rare trials showed that obese participants were more likely 
to stay with their previous first-stage choices when a rare trial had been rewarded relative to normal-weight 
(t(59) = − 2.5, p = 0.014) and overweight participants (t(57) = − 2.9, p = 0.006), with no difference between normal-
weight and overweight participants (t(58) = 0.3, p = 0.766). This is of interest because it is participants’ behaviour 
following rare trials that allows us to dissociate model-based from model-free control. Increased staying after a 
rare rewarded trial hints at more model-free control, even though this effect was not sufficiently strong to come 
out as a significant interaction between Group and Reward. Nevertheless, it seems that the observed group dif-
ference in model-based control may in fact be driven by enhanced reliance on model-free computations (see 
“Discussion” for more).

Another means of probing the model-based control system in the framework of this task, is to investigate 
second-stage reaction times25,53. Since a model-based agent uses knowledge of the likelihood of the transition 
into a second-stage state, encountering an unexpected rare rather than an expected common transition should 
increase reaction times for choices at the second stage. In a post hoc analysis, we indeed observed a main effect 
of Transition on second-stage reaction times, which reflected significantly larger reaction times following a rare 
relative to a common transition (M(SD) rare = 992.3 (137.5) ms > M(SD)common = 731.1 (101.2) ms, F (1,87) = 366.2, 
p < 0.001, ηp

2 = 0.808). We did not, however, observe a significant Group by Transition interaction (F (2,87) < 1, 
p = 0.411, ηp

2 = 0.020), which is in line with the above interpretation that the observed Group × Reward × Tran-
sition interaction on stay probabilities may not purely reflect a group difference in model-based control. The 
absence of the Group by Transition interaction could not be explained by general reaction times differences 
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Figure 2.   Stay probabilities. (a) Average stay probabilities per condition for each group. Error bars represent ± 1 
SEM. (b) On the group level, the use of a model-based choice strategy (i.e., the Reward × Transition interaction 
term) was lower for obese relative to normal-weight and overweight participants, whereas (c) the use of a 
model-free choice strategy (i.e., the main effect of Reward) did not differ significantly between groups. The box 
plots in (b) and (c) show the median and interquartile range for each group, with the black dot denoting the 
mean. (d) On the continuous level, the Reward × Transition interaction term was negatively related to BMI, 
with no additional significant quadratic relationship. (e) No linear or quadratic relationship was observed 
between BMI and the main effect of Reward. The scatter plots in (d) and (e) show the model fit (black line) and 
confidence interval (shaded) of the respective regression models with predictors BMI and BMI2. Individual data 
points are color-coded based on weight group for illustrative purpose.
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between the groups, as the groups did not differ in their RTs overall for either stage 1 (M(SD) = 656.7 (8.8) ms, F 
(2,87) < 1, p = 0.847, ηp

2 = 0.004), or stage 2 decisions (M(SD) = 808.3 (9.6) ms, F (2,87) < 1, p = 0.808, ηp
2 = 0.005).

Next, we addressed the question if reliance on model-based and model-free control related to obesity in a lin-
ear and/or quadratic manner. Because the traditional weight categories of normal-weight, overweight and obese 
individuals reflect unequal intervals in terms of BMI, we turned to BMI as a continuous variable, even though 
the study was designed for group-based analyses. We ran two linear regression models including BMI and BMI2 
as orthogonal predictors in each, and investigated their relationship with the (1) Reward × Transition interaction 
term, and (2) the main effect of Reward on stay probabilities. BMI related negatively to the Reward × Transition 
interaction term (βBMI = − 0.28, p = 0.007), but no additional quadratic relationship was observed (βBMI

2 = 0.10, 
p = 0.319) (Fig. 2d). Together, BMI and BMI2 explained a significant proportion of variance in the effect of Reward 
and Transition on choice strategy (adjusted R2 = 0.069, F(2,87) = 4.3, p = 0.017). In line with the absence of a 
Group × Reward effect on stay probabilities, we did not observe a linear or quadratic relationship between BMI 
and the main effect of Reward on stay probabilities (βBMI = 0.08, p = 0.463; βBMI

2 = 0.01, p = 0.892) (Fig. 2e), nor 
did the model explain a significant proportion of variance (adjusted R2 = − 0.016, F (2,87) = 0.3, p = 0.756). Note 
that a post hoc analysis results suggest that the linear relationship between BMI and the Reward × Transition 
interaction term may be moderated by BDI score (see “Supplemental Materials” for statistics).

Accumulated reward.  The accumulated reward (i.e., sum of rewarded trials) of participants was analyzed 
as a measure of overall performance. The groups did not differ in the sum of rewarded trials throughout the 
experiment (M = 97.2, SD = 7.7, F (2,87) = 1.6, p = 0.209, ηp

2 = 0.035). The sum of rewarded trials also did not cor-
relate to participants’ tendency to rely on model-based or model-free choice strategies in any of the measures of 
interest (p’s > 0.299).

Computational modeling of choice behaviour.  Computational modeling of behaviour allowed us to 
take into account participants’ choices throughout the experiment rather than only considering the effect of the 
previous trial. For a summary of all parameters and group comparisons, see Table 2.

The parameter ω was of initial interest because it reflects participants’ relative reliance on model-based vs. 
model-free control. A purely model-based agent has an ω of 1, whereas a purely model-free agent has an ω of 0. 
As expected, we observed a significant group effect on ω (F (2,87) = 5.3, p = 0.007, ηp

2 = 0.109) (Fig. 3a). Planned 

Table 2.   Summary and group comparisons of all model parameters. NW normal-weight, OW overweight, OB 
obese. a F-test for normally distributed parameters (degrees of freedom: 2.87). b Independent-Samples Kruskal–
Wallis Test of distributions for non-normally distributed parameters (degrees of freedom: 2). c One formal 
outlier was observed in the obese group and excluded from the analysis of this parameter (degrees of freedom: 
2.86).

25% 50% 75%

ω

NW 0.66 (0.09) 0.58 0.68 0.72 5.3a 0.007

OW 0.68 (0.09) 0.63 0.68 0.75

OB 0.60 (0.11) 0.52 0.60 0.70

α1

NW 0.47 (0.17) 0.33 0.48 0.63 < 1b 0.867

OW 0.47 (0.21) 0.34 0.55 0.65

OB 0.46 (0.29) 0.23 0.42 0.73

α2

NW 0.54 (0.23) 0.41 0.62 0.70 < 1a 0.560

OW 0.56 (0.19) 0.47 0.56 0.68

OB 0.50 (0.21) 0.35 0.50 0.70

β1

NW 7.7 (2.6) 5.3 7.8 9.0 1.6b 0.447

OW 9.0 (4.0) 6.3 8.1 10.7

OB 8.6 (3.2) 6.9 7.6 11.3

β2

NW 4.3 (1.7) 2.8 4.1 5.4 < 1b 0.955

OW 4.0 (1.2) 3.2 4.2 4.8

OB 5.2 (3.7) 3.3 4.0 5.4

λ

NW 0.53 (0.23) 0.36 0.54 0.71 < 1a 0.967

OW 0.53 (0.18) 0.38 0.56 0.69

OB 0.55 (0.22) 0.41 0.55 0.69

ρ

NW 0.14 (0.05) 0.10 0.14 0.18 3.0a,c 0.057

OW 0.14 (0.04) 0.11 0.13 0.16

OB 0.15 (0.06) 0.13 0.16 0.18

-LL

NW 175.7 (40.9) 141.1 174.0 207.6 1.5a 0.225

OW 169.8 (44.8) 137.8 157.4 188.6

OB 155.7 (50.7) 128.3 157.9 193.3
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comparisons showed that the group effect on ω was driven by higher values for normal-weight relative to obese 
(t(59) = 2.1, p = 0.042) and overweight relative to obese participants (t(57) = 3.1, p = 0.003). Although overweight 
participants numerically had the highest ω values, there was no statistical difference with normal-weight par-
ticipants (t(58) = -1.1, p = 0.265).

To investigate the nature of the relationship between ω and weight on a continuous scale (i.e., BMI), we again 
ran a post hoc regression model including the linear term BMI and quadratic term BMI2 as predictors. The 
linear term related negatively to values of ω with lower values in individuals with a higher BMI (βBMI = − 0.23, 
p = 0.030), whereas the quadratic term did not significantly add to the model (βBMI

2 = − 0.005, p = 0.964) (Fig. 3b). 
In total, the model explained 3.1% of variance in ω (adjusted R2 = 0.031, F (2,87) = 2.4, p = 0.093), which reflects 
only a small effect of BMI on reliance on model-based vs. model-free control. Similar to post hoc analysis of the 
relationship between BMI and the interaction effect of Reward × Transition on stay probabilities, the negative 
relationship between BMI and ω may be moderated by BDI score (see “Supplemental Materials” for statistics).

None of the other model parameters differed significantly between the groups (Table 2). This indicates that 
the groups did not differ in terms of first or second stage learning rates (α1, α2), stochasticity of first or second 
stage choices (β1, β2), the tendency to persevere independent of reward or transition (ρ), the eligibility parameter 
(λ), and importantly, how well the model fit participants’ data (− LL).

Finally, to confirm that the chosen hybrid model including � was the best-fitting algorithm in this study, we 
compared the model to four less complex models by setting ω to 1 or 0, and � to 0 or fitting it as a free parameter. 
Comparing the Bayesian Information Criterion (BIC) scores of the five models across the entire sample as well 
as in each group separately shows clear superiority for the ‘full’ hybrid model in each case (Table 3).

Figure 3.   Relative reliance on model-based and model-free control (omega). (a) On the group level, omega 
was significantly lower for obese relative to normal-weight and overweight participants. The box plot reflects 
the median, interquartile range, and mean value (black dot) for each weight group. (b) On the continuous level, 
omega was negatively related to BMI, with no additional significant quadratic relationship. The scatter plot 
shows the model fit (black line) and confidence interval (shaded) of the regression model. Individual data points 
are color-coded based on weight group for illustrative purposes.

Table 3.   Model comparison. Values reflect Bayesian Information Criterion (BIC) scores. Values in bold reflect 
the winning model when comparing the models across all participants, as well as in each group separately. 
Non-Bold scores reflect the difference with regard to the winning ‘full’ hybrid model with �. NW normal-
weight, OW overweight, OB obese, MB model-based, MF model-free.

Hybrid with � Hybrid without � MB MF with � MF without �

All (n = 90) 32,140.72 + 273.55 + 402.40 + 1089.91 + 1733.09

NW (n = 31) 11,492.61 + 122.75 + 112.43 + 423.32 + 689.88

OW (n = 29) 10,696.63 + 62.30 + 85.73 + 453.02 + 630.55

OB (n = 30) 10,075.42 + 70.79 + 151.12 + 195.87 + 377.26
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Correcting for age and IQ.  To check the robustness of our findings and rule out that the observed group 
differences could be explained by age21,48,49 or IQ16,21,50,51 rather than weight status, we reran all models post hoc 
including age and non-verbal IQ as covariates of no interest. In case of nonparametric tests, the analyses were 
performed after having regressed out age and non-verbal IQ from the dependent variables using linear regres-
sion.

Adding the covariates did not change the results qualitatively—the outcomes were largely in line with the 
original analyses and suggest that weight status, over and above age and IQ, explains unique variance in the 
degree to which individuals rely on measures of model-based, and possibly model-free, control (see Supplemental 
Table S1 for a graphical overview of the outcomes of all analyses of interest). Notably, the reported group dif-
ferences in model-based control, as observed in stay probabilities, and the relative reliance on model-based and 
model-free control, as reflected in the model parameter ω, were relatively robust when correcting for age and 
non-verbal IQ. However, the pairwise comparison in model-based control between normal-weight and obese 
participants did not reach significance. Furthermore, on the continuous level we observed a similar negative rela-
tionship between BMI and model-based control (stay probabilities) (see “Supplemental Materials” for statistics).

Discussion
The aim of this study was to investigate the relationship between weight status (i.e., normal-weight, overweight, 
and obese) and reliance on model-based and model-free control in the two-step task16,25,30. Our results indicate 
that obese participants relied less strongly on model-based control than overweight and—to a lesser extent—nor-
mal-weight participants, with no difference in performance between overweight and normal-weight participants. 
This was observed in group analysis of participants’ choice behaviour (i.e., stay probabilities), as well as in the 
continuous analysis where BMI negatively related to model-based choice behaviour. No quadratic relationship 
with BMI was observed. Furthermore, computational modeling of participants’ choices revealed a similar group 
difference in the weighting of model-based and model-free control (i.e., ω) that was driven by less model-based 
control for obese relative to overweight and normal-weight participants. Secondary analyses, however, did not 
show group differences in the slowing of second-stage reaction times after rare transitions, as would be expected 
given the observed decrease in model-based choice behaviour in obesity.

Although seemingly contradictory, together these findings may in fact suggest that the observed obesity-
related difference in model-based control is driven, in part, by enhanced reliance on model-free computations. 
This interpretation concurs with our post hoc simple effects analyses of stay probabilities, which revealed that 
the group difference in model-based control was driven by an increased inclination of obese (relative to normal-
weight) to stay with their choice specifically after trials on which a rare transition led to reward. Rare trials are 
the trials of interest in this task, because performance following rare trials is used to dissociate model-based from 
model-free choices. Common trials, on the other hand, lead to the same decision in model-based and model-free 
agents. The group difference was only observed for rewarded, not unrewarded rare trials. We speculate that obese 
individuals may more easily fall back on model-free control, or in other words be more reactive after having 
been rewarded than normal-weight participants, whilst relying similarly on model-based control in the case of 
no reward. This speculative interpretation should be interpreted with care, as it has been shown that model-free 
control on this task can potentially be due to a misunderstanding of the model of the task54. Furthermore, the 
current task is not designed to address this subtle effect, which could explain why it was not reflected in a group 
difference in model-free control in the analysis of stay probabilities.

Our findings are in contrast to those of a previous study by Voon et al.19 using the same paradigm. When 
comparing non-obese controls and obese participants with and without binge-eating disorder, Voon et al.19 
reported no difference in the weighting parameter ω between obese participants without binge-eating disorder 
and non-obese controls, whereas ω was on average lower for obese participants with binge-eating disorder 
relative to matched non-obese controls. Interestingly, our findings in healthy obese participants better match 
the previous findings in obese participants with binge-eating disorder. It should be noted however that ω, and 
thus the reliance on model-based over model-free control, was much higher in the current study (mean (SD) 
omega: 0.6 (0.11) vs. 0.3 (0.24), range 0–1). The discrepancy between the studies can be explained by several 
factors. First, the current study tested a more severely obese group than the Voon-study with a mean BMI of 
35.4 kg/m2 (SD 4.5) vs. 31.5 kg/m2 (SD 3.6). In fact, in terms of BMI our sample was closer to the binge-eating 
group (mean BMI[kg/m2] 35.0, SD 5.6). It may thus be the case that the reported finding of a lower weighting 
parameter ω in binge-eating disorder in the Voon-study can partially be explained by the severity of obesity. 
Alternatively, even though no psychiatric conditions were reported, the obese participants in our sample might 
unbeknownst fulfill criteria for binge-eating disorder or have other co-morbidities, as we did not conduct a full 
psychiatric screening. We did, however, observe a group difference in self-reported depressive symptom score 
as assessed by Beck’s Depression Inventory (BDI), with higher—but subclinical—scores for the obese relative 
to the normal-weight and overweight group. Post hoc analyses showed that variation in BDI scores could not 
explain the observed group difference in reliance on model-based control. On the continuous level, BDI score 
did seem to moderate the negative relationship between model-based control and BMI, with a stronger negative 
relationship for higher BDI scores. It should be noted that the results of the post hoc analyses have to be inter-
preted with caution because BDI score was not systematically sampled and the use of the BDI as a continuous 
measure of depressive symptoms in obesity is criticized. The BDI includes both non-somatic and somatic items. 
High scores on the somatic items (e.g., fatigue, sleep disturbance, body image) may either reflect true depressive 
symptoms or they are instead related to individuals’ obesity. Second, we included an intermediate weight group 
for increased sensitivity to detect group differences and potential quadratic effects that might otherwise remain 
uncovered. The group difference in model-based control in the current study was indeed mostly driven by the 
difference between overweight and obese participants. We therefore recommend that cognitive studies of obesity 
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should include a wide BMI range, preferably also sampling severe to morbid obesity to assess for quadratic rela-
tionships, and to carefully disentangle between contributions of weight status and compulsive measures such 
as binge-eating symptoms.

The observed difference in reliance on model-based control in obesity generally concurs with previous out-
come devaluation studies in relation to obesity that found reduced goal-directed control13,14. Goal-directed 
and model-based control are often equated11 and have been found to relate, albeit weakly15–17. However, the 
concepts measured in the two types of tasks do not reflect the exact same constructs. Whereas the two-step 
task is designed to dissociate model-based and model-free control, it is difficult to disentangle reliance on goal-
directed and habitual control in outcome devaluation paradigms in humans. In fact, for the current version of 
the two-step task—with reliance on model-based vs. model-free choice strategy not affecting overall outcome—
one could paradoxically speculate that those who rely more strongly on model-free control are putatively even 
more efficient. For model-based control to be a more sensible strategy than model-free control, it should pay 
off to spend the extra cognitive resources associated with it55. That participants indeed follow this strategy was 
recently confirmed in a similar sequential decision-making task in which the incentive size was manipulated: 
model-based control indeed increased with larger incentives in a heterogeneous nonpatient population56. Fur-
thermore, goal-directed and habitual control may be organized hierarchically rather than in parallel. That is, the 
goal-directed system may benefit from habits in goal-pursuit and thus rely on the habit system57, and the habit 
system may affect what goals are selected and pursued by the goal-directed system58. Empirical evidence for the 
existence of such hierarchies comes from a new generation of sequential decision-making tasks59–61. It will be 
relevant for future studies to focus on habitual goal-selection in the context of obesity, as has been suggested for 
addiction and other disorders of compulsivity58, and investigate if it relates more closely to maladaptive eating 
behaviour in daily life.

The current study has several limitations. First, the dataset was collected in two parts with a sampling bias 
in terms of group and sex (see Supplemental Figure S1). Due to this bias we could not meaningfully account 
for sex and sample (2012–2014 vs. 2018) as covariates of no interest, because variance explained by sample and 
weight group or sample and sex cannot be disentangled in our design62. However, the task was identical in both 
sampling periods and administered in very similar lab spaces within the department. More importantly, exten-
sive computerized instructions were implemented to minimize variability in performance due to differences in 
instructions between experimenters. We are therefore fairly confident that the observed group differences are 
not confounded by sampling period. Second, as emphasized above, the observed group differences are subtle 
with modest effect sizes and await replication. We speculate that these differences may be more pronounced 
when taking into account participants’ diet rather than obesity. Rodent studies suggest that rather than obesity, 
the intake of high fat and/or sugar diets may better predict alterations in dopamine-transmission63–68. We expect 
these changes to be at the heart of the maladaptive behavioural control in obesity24 and there is accumulating 
evidence that different measures and manipulations of dopamine transmission overall related positively to model-
based control as measured in the two-step task25–29. Whether diet rather than obesity relates to maladaptive 
behavioural control needs to be addressed in further studies. A third limitation is that, although the continuous 
analyses converge with the observed group differences in model-based control and strengthens the conclusion 
that obesity is indeed associated with altered reliance on model-based vs. model-free control, the design of the 
current study was not optimal for this type of analysis. BMI was not equidistributed across the complete sample 
due to the group-based recruitment-strategy. Hence, the current study might have been underpowered to robustly 
show true effects between BMI and behavioural control strategies on a continuous level. Another reason for 
interpreting the reported relationship between BMI and behavioural control on a continuous level with care is 
the low retest reliability of the task, as has recently been shown in a large-scale investigation of self-regulation 
paradigms69. For the investigation of individual differences in task performance within groups, other variables 
such as reaction time and latent variables from drift diffusion modeling could give a more reliable estimate of 
behavioural control70. Following Hedge et al.71, the poor retest reliability that is the result of low between-subject 
variability does not negate the observed group differences. In fact, low-between subject variability is required 
to observe reliable group differences in task performance. Despite these limitations, the findings from our two 
independent analysis approaches did converge. That is, analysis of raw choice behaviour in terms of stay prob-
abilities and of the model parameter ω both point to alterations in the reliance on model-based vs. model-free 
control in obesity. Simulation recovery analysis of the parameter estimates of the computational models further 
strengthened our confidence in the observed findings, because it recovered the observed three-way interaction 
between group, reward and transition probability on stay probabilities.

In conclusion, we found evidence for a relationship between the degree of obesity and reliance on model-
based and model-free control relative to overweight and normal-weight participants, which may in fact be linear 
rather than quadratic in nature. Obesity, on the group-level, was associated with relatively lower model-based 
control compared to normal-weight and overweight, which was driven by an increased inclination of obese 
(relative to normal-weight) to stay with their choice specifically after trials on which a rare transition led to 
reward. Together, our findings suggest that it may be the combination of decreased model-based and increased 
model-free control in this task that characterizes the obese group. Whether or not the observed effects are 
dopamine-mediated, as hypothesized, remains an open question that warrants further investigation, for example, 
by pharmacologically manipulating dopamine transmission, or investigating the interaction between BMI and 
individual differences in dopamine transmission in terms of genetic or epigenetic variation.

Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request.
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