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abstRact Most human cancers converge to a deregulated methylome with reduced global 
levels and elevated methylation at select CpG islands. To investigate the emergence 

and dynamics of the cancer methylome, we characterized genome-wide DNA methylation in preneo-
plastic monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), including serial 
samples collected across disease course. We detected the aberrant tumor-associated methylation 
landscape at CLL diagnosis and found no significant differentially methylated regions in the high-count 
MBL-to-CLL transition. Patient methylomes showed remarkable stability with natural disease and 
posttherapy progression. Single CLL cells were consistently aberrantly methylated, indicating a homo-
geneous transition to the altered epigenetic state and a distinct expression profile together with MBL 
cells compared with normal B cells. Our longitudinal analysis reveals the cancer methylome to emerge 
early, which may provide a platform for subsequent genetically driven growth dynamics, and, together 
with its persistent presence, suggests a central role in disease onset.

SigNifiCANCe: DNA methylation data from a large cohort of patients with MBL and CLL show that epi-
genetic transformation emerges early and persists throughout disease stages with limited subsequent 
changes. Our results indicate an early role for this aberrant landscape in the normal-to-preneoplastic 
transition that may reflect a pan-cancer mechanism.

See related commentary by Rossi.
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intRoduction
In normal adult tissues, cell identity is associated with 

accurate maintenance of a distinct DNA methylation land-

scape (1, 2). By contrast, cells profiled from virtually every 
human cancer type display local hypermethylation at typi-
cally lowly methylated CpG-rich regions and simultaneously 
global hypomethylation at highly methylated domains (3–6).

The striking universality of this phenomenon across cancer 
types raises the fundamental question of whether a cell first 
becomes cancerous and then acquires an aberrant methylome or 
if the aberrant methylome is a prerequisite. Methylation dynam-
ics of similar proportions have otherwise only been observed 
during early embryonic development or the germ line specifica-
tion. At the same time, the generation and propagation of most 
other benign adult cell types show relatively stable global meth-
ylation patterns (1–7). One notable exception to the epigenetic 
stability of adult cell types is the maturation of B cells from 
hematopoietic stem cells through several intermediate stages to 
mature B cells, which is a critical process for the establishment 
of a highly effective, dynamic immune system (8). This matura-
tion process involves genetic modulation such as somatic hyper-
mutation of the immunoglobulin heavy-chain variable (IGHV) 
region and immunoglobulin class switch recombination (9), as 
well as a modulation of the methylome (10, 11). Interestingly, 
the methylation dynamics observed in B-cell maturation share 
many features with the cancer methylome (10, 11).

Chronic lymphocytic leukemia (CLL) is a malignancy of 
aberrant clonal mature B cells in the blood, bone marrow, 
and lymphoid organs that provides an ideal model setting 
to gain insight into the emergence of the altered methyl-
ome. Its typically indolent course enables longitudinal studies 
within individual patients from a pretreatment “watch and 
wait” phase—the duration of which is highly variable among 
patients, lasting months to years (12)—to the posttreatment 
setting and even onto progression (13, 14). A precursor stage 
termed monoclonal B-cell lymphocytosis (MBL) has also been 
described, defined as elevated white blood cell (WBC) counts 
with clonal B cells of a CLL immunophenotype. High-count 
MBL on average progresses to CLL that requires treatment in 
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1% to 2% of patients per year (15). A well-established prognostic  
factor in CLL is the mutational status of the IGHV region 
genes, with mutated IGHV showing a much better prognosis 
than CLL with unmutated IGHV (16, 17). The IGHV muta-
tional status has been thought to reflect differences in the cell 
of origin, with a similarity in methylation profiles of unmu-
tated CLLs and pregerminal center B cells, and of mutated CLL 
with mature, postgerminal center memory B cells, suggesting 
that CLL emerges from a spectrum of B cells undergoing broad 
DNA methylation alterations (11, 16, 18, 19). In addition to 
these characteristic global changes, we previously identified a 
pervasive local disorder of methylation across genomic features 
in CLL, not present in normal tissues (20). Although general 
changes in methylation profiles during B-cell development and 
cancer have been described (6, 10, 11, 20–24), little is currently 
known about: (i) if and which additional methylation changes 
are necessary to transition from normal into a preneoplas-
tic state and further into cancer, (ii) how this altered cancer 
methylome is affected by therapy, and (iii) why it is found so 
ubiquitously across different types and stages of cancer. Fur-
thermore, the chronologic origin of altered methylation with 
respect to cancer initiation and progression is not well under-
stood but would be of relevance for early detection and could 
lead to novel therapeutic strategies.

To approach these questions, we used bulk and single-
cell reduced representation bisulfite sequencing (RRBS; refs. 
25–27) to profile normal mature B cells, as well as cells from 
patients in the preneoplastic MBL phase and during CLL 
progression, including after treatment. We characterized the 
methylation status of samples collected from 53 patients sup-
plemented with WBC counts as a measure of tumor burden, 
and hence the effect of treatment (average sampling period of  
5.7 years). Further, we used single-cell transcriptomics to 
complement the DNA methylation results in the patients 
transitioning from MBL to CLL. Our analyses reveal that 
changes in methylome and transcriptome are established 
early on, already at the precursor stage, and remain remark-
ably stable throughout the disease and even after therapy.

Results
Unmutated and Mutated CLLs Converge to a 
Similar Methylome

To systematically study the DNA methylation dynamics 
across the disease course of CLL, we generated RRBS datasets 
from CD19+ CD5+ cells collected from 23 individuals with 
MBL, matched samples for 5 patients capturing both the MBL 
and their transition to CLL, and serial pre- and posttreatment 
samples from 25 patients collected following the diagnosis of 
CLL (28, 29) and compared these with published B-cell–lineage 
subpopulations (refs. 10, 30; Fig. 1A; Supplementary Table S1).

Genome-wide correlation of single CpG methylation 
showed a substantial similarity of unmutated and mutated 
methylation profiles (r = 0.96); however, compared with 
their putative cell of origin, the CLL IGHV subtypes showed 
different degrees of abnormality. Although the unmutated 
CLL showed more changes compared with naïve B cells, the 
mutated CLL exhibited a methylation landscape more similar 
to memory B cells than naïve to memory B cells (Fig. 1B). As 
noted above, CLLs originate from a range of developmental 
stages with pregerminal center B cells thought to give rise to 
unmutated CLL and mature, postgerminal center memory B 
cells to mutated CLLs (10, 11, 16, 18, 19, 31). Evaluation of single 
samples in a phylogenetic tree analysis revealed that the unmu-
tated and mutated CLL samples are characterized by a methy-
lome that consistently differs from normal naïve and memory 
B cells, suggesting a convergent disease-associated methylome, 
irrespective of IGHV mutation status (Fig. 1C; Supplementary 
Fig. S1A). Together, these results suggest that both IGHV sub-
types of CLL undergo methylation changes specific to CLL. 
However, some of these changes also appear to be normally 
acquired during B-cell maturation, as observed in the exam-
ple of the EBF3 locus (Fig. 1D).

To more systematically evaluate regions that are consistently 
altered in CLL, we identified differentially methylated regions 
(DMR) between (i) unmutated CLL versus naïve B cells (n = 
23,206 DMRs) and (ii) mutated CLL versus memory B cells  

Figure 1.  CLL methylation signatures distinguish CLL from normal B cells. A, Schematic representation of progression from the precursor state of MBL 
to CLL, depicting the extended period of “watch and wait” (w/w) until first treatment and an overview of the patient cohort from which 109 samples were 
collected to generate RRBS data. Combination chemoimmunotherapy (CIT; FC/FCR) typically leads to a rapid decrement in WBC counts. Our cohort included 
samples from 23 MBL, 5 paired samples of MBL and CLL, and 25 CLL patients. More specifically, the MBL samples are n = 20 high and n = 3 low count [2 with 
unmutated IGHV (≥98% homology with germline sequence), 18 with mutated IGHV (<98% homology with germline sequence), 3 with unknown status], and 
the CLL are n = 21 CIT treated (red: IGHV unmutated status; orange: IGHV mutated status) and n = 4 venetoclax treated, after having already progressed 
from first-line (fludarabine-based) regimens. Each circle indicates a sample collected. B, Correlation of CpG methylation levels between naïve B cell, memory 
B cells, and unmutated and mutated CLL at CpG-level resolution (purple, low density; orange, high density). The methylome of memory B and CLL cells, in con-
trast to naïve B cells, is strongly hypomethylated and shows hypermethylation in otherwise lowly methylated regions. Bar charts give fraction of hypermeth-
ylated (>0.25) and hypomethylated (<0.25) CpGs. N = 3,490,971 (mem-nai); 3,202,573 (unmut-nai); 3,034,005 (mut-nai); 3,202,573 (unmut-mem); 3,034,005 
(mut-mem); 2,974,458 (mut-unmut). C, Phylogenetic CpG methylation tree of normal B cells (gray shading) and first time point samples of patients with CLL 
[IGHV: unmutated (red) and mutated (orange)] in the context of normal B-cell differentiation states. All CLLs cluster to the more mature end of the tree and 
separate by the mutational status of the IGHV chain genes except for two cases (orange lines). Each line represents a sample. Arrows indicate presumed 
cell of origin to CLL transition. bmPC, bone marrow plasma cell; gcBC, germinal center B cell; HPC, hematopoietic progenitor cell; PCT, plasma cell from 
tonsil; preB2C, pre-B-II cell. D, Average CpG methylation from bulk in naïve B cells (light gray), memory B cells (dark gray), and unmutated (red) and mutated 
CLL (orange) across the EBF3 locus. Both CLL samples exhibit similar levels of modulation across the entire region. Specifically, both CLL samples reveal 
stronger hypermethylation in the promoter region than the normal B cells and loss of methylation in the usually highly methylated gene body. Although to a 
much lesser degree, this effect can also be found between naïve and memory B cells. e, Average CpG methylation levels for CLL DMRs of unmutated CLL ver-
sus naïve B cells and mutated versus memory B-cell comparisons. The rows represent overlapping and mutated or unmutated CLL–specific DMRs. Samples 
are merged into a mean methylation representation per group (columns) and DMR (rows). Rows were ordered using unsupervised hierarchical clustering. Side 
annotations for DMR location and chromatin state: hyper- or hypomethylated DMR; CpG density: CpG island, shore, or shelf; location: promoter, gene body, 
or intergenic; chromatin state: promoter, poised promoter, enhancer, transcription related, insulator, or heterochromatin. f, Numbers of hypomethylated 
(gray) and hypermethylated (blue) DMRs (minimum difference of 0.25, minimum 3 CpG in length) in unmutated CLL versus naïve B-cell and mutated versus 
memory B-cell comparisons. DMRs are classified as B-cell related or CLL based on their overlap with CpGs that are differentially methylated during normal 
B-cell development. g, Overrepresentation enrichment analysis for genes with CLL DMRs compared with the background, i.e., all DMRs. Enriched pathways 
(Panther) include PI3K, EGFR, Ras, FGF, and CCKR signaling. A common characteristic of these pathways is their implication in cell survival, gene expression 
regulation, growth factors, activation of proliferation, and cell invasion. Shown are the top 10 pathways based on P value.
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(n = 4,653 DMRs; Supplementary Table S2; ref. 32). To disen-
tangle methylation changes associated with normal cell line-
age–specific differentiation from potentially cancer-related 
changes, we classified the aggregate of these two sets of DMRs 
as B-cell related (n = 22,325) or CLL (n = 3,475), depending on 
whether they were classified as dynamically changing during 
normal B-cell development (Fig. 1E and F; Methods; ref. 30). 
The majority (85%) of the DMRs overlapped with develop-
mental regions, whereas 15% were classified as CLL DMRs 
(Fig. 1E and F; Supplementary Fig. S1B). Based on the clus-
tering, B-cell lineage–related DMRs showed a gradual shift, 
mostly toward hypomethylation, from naïve to memory and 
both CLL subtypes, reflecting the normal B-cell developmen-
tal changes that are retained in CLL. In contrast, as expected, 
the set of CLL DMRs readily distinguished normal B cells 
from CLL (Fig. 1E). Moreover, genes that were associated 
with CLL DMRs were found to be overrepresented among 
pathways related to cell growth and survival, proliferation, 
and neoplastic transformation, suggesting possible regula-
tory relevance (Fig. 1G).

We additionally confirmed the DMRs to be a distinctive 
feature between normal B and CLL cells by analyzing repli-
cates of CD5-positive and -negative naïve and memory B cells 
from a set of three healthy donors. Genome-wide phyloge-
netic tree clustering and the correlation of methylation rates 
revealed two major clusters, separating the samples by naïve 
and memory B cells but not by CD5 status (Supplementary 
Fig. S2A and S2B). Based on the presence of the CLL-spe-
cific DMRs, CD5-sorted healthy donor samples were found 
to cluster into the group of previously published reference  
B cells, hence demonstrating similar methylation in DMRs 
independent of CD5 status of naïve or memory B-cell state 
(Supplementary Fig. S2C).

CLL Methylome Remains Mostly Unchanged  
after Treatment

To evaluate the stability of these DMRs and the dynamics 
of the CLL methylome over time, we analyzed longitudinal  

samples collected during natural CLL progression. CLL 
allows that leukemic burden can be approximately esti-
mated by measuring the WBC count over time since it is, 
for many patients, primarily a circulating malignancy. To 
study the CLL methylome before and after the first treat-
ment, we performed unsupervised phylogenetic clustering 
of the pre- and posttreatment (fludarabine, cyclophospha-
mide, and rituximab, FCR) samples of patients. Interest-
ingly, we found no consistent methylation differences that 
separate pre- and posttreatment samples, and also no WBC-
related effects could be seen in the clustering (Fig. 2A).  
Next, we compared methylation levels across patient time 
points for selected chromatin states derived from pub-
lished data of the lymphoblastoid cell line GM12878 (33). 
Despite vastly different growth patterns and subclonal 
dynamics (defined by prior genetic characterization; ref. 
28), global methylation levels of various genomic features, 
such as heterochromatin, strong enhancers, and poised 
promoters, for serial samples from all 21 patients remained 
stable and were consequently independent of the dynamic 
changes in WBC counts (Fig. 2B, left; Supplementary Fig. 
S3A and S3B).

We observed substantial posttreatment reduction in WBCs 
creating population bottlenecks for the nine patients follow-
ing treatment with FCR (Fig. 2B; Supplementary Fig. S3A). 
However, this was not associated with any notable DNA 
methylation changes over the three representative genomic 
features or the number of distinct epialleles present (Fig. 2B; 
Supplementary Fig. S3; ref. 34). Indeed, methylation levels 
were mostly independent of detected subclonal genetic evolu-
tion and from patterns of growth. Similar stability was also 
found at the previously identified DMRs, with once acquired 
changes appearing to persist during CLL progression (Fig. 
2C). These deregulated regions, including the example of 
NFATC1 (Fig. 2D), further highlight the remarkable stability 
of methylation patterns.

We also compared the nine patients by focusing on the 
clinically most divergent time points, i.e., first and last 

Figure 2.  The CLL methylome remains mostly unchanged over disease progression, including after treatment. A, Phylogenetic tree of normal B cells and 
all measured time points of patients with CLL (n = 83) using global CpG methylation levels. Each line represents a sample; subtrees are multiple samples 
of the same patient. Yellow lines represent posttreatment samples (chemoimmunotherapy and venetoclax V1–V4). Mutated and unmutated are colored as 
before, and all patient numbers are shown next to the respective branches. All samples from the same patient clustered together, whereas normal samples 
are distinct from the CLL cohort. B, WBC counts and methylation dynamics for selected genomic features to represent global hypomethylation (HC, hetero-
chromatin; SE, strong enhancers) and hypermethylation (PP, poised promoters) across disease progression for patients 11, 13, 16, and 17 (for all others, 
see Supplementary Fig. S3A). The methylation levels remain constant over time and after treatment. Black dots: WBC counts (left axis). Blue lines and dots: 
measurements of CpG methylation levels (right axis). Black arrows and dashed lines indicate collected time points for DNA methylation analysis. Boxplots 
to the right display the coverage normalized epiallele fraction in poised promoter regions. Treatment exposure at time points is indicated as shaded 
boxplots. In addition to the methylation level, the epiallelic fractions’ distribution stays stable over time and after treatment. WBC plots are taken from 
the same patients studied in ref. 28 and have been overlaid with our DNA methylation data. Distinct genetically defined subclones are indicated with the 
different colors. Tx., treatment. C, Left, average methylation levels per sample (columns) for CLL DMRs (rows) of unmutated CLL versus naïve B cells and 
mutated versus memory B-cell comparisons. Rows were ordered using unsupervised hierarchical clustering. Right, average methylation levels per sample 
(columns) for B-cell–related DMRs (rows) of unmutated CLL versus naïve B cells and mutated versus memory B-cell comparisons. Rows were ordered using 
unsupervised hierarchical clustering. D, Average CpG methylation in naïve B cells (light gray), memory B cells (dark gray), and five serial samples collected 
from patient 17 (orange, top to bottom: three pretreatment and two posttreatment samples) across the NFATC1 locus. Dots represent CpG-level methyla-
tion of each sample. e, Correlation of CpG methylation levels in the first pre- and last pretreatment sample as well as last pre- and first posttreatment of 
patient 17 at CpG-level resolution (n = 1,912,382). For all other samples, see Supplementary Table S3. Bar charts give fraction of hypermethylated (>0.25) 
and hypomethylated (<0.25) CpGs. Numbers are given within the scatter. f, Boxplot of correlation coefficients of genome-wide CpG-level correlation 
between the first pre- and last pretreatment samples of all patients with CLL as well as last pre- and first posttreatment samples for the posttreatment 
CLL (left). Corresponding boxplot of genome-wide CpG-level difference between the first pre- and last pretreatment samples as well as last pretreatment 
to first posttreatment samples (right). n = 21 pretreatment data points and n = 9 posttreatment data points. In the boxplots, the centerline is median; 
boxes, first and third quartiles; whiskers, 1.5× interquartile range; data beyond the end of the whiskers are omitted. g, Correlation of CpG methylation lev-
els in the pre- and posttreatment samples of the venetoclax-treated patients V1 and V2 at CpG-level resolution. For all other samples, see Supplementary 
Fig. S4. Bar charts give fraction of hypermethylated (>0.25) and hypomethylated (<0.25) CpGs. Numbers are provided within the scatter.
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pretreatment and last pre- and first posttreatment. No joint 
DMRs between all first pretreatment versus last pretreat-
ment time points could be detected. The variability between 
samples of the same patient and the lack of shared events 
appear to be more in line with patient-specific evolution 
than a common path across patients. Moreover, correlation 
analysis on the CpG level also confirmed a largely stable 
methylome across CLL evolution and even after treatment 
(Fig. 2E and F).

To explore if the observed methylation stability is therapy 
specific, we next analyzed four patients treated with the BCL2 
inhibitor venetoclax (35). As with the FCR chemoimmuno-
therapy-treated patients, these CLL samples collected before 
and after venetoclax exposure clustered tightly together, 
within the group of chemoimmunotherapy-treated patients 
(Fig. 2A and G). We further confirmed the stability of the 
B-cell–related and CLL DMRs in this treatment cohort, in 
which we could only detect globally on average less than 6% 
of CpGs to vary between pre- and post-venetoclax treatment 
(Supplementary Fig. S4A–S4D).

Combined with the early emergence of the altered methyla-
tion landscape, our posttreatment results highlight the strik-
ing stability of the CLL methylome, with minimal changes 
over disease progression, including after treatment.

Variations in the CLL Methylome Appear 
Stochastic among Patients

Because only a few patient-specific methylation dynamics 
were observed, we assessed if their occurrence exceeded ran-
dom dynamics present among normal B-cell subtypes. Focus-
ing on the chemoimmunotherapy-treated patient samples, 
we first compared the number of dynamic CpGs between first 
and last pretreatment, and last pre- and first posttreatment 
CLL samples with differences between biological replicates 
of naïve and memory B cells (Supplementary Fig. S5A; Sup-
plementary Table S3). Although we did not detect any cor-
relation with the time to treatment, we observed the fraction 
of dynamic CpGs to be slightly higher in posttreatment 
samples. Overall, only 1 of 21 patients stood out with higher 
variability (r = 0.94 pretreatment and r = 0.93 for pre- to 
posttreatment comparison); however, this is very similar to 
the variation observed at the transition of naïve to memory 
B cells (r = 0.95). Moreover, the relative number of CpGs 
that exhibited substantial differences was less than 5% of all 
considered CpGs for most CLL cases, and those CpGs were 
frequently located in heterochromatin regions and outside  
of CpG islands (Supplementary Fig. S5B). Most of the dynamic 
CpGs were restricted to individual patients, and 99.9% of CpGs 
were shared within a maximum of six and four patients for pre- 
and posttreatment comparisons, respectively (Supplementary 
Fig. S5C), thus again confirming limited variation and a high 
degree of stability of CLL methylome over time.

To further separate random single dynamic position events 
from consistently altered regions during disease progres-
sion and following treatment, we focused on patient-specific 
DMRs identified either between first and last pretreatment 
for all 21 patients (Supplementary Fig. S5D, left), or between 
the last pre- and first posttreatment for the nine patients 
(Supplementary Fig. S5D, right). We found a median of 106 
pre- and 143 posttreatment DMRs per sample. Of these, the 

vast majority (89% and 86%) appeared in regions shared with 
normal B-cell development. The remaining DMRs comprised 
only 8% of the aforementioned dynamic CpGs. However, 
with 50% of the dynamic CpGs still localized to CLL-specific 
regions, our data suggest the presence of randomly modu-
lated individual CpGs rather than stretches of adjacent CpGs. 
Furthermore, about half of the CLL DMRs were located 
in heterochromatin, supporting the assumption that these 
may represent a secondary effect (Supplementary Fig. S5E). 
Finally, gene set enrichment analysis revealed pathways sup-
ported by only a few genes (i.e., B-cell and T-cell pathways 
supported by three genes and p53 by two genes) or pathways 
with no apparent link to CLL (Supplementary Fig. S5E).

In sum, although a low number of patient-specific methyl-
ation changes accompany the individual tumor evolution, we 
observed remarkable stability and similarity of the acquired 
CLL methylome across patients.

The Altered Methylome is Already Detectable at 
the MBL Stage

Because we observed an altered methylome already pre-
sent within the first time points of the characterized CLL 
specimens, we next turned to specimens collected from our 
patients with MBL to evaluate the cancer precursor methyl-
ome. We again performed unsupervised phylogenetic cluster-
ing but now including the high-count MBL samples. Despite 
clinical classification as a precursor state, all of the MBL 
cases were found to cluster directly among the group of CLL 
samples and not to branch earlier from the trunk of this tree  
(Fig. 3A). Most strikingly, all five matched MBL–CLL cases 
appeared to be as similar to each other as the biological repli-
cates of different healthy B-cell types and much more similar 
to each other than to the other CLL cases. Thus, patient-specific 
methylation signatures appeared to be stronger than any 
preleukemic versus leukemic methylation signature, which 
would have otherwise resulted in the separate clustering of 
the MBL samples from the CLL samples.

Strikingly, the identified CLL-associated DMRs were also 
present in our patients with MBL (Supplementary Fig. S6A 
and S6B). We extended the analysis to search for additional 
consistently occurring methylation changes that could 
potentially drive the MBL-to-CLL transition. However, no 
statistically significant DMRs could be detected between the 
methylomes of the individuals that transitioned from MBL 
to CLL. As a representative example of this shared landscape 
between MBL and CLL, we show the methylation patterns 
for the gene NFATC1, which has been reported as overex-
pressed in CLL due to loss of epigenetic repression (36) and 
is an upstream effector of BCL2, which itself is frequently 
deregulated due to chromosomal translocations in B-cell 
malignancies (Fig. 3B). Through a correlation analysis at sin-
gle CpG resolution of the methylomes of the matched MBL 
and CLL pairs, we further observed the striking similarity 
between MBL and CLL methylomes. These results revealed 
only minor, if any, targeted remodeling of the methylome 
between the precursor and CLL stages within a given patient 
(Fig. 3C; Supplementary Fig. S6C). To appreciate this high 
similarity, we note that comparably high correlations are 
otherwise found between biological replicates of flow cyto-
metrically isolated normal B-cell subpopulations.
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Figure 3.  CLL methylation signatures are already present in MBL. A, Phylogenetic tree of normal B cells, MBL, CLL (first pretreatment sample per case), 
and matched MBL–CLL pairs using all CpGs (n = 3.5 million). Left, all MBL cases clustered together with CLL cases. Each line represents a sample. Right, 
unsupervised hierarchical clustering of normal B cells and matched MBL–CLL pairs. Matched MBL–CLL cases clustered as closely as biological replicates of 
normal B cells; mean joint fork distance (log2FC) of matched versus mismatched MBL–CLL versus normal B cells: -0.03 versus -1.06. gcBC, germinal center 
B cell. B, RRBS-based genome browser tracks. Average methylation is shown as a smoothed line across the NFATC1 locus, grouped by naïve B cells (light 
gray, n = 3 samples), memory B cells (dark gray), unmutated (red) and mutated CLL (orange), and MBL (brown). Naïve and memory B cells are hypermethyl-
ated in the gene body, with only a small drop at the transcription start site. Unmutated and mutated CLL are hypomethylated across the promoter and gene 
body. C, Correlation of CpG methylation levels in matched MBL–CLL pairs (n = 5), in biological replicates of normal B cells (naïve B cells and memory B cells), 
at CpG-level resolution (n = 1,801,907 CpGs). Plots show a high correlation between biological replicates of normal B cells and a similarly high correlation 
between MBL–CLL pairs. Numbers give quantification of hypermethylated (>0.25) and hypomethylated (<0.25) CpGs. For comparison of CpG differences 
with mismatched samples, the quantification of all CLL samples versus one MBL is shown. r = 0.97–0.98 for matched pairs, r = 0.85–0.9 for mismatched 
pairs, r = 0.99 for naïve B cells, and r = 0.97 for memory B cells. D, CpG-level resolution differences between matched MBL–CLL pairs and among biological 
replicates of normal B cells. For all MBL–CLL comparisons, a maximum of 4.2% of positions show a difference of >0.25 (n = 1,801,907 CpGs). Methylation 
differences among biological replicates were less than 2% (naïve B cells) and 3.6% to 9.5% (memory B cells) of CpGs with a difference of >0.25. Per box-
plot, the median value is indicated by the centerline, with first and third quartiles as outlines of boxes, and 1.5× interquartile range as whiskers; data beyond 
the end of the whiskers are omitted. e, Number of CpGs with a difference of >0.25 in MBL–CLL comparisons and frequency of recurrent observations 
across the five pairs (light gray, unique for one pair, to dark grey, observed in four of five pairs, no five of five detected). The minority of CpGs are recur-
rently differentially methylated. f, Comparison of average chromatin state methylation among DNA from normal B cells, MBL, and CLLs. Black horizontal 
lines, matched MBL–CLL pairs (n = 1,801,907 CpGs). g, Comparison of chromatin state proportions of discordant methylation rates (proportion of discord-
ant reads, PDR) between MBL and CLLs. Black horizontal lines, matched MBL–CLL pairs.
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Also, at single CpG resolution, we found that at most 4% 
of all covered CpGs showed a difference of 0.25 or greater 
between MBL and CLL samples of the same patient (Fig. 
3D). An expanded analysis to examine whether individual 
CpGs were conserved targets across patients revealed this 
is not the case (Fig. 3E). Finally, we compared methylation 
and read-discordance levels for different chromatin states. 
This showed that differences and variability compared with 
normal B cells affect MBL and CLL cases to the same degree, 
again highlighting that the similarity of MBL and CLL is not 
merely based on patient identity (Fig. 3F and G).

Lastly, as most of our patients with MBL had already rela-
tively elevated WBC counts, we further extended our investi-
gation to include CD5+ sorted cells from three patients with 
low-count MBL (Supplementary Fig. S7A). Although the sig-
nal is expectedly not as strong due to the rare proportion of 
cells sequenced and the potential contamination with CD5+ 
normal B cells, we do detect evidence of the same characteris-
tic epigenetic alterations as observed in high-count MBL and 
CLL (Supplementary Fig. S7B–S7D).

Taken together, our comprehensive analysis of 53 patients 
and 101 pretreatment RRBS datasets suggests that the tran-
sition to the cancer methylome occurs early in the disease. 
Analysis of patient-matched MBL and CLL shows that no 
consistent additional DNA methylation changes are seemingly 
associated with disease progression.

Heterogeneous expression Patterns Are  
Present Per Patient but Are Stable across  
Natural Disease Progression

Complementing our methylation analysis, we profiled 
the transcriptomes of approximately 60k single cells iso-
lated from healthy donors and the five matched MBL–CLL  
specimens (Fig. 4A). Unsupervised clustering revealed nine 
distinct clusters: four clusters representing peripheral 
blood mononuclear cells of the two healthy donors and the 
remaining five, with each representing one of five patient 
B cells (Fig. 4B). From the healthy donors, cell clusters of 
myeloid and lymphoid origin were readily identifiable based 
on their marker gene expression. In contrast, the five clus-
ters from patients were identified as CLL/MBL-mixed clus-
ters that showed expression of some B-cell marker genes, 
although less pronounced (Fig. 4C). When looking more 
specifically at differentially expressed genes, we found lower 
and heterogeneous expression for some characteristic B-cell 
markers and similarly heterogeneous upregulation of genes 
such as KLF2 and CD27 in the patient samples (Fig. 4D). Of 
note, the MBL and CLL cells per patient were transcription-
ally indistinguishable.

Because the transcription-based clustering could not dis-
tinguish the MBL and CLL cells, we instead used barcode 
information per cell for annotation (Fig. 4E). We observed a 
remarkable overlap for most clusters, supporting the strik-
ing similarity of the MBL and CLL transcriptomes. Only the 
MBL and CLL cells from patient A were slightly separated 
in the UMAP visualization. However, upon evaluation of 
the highest-ranked marker genes for each MBL–CLL set, we 
found a surprisingly high concordance of expression of even 
the most differential expressed genes between MBL and CLL 
cells (Fig. 4F).

Based on the single-cell expression profiles, the differences 
between MBL and CLL appear to be marginal, which agrees 
with the lack of separation by clustering on single-cell tran-
scriptomes. Combined with the lack of DNA methylation 
changes in the MBL-to-CLL transition, it points to an earlier 
molecular event that sets the normal cells already on the path 
to tumorigenesis.

individual MBL and CLL Cells Show Little DNA 
Methylation Heterogeneity

Our bulk data indicated an early conserved switch in the 
DNA methylation landscape across patients with CLL, and 
our single-cell transcriptome data demonstrate the transcrip-
tional similarity between matched MBL and CLL. However, 
bulk measurements cannot completely distinguish the con-
tributions of diverse cellular subpopulations to the overall 
picture. Subclonal evolution and genetic heterogeneity are 
common in CLL (37–39). This understanding motivated us 
to investigate single-cell methylation maps from two patients 
with CLL, two patients with MBL, and age-matched B cells 
collected from two healthy adult volunteers, uncovering a 
stable level of mean methylation per cell on a global scale (Fig. 
5A; Supplementary Table S1; ref. 40).

Analysis of our previously defined DMRs showed the pres-
ence of aberrant methylation levels in all MBL/CLL cells 
with sufficient coverage (Fig. 5B). When comparing naïve to 
memory with MBL and CLL cells, a gradual gain of meth-
ylation in B-cell–related and CLL hyper-DMRs was observed. 
Conversely, hypomethylated B-cell–related and CLL DMRs 
appeared slightly stronger in separating normal from dis-
eased (MBL and CLL) cells (Fig. 5B). Phylogenetic clustering 
separated CLL, memory B, and naïve B cells, with no differ-
ences between the B-cell subpopulations with or without the 
presence of CD5 (Fig. 5C; ref. 12). Moreover, we observed 
a clear separation between MBL and CLL versus normal, 
with each forming a tight cluster in line within the observed 
stability of the methylome per patient. Of note, memory B 
cells, despite many shared features with the CLL methylome, 
cluster distinctly next to the naïve B cells and apart from the 
MBL and CLL cells.

Our genome-wide single-cell methylation analysis thus 
complements our bulk data by further showing the clear 
methylation difference between MBL and CLL compared 
with sorted B-cell subtypes.

discussion
We show that the aberrant cancer methylome in CLL is 

already established at the preneoplastic MBL stage and is con-
sistently present at the time of diagnosis across samples col-
lected from 3 low-count and 20 high-count MBL, 5 matched 
MBL–CLL pairs, and 25 patients with CLL. Although nor-
mal B-cell maturation shows some similarities with the CLL 
methylome, these normal developmental changes are likely 
insufficient to transform cells into proliferative MBL and 
CLL. Nonetheless, the shared targets make a better under-
standing of the underlying mechanism and biological reason 
highly relevant. We also find a limited set of cancer-specific 
targets that can be readily applied to distinguish all normal 
B-cell subtypes from MBL and CLL. These CLL DMRs are 
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Figure 4.  Single-cell transcriptome analysis. A, Summary table with details of donors, tissue source, number of cells per sample, and IGHV status. 
Patients were profiled in MBL as well as the CLL state using the 10x Genomics Chromium droplet single-cell RNA sequencing. HD, healthy donor. B, UMAP 
displaying the groups found using the Louvain algorithm. The healthy donor cells split into B cells, T cells, myeloid cells, and natural killer (NK) cells. The 
MBL and CLL cells of patients build distinct groups but are within a patient not distinguishable. C, Normalized gene expression level and the number of 
positive cells of marker genes used to identify normal cell types in B. B-cell–specific genes show an aberrant expression profile in clusters derived from 
patient cells. D, Normalized gene expression level and the number of positive cells of genes identified as marker genes between B cells and all patient 
cells (Wilcoxon rank-sum test). e, UMAP of MBL, CLL, and B cells with artificially introduced identification of MBL and CLL cells. MBL and CLL cells cluster 
farther apart from the B cells than from other cells of the same patient and are highly overlapping for almost all patients. f, Heatmap displaying single-cell 
gene expression of highest-ranking marker genes between MBL and CLL cells of the same patient (Wilcoxon rank-sum test). Expression levels are very 
similar among cells of the same patient as compared with other patients or B cells, a parameter that is also supported by hierarchical clustering.
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overrepresented among pathways involved in proliferation, 
cell survival, and growth. Although it remains technically 
challenging to experimentally explore if, for instance, the 
addition of just these CLL DMRs alone is sufficient to drive 
the tumorigenic transition or facilitate extended and rapid 
proliferation, we anticipate that these targets are certainly 
worthy of future exploration, including with emerging epige-
nome editing tools.

Our results provide a comprehensive picture of the DNA 
methylation alterations in MBL and CLL and demonstrate 
that the switch to an abnormal landscape has consistently 
occurred before any of our measured time points. This 
notably expands findings from prior array-based studies 
(41, 42) and complements recent work on the genetic evo-
lution across the 21 CLL samples (28). Similar early altera-
tions of the methylome have also been noted in colorectal 
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# CpGs
(×10 )

CLL_sc03 95 447 0.73 0.22(1)
CLL_sc12 94 328 0.75 0.18(1)
MBL_sc08 41 550 0.67 0.18
MBL_sc05 30 439 0.69 0.17

memBC 44 916 0.71 0.23
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Figure 5.  Single-cell DNA methylation analysis of MBL, CLL, and normal B cells. A, Summary table of methylation data generated from MBL (rose, 
brown), CLL (red, orange), and flow cytometrically isolated normal B-cell subpopulations [naïve B cells, CD19+CD27− (lightest gray), CD5+ naïve B cells 
(CD19+CD27−, light gray), memory B cells (CD19+CD27+, dark gray), CD5+ memory B cells (CD19+CD27+, darkest gray)]. n = 611,452 CpGs covered on aver-
age. (1)Data for CLL were taken from Gaiti and colleagues (40). B, Average methylation levels for B-cell–related and CLL DMRs per cell confirm aberrant 
methylation of these regions being consistently observed across all cells. CLL and MBL cells show strong patterns of hypomethylation, whereas the small 
number of hypermethylated DMRs (n = 888 and 70, respectively) is already present in MBL but also seems to be slightly more prevalent in CLL cells. C, 
Unsupervised hierarchical clustering of MBL, CLL, and normal B cells. MBL and CLL cluster together into one clade. Although the clonal MBL and CLL 
separate by donor, naïve and memory B cells are intermingled with their CD5-positive counterparts.

cancer where the aberrant methylation landscape is already 
detectable in premalignant colorectal adenomas and ampli-
fies upon the colorectal cancer state (43). Taken together 
with the near universality of the altered cancer methylome 
(5), the possibly conserved early emergence points to an 
important role for the epigenetic change in a tumorigenic 
transition. Although it is difficult to establish causality, 
we speculate that the altered landscape may provide a 
receptive platform for the disease progression. Alterna-
tively, the cancer methylome may simply be a consequence 
of a developmental program that may regulate numerous 
cellular attributes, including methylation (5). In the latter 
case, it may well be other features driving the tumorigenic 
transition, and the methylome is only one biological conse-
quence of the entire program. Although this seems possible, 
it should be noted that this altered DNA methylation land-
scape is maintained across patients sometimes for decades 
and found in nearly all cancer types, raising the question of 
why it is not diverging if it has no functional role. Another 
possibility that we can consider here is that the altered 
methylome presents an optimized epigenetic state to main-
tain viability with maximum proliferation and the minimal 
energy requirement for DNA methylation maintenance.

Aside from these considerations, we note that the MBL and 
CLL methylome and transcriptome are extremely stable once 
acquired. In contrast to the dramatic fluctuations in tumor 
burden (estimated by the changes in the level of WBC counts) 
across disease course, methylation levels are not consistently 
affected by clonal expansion or treatment-induced bottlenecks. 
The latter may reflect that cells surviving treatment represent 
either the average of all subclones or that limited methylation 
heterogeneity is present across all subclones. From a practi-
cal standpoint, the stability of the methylome in patients 
with CLL limits its utility to track disease progression. Still, 
it may be valuable for early detection and helpful to assess 
the efficiency of treatments. We observed neither any notable 
consistency of dynamic CpGs along with the MBL to CLL 
nor CLL progression and treatment, indicating that the few 
observed dynamics over the disease progression are possibly 
an accumulative secondary effect. During disease progression, 
considerable increases in WBC counts are only juxtaposed with 
subtle methylome changes. These largely constant methyla-
tion levels within each patient indicate that increased clonal  
expansion occurred without substantial additional departure 
from the preexisting, already aberrant landscape. The stabil-
ity of the altered state is further supported by our single-cell  
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transcriptomes from the five patients that transition from MBL 
to CLL without any major expression dynamics. Finally, our 
finding that the cancer methylome also remains mostly unaf-
fected by conventional chemoimmunotherapy or the BCL2 
inhibitor venetoclax may keep patients at an elevated risk for 
relapse, in line with the fact that CLL is rarely cured, although 
this treatment landscape is continuously evolving (17).

Genetic and epigenetic diversity of normal tissues, tumors, 
and even clonally amplified cell populations have been most 
broadly assessed in-depth so far using bulk sequencing. To 
date, the degree of heterogeneity in methylation levels among 
distinct genomic regions within a single cell has not been 
investigated to our knowledge. Here, we applied single-cell 
methylome analysis and could show that aberrant meth-
ylation affects single cells to a surprisingly similar extent. 
Despite these convincing findings, it needs to be stated that 
due to technical limitations, such as stochastically missing 
values caused by unequal coverage, parts of the genome have 
not been investigated. Nevertheless, we could confirm that 
hypomethylation is more pronounced across individual MBL 
and CLL cells, suggesting that the methylation machinery 
targets a consistent and specific set of regions, though single 
CpGs are generally affected discordantly (20). As a result, 
single-cell analysis can help classify tumors and their micro-
environment, which provides a more holistic disease picture 
and may guide more precise treatments in the future.

In sum, our comprehensive exploration over the disease 
course of CLL, including its precursor stage MBL, highlights sev-
eral important lessons toward a better mechanistic understand-
ing of the cancer methylome. First, the transition to the altered 
methylome occurs very early, possibly as a nongenetic precursor 
lesion that is not yet tumorigenic. Second, it should play at least 
some facilitating, if not central, role as it was present in all 53 
patients evaluated and at all stages with remarkable stability. 
And finally, its persistence after treatment, though currently 
limited to the 13 patients that we investigated, suggests that the 
current chemoimmunotherapy and BCL2 inhibition approach 
eradicates only some but not all diseased cells. Although it 
remains to be investigated, the general nature of the epigenetic 
transformation extends to other cancer types, including many 
solid tumors, suggesting that this landscape may reflect conver-
gence toward a commonly utilized regulatory mechanism.

Methods
Human Samples

Heparinized blood samples were obtained from normal donors 
and patients enrolled in clinical research protocols approved by the 
Human Subjects Protection Committee of the Dana-Farber Cancer 
Institute (DFCI), at University of California, San Diego and the Mayo 
Clinic (CLL Research Consortium), and through the International 
Cancer Genome Consortium (42) after obtaining written-informed 
consent. Treatment indication for all 21 patients in the discovery 
cohort was determined based on International Workshop on Chronic 
Lymphocytic Leukemia criteria (12, 44). Peripheral blood mononu-
clear cells (PBMC) from normal donors and patients were isolated by 
Ficoll/Hypaque density gradient centrifugation. Mononuclear cells 
were used fresh or cryopreserved with 10% DMSO FBS and stored 
in vapor-phase liquid nitrogen until the time of analysis. CD19+ B 
cells from normal volunteers and CLL samples with WBC ≤ 50 × 
109/L were isolated by immunomagnetic selection (Miltenyi Biotec) 

and stained with anti–CD19-phycoerythrin (PE; BioLegend) prior to 
FACS sorting for live single cells in the presence of DAPI. MBL cells 
and naïve and memory B cells from age-matched healthy donors were 
isolated as follows: Cryopreserved PBMCs were thawed and stained 
with anti–CD19-PE, CD5-FITC, and CD27-Allophycocyanin (APC; 
BioLegend). Cells were gated for naïve B cells (CD19+, CD27−, and 
CD5), memory B cells (CD19+, CD27+, and CD5−), or MBL (CD19+ 
and CD5+; Supplementary Fig. S7A).

Bulk RRBS Library Generation and Data Processing
RRBS libraries were generated from 25 to 100 ng of input DNA using 

the Ovation Methyl-Seq System (NuGen) following the manufacturer’s 
recommendation. We used NuGen unique molecular identifier (UMI) 
technology to measure the rate of PCR duplicates on one patient (four 
samples) and found the duplicate rate to be below 2%, even at an input 
of only 25 ng of DNA. On average, 15.7M fragments, resulting in 31.4M 
paired-end 101–base pair (bp) reads, were sequenced per sample on 
an Illumina HiSeq2500. These reads were aligned to the human hg19 
genome using BSmap (45) with flags -v 0.05 -s 16 -w 100 -S 1 -p 8 -u. An 
average of 21.1M reads per sample was aligned correctly. Custom scripts 
written in Perl were used to count the number of times a CpG was 
observed to be methylated. The methylation percentage for each CpG 
was calculated as the number of times the CpG appeared methylated 
divided by the total times the CpG was covered in sequencing reads. 
Finally, we converted the resulting CpG level files to bigWig files, filter-
ing out all CpGs covered with less than five reads. An average of 3.4M 
CpGs was covered per sample at an average depth of 14×.

Multiplexed Single-Cell RRBS Library Generation  
and Data Processing

Single-cell RRBS libraries were prepared by combining the first 
steps (cell lysis and physical separation of DNA and mRNA) of the sin-
gle-cell methylome and transcriptome sequencing protocol (46) with 
multiplexed single-cell RRBS (26) using double MspI+HaeIII diges-
tion. Single cells were sorted into 5 μL RLT plus buffer (QIAGEN)  
containing 1 U SUPERase in RNase inhibitor (Invitrogen) in 96-well 
PCR plates, flash-frozen on dry ice, and stored at –80°C. Upon 
thawing, 5 μL of QIAGEN RLT plus buffer and 10 μL M-280 
streptavidin beads conjugated to a biotinylated oligo-dT primer 
were added to each well. After 30 minutes at 25°C, the plates 
were transferred to a magnet to capture bead-bound mRNA, and 
the DNA-containing supernatant was transferred to a new 96-well 
plate. Beads in the original wells were washed twice with 15 μL 
of washing buffer (50 mmol/L Tris-HCl, pH 8, 75 mmol/L KCl, 3 
mmol/L MgCl2, 10 mmol/L DTT, and 0.5% Tween-20), and each 
wash was added to the DNA plate. To clean up the DNA, 1 volume of 
a 1:5 dilution of AMPure XT SPRI beads (Beckman Coulter) in 20% 
PEG/2.5 mol/L NaCl and 0.5 μL Proteinase K (0.8 U/μL, NEB) were 
added. After 30 minutes at 25°C with mixing, the beads were washed 
with 80% ethanol and genomic DNA eluted with 8 μL H2O, with the 
beads remaining in the well during library prep. After addition of  
2 μL 1x CutSmart buffer (NEB) containing 10 U of MspI (NEB), or 5 
U of MspI plus 5 U of HaeIII (NEB), DNA was digested for 2 hours 
at 37°C, followed by heat inactivation for 15 minutes at 65°C. MspI 
sites were filled in and fragment ends adenylated by adding 2 μL 
1× CutSmart containing 2.5 U Klenow fragment (3′–5′exo-, NEB), 
0.4 μL of dNTP mixture (10 mmol/L dATP, 1 mmol/L dCTP, and 
1 mmol/L dGTP) followed by a two-step incubation for 25 minutes 
at 30°C and 30 minutes at 37°C and heat inactivation at 70°C for 
10 minutes. After addition of 3 μL 1× CutSmart containing 800 U 
T4 DNA ligase (NEB), 0.1 μL of 100 mmol/L ATP (Roche), 1.5 μL of 
0.1 μmol/L custom 5mC-substituted and indexed (inline barcode) 
adapter, overnight ligation at 16°C, and heat inactivation (20 min-
utes at 65°C), 24 separately indexed ligation reactions were pooled. 
After addition of 3 μL sheared and dephosphorylated Escherichia coli  
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carrier DNA (27), DNA was cleaned up with 1.8 volumes of 
AMPure XP beads (Beckman Coulter), eluted off the beads, and 
bisulfite converted (EpiTect Fast Bisulfite kit, QIAGEN) following 
the manufacturer’s recommendations with extended conversion time  
(20 minutes each cycle). Each pool of RRBS libraries from 24 single 
cells was PCR amplified using KAPA HiFi Uracil+ DNA Polymerase, a 
universal P5, and a pool-specific indexed P7 primer for a total of  
17 cycles. The thermoprofile was 98°C denaturation for 45 sec-
onds, 6 cycles of 98°C for 20 seconds, 58°C annealing for 30 
seconds, and 72°C extension for 1 minute, followed by 11 cycles 
of 98°C for 20 seconds, 65°C annealing for 30 seconds, and 
72°C extension for 1 minute, and a final extension at 72°C for  
5 minutes. To minimize size bias during sequencing, multiple PCR 
products, each representing 24 single cells, were pooled together 
and size selected on a 2% NuSieve agarose gel into two fractions 
(150–400 bp and 400–800 bp) that were sequenced in separate 
lanes with a 10% spike-in of a library with a balanced base compo-
sition, which is typically 2 lanes (1.5 plus 0.5 lanes for the low and 
high size cut, respectively) for 96 cells. On average, 4.5M fragments, 
resulting in 9M paired-end 75-bp reads, were generated per sample 
on an Illumina HiSeq4000.

Sequencing reads were demultiplexed using the inline barcode, 
adapters were trimmed, and reads were trimmed for quality. These 
reads were aligned to the human hg19 genome using BSmap with 
flags -v 0.1 -s 12 -w 100 -S 1 −q 20 −u −R. An average of 8.4M reads 
(4.2M pairs) per sample was aligned. To determine the methylation 
state of all CpGs captured and assess the bisulfite conversion rate, 
we used the mcall module in the MOABS software suite with stand-
ard parameter settings (47). Finally, we converted the resulting  
CpG level files to bigwig files, filtering out all CpGs covered with 
more than 250 reads resulting in an average of 1.1M CpGs covered 
per sample.

10x Single-Cell RNA Library Generation and  
Data Processing

PBMCs were thawed in Roswell Park Memorial Institute 1640 
medium supplemented with 10% FBS and centrifuged at 1,500 
rpm for 5 minutes. Each sample was filtered through a 70-μm 
filter. Cells were resuspended in PBS–0.04% BSA and stained with 
anti-human CD5 (FITC), CD19 (PE), CD27 (APC), and 7-aminoac-
tinomycin D for 15 minutes on ice (BioLegend). The samples were 
washed and resuspended in PBS–0.04% BSA at a concentration of 
10 × 106 cells/mL. Samples from the same patient were processed 
and sorted in parallel on the same day using two FacsAria II cytom-
eters (Becton Dickinson). Cells were sorted through a 70-μm noz-
zle into 1.5-mL Eppendorf tubes with 10-μL PBS–0.04% BSA and 
immediately stored on ice. Cellular suspensions were loaded on a 
10x Genomics Chromium Controller platform (10x Genomics, Inc.) 
to generate a single-cell Gel bead in Emulsion (GEM). Single-cell 
RNA sequencing (scRNA-seq) libraries were prepared as previously 
described (48).

The Cell Ranger pipeline (10X Genomics, Inc.) was used for each 
scRNA-seq dataset to demultiplex the raw base call files, generate 
the fastq files, perform the alignment against the mouse reference 
genome hg19, filter the alignment, and count barcodes and UMIs. 
Outputs from multiple sequencing runs were also combined using 
Cell Ranger functions.

Data Analysis
If not stated otherwise, all statistics and plots are generated using 

R version 3.5.1 “Feather Spray.” In all boxplots, the centerline is 
median; boxes, first and third quartiles; whiskers, 1.5× interquartile 
range; and data beyond the whiskers’ end are omitted.

Bed files were processed using UCSCtools and bedtools 
(v2.25.0).

Additional Data
Whole genome bisulfite sequencing (WGBS) data of normal B cells 

were obtained from the European Genome-phenome Archive (EGA) 
under accession EGAS00001001196 for comparison in the phylogenetic 
and average methylation analysis. Methylation data were filtered for 
minimum coverage of 10× read coverage, and coordinates were con-
verted to hg19 using bedtools liftOver (49). Additional WGBS data of 
normal B cells were obtained from Beekman and colleagues (30) and 
downloaded from http://resources.idibaps.org/paper/the-reference-
epigenome-and-regulatory-chromatin-landscape-of-chronic-lym-
phocytic-leukemia. Methylation data were filtered for a minimum 
of 10× read coverage, and coordinates were converted to hg19 using 
bedtools liftOver. Data were used in phylogenetic comparisons, aver-
age methylation analysis, and all comparative analysis, e.g., detecting 
differential methylated regions and genomic region visualizations. 
To ensure accurate comparison among samples, all published WGBS 
data were reduced to positions covered in any of our patient RRBS 
data, resulting in a set of approximately 5 million comparable CpGs.

Single-cell RRBS and RNA-seq data of the two CLL samples were 
obtained from Gaiti and colleagues (40).

Feature Annotations
Chromatin states were defined by the standard 15-state model 

using the ChromHMM algorithm (33) and were downloaded from 
the UCSC Genome Browser (50). The average methylation rate for 
each sample and per chromatin state was calculated as the mean of 
all methylation rates overlapping with a particular chromatin state. 
CpG islands were downloaded from the UCSC Genome Browser; 
shores were defined as adjacent 2 kb regions and shelves as the next 
adjacent 2 kb regions. Gene annotations were downloaded from the 
UCSC Genome Browser (gencode v19), and promoter regions were 
defined as 5,000 nt upstream to 2,500 nt downstream of annotated 
transcription start site. DMRs were assigned to genes if overlapping 
with the promoter or gene body with at least one shared base. For 
unique annotation of DMRs and if a DMR overlapped more than 
one feature, the ranking was: promoter, gene body, last intergenic; or 
CpG island, shelf, and last shore. For chromatin state annotation of 
DMRs, the 15 chromatin states were collapsed into the 6 main cat-
egories (Active Promoter, Poised Promoter, Enhancer, Transcription, 
Insulator, and Heterochromatin), and each DMR was assigned to the 
region with its maximal overlap.

Mutation and subclone information was taken from ref. 28.

Phylogenetic Tree
The phylogenetic analysis of DNA methylation was performed 

as previously described (51). In brief, the phylogenetic trees were 
inferred using the fastme.bal function in the R package ape, which 
is based on the minimal evolution method. Trees were computed 
by applying the fastme.bal function on the Euclidean distance 
matrices of the methylation rates of all samples in the tree. To 
always capture the maximal information, the subset of CpGs 
considered was adapted to the sample shows, resulting in n = (i) 
28,343,743; (ii) 5,227,401; and (iii) 3,490,971 CpGs for (i) normal 
B cells, (ii) normal B cells + first time point CLL, and (iii) normal 
B cells + first time point CLL + MBL; normal B cells + all CLL time 
points, respectively.

Scatter Plots and Correlation
Scatter plots were created using the smoothScatter function of R, 

and correlations were calculated using the cor function of R. For the 
first figure, the average methylation per group was used (n = 3 for 
naïve and memory B cells, n = 20 and 21 for unmutated and mutated 
CLL, respectively). Missing values were removed from the mean cal-
culation. For the matched MBL–CLL correlation, missing values were 

2021. Copyright 2020 American Association for Cancer Research. 
 at Max Planck Insitut fuer Molekulare Genetik on January 12,https://bloodcancerdiscov.aacrjournals.orgDownloaded from 

https://bloodcancerdiscov.aacrjournals.org


The Altered DNA Methylation Landscape in CLL ReSeARCH ARTiCLe

 January  2021 blood CANCER dISCoVERY | OF14 

not omitted from the naïve, memory, and the five matched MBL and 
CLL samples, resulting in 1,801,907 CpGs that were used for correla-
tion analysis and scatter plots. Statistics for the full CLL cohort are 
given in Supplementary Fig. S5A.

Genome Region Visualization
Visualization of methylation levels per CpG at genomic regions 

was done using the plotTracks function of the R package Gviz (52). 
Track data were grouped by cell type, and for the curve, representa-
tion was plotted as a smoothed line.

Differential Methylation Analysis
DMRs were called using metilene version 0.2–7 (32). DMRs were 

defined to have an absolute minimum difference in methylation of 
0.25 with a maximum distance of 100 nt between CpGs within a 
DMR and a minimum of 3 CpGs per DMR (parameter −M 100 −m 
3 −d 0.25). DMRs were calculated between (i) the normal B cells 
from Beekmann and colleagues (30), (ii) CLL samples as well as 
between the first and last pretreatment and the last pre- and first 
posttreatment time points, and (iii) for each sample individually 
between the first and last pretreatment and the last pre- and first 
posttreatment time points. More specifically, DMRs were calcu-
lated for normal B cells to CLL between the naïve B cells (n = 3) and 
the first time point of the CLL samples with unmutated IGHV as 
well as between the memory B cells (n = 3) and the first time point 
of the CLL samples with mutated IGHV. Only positions on the 
autosomes (chr1–22) were taken into account that were covered 
by all three normal B-cell samples (naïve or memory) and 90% of 
the CLL samples (n = 18 unmutated/n = 19 mutated CLL), respec-
tively. For within-patient sample versus sample DMRs, all posi-
tions that were covered by both samples were taken into account. 
After DMR calling, all P values were adjusted for multiple testing 
using the R function p.adj, and regions with an adjusted P value  
< 0.05 were considered DMRs. As previously described, DMRs 
were separated into DMRs that overlap CpGs that are dynamic 
during B-cell differentiation (difference between all normal B 
cells > 0.25) and subsequently called B-cell–related DMRs, and 
those that do not overlap any dynamic position are called CLL 
DMRs. No DMRs (FDR < 0.05) were found when comparing the 
five matched MBL samples with the respective five CLL samples, 
when comparing the unmutated and mutated CLL, or when com-
paring the first pretreatment time points to the last pretreatment 
time points.

For heatmap visualization, methylation levels of DMRs were cal-
culated as the mean methylation of all CpGs with a DMR for all 
samples and plotted using the heatmap function of the R package 
ComplexHeatmap (53). Row annotations were based on overlap with 
features; see Feature Annotations section above. The enrichment 
analysis of genes affected by DMRs was done using the online Web 
tool WebGestalt (54). An overrepresentation enrichment analysis 
(ORA) was calculated for the CLL DMRs with all DMRs as back-
ground for Panther pathways and the patient-specific DMRs by 
comparing recurrently hit genes among more than two patients with 
all DMR genes.

Single-Cell Analysis. For comparison of the RRBS single-cell 
experiments, only positions of the double-digest data (naïve and 
memory B cells) were considered that were also covered by the single-
digest data (CLL).

10x scRNA-seq. The single-cell RNA was analyzed using the 
python toolkit “Scanpy” with default parameters for clustering and 
UMAP generation (55). Gene expression profiles were generated 
using parameters for normalized gene expression representation for 
dotplot and heatmap representations.

Data Accessibility
Raw methylation sequence data from patients are deposited in the 

database of Genotypes and Phenotypes (dbGAP) record # phs001431.
v1.p to allow controlled access and maintain patient privacy.

ScRNA-seq and processed methylation data are available under 
Gene Expression Omnibus (GEO) accession GSE125499. Go to https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125499.
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