11-Keto-α-boswellic Acid, a Novel Triterpenoid from *Boswellia* spp. with Chemotaxonomic Potential and Antitumor Activity against Triple-Negative Breast Cancer Cells

Michael Schmiech¹, Judith Ulrich¹, Sophia Johanna Lang¹, Christian Paetz², Alexis St-Gelais³, Berthold Büchele¹, Tatiana Syrovets^{1,*,†}, and Thomas Simmet^{1,*,†}

- ¹ Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; michael.schmiech@uni-ulm.de (M.S.); judith.ulrich@uni-ulm.de (J.U.); sophia.lang@uni-ulm.de (S.J.L.); berthold.buechele@t-online.de (B.B.)
- ² Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; cpaetz@ice.mpg.de (C.P.)
- ³ Laboratoire PhytoChemia, Québec G7J 1H4, Canada; a.st-gelais@phytochemia.com (A.S.)
- * Correspondence: tatiana.syrovets@uni-ulm.de (T.S.); thomas.simmet@uni-ulm.de (Th.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (Th.S.)
- ⁺ These authors contributed equally to this work

Figure S1. High-resolution mass spectrometry (HR-MS) of α -KBA. (**a**) HR mass spectrum with an exact mass at m/z 469.332267 for [**M**-**H**]⁻ (calcd.: 469.332333, error: -0.143 ppm). (**b**) The isotope pattern and the individual exact masses corresponded to predicted data.

Figure S2. Tandem mass spectrometry (MS/MS) of α -KBA. (**a**) Mass spectrum with *m*/*z* 469.3 ([M-H]·) as precursor ion. (**b**) Product ion mass spectrum with characteristic fragments at *m*/*z* 353.3, 376.3, 391.4, 407.4, and 451.4.

Figure S3. ¹H and ¹³C NMR spectra of α -KBA (in DMSO-*d*₆). (a) ¹H NMR spectrum. (b) ¹³C NMR spectrum. Assignment of signals according to Figure 3a and Table 1 of the main text.

Figure S4. ¹H, ¹H SELTOCSY (selective total correlation spectroscopy) spectra of α -KBA (in DMSO-*d*₆). Comparison of the ¹H NMR spectrum (**b**) with ¹H, ¹H SELTOCSY spectra. (**a**) Transmitter frequency at δ H 3.77 (H-3). (**c**) Transmitter frequency at δ H 5.47 (H-12).

Figure S5. ¹H, ¹H COSY (correlation spectroscopy) spectrum of *α*-KBA (in DMSO-*d*₆). (**a**) Full spectrum. (**b**) Enlarged section.

Figure S6. ¹H, ¹H ROESY (rotating frame Overhauser enhancement spectroscopy) spectrum of α -KBA (in DMSO-*d*₆). (**a**) Full spectrum. (**b**) Enlarged section.

Figure S7. ¹H, ¹³C HSQC (heteronuclear single quantum coherence spectroscopy) spectrum of *α*-KBA (in DMSO-*d*₆). (**a**) Full spectrum. (**b**) Enlarged section.

Figure S8. ¹H, ¹³C HMBC (heteronuclear multiple bond correlation spectroscopy) spectrum of *α*-KBA (in DMSO-*d*_δ). (**a**) Full spectrum. (**b**) Enlarged section.