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A B S T R A C T   

Comparison of different lines of research on statistical intuitions and probabilistic reasoning reveals several 
puzzling contradictions. Whereas babies seem to be intuitive statisticians, surprisingly capable of statistical 
learning and inference, adults’ statistical inferences have been found to be inconsistent with the rules of prob
ability theory and statistics. Whereas researchers in the 1960s concluded that people’s probability updating is 
“conservatively” proportional to normative predictions, probability updating research in the 1970s suggested 
that people are incapable of following Bayes’s rule. And whereas animals appear to be strikingly risk savvy, 
humans often seem “irrational” when dealing with probabilistic information. Drawing on research on the 
description–experience gap in risky choice, we integrate and systematize these findings from disparate fields of 
inquiry that have, to date, operated largely in parallel. Our synthesis shows that a key factor in understanding 
inconsistencies in statistical intuitions research is whether probabilistic inferences are based on symbolic, ab
stract descriptions or on the direct experience of statistical information. We delineate this view from other 
conceptual accounts, consider potential mechanisms by which attributes of first-hand experience can facilitate 
appropriate statistical inference, and identify conditions under which they improve or impair probabilistic 
reasoning. To capture the full scope of human statistical intuition, we conclude, research on probabilistic 
reasoning across the lifespan, across species, and across research traditions must bear in mind that experience 
and symbolic description of the world may engage systematically distinct cognitive processes.   

1. Introduction 

Why are grown-ups often so stupid about probabilities when even babies 
and chimps can be so smart? 

— Alison Gopnik 

As developmental psychologist Gopnik (2014) noted in an article 
written for The Wall Street Journal, juxtaposing distinct lines of research 
on statistical intuitions reveals several puzzling inconsistencies. On the 
one hand, recent studies on infant cognition have shown that babies 
possess a remarkable ability to absorb, process, and apply everyday 
statistical information. In their first year of life, infants are capable of 
drawing accurate inferences from samples to populations (e.g., Denison 
& Xu, 2014; Xu & Garcia, 2008), integrating physical information about 
objects when making statistical inferences (e.g., Denison & Xu, 2010a; 
Téglás, Girotto, Gonzalez, & Bonatti, 2007), and taking into account 
information about the intentions of sampling agents (e.g., Xu & Denison, 

2009). Likewise, recent research on animal cognition suggests that 
several nonhuman primates and some parrot species share human in
fants’ ability to make adequate statistical inferences (e.g., Bastos & 
Taylor, 2020; De Petrillo & Rosati, 2019; Eckert, Rakoczy, Call, Herr
mann, & Hanus, 2018; Rakoczy et al., 2014; Tecwyn, Denison, Messer, & 
Buchsbaum, 2017). On the other hand, research conducted in the 
heuristics-and-biases tradition has found that adults’ statistical in
ferences are often inconsistent with the rules of probability theory and 
statistics (e.g., Tversky & Kahneman, 1974). For nearly five decades, this 
research tradition has profoundly shaped scholars’ conception of adults’ 
statistical intuitions in psychology, economics, and beyond, concluding 
that “intuitive judgments of all relevant marginal, conjunctive, and 
conditional probabilities are not likely to be coherent, that is, to satisfy 
the constraints of probability theory” (Tversky & Kahneman, 1983, p. 
313). Yet just a few years before the emergence of heuristics-and-biases 
research, a seminal review of studies on adult statistical infer
ence—tellingly titled “Man as an intuitive statistician”—had come to the 
opposite conclusion: that “probability theory and statistics can be used 
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as the basis for psychological models that integrate and account for 
human performance in a wide range of inferential tasks” (Peterson & 
Beach, 1967, p. 29). In short, several decades of research from different 
lines of inquiry have reached surprisingly inconsistent conclusions, 
despite addressing a common question: How good are humans’ (and 
other animals’) statistical intuitions? 

In this article, we aim to systematize and synthesize this body of 
research, bringing together research areas that have, to date, operated 
largely in parallel. We argue that a key factor in understanding in
congruities in research on statistical intuitions (though, of course, not 
the only one, see 4. Other Possible Contributors to Inconsistencies in 
Research on Statistical Intuitions) is whether the experimental para
digms used to measure these intuitions offer authentic experience of the 
relevant probabilistic information or descriptive summary representa
tions thereof. By experience, we mean situations that involve interaction 
with the environment to reach an understanding of its statistical struc
ture—for instance, by sampling information sequentially, making 
repeated judgments with or without feedback, or actively operating or 
observing the experimental microworld. In description, by contrast, a 
full or partial symbolic summary representation of the situation is pro
vided (see Hertwig, Hogarth, & Lejarraga, 2018). To appreciate this 
difference, consider how experimenters typically communicate with 
adults and with babies or nonhuman animals. One of the greatest cul
tural achievements of humankind is the capacity to communicate by 
means of written symbols, a powerful form of self-expression that makes 
the spoken word permanent and enables humans to draw on the accu
mulated knowledge of others (Schmandt-Besserat, 1996). Infants do not 
yet possess this ability to process and produce symbolic representations 
of the world. Therefore, whereas the experimental protocols used with 
adults typically involve symbolic (often text-based) description of in
formation, the protocols used with infants and, similarly, with animals 
tend to involve first-hand experience of information. 

Description and experience, even if structurally isomorphic, have 
been shown to elicit potentially different processes and behaviors: Both 
children and adults show systematically different choices and choice 
processes in description-based monetary gambles than they do when 
they learn about outcomes and their relative frequencies from experi
ence (e.g., Barron & Erev, 2003; Erev, Ert, Plonsky, Cohen, & Cohen, 
2017; Hertwig, Barron, Weber, & Erev, 2004; Plonsky, Teodorescu, & 
Erev, 2015; Rakow & Rahim, 2010; Weber, Shafir, & Blais, 2004; for 
reviews, see Hertwig & Erev, 2009; Rakow & Newell, 2010; for a meta- 
analysis, see Wulff, Mergenthaler-Canseco, & Hertwig, 2018). Recently, 
researchers have also found evidence for such description–experience gaps 
in other domains, such as intertemporal choice (Dai, Pachur, Pleskac, & 
Hertwig, 2019), social interaction in strategic games (Martin, Gonzalez, 
Juvina, & Lebiere, 2014), decisions under ambiguity (Dutt, Arló-Costa, 
Helzner, & Gonzalez, 2014; Güney & Newell, 2015), online consumer 
choice (Wulff, Hills, & Hertwig, 2015), financial risk taking (Lejarraga, 
Woike, & Hertwig, 2016), medical judgments and decisions (Armstrong 
& Spaniol, 2017; Lejarraga, Pachur, Frey, & Hertwig, 2016; Wegier & 
Shaffer, 2017), confidence estimates (Camilleri & Newell, 2019; Lejar
raga & Lejarraga, 2020), adolescent risk taking (van den Bos & Hertwig, 
2017), categorization (Nelson, McKenzie, Cottrell, & Sejnowski, 2010), 
causal reasoning (Rehder & Waldmann, 2017), and visual search (Zhang 
& Houpt, 2020). Moreover, recent research has contrasted perceptuo- 
motor decision making, a form of experience-based choice in which 
participants gauge relevant probabilities from their ability to perform a 
perceptual or motor decision task, with decision making in described 
lotteries (e.g., Glaser, Trommershäuser, Mamassian, & Maloney, 2012; 
Jarvstad, Hahn, Rushton, & Warren, 2013; Trommershäuser, Maloney, 
& Landy, 2008; Wu, Delgado, & Maloney, 2009). 

In nearly all cases, the description–experience dimension has been 
studied within a single developmental period—typically adulthood. We 
propose that the distinction between description and experience may be 
one key to understanding otherwise puzzling behavioral patterns across 
development. Furthermore, we argue that disparities in research 

findings on animal versus human cognition—and indeed in findings on 
probabilistic reasoning in research from the 1960s versus 1970s—can be 
better understood by considering the degree of experiential involvement 
inherent in the respective experimental protocols. In the following, we 
first review findings from diverse domains of probabilistic reasoning 
research and highlight how distinguishing between description and 
experience can forge bridges between these largely unrelated fields, 
reconciling their seemingly inconsistent findings. Second, we discuss 
empirical evidence supporting a significant role of the descr
iption–experience dimension in determining people’s statistical in
tuitions. Third, we delineate our framework from other views on 
inconsistencies in probabilistic reasoning research. Fourth, we summa
rize characteristics that define experience, identify the mechanisms by 
which they facilitate appropriate statistical inference, and consider the 
conditions under which attributes of experience can improve or impair 
probabilistic reasoning. Finally, we outline implications for the devel
opment of broadly informed paradigms in statistical intuitions research, 
for theory integration, and for educational applications. 

2. Description–Experience Gaps in Research on Statistical 
Intuitions 

2.1. Statistical Intuitions From Infancy to Adulthood 

2.1.1. Babies’ intuitive understanding of statistics 
A recent surge in studies on infants’ probabilistic reasoning (for a 

review, see Denison & Xu, 2019) has fueled the development of novel 
paradigms for testing their statistical intuitions. Fig. 1 illustrates one 
such experimental paradigm, in which colored objects are sequentially 
sampled from a box, the content of the box is revealed, and infants’ 
looking time is measured. Based on the premise that infants look at 
unexpected or novel events for longer than at expected or known events, 
several studies have found that babies form adequate expectations about 
the underlying population from the randomly drawn sample (Denison, 
Reed, & Xu, 2013; Denison & Xu, 2010a; Xu & Denison, 2009; Xu & 
Garcia, 2008). Likewise, infants have been shown to consider the 
properties of a population when inferring the likelihood that a single- or 
a multi-object sample will be drawn from that population (Kayhan, 
Gredebäck, & Lindskog, 2018; Téglás et al., 2007; Xu & Garcia, 2008). 
Moreover, infants use statistical information to anticipate probabilistic 
outcomes (Téglás & Bonatti, 2016), to make inductive generalizations 
(Gweon, Tenenbaum, & Schulz, 2010), to differentiate between the 
relative likelihoods of two simultaneous events (Kayhan et al., 2018), 
and to guide their exploratory actions (Sim & Xu, 2017) and preferential 
choices (Denison & Xu, 2010b, 2014). Experiments using this last 
preferential choice task have shown that infants use proportional rather 
than quantitative reasoning to make statistical inferences (Denison & 
Xu, 2014)—two possibilities that are confounded in the setup illustrated 
in Fig. 1. Infants also appear to integrate information about the physical 
properties of objects (e.g., mobility, location, density, and speed of 
movement) when making statistical inferences (Denison, Trikutam, & 
Xu, 2014; Denison & Xu, 2010a; Lawson & Rakison, 2013; Téglás et al., 
2007; Téglás, Ibanez-Lillo, Costa, & Bonatti, 2015; Téglás, Vul, Girotto, 
Gonzalez, Tenenbaum, & Bonatti, 2011). For example, if some balls in 
the paradigm illustrated in Fig. 1 can be sampled without constraints 
whereas others are fixated and cannot be sampled, infants disregard the 
immovable subset when making statistical inferences (Denison et al., 
2014; Denison & Xu, 2010a). 

Further, infants are sensitive to the randomness of the sampling 
process and integrate attributes of the sampling agent (e.g., expressed 
preferences or visual access) when making inferences about object 
populations and inductive generalizations about object properties 
(Attisano & Denison, 2020; Gweon et al., 2010; Xu & Denison, 2009). 
They can infer other people’s preferences from the statistical properties 
of their actions (Kushnir, Xu, & Wellman, 2010; Ma & Xu, 2011; Well
man, Kushnir, Xu, & Brink, 2016) and attribute the observation of 
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nonrandom samples to intentional agency (Ma & Xu, 2013). Infants also 
use statistical information to infer the cause of a failed action: When 
given a dysfunctional toy, infants attribute its failure to work to either 
the toy or another person, depending on whether or not the toy’s 
properties differ from those of the other person’s—functional—toy 
(Gweon & Schulz, 2011). Table 1 summarizes this research on infants’ 
statistical intuitions, describing the experimental protocol used in each 
study. 

In addition, research on statistical learning in infancy has shown that 
babies are sensitive to statistical patterns in environmental input and use 
this information to learn about language (Aslin, Saffran, & Newport, 
1998; Marcus, Vijayan, Bandi Rao, & Vishton, 1999; Saffran, Aslin, & 
Newport, 1996), musical tones (Saffran, Johnson, Aslin, & Newport, 
1999; Saffran, Reeck, Niebuhr, & Wilson, 2005), and visual stimuli 

(Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson, 2002). Taken 
together, research on statistical inference and statistical learning in in
fancy suggests that babies are already equipped with the ability to learn, 
infer, and generalize from finite environmental samples. Importantly, 
statistical intuitions appear to emerge irrespective of formal education 
and culture: Both prenumerate indigenous adults and formally educated 
Western controls make suitable probabilistic predictions (Fontanari, 
Gonzalez, Vallortigara, & Girotto, 2014). 

2.1.2. Adults’ error-prone statistical intuitions 
Results from heuristics-and-biases research paint a different picture. 

Research in this tradition has identified numerous errors—often called 
cognitive illusions—that adults tend to commit when judging the proba
bility of an uncertain event, gauging the value of an uncertain quantity, 

Fig. 1. Illustration of one experimental paradigm 
used in research on infants’ statistical intuitions (e.g., 
Xu & Garcia, 2008). The experimenter draws several 
colored balls (e.g., red or white) from an opaque box 
without looking, the content of the box is revealed, 
and infants’ looking time is recorded. If the sample 
drawn does not reflect the object distribution in the 
box (unexpected outcome, bottom left panel), infants 
tend to look at the contents of the box for longer than 
if the sample is consistent with the object distribution 
(expected outcome, bottom right panel). Adapted 
from Gopnik (2012).   
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Table 1 
Summary of Experience-Based Procedures Used in Studies Testing Infants’ Statistical Intuitions.  

Paradigm and 
study 

Infants’ mean 
age (in 
months) 

Sampling materials Experience-based procedure and measurement Physical 
instantiation 

Single sample from population    
Denison and Xu 

(2010b) 
13.5 Different ratios of pink and black lollipops in two jars ( 

Denison & Xu, 2014; Exp. 3–4: additional green “neutral” 
lollipops) 

1 lollipop was drawn from each population (sequentially) and 
infants made a single forced choice 

Direct 
interaction 

Denison and Xu 
(2014) 

11 

Gweon et al. 
(2010): Exp. 
2 

15.5 Blue and yellow balls in one box 1 blue ball was drawn from the population and an action 
demonstrated (ball squeezed to make it squeak); 1 yellow ball 
was drawn and the infant’s object manipulation coded 

Direct 
interaction 

Lawson and 
Rakison 
(2013) 

8.5 or 12 Red and blue balls in two boxes with inverse ratios (e.g., 
4:1 and 1:4) 

1 ball was released from each population (simultaneously); 
VoE 

Movies on 
screen 

Téglás et al. 
(2007): Exp. 
1–2 

12 Yellow and blue geometrical objects (ratio 3:1) moving 
inside a transparent container with one opening 

Objects moved inside a container until one exited through an 
opening; VoE 

Movies on 
screen 

Téglás et al. 
(2011) 

12 

Téglás et al. 
(2015) 

12.5 

Téglás and 
Bonatti 
(2016) 

12.5 A striped ball moving inside a rectangular frame with 3 
openings on one vertical side and 1 opening on the 
opposite side 

The ball moved inside the frame until it exited at the side with 
3 openings (probable outcome) or 1 opening (improbable 
outcome); eye-tracking and VoE 

Movies on 
screen 

Repeated sampling from population    
Attisano and 

Denison 
(2020) 

6.5 or 9.5 Different ratios of red balls and yellow rubber ducks in one 
box 

One toy was grasped repeatedly by either the experimenter or 
a mechanical claw in up to 14 habituation trials; at test, 3 toys 
of the same type were sampled by either the experimenter with 
visual access to the population or a mechanical claw, the 
population was then revealed; VoE 

Puppet 
stage 

Denison et al. 
(2013) 

4.5 
or 6 

Different ratios of yellow and pink ping-pong balls in two 
boxes 

5 balls were drawn from one of two populations in two 
sequential actions (3, 2 balls at a time) and both populations 
then revealed; VoE 

Puppet 
stage 

Denison et al. 
(2014) 

11 Different ratios of red and green (plus yellow in Denison & 
Xu, 2010a; Exp. 3) ping-pong balls in (what appeared to 
be) two boxes. Some or all balls of one type were fixated 
inside the box with Velcro strips 

5 balls were drawn from one of two populations in two 
sequential actions (3, 2 balls at a time) and the population was 
then revealed; VoE 

Puppet 
stage 

Denison and Xu 
(2010a) 

11 

Gweon and 
Schulz 
(2011)* 

16 Green, yellow, and red toys that played music Activation of a toy was demonstrated repeatedly, infants failed 
to activate a toy of the same or a different color, and their 
change action (change agent or change toy) was coded 

Direct 
interaction 

Gweon et al. 
(2010): Exp. 
1–5 

15.5 Different ratios of blue and yellow balls in one box 2 or 3 blue balls were sampled sequentially (one at a time) 
from the population, an action was demonstrated (ball 
squeezed to make it squeak); 1 yellow ball was sampled and 
the infant’s object manipulation coded 

Direct 
interaction 

Kayhan et al. 
(2018) 

6, 12, 
or 18 

Different ratios of colored balls (e.g., blue and orange) in 
one container 

Two samples, one likely and one unlikely with respect to the 
population ratio, were simultaneously released from the 
container (sample size: 6 or 8 balls); eye-tracking 

Movies on 
screen 

Kushnir et al. 
(2010): Exp. 
2 

20 Different ratios of yellow rubber ducks and green rubber 
frogs in one box 

5 toys of the same type were sampled sequentially (one at a 
time) and infants’ choice behavior was coded (“Just what I 
wanted! Can you give me one?”) 

Direct 
interaction 

Ma and Xu 
(2011) 

16.5 
or 26.5 

Different ratios of boring (e.g., white wooden cubes) and 
interesting (e.g., orange slinkies with pumpkin-face print) 
toys in one jar 

6 boring toys were sampled sequentially (one at a time) and 
infants’ choice behavior was coded (“Can I have the one I 
like?”) 

Direct 
interaction 

Ma and Xu 
(2013) 

9.5 Yellow and red ping-pong balls (ratio 2:1) in one jar 9 balls were sampled sequentially (one at a time) in each 
sampling event by either a human hand or mechanical claw; 3 
sampling events per trial; VoE 

Puppet 
stage 

Sim and Xu 
(2017) 

13 Six balls of different colors (red, purple, blue, green, 
yellow, and orange) in one box (VoE) or each of two boxes 
(choice task) 

4 balls of either the same or different colors were sampled 
sequentially (one at a time) with replacement; VoE or 
exploratory choice (“Do you want to come and play?”) 

Puppet 
stage 

Wellman et al. 
(2016) 

10 Different ratios of blue and red balls in one box 5 balls of the same color were drawn repeatedly from the 
population in three sequential actions (2,2,1 ball[s] at a time) 
in up to 8 habituation trials; at test, the experimenter selected 
one type of ball; VoE 

Puppet 
stage 

Xu and Denison 
(2009) 

11 Different ratios of red and white ping-pong balls in (what 
appeared to be) two boxes 

5 balls were drawn sequentially from one of two populations 
(either in two actions, Xu & Denison, 2009; or one at a time,  
Xu & Garcia, 2008) and the population was then revealed. In  
Xu and Denison (2009), whether or not sampling was random 
was varied (with or without visual access to the population 
during sampling). In Xu and Garcia (2008; Exp. 4–6), the 
population was revealed before the 5 balls were sampled; VoE 

Puppet 
stage  

Xu and Garcia 
(2008) 

8 

Note. In addition to the experimental procedures being experience based, in all but two studies (Gweon et al., 2010; Kayhan et al., 2018), infants were also familiarized 
with (i.e., had prior exposure to) the sampling materials and sampling procedure used. 
VoE: Violation-of-expectation looking paradigm. 
* This study differs from the others in that it involved sampling of “actions” (i.e., repeated demonstrations) rather than repeated sampling of objects. 
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Table 2 
Summary of Procedures Used to Demonstrate Biases in Adults’ Statistical Intuitions, as Reviewed in Tversky and Kahneman (1974).  

Bias and task used to demonstrate it Example procedure and study 

Insensitivity to prior probability of outcomes  
Ranking of outcomes based on likelihood versus similarity Text-based instruction to rank nine fields of graduate specialization in order of the likelihood that a hypothetical 

person described in a personality sketch is a student in these fields (Kahneman & Tversky, 1973) 
Judgment of the likelihood of outcomes in the presence of prior 

versus individuating evidence 
Engineer–lawyer problem: Text-based instruction to judge the probability that a thumbnail description of a 
professional individual, sampled at random from a population of 30 engineers and 70 lawyers (or vice versa), 
belongs to one of the engineers in the population (Kahneman & Tversky, 1973) 

Insensitivity to sample size  
Production of sampling distributions for different sample sizes Text-based instruction to produce a sampling distribution of the average height of men examined at a regional 

induction center with seven categories (up to 160 cm, 160–165 cm, …, more than 185 cm) and for different sample 
sizes (N = 10, 100, or 1000; Kahneman & Tversky, 1972) 

Judgment of the likelihood of sampling outcomes contingent on 
sample size 

Maternity-ward problem: Text-based instruction to judge which of two hospitals, a smaller or a larger one, is more 
likely to have recorded a higher number of days on which over 60% of babies born were boys (Kahneman & 
Tversky, 1972) 

Judgment of posterior probability for different sample sizes Text-based instruction to judge the posterior probability that samples of marked cards in different sample sizes and 
sample ratios (e.g., 5 cards marked X and 1 card marked O vs. 40 cards marked X and 20 cards marked O) were 
drawn from a deck of cards marked either mostly X or mostly O (Kahneman & Tversky, 1972) 

Misconceptions of chance  
Judgment of the likelihood of a sequence of random events Text-based instruction to judge the relative likelihood of birth orders of boys and girls in families with six children 

(e.g., B G B B B B vs. G B G B B G; Kahneman & Tversky, 1972) 
Judgment of the likelihood of the reproducibility of results in 

samples of different sizes 
Text-based instruction to experienced research psychologists to judge the probability of a successful replication of 
a significant result in a sample smaller than the one that produced the original finding (Tversky & Kahneman, 
1971) 

Insensitivity to predictability  
Numerical prediction of a remote criterion versus evaluation of 

inputs 
Text-based instruction to judge the professional standing of school teachers based on descriptive summaries of 
their performance in a practice lesson held 5 years earlier (Kahneman & Tversky, 1973) 

The illusion of validity  
Confidence in prediction from consistent versus inconsistent 

evidence 
Text-based instruction to report confidence in predicting grade point averages based on pairs of aptitude tests that 
produced either consistent scores and were described as correlated or inconsistent scores and were described as 
uncorrelated (Kahneman & Tversky, 1973) 

Misconceptions of regression  
Anticipation and interpretation of regression toward the mean Text-based instruction to interpret a description of a flight maneuver training situation in which verbal rewards for 

successes resulted in subsequent performance loss (Kahneman & Tversky, 1973) 
Biases due to the retrievability of instances*  
Judgment of the frequency of a class based on the familiarity 

versus occurrence rate of its instances 
Sequential presentation of a recorded list of names of more or less famous men and women and verbal instruction 
to judge whether the list contained more men’s names or women’s names (Tversky & Kahneman, 1973) 

Biases due to the effectiveness of a search set  
Judgment of word frequency Text-based instruction to judge the relative likelihood with which various letters of the alphabet (e.g., K, L, N, R, V) 

appear in the first and third positions in words in the English language (Tversky & Kahneman, 1973) 
Biases of imaginability  
Estimation of the numerosity of possible combinations Text-based instruction to estimate the number of all possible distinct committees of various sizes (between 2 and 8 

members) that can be formed from a set of 10 people (Tversky & Kahneman, 1973) 
Illusory correlation*  
Judgment of the frequency of  

co-occurrence of events 
Sequential presentation of a recorded list consisting of highly related (knife–fork) and unrelated (head–fork) word 
pairs. Half the pairs were repeated three times in the recording; the other half, twice. Text-based instruction to 
judge the frequency with which each word pair was presented (from a written list of all pairs; e.g., Tversky & 
Kahneman, 1973) 

Insufficient adjustment  
Estimation of quantities relative to an uninformative number Verbal instruction to estimate the percentage of African countries in the UN relative to an arbitrary number 

between 0 and 100 generated by spinning a wheel of fortune in the participant’s presence (Tversky & Kahneman, 
1974) 

Estimation of quantities based on an incomplete computation High school students estimated, within 5 seconds, the product of a numerical expression written on the blackboard 
(either 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 or 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8; Tversky & Kahneman, 1973) 

Biases in the evaluation of conjunctive and disjunctive events  
Choice among gambles with elementary, conjunctive, and 

disjunctive events 
Repeated choice between described pairs of gambles, one elementary (draw of one marble from a mixed urn) and 
one compound, either conjunctive (multiple successive draws of the same color marbles) or disjunctive (multiple 
successive draws in which a particular color marble is drawn at least once). At the end of the experiment, one 
gamble chosen by the participant was played out (Bar-Hillel, 1973) 

Anchoring in the assessment of subjective probability distributions  
Elicitation of subjective probability distributions Text-based instruction to assess the 10th or 90th percentile in the distribution of subjective beliefs about the air 

distance from New Delhi to Peking (group 1); or to assess the odds that the median air distance from New Delhi to 
Peking given by group 1 exceeds the true value (Tversky & Kahneman, 1974) 

* Cognitive biases demonstrated with experience-based experimental protocols. 
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or deciding between risky prospects. For instance, adults commit the 
conjunction fallacy, do not properly account for sample sizes, over
estimate the prevalence of easily recalled events, fail to make full use of 
base-rate information, do not anticipate regression toward the mean, are 
susceptible to a problem’s reference frame, are overconfident, and 
violate various axioms of expected utility theory (Fischhoff, Slovic, & 
Lichtenstein, 1977; Kahneman & Tversky, 1972, 1973, 1979; Tversky & 
Kahneman, 1973, 1974, 1981, 1983). 

What explains this inconsistency between infants’ and adults’ sta
tistical inference skills? Gopnik (2014) suggested that infants’ “intuitive, 
unconscious statistical ability may be completely separate from [adults’] 
conscious reasoning.” This perspective echoes a dual-system view 
frequently invoked in heuristics-and-biases research—except that there, 
reasoning errors are typically attributed to the intuitive system (Kah
neman, 2011; Kahneman & Frederick, 2002), which Gopnik sees as the 
very engine of infants’ statistical competence (see also Oaksford & Hall, 
2016). Several explanations are conceivable and it is likely that more 
than one factor is at play. One explanation that has not yet been thor
oughly considered is the striking and systematic difference in the 
experimental protocols used in studies with adults versus infants. As 
summarized in Table 1, participants in infant studies typically experi
ence the probabilistic texture of the experimental microworld at first 
hand. In the paradigm illustrated in Fig. 1, for instance, the child ob
serves each sample being drawn one-by-one. Participants in adult 
studies, in contrast, typically receive description-based and symbolic 
task representations. In fact, nearly all classic tasks that demonstrate 
cognitive illusions in adults’ statistical inferences are text based. No 
experiential engagement with raw data is required. For instance, adults’ 
responses to the Linda task have been interpreted as evidence that their 
reasoning is at odds with the conjunction rule, “[p]erhaps the simplest 
and the most basic qualitative law of probability” (Tversky & Kahne
man, 1983, p. 293). In this task, the conjunction rule is embedded within 
a description of a hypothetical woman and her possible occupations and 
avocations. Many other statistical inference problems and choice 
tasks—such as the engineer–lawyer problem, the maternity ward 
problem, the Asian disease problem (Kahneman & Tversky, 1972, 1973; 
Tversky & Kahneman, 1981), as well as monetary lotteries giving rise to 
various violations of expected utility theory (Kahneman & Tversky, 
1979)—likewise use a description-based approach. In their foundational 
article in Science, Tversky and Kahneman (1974) summarized over a 

dozen putative cognitive biases observed in studies using a variety of 
tasks, as listed in Table 2. All but two of those tasks (see asterisks in 
Table 2) were solely description based. 

2.2. Are People Intuitive Statisticians or Not Statisticians at All? 

Notably, Tversky and Kahneman’s (1974) article, which introduced 
the notion of heuristics-and-biases, was published just 7 years after 
Peterson and Beach (1967) reviewed several decades of experimental 
research (more than 160 experiments) on adult statistical infer
ence—and concluded that the normative benchmarks of probability 
theory and statistics indeed provide a good initial description of people’s 
statistical abilities: that people are intuitive statisticians. Like Lejarraga 
and Hertwig (2021), we suggest that this inconsistency across research 
traditions may also be attributable, at least in part, to differences in the 
experimental protocols used. Heuristics-and-biases research marked a 
turning point not only in the conceptualization and evaluation of peo
ple’s ability to reason probabilistically but also in experimental pro
tocols (see also Hertwig et al., 2018). Consider, for instance, research on 
Bayesian reasoning—the pinnacle of statistical inference and a key 
building block in classic models of rational choice—conducted in these 
two influential research traditions. In the 1970s, research conducted in 
the heuristics-and-biases tradition, primarily using text-based scenarios 
to present all available information (see top panel of Fig. 2), concluded 
that Bayes’s theorem failed to describe the workings of the mind: “[i]n 
his evaluation of evidence, man is apparently not a conservative 
Bayesian: he is not Bayesian at all” (Kahneman & Tversky, 1972, p. 450). 
The term “conservative Bayesian” harks back to Edwards (1968), who 
had used experience-based protocols that required sequential updating 
of probability estimates (see lower panel of Fig. 2) and concluded that 
people’s probability updating, albeit “conservative” (beliefs are revised 
less strongly than prescribed by Bayes’s theorem), was proportional to 
the normative values (Edwards, 1968; Edwards, Lindman, & Phillips, 
1965). 

These conflicting views and the shift in experimental protocols are 
surprising. In a quantitative assessment of the methodological protocols 
used in more than 600 empirical studies, Lejarraga and Hertwig (2021) 
recently demonstrated that heuristics-and-biases research established a 
new experimental protocol, with a strong emphasis on described sce
narios, replacing the past emphasis on experiential experimental 

Fig. 2. Illustrative comparison of paradig
matic description- and experience-based 
Bayesian inference problems. In the 
description-based task (upper panel), par
ticipants read a summary of an inference 
problem and return a single probability 
judgment about the aggregate evidence 
(adapted from Kahneman & Tversky, 1972). 
In the experience-based task (lower panel), 
participants are asked to imagine two pop
ulations and then sequentially experience 
the actual presentation of evidence from 
one, randomly selected, population and re
turn a revised probability judgment after 
each new observation (see, e.g., Edwards 
et al., 1965). In both example scenarios, the 
solution prescribed by Bayes’s theorem is 
97%.   
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protocols in work under the intuitive statistician umbrella. Moreover, 
they showed that this shift in experimental culture continues to have a 
profound influence on empirical research on probabilistic reasoning and 
human rationality. 

2.3. Of Smart Animals and “Irrational” Humans 

A final inconsistency in research on statistical intuitions concerns the 
extent to which probabilistic reasoning competences (or the lack 
thereof) are uniquely human. The origins of statistical abilities have, in 
fact, been traced beyond human ontogeny. Several nonhuman primates, 
including great apes, capuchin monkeys, and rhesus macaques, have 
been shown to draw flexible statistical inferences from populations to 
samples (De Petrillo & Rosati, 2019; Eckert, Call, Hermes, Herrmann, & 
Rakoczy, 2018; Rakoczy et al., 2014; Tecwyn et al., 2017; but see Placì, 
Eckert, Rakoczy, & Fischer, 2018) and, to a more limited extent, from 
samples to populations (Eckert, Rakoczy, & Call, 2017). Likewise, the 
ability to make probabilistic inferences has been demonstrated in 
different bird species (Bastos & Taylor, 2020; Clements, Gray, Gross, & 
Pepperberg, 2018) and some birds integrate physical information about 
objects when making statistical inferences (Bastos & Taylor, 2020). 
Finally, like babies, both chimpanzees and a bird species have been 
shown to integrate information about the psychological states of the 
sampling agents (humans), such as expressed preferences or visual ac
cess, when drawing statistical inferences (Bastos & Taylor, 2020; Eckert, 
Rakoczy, et al., 2018). It seems that “[i]ntuitive statistics in its most 
basic form is thus an evolutionarily more ancient rather than a uniquely 
human capacity” (Rakoczy et al., 2014, p. 60). Table 3 summarizes 
representative examples of this work on animals’ statistical intuitions 
and describes the experimental procedure used. Because most animals, 
unlike humans, are not able to process and produce symbolic repre
sentations, animals’ statistical intuitions and studies thereof are based 
on experience rather than description. 

In addition, studies investigating animal decision making have 
shown that the decisions of several nonhuman species, unlike those of 
human adults, conform to the axioms of rational choice theory in some 
contexts (e.g., Edwards & Pratt, 2009; Monteiro, Vasconcelos, & 
Kacelnik, 2013; Rivalan, Winter, & Nachev, 2017; Schuck-Paim & 
Kacelnik, 2002). Moreover, animals show normatively correct behavior 
in situations involving sunk costs (Arkes & Ayton, 1999) and they often 
appear to be surprisingly “risk savvy” (e.g., Gallistel, 1990; Hanus & 
Call, 2014; Kheifets & Gallistel, 2012; Real, 1991; Real & Caraco, 1986; 
Weber et al., 2004). Again, we suggest that one key to resolving this 
apparent paradox lies in the degree of experiential involvement in the 
tasks used (see also Oaksford & Hall, 2016; Weber et al., 2004). 

Assuming that humans’ ability to cope with an uncertain world has 
evolved from animals’ capacities to face volatile, competitive, and hard- 
to-predict environments, we might expect human and animal behavior 
to converge when humans are tested in situations in which they, too, 
make decisions from experience rather than description. Indeed, it has 
been found that when animals and humans accumulate information via 
direct experience, their risk sensitivity is predicted by a measure of risk 
per unit of return—the coefficient of variation—rather than by outcome 
variance, which is typically used in normative economic models (Weber 
et al., 2004). Similarly, the divergence between humans’ and other an
imals’ tendency to show a “certainty effect” in repeated risky choice 
could be resolved by taking into account differences in the experiential 
aspect of perceptual precision between the respective paradigms (Shafir, 
Reich, Tsur, Erev, & Lotem, 2008). Whereas animals typically experi
ence primary rewards whose exact quantity is difficult to discern when 
consumed (e.g., water), humans often receive monetary rewards that 
can be precisely differentiated. When the perceptual noise in the pre
sentation of rewards was increased, humans showed the same pattern of 
choices as animals; when it was decreased, honeybees displayed the 
same choice pattern as humans (Shafir et al., 2008). Finally, when 
making risky foraging decisions, “bumblebees underperceive rare events 

Table 3 
Summary of Representative Experience-Based Procedures Used in Studies Testing Animals’ Statistical Intuitions.  

Paradigm and 
study 

Animal 
subjects 

Sampling materials Experience-based procedure and measurement Physical 
instantiation 

Single sample from population    
Bastos and 

Taylor 
(2020) 

Kea Different ratios of rewarding and unrewarding tokens in 
two transparent jars. In Exp. 2, a physical barrier divided 
the sampling population, impeding sampling from part of 
the population 

One object was drawn from each population and animals 
made a single forced choice between the samples drawn 
while they were still concealed from view. In Exp. 3, 
whether or not sampling was random was varied (with or 
without visual access to the population during sampling) 
and the two samples were drawn by different experimenters 

Direct 
interaction 

Clements et al. 
(2018) 

Grey parrot 3:1 ratio of two different types of objects (e.g., 3 corks and 
1 piece of paper), visibly placed in an opaque bucket 

One object was randomly drawn from the population. The 
animal vocally identified the object drawn while it was still 
concealed from view 

Direct 
interaction 

De Petrillo and 
Rosati 
(2019) 

Rhesus 
macaques 

Different ratios of artificial fruit (e.g., apples and lemons) 
inside a transparent lottery machine with one opening 

The objects were shuffled inside the lottery machine until 
one exited through the opening; VoE 

Distanced 
demonstration 

Eckert, Call, 
et al. (2018) 

Chimpanzees Different ratios of favorable (e.g., peanuts, banana pellets, 
grapes) and neutral (e.g., monkey chow, carrot pieces) 
food items in two transparent containers 

One food item was drawn from each population and animals 
made a single forced choice between the samples drawn 
while they were still concealed from view. In Eckert, 
Rakoczy, et al. (2018) whether or not sampling was random 
was varied (with or without visual access to the population 
during sampling) and the two samples were drawn by 
different experimenters 

Direct 
interaction 

Eckert, 
Rakoczy, 
et al. (2018) 

Chimpanzees 

Placì et al. 
(2018) 

Long-tailed 
macaques 

Rakoczy et al. 
(2014) 

Great apes 

Tecwyn et al. 
(2017) 

Capuchin 
monkeys 

Repeated sampling from population    
Eckert et al. 

(2017) 
Great apes Different ratios of favorable (fruit pellets) and neutral 

(carrot pieces) food items in two transparent containers 
Two populations were shown to animals, then occluded, 
and the positions shuffled. Next, multiple food items were 
simultaneously drawn from each population in one action 
(Exp. 1: five items from each population; Exp. 2: three or 
five vs. 12 items from each population). Animals made a 
single forced choice between the occluded populations 

Direct 
interaction 

Note. VoE: Violation-of-expectation looking paradigm. 
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and overperceive common events” (Real, 1991, p. 985), which is the 
reverse of the inverse S-shaped probability weighting observed in 
description-based risky choices in humans (Kahneman & Tversky, 
1979). When humans, like bees, rely on sampled experience, their 
weighting pattern also appears to reverse (when conditioned on objec
tive probabilities; Regenwetter & Robinson, 2017) or to indicate more 
linear weighting (Wulff et al., 2018). 

Thus, when compared on equal terms, animals, infants, and adults in 
research conducted in the 1960s and 1970s no longer seem so far apart 
in terms of the quality of their probabilistic reasoning. 

3. Empirical Support for a Description–Experience Gap in 
Statistical Intuitions 

This experience-based perspective on research on statistical in
tuitions gives rise to a strong, testable prediction, namely, that varia
tions in the information format that increase or decrease the level of 
experiential involvement will lead, ceteris paribus, to corresponding 
changes in performance. This point implies that we, like others (Rakow 
& Newell, 2010), understand description and experience not in terms of 
a strict dichotomy but as concepts spread along a continuum. 

On the descriptive side of the continuum, symbolic descriptions that 
reflect more of the underlying experience should lead to better statistical 
inferences. For example, described frequency formats have been argued 
to represent a proxy of the original experience (i.e., a series of events) on 
which cognitive algorithms have evolved (Cosmides & Tooby, 1996; 
Gigerenzer, 1991; Gigerenzer & Hoffrage, 1995). Described natural fre
quencies are defined as the product of natural sampling, which is the 
process of encountering observations of raw rather than normalized 
counts of events, without the marginal frequencies being fixed a priori 
(Kleiter, 1994). As such, natural frequencies maintain information about 
the underlying sample size and base rates, which is lost in conditional 
probabilities (Gigerenzer & Hoffrage, 1995). There is substantial evi
dence that descriptive formats harnessing natural frequencies improve 
Bayesian inference. A recent meta-analysis, reviewing 20 years of 
research on the “natural frequency facilitation effect” in Bayesian 
inference, estimated that the proportion of participants who correctly 
solved Bayesian inference problems presented in a natural frequency 
format was 20 percentage points higher than that solving problems 
presented as conditional probabilities (McDowell & Jacobs, 2017). 
Presenting information in a frequency format also improves other types 
of probabilistic reasoning—for example, in conjunction rule tasks (Fie
dler, 1988; Hertwig & Gigerenzer, 1999; Tversky & Kahneman, 1983), 
sample size tasks (Sedlmeier & Gigerenzer, 1997), and the Monty Hall 
problem (Krauss & Wang, 2003). Importantly, although natural fre
quencies reflect some of the underlying experience, they remain a 
descriptive format. They can thus not be used to study probabilistic 
reasoning in babies and nonhuman primates, which requires truly 
experience-based methodologies—and thus moving further away from 
the descriptive side of the continuum. 

For example, we would expect adding first-hand experience to 
reasoning tasks to further improve statistical inference. Indeed, allowing 
adults to directly experience simulated outcomes of probabilistic pro
cesses in several otherwise description-based inference tasks (e.g., 
conjunction rule tasks, the maternity ward problem, Bayesian inference, 
and the Monty Hall problem) drastically improved judgments (Hogarth 
& Soyer, 2011). Moreover, research on medical judgments has found 
that Bayesian inferences are more accurate when based on experiential 
formats (e.g., a sequence of representative patient cases illustrating the 
relative frequency of a disease and of positive/negative test results) than 
on described probability formats (Armstrong & Spaniol, 2017; Wegier & 
Shaffer, 2017). Similarly, a seminal review of base-rate fallacy research 
concluded that “when base rates are directly experienced through trial- 
by-trial outcome feedback, their impact on judgments increases” 
(Koehler, 1996, p. 6), in contrast to the relative “neglect” of stated base 
rates. Finally, people hold accurate distributional priors about the 

duration and extent of everyday phenomena—such as human lifespans 
or movie run-time lengths—which can be learned from everyday expe
rience with the statistical texture of real-world environments (Griffiths 
& Tenenbaum, 2006). 

The work reviewed thus far has investigated the role of experience 
either within one subject population—typically human adults—or 
within a single task format across different subject populations. But to 
what extent can the description–experience continuum cast light on 
inconsistencies across subject populations and research traditions? This 
question is to some degree theoretical. Direct comparisons of all subject 
populations’ statistical intuitions across the entire spectrum of the 
description–experience continuum are not feasible; systematic com
parisons, where they are possible, are scarce. There are, however, 
important exceptions. For instance, in a study examining children’s and 
adults’ Bayesian probability updating in a natural frequency format 
versus a conditional probability format, sixth graders’ Bayesian in
ferences in the natural frequency format matched those of adults in the 
conditional probability format (Zhu & Gigerenzer, 2006; but see Pighin, 
Girotto, & Tentori, 2017). Similarly, in a comparison of children’s and 
adults’ statistical intuitions on experience- or description-based para
digmatic probabilistic inference tasks—conjunction rule tasks and 
Bayesian inference tasks—we recently showed that sequentially expe
riencing statistical information considerably improved both adults’ and 
children’s statistical intuitions (Schulze & Hertwig, 2021). In fact, 
adults’ probabilistic reasoning performance in description was sur
passed by that of children in experience—seemingly a developmental 
reversal that was, we argue, in reality driven by the experimental 
protocol. 

In sum, there is considerable empirical evidence that the descr
iption–experience dimension plays a key role when it comes to inter
preting probabilistic reasoning within and across the lifespan, research 
traditions, and species. But the experimental paradigms we have 
reviewed of course also differ on other dimensions, and our view does 
not exclude the possibility of genuine evolutionary or developmental 
differences in probabilistic inference. Next, we summarize further fac
tors that may play a role in determining the statistical competencies of 
different subject populations. 

4. Other Possible Contributors to Inconsistencies in Research on 
Statistical Intuitions 

4.1. Do Experience-Based Tasks Measure More Basic Statistical Skills and 
Are They Thus Easier? 

Perhaps the most important alternative explanation for the in
consistencies observed is that studies with infants and animals target 
basic statistical abilities that adults possess as a matter of course. Yet the 
empirical findings we have reviewed suggest that descr
iption–experience gaps in performance cannot be attributed solely to a 
difficult–easy task dichotomy. When participants of the same age were 
given more experience- or more description-based problems, their sta
tistical inferences differed systematically, even when the abstract sta
tistical principle (e.g., Bayes’s rule) remained the same (Armstrong & 
Spaniol, 2017; Fiedler, 1988; Hertwig & Gigerenzer, 1999; Hogarth & 
Soyer, 2011; McDowell & Jacobs, 2017; Wegier & Shaffer, 2017). 
Importantly, when participants of different ages were given inference 
problems that used different information formats but measured the same 
underlying statistical ability (e.g., adherence to the conjunction rule), 
performance differed depending on the information format (Schulze & 
Hertwig, 2021; Zhu & Gigerenzer, 2006). These findings suggest that 
experience-based paradigms do not produce better results solely because 
the statistical abilities engaged are more basic, even though sometimes 
this may be the case. Moreover, differences in task difficulty are not 
easily defined. If anything, one might expect the experience-based 
protocols used in the intuitive statistician tradition to be cognitively 
more taxing—in terms of memory, attention, and computation—than 
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equivalent description-based formats in which all information is pack
aged and delivered at once (Lejarraga & Hertwig, 2021). Finally, the risk 
of casting differences in performance between described and experi
enced experimental protocols as differences in task difficulty is that it 
merely re-describes the empirical data, unless the cognitive processes 
potentially underlying such a reduction in difficulty are specified (see 
5.1. Mechanisms Underlying the Beneficial Qualities of Experience). 

4.2. Implicit Versus Explicit Measures? 

Another possible contributor to performance differences resides in 
the nature of the dependent measure used. Whereas infants’ probabi
listic understanding is often inferred from relatively implicit measures 
such as looking time (see Table 1), adults are typically asked for explicit 
verbal (written) judgments (see Table 2). Explicit responses may engage 
cognitive functions not needed for implicit responses (e.g., inhibitory 
control, working memory, or attention), thus contributing to the in
consistencies observed. The distinction between implicit and explicit 
measures has proven central in accounting for age-related discrepancies 
in other cognitive domains, such as false-belief understanding (Onishi & 
Baillargeon, 2005; Scott & Baillargeon, 2017) and language processing 
(Creel & Quam, 2015), and has also been examined in the context of 
probabilistic reasoning (e.g., Téglás et al., 2007; Yost, Siegel, & 
Andrews, 1962). Yet, again, several findings cannot be readily explained 
by this distinction. For instance, almost all studies probing animals’ 
statistical intuitions (see Table 3; and see some studies with human in
fants, e.g., Denison & Xu, 2010b, 2014) required the animal to make an 
explicit, albeit nonverbal, decision. Research conducted with adults in 
the intuitive statistician and heuristics-and-biases traditions also tended 
to use explicit dependent measures. 

4.3. Genuine Developmental or Evolutionary Differences? 

Our perspective does not imply that infants’ remarkable statistical 
intuitions attest to a cognitive competence that adults, for unclear rea
sons, no longer possess. Rather, we generally expect adults to equal or 
exceed infants’ and children’s performance when the task format is held 
constant (see Schulze & Hertwig, 2021), unless there are good empirical 
or theoretical reasons to the contrary. This view does not preclude the 
possibility that infants’ probabilistic reasoning is genuinely different 
from adults’, or that younger learners sometimes outperform older ones. 
For instance, it has been argued that humans’ conceptual repertoire in 
dealing with numerical content shows considerable discontinuities across 
development (Carey, 2009) or that children’s representation of proba
bilistic information may be profoundly different from that of adults, 
inasmuch as the role of heuristic cognitive processes appears to increase 
rather than decrease as a function of life experience (Reyna & Brainerd, 
1995). Moreover, young children sometimes outperform older children 
or adults within description-based or experience-based paradigms 
(Arkes & Ayton, 1999; Davidson, 1995; Gopnik, Griffiths, & Lucas, 
2015; Gualtieri & Denison, 2018), and statistical intuitions demon
strated in infants have not been confirmed in 3- and 4-year old children 
(Girotto, Fontanari, Gonzalez, Vallortigara, & Blaye, 2016; Girotto & 
Gonzalez, 2008). Counterintuitively, some of these discontinuities and 
even reversals may be the price for growth in other cognitive abilities: 
Biased responses could supplant unbiased ones because the knowledge 
structures needed for the operation of a specific heuristic (e.g., fully 
formed social stereotypes) are established at a later age (Davidson, 
1995; Jacobs & Klaczynski, 2002; Jacobs & Potenza, 1991; Stanovich, 
West, & Toplak, 2011). 

Another view rooted in evolutionary developmental psychology is 
that the greater cognitive constraints under which infants or animals 
operate—more generally, cognitive immaturity—can enable adaptive 
cognitive functioning (Bjorklund, 1997). For instance, restrictions in 
memory span may foster language acquisition by initially focusing the 
learner on simple grammatical relationships, laying the foundation for 

the later acquisition of more complex grammatical structures (Elman, 
1993; Newport, 1990). Similarly, prolonged prefrontal immaturity in 
early development delays the onset of stringent cognitive control, which 
may help children to learn social and linguistic conventions (Thompson- 
Schill, Ramscar, & Chrysikou, 2009) or to engage in broader internal and 
external exploration behaviors (Gopnik, 2020; Gopnik et al., 2015). 
Finally, animals’ cognitively simpler architecture may enable them to 
better adhere to axioms of rational choice because they encode less 
complex contextual or symbolic information (Stanovich, 2013) and are 
less likely to abstract and overgeneralize learned rules (Arkes & Ayton, 
1999). 

4.4. Smart Babies, Smart Adults? 

Finally, several lines of research on adult cognition paint a more 
optimistic picture of adults’ competence to deal with probabilistic in
formation than research in the heuristics-and-biases tradition does. 
Probabilistic models of cognition assume that human cognition at all 
ages can be explained in terms of a rational Bayesian framework, casting 
new light on several core cognitive functions (Clark, 2013; Friston, 
2010; Oaksford & Chater, 2001; Tenenbaum, Kemp, Griffiths, & 
Goodman, 2011) and the course of cognitive development (Bonawitz, 
Denison, Griffiths, & Gopnik, 2014; Gopnik, 2012; Gopnik & Wellman, 
2012; Perfors, Tenenbaum, Griffiths, & Xu, 2011; Xu, 2019). The related 
notion of resource rationality suggests that human cognition is guided 
by the optimal use of limited computational resources, meaning a 
rational trade-off between the costs and benefits of using computation
ally sophisticated analytic versus more heuristic strategies (Griffiths, 
Lieder, & Goodman, 2015; Lieder, Griffiths, & Hsu, 2018). More 
generally, the concept of bounded and ecological rationality has high
lighted that—provided that people’s cognitive strategies fit the structure 
of their environment—even simple strategies can lead to accurate de
cisions (Gigerenzer, Todd, & the ABC Research Group, 1999; Hertwig, 
Pleskac, Pachur, & the Center for Adaptive Rationality, 2019; Simon, 
1955, 1956). 

In summary, the ability to reason probabilistically is likely deter
mined by various features of the inference task at hand as well as by the 
specific capacities and characteristics of the person facing the task. One 
key feature that has not yet been thoroughly considered in the literature 
is the experiential involvement in a task. Next, we highlight important 
properties of experience that distinguish it from description and identify 
mechanisms by which they can, under some circumstances, foster ac
curate judgments and decisions. 

5. What Characterizes Experience and When Is It Beneficial? 

Direct interaction with the world affords myriad concurrent di
mensions of information that symbolic description lacks or conveys in 
condensed form, if at all (Hertwig et al., 2018). A learner experiencing a 
sequence of events may concurrently receive sensory and motoric 
feedback; obtain temporal, structural (e.g., clustering), and sample size 
information; or gain first-hand insights into conditions for statistical 
inferences (e.g., randomness) that need to be explicitly stipulated or 
assumed in descriptions. But what are the specific mechanisms by which 
first-hand experience facilitates appropriate statistical inference, and 
under which conditions can properties of experience improve or impair 
accurate statistical intuitions? Several underlying mechanisms are 
conceivable (see also Lejarraga & Hertwig, 2021) and it is likely that 
different factors determine the influence of experience on statistical 
intuitions, depending on the task at hand. 

5.1. Mechanisms Underlying the Beneficial Qualities of Experience 

5.1.1. Computational ease 
One mechanism by which the sequential experience of events can 

reduce difficulty and improve judgments is by easing computational 
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demands. For instance, in choices between n-armed bandits, a simple 
method for estimating an action’s value is to sum up the sampled re
wards and weigh the sum by the sample size (Sutton & Barto, 1998). In 
experience-based choice, decision makers can thus maximize expected 
returns (based on the sampled experience) with a much simpler calculus 
than description-based expected value theory, which requires proba
bilities to be estimated and multiplied by rewards (Hertwig & Pleskac, 
2010). In a recent meta-analysis of research on description- and 
experience-based choices between risky lotteries (using the sampling 
paradigm), a median of 55% of decisions from description maximized 
expected value, whereas 66% of decisions from experience maximized 
the experienced mean returns when the sampling sequence included all 
possible outcomes, including the rare one, relative to 89% when it did 
not (Wulff et al., 2018). Moreover, ongoing updating processes can 
alleviate the burden of storing all experienced outcomes (Frey, Mata, & 
Hertwig, 2015); experiential approaches may therefore become more 
important as decision problems become more complex (Hogarth & 
Soyer, 2015; Lejarraga, 2010). 

Computational ease has also been proposed to explain why de
scriptions that retain some properties of the underlying experience, such 
as natural frequencies, improve reasoning. Natural frequencies have 
been argued to render Bayesian inferences computationally simpler 
because they preserve information about base rates, whereas condi
tional probability formats require this information to be incorporated 
into the calculation via additional computational steps (Gigerenzer & 
Hoffrage, 1995; McDowell & Jacobs, 2017). Thus, although different 
representation formats may be informationally equivalent, they may not 
trigger computationally equivalent cognitive algorithms (Gigerenzer & 
Hoffrage, 1995). Moreover, abstract symbolic information formats can 
introduce sources of ambiguity that experience-based information re
solves more easily. In descriptive conjunction rule problems, for 
instance, people have been found to infer nonmathematical meanings of 
the term “probability” (Hertwig & Gigerenzer, 1999). Frequency for
mats of the same task disambiguate its semantic interpretation by 
highlighting the mathematical context and the applicability of the 
conjunction rule (Hertwig & Gigerenzer, 1999). 

Finally, experience often affords control over both the source and the 
amount of information that needs to be processed and people can adjust 
their cognitive strategies based on their goals, cognitive abilities, and 
past experience. This aspect of experience-based reasoning can change 
the problem landscape such that the prevalence of more distinct, and 
thus easier, choice situations varies as a function of experiential 
involvement (Hertwig & Pleskac, 2010; Wulff et al., 2018). When de
cision problems are equated by matching task difficulty across descrip
tion and experience—e.g., when comparing performance on experience- 
based perceptuo-motor tasks with that on equivalent described mone
tary gambles—there may be little difference in performance (Jarvstad 
et al., 2013; Wu et al., 2009). In many cases, however, it may not be 
possible to precisely quantify and thus equate computational ease. This 
would require an algorithmic implementation of the cognitive processes 
engaged by experience- and description-based tasks within a broader 
cognitive architecture, which would in turn need to consider develop
mental changes in the cognitive processes engaged by different task 
formats (see 5.2.2. Experience and description across the lifespan). One 
challenge for future research is to map properties of description- and 
experience-based tasks onto cognitive functions. 

5.1.2. Incremental learning 
Another core quality of experience is that it often involves repeated 

trials, permitting people to adapt to the environment and its demands, 
and thereby learn to exploit its affordances, in a step-by-step manner. 
Heuristics-and-biases research has been criticized for focusing on one- 
shot situations, thereby lacking such a continuous perspective and 
excluding “one of the most important determinants of the behavior they 
purport to explain” (Hogarth, 1981, p. 213). The distinction between 
repeated trials and one-shot studies is also key to understanding 

sometimes surprisingly disparate experimental practices in economics 
and parts of psychology (Hertwig & Ortmann, 2001). One-shot studies 
leave little room for people to learn—to make incremental changes in 
light of new information, explore diverse solution pathways, correct 
behavioral consequences, and reach solutions even without being able 
to explain how and why (see, e.g., learning direction theory; Selten, 
1998). Metaphorically speaking, sequential experience offers decision 
makers the opportunity to incrementally clip a hedge, whereas one-shot 
descriptive situations expect them to fell a tree in a single pass (cf. 
Connolly, 1988). 

5.1.3. Internal states as a source of information 
Finally, direct interaction with the environment affects the experi

encing organism in a variety of ways, and the accumulation of these 
influences can serve as a source of information: “any physiological or 
psychological state variable that is altered by experience might function 
as an efficient integrator (a ‘memory’) of past experiences” (Higginson, 
Fawcett, Houston, & McNamara, 2018, p. 8). In a foraging context, 
reliance on a readily accessible physiological state, such as an animal’s 
energy reserve, has been shown to be nearly as effective for survival as 
an optimal Bayesian learning strategy, which explicitly integrates all 
encountered experiences (Higginson et al., 2018). Similarly, psycho
logical indicators such as emotions or moods can help to adaptively 
adjust behavior under environmentally uncertain conditions (Nettle & 
Bateson, 2012). Experience thus affords a means to exploit the structure 
of the environment by tapping into information about external condi
tions stored in an organism’s internal states. 

5.2. Experience Is Not a Panacea: Under Which Conditions Is It 
Beneficial? 

5.2.1. Wicked environments and meta-cognitive myopia 
Although experience entails properties that can improve statistical 

inference, it is no guarantee for good probabilistic reasoning. One 
important determinant of the value of first-hand experience is the con
ditions under which it is gathered (Erev & Roth, 2014; Hogarth, 2001). If 
an environment is “kind,” in that it maps experience onto valid repre
sentations, intuitive statistics can be remarkably accurate; if an envi
ronment is “wicked,” offering experience that is unrepresentative, 
biased, or misleading, statistical intuitions may be mistaken (Hogarth, 
2001; Hogarth, Lejarraga, & Soyer, 2015). For instance, there is ample 
evidence that people automatically encode accurate frequency infor
mation about events they encounter in the world (Hasher & Zacks, 1979, 
1984; Zacks & Hasher, 2002). Yet people sometimes behave as if they 
were held hostage by their experience—unwilling or unprepared to go 
beyond the data, and, in a kind of meta-cognitive myopia, failing to take 
the history and validity of the sample and the sampling process into 
account (Fiedler, 2000, 2012). These findings have led some researchers 
to describe humans as “naïve intuitive statisticians” (Fiedler & Juslin, 
2006, emphasis added; but see Le Mens & Denrell, 2011, for a challenge 
to this naivety conclusion). Moreover, research on the descr
iption–experience gap in risky choice has shown that people do not al
ways perform better when choosing from experience, although their 
choices in the sampling paradigm (see Hertwig & Erev, 2009) tend to be 
well described as maximization of mean return based on sampled 
experience (Hertwig & Pleskac, 2010; Wulff et al., 2018). Furthermore, 
in experimental paradigms featuring sequences of choices with feedback 
(e.g., the full feedback paradigm; Hertwig & Erev, 2009), systematic 
deviations from maximization have been observed—often opposite to 
those obtained in description (Erev et al., 2017; Plonsky et al., 2015). 
Animals sometimes likewise make suboptimal choices or violate prin
ciples of rational choice (e.g., Bateson, Healy, & Hurly, 2002; Shafir 
et al., 2008; Shafir, Waite, & Smith, 2002; Zentall, 2015). 

Finally, description-based formats also have a place in people’s in
formation ecologies. It may not always be feasible to rely on direct 
experience of information (e.g., when facing novel realities) and there 
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are many situations in which descriptions offer clear benefits over 
experience (e.g., precision in distinguishing minute differences; sum
mary representations of other people’s experience). In many situations, 
moreover, people have access to first-hand experience in addition to a 
symbolic description. Drawing on research investigating the interplay 
between described and experienced information can thus advance our 
understanding of people’s probabilistic thinking—for instance, when 
anticipating how people will perceive and respond to real-world risks, 
both existing and novel (Hertwig & Wulff, 2021). 

5.2.2. Experience and description across the lifespan 
The role of experiential involvement may also be complicated by 

developmental changes in the cognitive processes engaged by experi
ence- and description-based tasks. For instance, experiential formats can 
require costly information acquisition that taxes memory and fluid in
telligence. These demands may contribute to developmental differences 
in decision making (Rakow & Rahim, 2010). One example of a complex 
experiential task is the Iowa gambling task, in which adults typically 
outperform children (see Boyer, 2006). Giving children prior informa
tion about the options’ outcomes and probabilities in addition to online 
experience of the outcomes (thus decreasing search and memory de
mands) has been shown to improve their performance (van Duijven
voorde, Jansen, Bredman, & Huizenga, 2012). The cognitive demands of 
experiential formats may also affect decision making in older age. In 
complex choice environments (e.g., with numerous options), older 
adults (mean age = 71 years) explored substantially less than younger 
adults (mean age = 24 years) did, and their lower sampling effort was 
correlated with declines in measures of fluid intelligence (Frey et al., 
2015). Moreover, there may be age-related differences in the affective 
processes triggered by immediate outcome experience, causing adoles
cents to take more risks than adults in, for instance, description-based 
dynamic choice tasks with immediate outcome feedback (Figner, 
Mackinlay, Wilkening, & Weber, 2009). 

Likewise, the ability to deal with described probability formats may 
undergo significant change during development and may potentially 
require formal instruction through schooling. Research has shown that, 
when asked to choose between lotteries with stated outcomes and 
probabilities, children between 5 and 7 years old do not systematically 
consider differences in expected value between choice options (Levin, 
Weller, Pederson, & Harshman, 2007). Similarly, children younger than 
9 years old do not systematically use stated probabilistic cues to inform 
their decisions in information-board paradigms; rather, they rely on 
unsystematic or unsuitable strategies (Betsch & Lang, 2013). In sum, 
making proportional calculations on the basis of described probabilistic 
information appears to be a difficult skill to learn (see also Bryant & 
Nunes, 2012). One challenge for future research is to further map out the 
developmental trajectory of the relationship between experience- and 
description-based probabilistic reasoning. 

5.2.3. Cognitive illusions in experience-based paradigms 
Finally, although the cognitive illusions reported in the context of 

heuristics-and-biases research predominantly occur in description-based 
tasks, there are important exceptions. One is the gambler’s fallacy, which 
describes the belief that, in a random sequence such as the flip of a coin, 
a long streak of one outcome (heads) is more likely to be followed by the 
opposite outcome (tails) than would be expected under random sam
pling. The gambler’s fallacy has been argued to arise from the miscon
ception of chance processes as locally representative: “people expect 
that the essential characteristics of the process will be represented, not 
only globally in the entire sequence, but also locally in each of its parts” 
(Tversky & Kahneman, 1974, p. 1125). An alternative view suggests that 
the gambler’s fallacy, and people’s seeming misperception of random
ness more generally, occur precisely because of how people experience 
statistical environments: Human experience is finite, and short-term 
memory capacity is limited (Hahn & Warren, 2009). In a finite 
sequence of 20 coin tosses, for instance, people may only be able to 

monitor a limited number of events (e.g., four consecutive tosses) as 
their attentional window moves through this data stream. Under these 
conditions, there is a good chance that they will never encounter a 
sample of four consecutive heads; in fact, this probability is more than 
twice that of never seeing three heads followed by one tail (Hahn & 
Warren, 2009). That is, under conditions that match people’s typical 
experience with finite samples, a sequence associated with committing 
the gambler’s fallacy (three heads followed by one tail) is much more 
likely to occur than a sequence of four consecutive heads. 

The notion of a “belief in the law of small numbers” (Tversky & 
Kahneman, 1971) has also been invoked to explain a classic choice 
anomaly that occurs when people make repeated choices from experi
ence. For example, when asked to repeatedly choose between two al
ternatives with unequal odds of the same payoff (e.g., p = .70 and 1 − p 
= .30), people tend to probability match by allocating responses to the 
choice options in proportion to their relative rates of success (Newell & 
Schulze, 2017; Vulkan, 2000). Again, this phenomenon may be driven 
by people’s typical experience with repeated choices among probabi
listic options. That is, probability matching in laboratory experiments 
may be an overlearned response from common real-world settings in 
which it can be a highly successful strategy due to competition for 
available resources (Gallistel, 1990; Schulze, van Ravenzwaaij, & 
Newell, 2015) or sequential dependencies in the outcome sequence 
(Gaissmaier & Schooler, 2008; Schulze, Gaissmaier, & Newell, 2020; 
Schulze, van Ravenzwaaij, & Newell, 2017). Thus, given the structure 
and affordances of the environments people typically encounter in their 
daily lives, paradigmatic experience-based “cognitive illusions” no 
longer seem so fallacious. Moreover, for some experience-based phe
nomena that have been labelled fallacious, such as the belief in a hot 
hand (Gilovich, Vallone, & Tversky, 1985), the bias may in fact reside in 
how researchers evaluate the adequacy of people’s probabilistic 
reasoning (see Miller & Sanjurjo, 2014, 2018). 

6. Implications of the Description–Experience Continuum of 
Statistical Intuitions 

The ability to make good statistical inferences is a hallmark prereq
uisite for coping with the demands of an uncertain world. To navigate 
uncertainty successfully, humans and other animals must be able to 
draw apposite inferences from finite samples. This ability is likely 
determined both by properties of the inference task and by the capacities 
and characteristics of the individual facing it. One key aspect that has 
not yet been thoroughly considered is how decision makers acquire the 
data on which their inferences are based: via experience, symbolic 
description, or something in between. The description–experience 
framework we have outlined can help to explain the inconsistencies 
between infant and adult probabilistic reasoning and other contradic
tory findings in the young history of behavioral decision research. Let us 
conclude by outlining four key implications of the descr
iption–experience continuum of statistical intuitions: one methodolog
ical, one normative, one conceptual, and one relating to policy. 

Concerning methodology, we have shown that diverse paradigms are 
needed to fully understand the breadth and adaptability of human 
probabilistic thinking. Experimental approaches that reduce people’s 
statistical intuitions to a snapshot of their shortcomings run the danger 
of dismissing people (adults) as fundamentally inept in matters of 
probabilistic thinking—a prevalent and influential portrayal of the 
intuitive statistical mind in research on adult judgment and decision 
making that has been accentuated by current research on infant and 
animal probabilistic reasoning (see Gopnik, 2014). More generally, as 
our review highlights, researchers’ choice of experimental design is 
crucial for determining the level of statistical competency they will 
observe. If an experimental task does not accurately represent the situ
ation toward which a researcher intends to generalize, the processes 
studied may be altered in such a way that the results obtained are no 
longer representative of people’s functioning in the natural causal 
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texture of their ecology (Brunswik, 1955; Dhami, Hertwig, & Hoffrage, 
2004). Our argument is not that experience-based situations are more 
representative of people’s information ecology than description-based 
situations—although they may arguably be more prevalent—or that 
they better represent the situations toward which researchers aim to 
generalize. Rather, we emphasize that both classes of situations exist in 
the information ecology of the 21st century and that it is important to 
strive to represent and contrast both designs wherever possible when 
investigating people’s statistical intuitions. Only then will it be possible 
to gain a comprehensive understanding of the intuitive statistical com
petences of the human mind. 

Second, the description–experience continuum of statistical in
tuitions has normative implications. Continuous experimental condi
tions require the evaluation of continuous learning processes (Hogarth, 
1981). In description-based studies, researchers commonly assume 
benchmarks of statistical reasoning that hold in large samples or at the 
limit. Yet these principles do not always hold in small or finite sam
ples—which arguably represent a more veridical reflection of the envi
ronmental statistics faced by real-world people with limited attention 
and short-term memory. It follows that “evaluations of rationality based 
on long-run considerations or limit properties may lead to a distorted 
picture” of human rationality (Hahn, 2014, p. 239). One task for future 
research will be to test experimental demonstrations of classic cognitive 
illusions not only against norms that hold at the limit but also against the 
reality of humans’ limited experience (see Hahn, 2014; Hogarth, 1981). 

A third implication is conceptual and points to directions for future 
research. We have suggested that the level of experiential involvement 
is crucial in determining the availability of various cognitive strategies 
that may differ in computational complexity, and that experience- 
based formats can enable the use of computationally simpler algo
rithms (see Gigerenzer & Hoffrage, 1995; Hertwig & Pleskac, 2010). 
Future research will need to further investigate the cognitive mecha
nisms by which experience improves or impairs probabilistic 
reasoning, and to determine what it is about symbolic descriptions that 
can make them difficult. Is it that they subtract “analogical” properties 
of the original experience (e.g., sequential experience in time)? Or that 
symbols are cultural inventions that humans have not evolved to 
process intuitively? Do they introduce sources of ambiguity that 
experience resolves more easily (e.g., semantic ambiguity; Hertwig, 
Benz, & Krauss, 2008; Hertwig & Gigerenzer, 1999)? And to what 
extent can descriptions, because they carry the author’s implicit frame 
of reference (McKenzie & Nelson, 2003), make people more susceptible 
to being manipulated or misled? Of course, there will also be important 
contexts in which symbolic descriptions of the probabilistic texture of 
the world are indispensable because they, for instance, represent and 
summarize the accumulated wisdom and experience of others. Here the 
question is how such symbolic descriptions can be constructed to 
ensure maximum transparency and accessibility. 

A related avenue for future research is to embed the descr
iption–experience distinction into research on the developmental tra
jectory of how probability is computed in the mind. Recent advances in 
research on probabilistic models of cognitive development suggest that 
human cognition is guided by powerful rational learning mechanisms 
from infancy onward (e.g., Bonawitz et al., 2014; Gopnik, 2012; Gopnik 
& Wellman, 2012; Perfors et al., 2011; Xu, 2019). Infants’ remarkable 
statistical inference abilities have been interpreted as evidence for this 
theoretical framework because they indicate that the vital tools needed 
for rational statistical learning are already available in early infancy. 

Finally, we turn to potential educational and other policy implica
tions. Our review has been informed by a growing number of experi
ments on risky decisions from experience versus description (see, e.g., 
Wulff et al., 2018). This research has highlighted implications for policy 
in the world outside the laboratory: in communicating risk, designing 
economic markets, and implementing safe practices in the workplace 
and everyday life (Barron, Leider, & Stack, 2008; Erev & Roth, 2014; 
Kaufmann, Weber, & Haisley, 2013; Weber, 2006; Yechiam, Erev, & 

Barron, 2006). Extending this conceptual distinction to developmental 
issues promises to generate fruitful research questions and, ultimately, 
educational applications. Some of the implications of the descr
iption–experience continuum that we have highlighted, such as the use 
of natural frequency-based formats to foster statistical inference, have 
been discussed in medical, legal, and educational settings (see, e.g., 
Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000). Another avenue for 
future research is to better understand the relationship between intui
tive, experience-based notions of probability and the more formal views 
of probability acquired through schooling. A wealth of developmental 
research suggests that making proportional calculations of probability is 
a difficult skill to learn (for a review, see Bryant & Nunes, 2012). But 
might it be conceivable to capitalize on infants’ well-formed intuitions 
when teaching children to solve formal probability problems? Gopnik 
(2014) suggests that it may indeed be possible to “exploit [babies’] 
intuitive abilities to teach children, and adults, to understand proba
bility better and to make better decisions as a result.” We have shown 
that one crucial aspect in pursuing this goal is to take into account 
experiential features that can foster good statistical intuitions. Finally, it 
is possible that enlisting experience in the process of teaching and 
learning probabilistic reasoning—for instance, by experiencing the 
processes of information sampling or the consequences of cognitive acts 
(e.g., inferences, choices, and estimates), by engaging with and sys
tematically manipulating physical instantiations of chance devices, or 
by being exposed to stationary and nonstationary environments in 
which the information sampled and the decisions made entail different 
degrees of contingency (that are complicated to describe symbol
ically)—is better suited to empower self-directed and active learning 
(see Gureckis & Markant, 2012) than is the processing of symbolic 
information. 

Let us conclude by returning to Gopnik’s (2014) question. Our re
view of the large and disparate literature on statistical intuitions sug
gests that one key to understanding the puzzling discrepancy between 
smart babies and stupid grown-ups in matters of probabilistic reasoning 
is that infants and children typically operate on the basis of immediate 
experience or require information formats that closely approximate that 
experience. Adults—and this is one of the great achievements of 
cognitive development—are also able to process symbolic, propositional 
representations of the world. Their untutored statistical intuitions may, 
however, be better tuned to experience- than to description-based 
formats. 
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