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I. SYMMETRY CONSTRUCTION OF GINZBURG-LANDAU LAGRANGIAN

In this part, we construct the superconducting Ginzburg-Landau (GL) Lagrangian by the symmetry anal-

ysis [1–3]. Generally, when there are several Bose fields Φl=1,··· ,N to describe the superconductivity, the

superconducting energy density

f [Φ] = αijΦ
∗
iΦj + βijklΦ

∗
iΦ
∗
jΦkΦl +Kijkl∂iΦ

∗
j∂kΦl + · · · (S1)

is invariant under the overall U(1) gauge transformation Φi → eiφΦi, where αij , βijkl, and Kijkl are coefficients,

and repeated indices imply the summation. The free energy is invariant under the point group G0 and time-

reversal symmetry T̂ . Under the time-reversal symmetry, T̂Φi = Φ∗i . Under the operation g ∈ G0, the

components of the Bose field transform as

ÔgΦi = Rij(g)Φj , (S2)

where Rij(g) is the representation matrix of elements g that can always be chosen to be Hermitian. Thus, the

first term in the free energy transforms as

αijΦ
∗
iΦj → αijR

∗
ik(g0)Φ∗kRjl(g0)Φl = R†ki(g0)αijRjl(g0)Φ∗kΦl. (S3)

Therefore, the coefficient αij satisfies the relation

αij = R†ik(g0)αklRlj(g0), (S4)

implying that the matrix [αij ] is Hermitian since [α] = R†[α]R leads to [α]† = [α]. The Schur’s first and second

lemma then imply that when the representations R(g) are brought into the irreducible representations that

are block-diagonalized in dimensions {g1, g2, · · · , gN}, the matrix [αij ] is diagonalized into blocks [1]

[αij ] = {α1Ig1g1 , α2Ig2g2 , ..., αNIgNgN }. (S5)

Noting that Φ = (Φ1,Φ2, · · · ,ΦN )T has transformation ÔgΦ = R(g)Φ for all g ∈ G0, similar to that of the

basis of representation, say x(j), the Bose field can be expanded by x(j) as

Φ =
∑
j

ψjx
(j), (S6)

where ψj represents the superconducting order parameters [1, 2]. When the basis x(j) is changed in terms of

new basis x̃(k), i.e.,

x(j) =
∑
k

Sjkx̃
(k), (S7)

the Bose field Φ =
∑
k

∑
j ψjSjkx̃

(k) =
∑
k ψ̃kx̃

(k), via which the order parameters transform as

ψ̃k =
∑
j

ψjSjk. (S8)

The order parameter also has a transformation law under the operation of the point group. By the expansion

(S6), one finds

(ψ1, ψ2, · · · , ψN )Ôg(x
(1),x(2), · · · ,x(N))T = (ψ1, ψ2, · · · , ψN )R(g)(x(1),x(2), · · · ,x(N))T . (S9)
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So we can interpret that the operation Ôg can transform the order parameter without changing the basis by

Ôg(ψ1, ψ2, · · · , ψN )T = [R(g)]T (ψ1, ψ2, · · · , ψN )T . (S10)

Finally, under the time-reversal symmetry T̂
∑
j ψjx

(j)
i =

∑
j ψ
∗
j [x

(j)
i ]∗. If the basis is real, i.e., [x

(j)
i ]∗ = x

(j)
i ,

we have T̂ψj → ψ∗j ; if [x
(j)
i ]∗ = x

(k)
i , we have T̂ψj → ψ∗k.

Now we are interested in one particular superconducting state that corresponds to one irreducible represen-

tation of dimension M in Eq. (S5), and derive the corresponding Lagrangian functional of ψi={1,2,··· ,M}. For

the first term

αijΦ
∗
iΦj = Φ†[α]Φ =

∑
l1l2

[
x(l1)

]†
[α]x(l2)ψ∗l1ψl2 = α

∑
l

|ψl|2, (S11)

where we have used [α] = αδl1l2 for the irreducible representation. For the second term,

∑
ijkl

βijklΦ
∗
iΦ
∗
jΦkΦl =

∑
l1l2l3l4

∑
ijkl

βijklx
(l1)∗
i x

(l2)∗
j x

(l3)
k x

(l4)
l

ψ∗l1ψ
∗
l2ψl3ψl4 =

∑
l1l2l3l4

β̃l1l2l3l4ψ
∗
l1ψ
∗
l2ψl3ψl4 ,

(S12)

where β̃l1l2l3l4 =
∑
ijkl βijklx

(l1)∗
i x

(l2)∗
j x

(l3)
k x

(l4)
l . For the third term,

∑
ijkl

Kijkl∂iΦ
∗
j∂kΦl =

∑
l1l2

∑
ik

∑
jl

Kijklx
(l1)∗
j x

(l2)
l

 ∂iψ
∗
l1∂kψl2 =

∑
l1l2

∑
ik

K̃il1kl2∂iψ
∗
l1∂kψl2 , (S13)

where K̃il1kl2 =
∑
jlKijklx

(l1)∗
j x

(l2)
l . Thus, we obtain the Lagrangian functional for the order parameters

f [ψ] = α
∑
i

|ψi|2 +
∑
ijkl

β̃ijklψ
∗
i ψ
∗
jψkψl +

∑
ijkl

K̃ijkl∂iψ
∗
j ∂kψl. (S14)

Under the symmetry transformation, the form of f [ψ] is invariant.

Now we build the invariant polynomials of ψi [3] for the twisted bilayer graphene of D6 group, with the

characteristics table given by Table I. The D6 group is isomorphic to Z3 × Z2, where Z3 = {E,C3z, C
−1
3z }

TABLE I. Characteristics table of D6 group.

D6 E 2C6z 2C3z C2z 3C′
2 3C2” linear quadratic

A1 +1 +1 +1 +1 +1 +1 - x2 + y2, z2

A2 +1 +1 +1 +1 −1 −1 z, Rz -

B1 +1 −1 +1 −1 +1 −1 - -

B2 +1 −1 +1 −1 −1 +1 - -

E1 +2 +1 −1 −2 0 0 (x, y), (Rx, Ry) (xz, yz)

E2 +2 −1 −1 +2 0 0 - (x2 − y2, xy)

and Z2 = {E,C2x}. So only C3z and C2x operations need to be considered when constructing the invariant

polynomials [3]. So the results below are the same for D3 symmetry. We are interested in the E2 representation

that supports the chiral d-wave superconductivity. From the basis function (x2 − y2, xy), we construct the

basis function for the d+ id and d− id superconductivity:

ξ1 = (k2
x − k2

y + 2ikxky)/
√

2 = k2
+/
√

2,

ξ2 = (k2
x − k2

y − 2ikxky)/
√

2 = k2
−/
√

2, (S15)
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where k± = kx ± iky. The transformation matrices for them are

C3z =

(
ω2 0

0 ω

)
=

(
ω∗ 0

0 ω

)
, C2x =

(
0 1

1 0

)
,

where ω = ei2π/3. We first construct the quartic term in form of ψN1
1 (ψ∗1)N

′
1ψN2

2 (ψ∗2)N
′
2 , where {N1, N

′
1, N2, N

′
2}

are non-negative integers that have to satisfy several conditions

• Condition 1 by quartic term: N1 +N ′1 +N2 +N ′2 = 4.

• Condition 2 by U(1) symmetry: N1 +N2 = N ′1 +N ′2.

• Condition 3 by C3z operation: N1 −N2 −N ′1 +N ′2 = 0 (mod 3).

• Condition 4 by C2x operation: Lagragian is invariant under operation ψ1 ↔ ψ2.

• Condition 5 by the time reversal symmetry: Lagragian is invariant under operation ψ1 ↔ ψ∗2 .

From Conditions 1, 2, 3, we find several suitable solutions

• N2 = N ′2 = 0 and N1 = N ′1 = 2 =⇒ |ψ1|4 is allowed;

• N2 = N ′2 = 1 and N1 = N ′1 = 1 =⇒ |ψ1|2|ψ2|2 is allowed;

• N2 = N ′2 = 2 and N1 = N ′1 = 0 =⇒ |ψ2|4 is allowed.

Then from Condition 4 or 5, the coefficients of terms |ψ1|4 and |ψ2|4 are equal. We thereby obtain the quartic

terms

Lq = λ1(|ψ1|2 + |ψ2|2)2 + λ2(|ψ1|2 − |ψ2|2)2 (S16)

in terms of real number {λ1, λ2}. Similarly, we can construct the gradient terms. In terms of {∂+, ∂−} =

{∂x + i∂y, ∂x − i∂y} that transform under the operation by

C3z =

(
ω 0

0 ω∗

)
, C2x =

(
0 −1

−1 0

)
, (S17)

there are twelve possibilities for the gradient terms

1○, ∂+ψ1∂+ψ
∗
1 + H.c., 2○, ∂+ψ1∂+ψ

∗
2 + H.c.,

3○, ∂+ψ2∂+ψ
∗
1 + H.c., 4○, ∂+ψ2∂+ψ

∗
2 + H.c.,

5○, ∂+ψ1∂−ψ
∗
1 + H.c., 6○, ∂+ψ1∂−ψ

∗
2 + H.c.,

7○, ∂+ψ2∂−ψ
∗
1 + H.c., 8○, ∂+ψ2∂−ψ

∗
2 + H.c.,

9○, ∂+ψ
∗
1∂−ψ1 + H.c., 10○, ∂+ψ

∗
1∂−ψ2 + H.c.,

11○, ∂+ψ
∗
2∂−ψ1 + H.c., 12○, ∂+ψ

∗
2∂−ψ2 + H.c..

By the C3z-symmetry, only the terms 2○, 5○, 8○, 9○, and 12○ are allowed. Thus, one can generally construct

the gradient terms to be

Lg = (a∂+ψ1∂+ψ
∗
2 + H.c.) + b∂+ψ1∂−ψ

∗
1 + c∂+ψ2∂−ψ

∗
2 + d∂+ψ

∗
1∂−ψ1 + e∂+ψ

∗
2∂−ψ2, (S18)
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where the coefficients {b, c, d, e} are real. From Eq. (S17), under C2x operation, ∂+ ↔ −∂− and ψ1 ↔ ψ2.

Therefore, the first term in Eq. (S18) transforms as

a∂+ψ1∂+ψ
∗
2 + a∗∂−ψ

∗
1∂−ψ2 =⇒ a∂−ψ2∂−ψ

∗
1 + a∗∂+ψ

∗
2∂+ψ1, (S19)

which is invariant when a = a∗ ≡ γ is real. The invariance of the second to fifth terms under C2x operation

leads to b = e ≡ β1 and c = d ≡ β2. Thus, Eq. (S18) becomes

Lg = γ (∂+ψ1∂+ψ
∗
2 + H.c.) + β1 (∂+ψ1∂−ψ

∗
1 + ∂−ψ2∂+ψ

∗
2) + β2 (∂−ψ1∂+ψ

∗
1 + ∂+ψ2∂−ψ

∗
2) . (S20)

The Lagragian is invariant under the time-reversal symmetry ψ1 ↔ ψ∗2 .

II. EFFECTIVE LAGRANGIAN

We employ the Yuan-Fu model [4] to describe the flat band in MATBG. Figure S1 gives a brief description

of the model and defines the symbols. The moiré honeycomb lattice has two sites in a unit cell, i.e., A site and

B site, labeled, respectively, by “i” and “j” below. At every site, there are two p-orbitals {px, py}. The two

primitive vectors of the lattice are a1 = c1 − c3 and a2 = c2 − c3 in terms of three nearest bonding vectors

c1,2,3; dµ={1,2,3} are three fifth neighboring bonding vectors that connect two A sites or two B sites. Yuan-Fu

model, with a suppression of spin index, gives

ĤTB = −µ
∑
i

â†i · âi − µ
∑
j

b̂†j · b̂j

+ t1
∑
〈ij〉

(â†i · b̂j + H.c.) + t2
∑
〈ii′〉5

(â†i · âi′ + H.c.) + t2
∑
〈jj′〉5

(b̂†j · b̂j′ + H.c.)

+ t3
∑
〈ii′〉5

[
(â†i × âi′)z + H.c.

]
+ t3

∑
〈jj′〉5

[
(b̂†j × b̂j′)z + H.c.

]
, (S21)

where âi = (âix, âiy) and b̂j = (b̂jx, b̂jy) are the operators of different sites and orbitals, µ is the chemical

potential and ti=1,2,3 are the hopping parameters. Particularly, only t3-term mixes the x- and y-orbitals.

A

B

A

A

1a

2a

1c

2c

3c

3d

2d

1d

FIG. S1. Honeycomb moiré lattice. Parameters are defined in the text.

This model can be solved analytically. In the momentum space with âi = 1√
N

∑
k e

ik·Ri âk and b̂j =
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1√
N

∑
k e

ik·Rj b̂k, the Hamiltonian

ĤTB = −µ
∑
k

â†k · âk − µ
∑
k

b̂†k · b̂k

+ t1
∑
k

f(k)â†k · b̂k + t2
∑
k

g(k)(â†k · âk + b̂†k · b̂k) + t3
∑
k

g(k)
[
(â†k × âk)z + (b̂†k × b̂k)z

]
+ H.c.,

(S22)

where f(k) =
∑
δ=1,2,3 e

ik·cδ and g(k) =
∑
δ=1,2,3 e

ik·dδ , which, under the basis Ψ̂k = (âkx, âky, b̂kx, b̂ky)T ,

reads H(k) = −µ+ t2(gk + g−k) +


0 t3(gk − g−k) t1fk 0

t3(g−k − gk) 0 0 t1fk

t1f−k 0 0 t3(gk − g−k)

0 t1f−k t3(g−k − gk) 0

 . This matrix is

brought to be block diagonal under the chiral basis
âkx

âky

b̂kx

b̂ky

 =
1√
2


1 1 0 0

−i i 0 0

0 0 1 1

0 0 −i i



âk+

âk−

b̂k+

b̂k−

 , (S23)

where “ ± ” holds angular momentum ±1, respectively. With basis (âk±, b̂k±)T , the subspace is explicitly

written by

h±(k) = −µ+ t2(gk + g−k)± it3(g−k − gk) +

(
0 t1fk

t1f−k 0,

)
. (S24)

For the pairing interaction, we look into the Hamiltonian of the form [2, 5, 6]

Ĥint '
∑
α=±

∑
kk′

Vα(k− k′)
[
â†α↑(k)b̂†α↓(−k)− â†α↓(k)b̂†α↑(−k)

] [
b̂α↓(−k′)âα↑(k′)− b̂α↑(−k′)âα↓(k′)

]
, (S25)

where we express the pairing potential

Vα(k− k′) =
Vα
N

∑
µ={1,2,3}

ei(k−k
′)·c̃µ . (S26)

To construct the Lagrangian of the superconducting order parameter, we use a continuous description that

is equivalent to the above lattice model via the continuous field operators âα(r) = 1√
S

∑
k âα(k)eik·r and

b̂α(r) = 1√
S

∑
k b̂α(k)eik·r, where S = NΩ is the area of the honeycomb lattices with Ω =

√
3a2/2 = 3

√
3c2/2

being the area of one unit cell in which a = |a1| = |a2| and c = |cδ|. Then interaction Eq. (S25) corresponds

to

Ĥint ' Ω
∑
µ

∑
α

Vα

∫
dr
[
b̂†α↑(rµ)â†α↓(r)− b̂†α↓(rµ)â†α↑(r)

] [
âα↓(r)b̂α↑(rµ)− âα↑(r)b̂α↓(rµ)

]
, (S27)

where rµ ≡ r+ c̃µ. The subspace now is independent that allows us to omit the index “α” for simplicity below.

With the field operator Ψ̂(r) = (â↑(r), b̂↑(r), â†↓(r), b̂†↓(r))T , the free part of the Hamiltonian becomes

Ĥ0 =

∫
drΨ̂†(r)

(
h(k̂) O

O −h†(−k̂)

)
Ψ̂(r). (S28)
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Now we define two 4 × 4 matrix τ1 = P23 and τ2 = P14 via relations Ψ̂†(rµ)τ1Ψ̂(r) = b̂†↑(rµ)â†↓(r) and

Ψ̂†(r)τ2Ψ̂(rµ) = −b̂†↓(rµ)â†↑(r) = â†↑(r)b̂†↓(rµ), where Pij represents a matrix with only one non-zero element

(i, j) = 1, with which the interaction Hamiltonian becomes

Ĥint = Ω
∑
µ

V

∫
dr
[
Ψ̂†(rµ)τ1Ψ̂(r) + Ψ̂†(r)τ2Ψ̂(rµ)

] [
Ψ̂†(r)τT1 Ψ̂(rµ) + Ψ̂†(rµ)τT2 Ψ̂(r)

]
. (S29)

With the Grassman field Ψ(r, t) =
(
a↑(r), b↑(r), a↓(r), b↓(r)

)
, the action is expressed as

S =

∫ β

0

dτdrΨ(r, τ)∂τΨ(r, τ) +

∫ β

0

dτdrΨ(r, τ)H0(k̂)Ψ(r, τ)

− Ω
∑
µ

V

∫ β

0

dτ

∫
dr
[
Ψ(rµ)τ1Ψ(r) + Ψ(r)τ2Ψ(rµ)

] [
Ψ(r)τT1 Ψ(rµ) + Ψ(rµ)τT2 Ψ(r)

]
. (S30)

We introduce the complex Bose field φ(r, rµ) by Hubbard-Stratonovich transformation

1 =

∫
Dφ(r, rµ)Dφ(r, rµ) exp

(
−
∫ β

0

dτ
∑
µ

∫
drφ(r, rµ)

1

V Ω
φ(r, rµ)

)
,

with which the action

S =

∫ β

0

dτdrΨ(r, τ)
(
∂τ +H0(k̂)

)
Ψ(r, τ) +

∑
µ

∫ β

0

dτdrφ(r, rµ)
1

V Ω
φ(r, rµ)

+
∑
µ

∫ β

0

dτdrφ(r, rµ)
(
Ψ(r)τT1 Ψ(rµ) + Ψ(rµ)τT2 Ψ(r)

)
+
∑
µ

∫ β

0

dτdr
(
Ψ(rµ)τ1Ψ(r) + Ψ(r)τ2Ψ(rµ)

)
φ(r, rµ).

We integrate out the fermion degree of freedom in momentum-frequency space with the fermion field Ψ(τ, r) =
1√
β

1√
S

∑
k

∑
ωn

Ψ(ωn,k)e−iωnτeik·r and the boson field, with respect to the center-of-mass coordinate r+rµ/2,

φ(τ, r, r + c̃µ) = 1√
β

1√
S

∑
k

∑
ωm

φ(ωm,k)e−iωnτeik·(r+c̃µ/2). With k = {ωn,k} and q = {ωm,q}, the action

S =
∑
µ

∑
q

φµ(q)
1

Ṽ
φµ(q)

+
∑
kk′

Ψk

{[
− iωn +H0(k)

]
δkk′ +

1√
Sβ

∑
µ

[
φµ(k′ − k)(eiκκκ·c̃µτT1 + e−iκκκ·c̃µτT2 )

+ φµ(k − k′)(e−iκκκ·c̃µτ1 + eiκκκ·c̃µτ2)
]}

Ψk′ , (S31)

where Ṽ ≡ V/N and κ ≡ (k + k′)/2 denotes the center-of-mass momentum. For convenience, we define the

operator Q̂ via matrix elements

〈k|Q̂|k′〉 =
1√
Sβ

∑
µ

[
φµ(k′ − k)

(
eiκ·c̃µτT1 + e−iκ·c̃µτT2

)
+ φµ(k − k′)

(
e−iκ·c̃µτ1 + eiκ·c̃µτ2

)]
,

and the operator Ĝ−1
0 [φ] = iω̂ − Ĥ0 with elements 〈k|(iω̂ − Ĥ0)|k′〉 = (iωn − Ĥ0(k))δkk′ . By integrating out

the Fermion field, we arrive at the partition function

Z =

∫
Dφµ(q)Dφµ(q) exp

(
−
∑
µ

∑
q

φµ(q)
1

Ṽ
φµ(q) + tr ln

(
(−iω̂ + Ĥ0) + Q̂

))
,

with tr(...) =
∑
k〈k|...|k〉. The effective action becomes

Seff [φ, φ] =
∑
µ

∑
q

φµ(q)
1

Ṽ
φµ(q)− Tr ln

(
−Ĝ−1

0 (1− Ĝ0Q̂)
)
. (S32)
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When the order parameter is small, we expand

−Tr ln
(
−Ĝ−1

0 (1− Ĝ0Q̂)
)
→ 1

2
Tr(Ĝ0Q̂Ĝ0Q̂) =

1

2

∑
kk′

tr
(
G0
kQk,k′G

0
k′Qk′,k

)
,

and arrive at the effective action

Seff [φ, φ] =
∑
µq

φµ(q)
1

Ṽ
φµ(q) +

1

β

1

S

∑
kq

∑
µµ′

Bµµ′

(
k − q

2
, k +

q

2

)
φµ(q)φµ′(q) +O(φ4), (S33)

where

Bµµ′

(
k − q

2
, k +

q

2

)
= tr

(
G0
k− q2

(eik·c̃µτT1 + e−ik·c̃µτT2 )G0
k+ q

2
(e−ik·c̃µ′ τ1 + eik·c̃µ′ τ2)

)
. (S34)

Assuming a small q, we define

1

S

1

β

∑
k

Bµµ
′

k,k +
1

V Ω
δµµ′ ≡Mµµ′

(q = 0),

1

S

1

β

∑
k

(
Bµµ

′

k−q/2,k+q/2 −B
µµ′

k,k

) ∣∣∣
ωq→0,q→0

−→
∑
δγ

T µµ
′

δγ qδqγ , (S35)

where T µµ
′

δγ = 1
2

∂2

∂qδ∂qγ

(
1
S

1
β

∑
k B

µµ′

k− q2 ,k+ q
2

) ∣∣∣
ωq→0,q→0

. Finally, with inverse Fourier transformation φµ(q) =

1
S

1√
β

∫
dτdreiωmτe−iq·(r+c̃µ/2)φµ(τ, r) the effective action for the Boson fields in the real space reads

Seff [φ, φ] =
∑
µµ′

∫ β

0

dτdrφµ(r, τ)Mµµ′
φµ′(r, τ) +

∑
µµ′

∑
δγ

T µµ
′

δγ

∫ β

0

dτdr∂δφ
∗
µ(r, τ)∂γφµ′(r, τ) +O(φ4). (S36)

The mass term Mµµ′ determines the equilibrium configuration via the gap equation δSeff [φ, φ]/δφ = 0, while

T µµ
′

δγ controls the spatial fluctuation. Without spatial fluctuation and near the transition temperature, the

linearization of the gap equation yields an eigenvalue equation 1/(V Ω)~Φ =MMM~Φ [5], where Ω is the area of the

moiré unit cell and the matrix MMM is given by the components Mµµ′ . The Eigenvectors ξs = (1, 1, 1)T /
√

3,

ξ1 = −
(
e−i

2π
3 , 1, ei

2π
3

)T
/
√

3, ξ2 =
(

1, ei
2π
3 , ei

4π
3

)T
/
√

3 correspond to extended s-, (dx2−y2 + idxy)- and

(dx2−y2 − idxy)-wave superconductivity, respectively.

III. CALCULATION OF GINZBURG-LANDAU PARAMETERS

Here we derive the coefficients {α, β, γ1, λ1, λ2} used in the main text. The Green function of the free

Hamiltonian in the Nambu space G0(ωm,k) = diag{Ge(ωm,k), Gh(ωm,k)}, where

G±e (k, ωm) =
P1(k)

iωm − ε±1 (k)
+

P2(k)

iωm − ε±2 (k)
,

G±h (k, ωm) =
P1(k)

iωm + ε±1 (k)
+

P2(k)

iωm + ε±2 (k)
, (S37)

are the Green functions in the particle and hole space, respectively. Here,

ε±1 (k) = t2(gk + g−k)± it3(g−k − gk) + t1|f(k)| − µ,

ε±2 (k) = t2(gk + g−k)± it3(g−k − gk)− t1|f(k)| − µ,
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are the electron and hole dispersions, and

P1(k) =
1

2

(
1 −eiφk

−e−iφk 1

)
, P2(k) =

1

2

(
1 eiφk

e−iφk 1

)
(S38)

are the projection operators for these two bands with eiφk = fk/|fk|. Below we omit the label “±” for

simplicity. From Eq. (S35), both the mass and spatial fluctuation depend on

Bµµ
′

q,± ≡
1

S

1

β

∑
k

Bµµ
′

k− q2 ,k+ q
2

=
1

2S

∑
k

(
nF
(
ε1(k− q

2 )
)

+ nF (ε1

(
k + q

2

)
)− 1

ε1

(
k− q

2

)
+ ε1

(
k + q

2

) +
nF
(
ε2(k− q

2 )
)

+ nF (ε2

(
k + q

2

)
)− 1

ε2

(
k− q

2

)
+ ε2

(
k + q

2

) )
×
(

cos
(
k · (c̃µ + c̃µ′)− φk− q

2
− φk+ q

2

)
+ cosk · (c̃µ − c̃µ′)

)
+

1

2S

∑
k

(
nF
(
ε1(k− q

2 )
)

+ nF (ε2

(
k + q

2

)
)− 1

ε1

(
k− q

2

)
+ ε2

(
k + q

2

) +
nF
(
ε2(k− q

2 )
)

+ nF (ε1

(
k + q

2

)
)− 1

ε2

(
k− q

2

)
+ ε1

(
k + q

2

) )
×
(
− cos

(
k · (c̃µ + c̃µ′)− φk− q

2
− φk+ q

2

)
+ cosk · (c̃µ − c̃µ′)

)
, (S39)

which is calculated by the summation over Matsubara frequency. Via Eq. (S39) that is calculated numerically

for momentum summation, the coefficients for the mass and spatial fluctuation

Mµµ′ =
1

V Ω
δµµ′ + Bµµ

′

q=0,

T µµ
′

δγ =
1

2

(
∂2

∂qδ∂qγ
Bµµ

′

q

) ∣∣∣
q→0

. (S40)

These matrices are computed numerically by performing the intergral and derivatives over the momentum,

which are then used to calculate the GL parameters. To this end, by substituting (φ1(r), φ2(r), φ3(r))
T

=

ψ1(r)ξ1 + ψ2(r)ξ2 into Eq. (S36), we obtain the Lagrangian density for the order parameters

Leff =
∑
i=1,2

ai|ψi(r)|2 +
∑
δγ

∑
ij

cijδγ∂δψ
∗
i (r)∂γψj(r), (S41)

where we define and numerically compute

ai = ξ†iMMMξi,

cijδγ = ξ†iTTT δγξj . (S42)

With these computation, we find the GL parameters {α, β, γ} used in the main text via relations

a1 = a2 = α,

c11
δγ = c22

δγ = βδδγ ,

c21
xx = −c21

yy = −ic21
xy = γ. (S43)

Finally, we address the calculation of GL parameters {λ1, λ2}. Expanding the Bose fields to O(φ4), the

nonlinear part of the action is given by

SNL
eff =

∫ β

0

dτdr
(
λ1

(
|ψ1|2 + |ψ2|2

)2
+ λ2

(
|ψ1|2 − |ψ2|2

)2)
, (S44)
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in which the coefficients

λ1 + λ2 =
1

2β2

1

S

∑
k

tr
[
GhkΛ1(k)GekΛ2(k)GhkΛ1(k)GekΛ2(k)

]
,

λ1 − λ2 =
1

2β2

1

S

∑
k

tr
[
GhkΛ1(k)GekΛ1(k)GhkΛ2(k)GekΛ2(k)

]
+

1

2β2

1

S

∑
k

tr
[
GhkΛ1(k)GekΛ2(k)GhkΛ2(k)GekΛ1(k)

]
, (S45)

where

Λ1(k) =
1√
3

(
0 eik·c̃1 + ei

4π
3 eik·c̃2 + ei

2π
3 eik·c̃3

e−ik·c̃1 + ei
4π
3 e−ik·c̃2 + ei

2π
3 e−ik·c̃3 0

)
,

Λ2(k) =
1√
3

(
0 eik·c̃1 + ei

2π
3 eik·c̃2 + ei

4π
3 eik·c̃3

e−ik·c̃1 + ei
2π
3 e−ik·c̃2 + ei

4π
3 e−ik·c̃3 0

)
. (S46)

Here we focus on the case with a high hole doping with µ . −t1, in which case the particle and hole Green

functions Ghk ≈
P2(k)

iωm+ε2(k) and Gek ≈
P2(k)

iωm−ε2(k) , with which, e.g.,

λ1 + λ2 '
1

2β2

1

S

∑
k

∑
ωm

tr

[
P2(k)Λ1(k)P2(k)Λ2(k)P2(k)Λ1(k)P2(k)Λ2(k)

(iωm + ε2(k))2(iωm − ε2(k))2

]
.

We calculate the summation over Matsubara frequency according to the residue theorem and arrive at

λ1 + λ2 =
1

2β

1

S

∑
k

tr [P2(k)Λ1(k)P2(k)Λ2(k)P2(k)Λ1(k)P2(k)Λ2(k)]

×
[

1

4ε2
2(k)

(
n′F (ε2(k)) + n′F (−ε2(k))

)
+

1

4ε3
2(k)

(
− nF (ε2(k)) + nF (−ε2(k))

)]
, (S47)

and similarly for λ1 − λ2. The values of λ1,2 are obtained via numerical computation of these integrals over

momentum.

IV. CALCULATION OF Tc BY BKT TRANSITION

In two-dimensional superconductors, the superconducting critical temperature Tc is often determined by

the BKT transition. We now include an estimation of the BKT transition temperature from the calculated

superconducting stiffness via kBTc = πβ(Tc), and compare with that obtained by the mean-field theory via

α(Tc) = 0. As shown in Fig. S2, we find that the latter is well below the BKT transition. As a consequence,

the mean-field regime correctly describes the physics near the boundary of the superconducting dome around

Tc (we note that TBKT does not show a dome-shaped behavior as a function of doping), since the phase fluc-

tuation for the BKT transition costs much higher energy and is therefore sufficiently far away in temperature.

The mean-field theory in two-dimensional superconductors thereby does have predictive power in, e.g., the

superconducting paraconductivity [7].

V. NEMATICITY OF SUPERCONDUCTING FLUCTUATIONS ABOVE Tc

In the experiments by Cao et al., the nematicity in the transport, under the applied in-plane magnetic

field, is observed at temperatures slightly above Tc [8], at which the superconducting order parameter actually
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FIG. S2. Comparison of superconducting critical temperature Tc by the mean-field theory (“MF”) and BKT transition

(“BKT”) under different hole dopings.

vanishes. Here we explain in more detail how the nematic behavior can arise in the transport at temperature

slightly above Tc in the absence of superconducting orders. This is because the nematicity of the stiffness is

carried to the paraconductivity via the spatial correlations of the superconducting order parameter, not the

order parameter itself. By the thermal fluctuation above Tc, the superconducting order parameter

ψ(q, t) =
1

~Γ

∫ t

−∞
dt′ exp

[
− 1

~Γ

∫ t

t′
dt̃H(q, t̃)

]
f(q, t′)

is given by the damping parameter Γ, the stiffness {β, γ} in H(q, t) and the thermal noise f(q, t), which has

an average 〈f(q, t)〉 = 0. Therefore, there is no superconducting order at temperature T > Tc. However, the

electric current carried by the superconducting fluctuation

j =
∑
q

ψ†(q)

(
−c∂H(q)

∂AE

)
ψ(q) (S48)

arises by the correlation of the superconducting order parameter 〈ψ†(q)ψ(q)〉, rather than 〈ψ(q)〉, and the

same applies to the paraconductivity [7, 9], which therefore generally exists when T & Tc.

Since the nematicity is inherited by the paraconductivity via the superconducting stiffness, it is useful here to

emphasize its existence at temperatures above Tc. To calculate the paraconductivity at T & Tc by the thermal

fluctuation of superconducting order parameters [7, 9], one has to determine the correct ground state, which

is conveniently done by going to the ordered phase with T . Tc. With both calculation performed at T ∼ Tc,
the stiffness {β, γ} does not change, in contrast to the sign change of α. In other words, the superconducting

stiffness {β, γ} vanishes only when the temperature is far above Tc. Thus, the superconducting stiffness {β, γ}
obtained at temperatures slightly below Tc can be used to calculate the paraconductivity at temperatures

slightly above Tc.
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