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Accumulating evidence in adults has shown that curiosity and

surprise enhance memory via activity in the hippocampus,

prefrontal cortex, and dopaminergic areas. Based on findings

of how these brain areas and their inter-connections develop

during childhood and adolescence, we discuss how the effects

of curiosity and surprise on memory may develop during

childhood and adolescence. We predict that the maturation of

brain areas potentially related to curiosity elicitation

(hippocampus, anterior cingulate cortex [ACC], prefrontal

cortex) and protracted development of hippocampal-PFC and

ACC-PFC connectivity lead to differential effects of curiosity

and surprise on memory during childhood and adolescence.

Our predictions are centred within the PACE (Prediction-

Appraisal-Curiosity-Exploration) Framework which proposes

multiple levels of analyses of how curiosity is elicited and

enhances memory.
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Introduction
Curiosity, the desire to acquire new information, is often

described as an epistemic emotion and is accompanied by

positive affect [1]. It has been shown to be a powerful

driver of learning, especially in children [2]. In educa-

tional settings, curiosity for scientific knowledge is a

major motivation for long-term involvement in STEM

subjects and predicts academic performance [3,4].

Experiencing and expressing higher curiosity during kin-

dergarten predicts academic achievement in primary
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school, with an even larger influence in children from

families with lower socio-economic status [5�]. But what

are the neural underpinnings underlying the positive

effects of curiosity on learning and memory, and how

do they develop? Answers to this question would ulti-

mately allow us to design tailored educational approaches

to optimally harness how curiosity differently affects

learning across development. Furthermore, a neuroscien-

tific approach to study curiosity development offers a

unique opportunity to investigate how neural mecha-

nisms underlying learning are modulated by the drive

to learn and the satisfaction that comes from learning the

desired information.

A plethora of research has consistently demonstrated

that infants and young children explore their environ-

ment actively in systematic ways, driven by a drive to

reduce uncertainty and to close knowledge gaps — both

key markers of curiosity [6–8,9�]. In addition, the edu-

cational literature has emphasized the cognitive and

affective mechanisms promoting school-aged children’s

and adolescents’ long-lasting interest and curiosity in

such domains as mathematics or physics [10–12]. Yet,

we have a limited understanding of how different levels

of curiosity affect children’s learning because hardly any

studies to date have directly measured curiosity or

asked children to report on their states of curiosity.

Thus, children’s (subjective) desire to learn and satis-

faction in experiencing desired information has rarely

been taken into account when examining curiosity-

based learning. However, a fledgling line of research

in psychology and neuroscience on curiosity in young

adults (i.e. 18–30 years of age) has consistently demon-

strated how pre-information curiosity, post-information

interest, and surprise enhance learning and memory in

adults [13–18]. These studies have been employing a

trivia paradigm in which participants anticipate answers

to general knowledge questions that are associated with

varying levels of curiosity about the answer. Using an

age-appropriate version of the trivia paradigm, we

recently investigated how curiosity and surprise affect

memory in children between 10 and 14 years [19�]. We

found that younger children (10�12 years) and adoles-

cents (12–14 years) demonstrated enhanced memory for

answers to trivia questions for which they were curious

relative to answers to trivia questions about which they

were not curious. Furthermore, we found that adoles-

cents — but not children — showed better memory for

answers to trivia questions that they judged as more

interesting than initially expected. These initial results
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suggest that states of curiosity can indeed be harnessed

to facilitate learning in children and adolescents. How-

ever, they also point to potential differences in the

underlying mechanisms of how positive surprise affects

learning across development (Figure 1).

To better understand how curiosity-based learning might

develop, we turn to theoretical ideas and current findings

in cognitive neuroscience for this opinion piece. In adults,

cognitive neuroscience research has started to differenti-

ate the components and neural circuits associated with

curiosity-based learning, thereby bridging the fields of

memory and motivation [14,15,20,21��,22]. Of note, these

two rich fields have mostly been studied in isolation,

especially in children. We aim to close this gap by

integrating recent findings and theoretical ideas on the

neural mechanisms of curiosity with findings from devel-

opmental cognitive neuroscience to identify candidate

mechanisms facilitating the differential effects of curios-

ity and interest on learning and memory across

development.
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The Prediction, Appraisal, Curiosity, and
Exploration (PACE) Framework and its
relationship to child and adolescent
development
An emerging field in neuroscience on curiosity has started to

elucidate the neural underpinnings underlying states of

curiosity in hon-human primates as well as humans (for

reviews, see Refs. [13,21��,23��,24,25]. Across different

experimental manipulations of curiosity (e.g. trivia ques-

tions,magictricks,blurredimages,ormorbidstimuli),studies

in humans have consistently shown that states of curiosity

elicit activity in dopaminergic circuit regions, specifically in

theventralstriatum[14,15,20,22,26,27,28��].Inaddition,one
study has shown that the enhancing effects of curiosity on

human long-term memory are supported by activity in the

ventral striatum and hippocampus suggesting enhanced

hippocampus-dependentmemoryformationviainteractions

with the dopaminergic circuit [15] (see also, [22]).
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drawing from a broad range of evidence and theoretical

models from psychology and neuroscience on how nov-

elty and prediction errors trigger exploration and infor-

mation-seeking [21��]. Specifically, Gruber and Ranga-

nath proposed that the effects of curiosity on memory can

be understood as emerging from a cycle that involves

Prediction errors, Appraisal, Curiosity, and Exploration

(PACE). According to this framework, curiosity is first

triggered by significant prediction errors, in particular

hippocampus-dependent contextual prediction errors

and anterior cingulate cortex-dependent informational

prediction errors. While prediction errors in the hippo-

campus are proposed to generally result from encounter-

ing novel or unexpected contexts, prediction errors in the

anterior cingulate cortex (ACC) depend on cognitive

conflict resulting from previous knowledge. PACE sug-

gests that these prediction errors are appraised via lateral

prefrontal cortex (PFC) mechanisms as an indicator of

information that could be valuable in the future. This

cycle enhances memory encoding through increased

attention, exploration, and information-seeking via the

dopaminergic circuit and enhances hippocampus-depen-

dent memory of curiosity-related information [21��].
Below, we outline how the proposed processes within

the PACE framework might help to ultimately better

understand the development of curiosity and its effect on

memory (Figure 1).

Age differences in context-based and information-based

prediction errors

Hippocampal context-based prediction errors

It has been proposed that the hippocampus forms cogni-

tive maps that allow one to generate predictions based on

past experiences with similar contexts and situations [29].

Violations of such generated predictions, in turn, may

lead to hippocampal responses that can potentially trigger

exploration to resolve this uncertainty and to refine cog-

nitive maps [29]. Thus, the hippocampus can be seen as

providing the foundation for curiosity through novelty-

based or context-based prediction errors that lead to an

inherent drive for curiosity-stimulated exploration [21��].
Consistent with findings on how the hippocampus sup-

ports exploratory eye movements related to prediction

errors and novelty [30–32], it has been shown that eye

movements related to curiosity predict exploration and

attention towards novel information [33,34]. Further-

more, one study investigated individual differences in

the strength of one major anatomical pathway connecting

the hippocampus with the PFC — the fornix — and its

relationship with curiosity [35]. The authors found that

individual differences in the microstructure of the fornix

predicted specifically diversive curiosity — a curiosity

trait that is related to broad exploration triggered by novel

events [35,36].

Consistent with these findings in young adults, infants

show visual preferences for exploring novel objects, and
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young children prefer to explore objects if they do not

have complete understanding of their functioning [37,38].

At the same time, the hippocampus continues to develop

in early and middle childhood and supports improve-

ments in memory precision and flexibility [39]. Contin-

ued hippocampal maturation may thus contribute to age

differences in the ways in which context-based prediction

errors stimulate curiosity in younger children. In addition,

studies in young adults have shown that surprising infor-

mation elicits functional connectivity between the hip-

pocampus and the PFC [40–42]. Critically, there are

developmental differences in connectivity between the

hippocampus and the PFC (e.g. via the fornix or the

uncinate fasciculus), which may also contribute to age

differences in how hippocampus-mediated prediction

errors elicit curiosity. The uncinate fasciculus continues

to develop throughout middle childhood [43] and the

strength of the uncinate fasciculus microstructure corre-

lates with age-related increases in the ability to modulate

attention towards relevant information in children (7–11

years) [44]. Furthermore, a longitudinal study [45] using

resting-state functional magnetic resonance imaging

found that hippocampus-PFC functional connections

only emerged by 13 years of age, suggesting that the

transition to adolescence may be an important period for

the development of the connections between the hippo-

campus and the PFC.

Therefore, hippocampal context-based prediction errors

may support the computation of unexpected or novel

contextual information which may provide the foundation

for curiosity in childhood and adolescence. This process

may differ from that observed in adults because the

relevant functions of the hippocampus and its connec-

tions to other subcortical and cortical networks are still

developing. While we expect that hippocampal matura-

tion would represent the major source of age differences

in hippocampal prediction errors earlier in childhood,

changes in hippocampal-PFC connections in the transi-

tion to adolescence are expected to make greater contri-

butions to curiosity and its effect on memory later in child

development.

Information-related prediction errors in the ACC

While the hippocampus might compute contrasts in map-

like representations elicited by prediction errors, PACE

further proposes that the ACC supports the cognitive

conflict that is experienced due to information-based

prediction errors and information gaps [21��]. This idea

is in line with the theoretical conceptualization of infor-

mation gaps in terms of cognitive conflict [46] and the

neuroscientific literature that has shown enhanced ACC

and lateral PFC activity when participants experience

cognitive conflict (e.g. Refs. [47,48]), including increased

ACC activity during the tip-of-the-tongue experience —

a phenomenon that has been related to high levels of

curiosity [49,50]. Consistent with the proposed ACC-
www.sciencedirect.com



Curiosity in childhood and adolescence Gruber and Fandakova 181
related cognitive conflict component within the PACE

framework, several studies have shown involvement of

the ACC when humans and non-human primates await or

choose information associated with high curiosity, poten-

tially supporting the idea that the ACC might signal

information gaps due to cognitive conflicts that can trigger

curiosity [15,22,26,27,28��,51].

During development, age differences in information-

related prediction errors supported by the ACC may

contribute to differences in whether and how such pre-

diction errors stimulate curiosity. While some signatures

of cognitive conflict are present even in infancy [52], the

ACC continues to mature in childhood and adolescence

[53]. In particular, the amplitude of the error-related

negativity (ERN), an EEG component associated with

the detection and processing of cognitive conflict,

increases with age between 8 and 19 years [54]. Thus,

protracted development in the neural circuits supporting

conflict processing could alter how information-related

prediction errors affect the stimulation of curiosity during

development. In particular, ACC input associated with

conflict monitoring may play an important role in stimu-

lating appraisal-based processes in the lateral PFC. For

example, Fandakova and colleagues [55�] found that

8�12 year old children engaged the ACC and anterior

insula more strongly during inaccurate and uncertain

memory responses, but only 10–12-year-olds recruited

the lateral PFC more strongly for decisions to report

uncertainty. Further longitudinal analyses demonstrated

that 8�10-year-olds who exhibited greater activation of

regions associated with cognitive conflict at a first assess-

ment showed greater increases in PFC activation for

uncertain responses 1.5 years later [55�]. Consistent with

findings of protracted network segregation in childhood

[56–58], this initial evidence might suggest that input

signals from regions associated with cognitive conflict

might contribute to the development of more differenti-

ated appraisal in PFC that would ultimately lead to

curiosity. Thus, one hypothesis for future research is that

experiencing more information-related prediction errors

in a given domain earlier in childhood may contribute to

faster development of more efficient PFC-based appraisal

in the service of curiosity.

Taken together, after experiencing information gaps due

to cognitive conflicts, children and adolescents may

become more likely to engage in more differentiated

curiosity-driven exploration with increasing age as

ACC-based conflict processing improves and contributes

to the development of more efficient and differentiated

PFC-based appraisal.

Protracted development of appraisal supported by the

lateral PFC

The PACE framework lays out that context-based and

information-based prediction errors do not elicit curiosity
www.sciencedirect.com 
in an obligatory manner, but that prediction errors are

appraised involving lateral PFC functions [21��] (see also,

Refs. [59,60]). According to PACE, appraisal of prediction

errorscanleadtodifferentdegreesofcuriosityoralternatively

to anxiety-related inhibition if one does not have sufficient

capability to resolve the uncertainty [21��,61]. Consistent

with the idea of prefrontal appraisal processes, several neu-

roimaging studies in young adults have shown lateral PFC

activity along with activity in dopaminergic mesolimbic

regionswhen curiosity iselicited[14,15,27,28��] (for reviews,
see Refs. [21��,23��]). These findings suggest that PFC-

based appraisal may be needed to stimulate dopaminergic

functions to modulate hippocampus-dependent learning.

Lateral PFC is among the brain regions that shows

protracted maturation up to young adulthood [62–64].

Gray matter volume in lateral PFC increases in early

childhood, followed by thinning starting around age 9–

10 years and continuing through adolescence [65]. A

recent study provided hints that structural changes in

the PFC are related to the development of appraisal

processes [66]. This longitudinal study examined meta-

memory development in children between 7 and 15 years.

Metamemory — the ability to appraise, self-reflect, and

regulate learning and memory outcomes — continued to

improve over time aligned to structural changes in the

PFC. These findings based on the appraisal of memory

retrieval suggest that appraisal processes may develop

throughout adolescence, reflecting protracted PFC mat-

uration (see also Ref. [55�]). Thus, across development

curiosity may be elicited to a different degree based on

the maturational status of lateral PFC. More specifically,

if appraisal processes are still developing in younger

children, we expect that (1) they show less lateral PFC

modulation by context-based and/or information-based

prediction errors and (2) are overall more likely to report

higher curiosity rather than differentiating between infor-

mation associated with high versus low curiosity as older

children and adults do. Evolutionarily, there might be an

obligatory drive for curiosity in early development or at

least an inherent bias towards curiosity over anxiety (cf.
Ref. [29]) as prefrontal appraisal processes are still matur-

ing. The protracted development of appraisal processes

aligned to PFC maturation may be one neural mechanism

enabling an extended exploratory childhood period

[67��], in which context-related and information-related

prediction errors may trigger curiosity directly. Future

research is necessary to test these hypotheses, but they

are consistent with observations that younger children are

more likely to show greater interest across a variety of

different academic domains, whereas older children have

fewer, but clearly differentiated domains of interest [68].

On the neural level, our hypotheses are consistent with

research demonstrating that the extent to which lateral

PFC activity selectively supports task-relevant versus

task-irrelevant information increases with age in 8–13

year-olds [44].
Current Opinion in Behavioral Sciences 2021, 39:178–184
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Taking a neuroscientific approach to the development

of appraisal processes in service of curiosity and learning

can offer unique insights into the interactions of pro-

cesses associated with the drive to learn (related to

dopaminergic circuit functions) and learning itself

(related to the hippocampus and memory circuits more

generally). For example, our findings that showed that

information prediction errors enhanced memory in ado-

lescents more strongly than in children [19�] point to an

interaction between the developing PFC appraisal pro-

cesses and dopaminergic neuromodulation of hippocam-

pus-dependent memory. These interactions are partic-

ularly prominent in guiding learning in adolescence [69–

71] and may enhance curiosity-based learning. In youn-

ger children in contrast, the satisfaction associated with

learning may emerge from direct triggering of curiosity

by context-related and information-related prediction

errors. These ideas are consistent with postulated

changes in the extent to which cognitive and affective

components (cf. Ref. [68,72]) drive curiosity-based

learning in development. Ultimately, a neuroscientific

approach to the development of appraisal processes in

curiosity-based learning will offer unique insights into

how these processes interact with the drive to learn

within the dopaminergic system and hippocampus-

based learning and exploration. In addition, future

research might eventually point to optimal ways to

harness curiosity-based learning across child

development.

Conclusion
The PACE framework offers an excellent starting point

for investigating how brain maturation contributes to

curiosity and its effects on learning in childhood and

adolescence. First, we expect that hippocampus-related

and ACC-related prediction errors (i.e. via novelty and

information gaps, respectively) and their effects on curi-

osity-driven exploration underlie age differences during

development due to the ongoing development of these

structures. Second, based on the different maturational

trajectories of the hippocampus and the ACC, we propose

that younger children will show differences to adults in

hippocampus-related novelty prediction errors and how

they stimulate curiosity. In contrast, older children and

adolescents are expected to show differences to adults

primarily in ACC-related prediction errors due to cogni-

tive conflict. Finally, as the lateral PFC and its connec-

tions to hippocampus and ACC continue to develop, we

expect more refined PFC-based appraisal for different

strengths of prediction errors which parallels the devel-

opment of more differentiated curiosity profiles on the

behavioral level.
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