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Abstract

A detailed description of GENE-3D, a newly developed global stellarator version

of the well established gyrokinetic turbulence code GENE, is provided – along with

some initial simulation results. First, the underlying gyrokinetic equations and the use

of field-aligned coordinates in non-axisymmetric magnetohydrodynamic equilibria are

discussed. Then, various aspects regarding the numerical implementation in GENE-3D

are described. Finally, the code is validated and its parallel performance is assessed,

along with the influence of numerical precision.
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1. Introduction

One of the key challenges in magnetic confinement fusion research is to understand,

predict, and control turbulent transport [1]. The latter determines the energy confine-

ment time of any given fusion device, and therefore (from a plasma physics point of

view) also its size and cost. Consequently, a lot of work has been devoted to the study

of plasma turbulence over the last few decades, both experimentally and theoretically.

A key development in this context was the derivation of a set of (nonlinear) reduced

kinetic equations which are perfectly suited to describe low-frequency, small-scale turbu-

lence in fusion devices, namely the gyrokinetic equations [2, 3, 4]. In contrast to a fully

kinetic Vlasov-Maxwell approach, gyrokinetics does not treat a number of phenomena

at small spatio-temporal scales which turn out to be largely irrelevant to the question of

turbulent transport. This includes, in particular, cyclotron resonances, Debye shielding,
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Langmuir waves, compressional Alfvén waves, and electromagnetic waves. Meanwhile,

ion sound waves, shear Alfvén waves, and a host of related microinstabilities (destabilized

by background density and temperature gradients) is retained, and so are important ki-

netic effects like magnetic trapping, Landau damping, and finite Larmor radius effects.

In addition, one of the three velocity space coordinates, namely the gyroangle, can be

removed from the equations, reducing the phase space dimensionality from six to five.

Given that turbulence is an inherently nonlinear process and that the gyrokinetic

equations constitute a relatively complex set of partial integro-differential equations,

progress in the theory of plasma turbulence has been largely driven by computational

efforts ever since the 1980s [5]. Despite the fact that the use of the gyrokinetic equa-

tions in lieu of fully kinetic equations reduces the computational cost by many orders of

magnitude, at every stage of the development of this field, some of the world’s most pow-

erful supercomputers were employed to address cutting-edge research questions. Overall,

gyrokinetic simulations are widely recognized as having come a long way from study-

ing highly idealized model systems to reproducing and explaining experimental findings

literally on a daily basis.

This success story has been largely confined to the area of tokamak physics, however,

building on various simplifications that come from dealing with an axisymmetric system.

Meanwhile, gyrokinetic investigations of non-axisymmetric devices, like stellarators or

perturbed tokamaks, are far less developed at this point. Starting almost two decades ago,

the technique of using a (minimal) flux-tube geometry, originally developed to effectively

address turbulent transport in tokamaks [6], also started to be applied to gyrokinetic

turbulence studies for stellarators, despite certain inherent limitations and shortcomings

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Around the same time, we saw the emergence

of global ("full-torus") gyrokinetic simulations for stellarators, but only with respect

to the linear physics of the microinstabilities driving the turbulence [18, 19, 20, 21,

22, 23]. Global gyrokinetic turbulence simulations have been elusive in the literature

until now, despite the fact that modern stellarators like Wendelstein 7-X have been

optimized to strongly reduce neoclassical transport, thus bringing to the foreground

the importance of turbulence-induced transport [24]. In the present paper, we provide a

detailed description of a newly developed global stellarator version of the well established
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Figure 1: Snapshot of the initial condition of a turbulence simulation with GENE-3D for the Wendelstein

7-X stellarator. Depicted is the absolute value of the electrostatic potential (large=red, small=blue).

3



gyrokinetic turbulence code GENE, called GENE-3D. We also present some results from

first global turbulence simulations using GENE-3D (see Fig. 1 – which depicts a snapshot

of a turbulence simulation further discussed in Sec. 6.1 – as well as Ref. [25]). GENE was

originally conceived in the year 2000 as a flux-tube code [26]. While most applications

of this code version since then focused on tokamaks, it was also applied to stellarators

as early as 2002 [7, 8]. A series of publications followed, led by scientists from various

research institutions (thanks to GENE’s public availability [27]). A major development

step was carried out by Florian Merz and collaborators since 2011, namely the extension

of GENE towards a full-flux-surface code for stellarators. For this purpose, the recently

developed global tokamak version of the code [28], using a real-space representation in the

radial direction while retaining a Fourier representation in the binormal direction, was

used as a starting point, and the role of these two coordinates was interchanged. Several

applications of this new tool followed since 2014 [29, 30]. The next natural step was

to start the development of a global ("full-torus") stellarator version of the gyrokinetic

turbulence code GENE, called GENE-3D. The purpose of the present paper is to describe

this code as well as some validation studies and first applications.

The remainder of this work is organized as follows. In Section 2, the underlying gy-

rokinetic equations are presented, including a description of the collision operator. In

Section 3, we discuss the use of field-aligned coordinates in non-axisymmetric magnetohy-

drodynamic equilibria via the GVEC code [31]. Various aspects regarding the numerical

implementation in GENE-3D are detailed in Section 4, from the normalization of the ba-

sic equations to the discretization schemes of various differential and integral operators.

The important theme of code validation is addressed in Section 5, and two computational

aspects – the code’s parallel performance and the influence of numerical precision – are

assessed in Section 6. The paper closes with a summary and some conclusions in Section

7.

2. The gyrokinetic equations

The gyrokinetic equations, first derived in the 1980s, allow for an efficient description

of low-frequency, small-amplitude microturbulence in strongly magnetized plasmas [2, 3,

4]. While a fully kinetic treatment employs a six-dimensional phase space (three spatial
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plus three velocity space coordinates of the particles), gyrokinetics is reduced to five

dimensions (three spatial plus two velocity space coordinates of the gyrocenters). In this

context, Lie perturbation methods [3] can be used to formulate a model for which the

gyrophase remains a cyclic variable in the presence of fluctuating electromagnetic fields.

Particles gyrating quickly about magnetic field lines are effectively replaced by charged

rings which are subject to forces created by plasma inhomogeneities and electromagnetic

fluctuations. At the same time, many plasma phenomena on small spatio-temporal scales

are explicitly removed from the equations. This includes, in particular, Debye shielding,

cyclotron resonances, and compressional Alfvén waves. In the following, the gyrokinetic

equations – as used by GENE-3D – are laid out.

2.1. The gyrokinetic ordering

The gyrokinetic equations are based on the so-called gyrokinetic ordering [2, 32], here

considered as

ω

Ω
∼
k‖

k⊥
∼ ρ

LT
∼ ρ

Ln
∼ F1

F0
∼ qφ1

T0
∼ εδ ,

ρ

LB
∼ εB , (1)

where εB ≈ ε2δ . Here, ω is a characteristic fluctuation frequency, Ω = (qB0)/(mc) is

the gyrofrequency of a particle with charge q and mass m in a background magnetic

field of strength B0 with the speed of light in vacuum c, k‖ and k⊥ are characteristic

wave numbers parallel and perpendicular to the background magnetic field, ρ = vth/Ω

is a typical gyroradius (where vth is the thermal velocity), Ln = 1/|∇ lnn0| and LT =

1/|∇ lnT0| are the gradient scale lengths of the background density, n0, and temperature,

T0, and LB = 1/|∇ lnB0| is the magnetic field scale length. Meanwhile, F0 and F1 are

the background and fluctuating parts of the gyrocenter distribution function, and φ1 is

the fluctuating part of the electrostatic potential. The gyrokinetic model considered in

the present work is valid up to O(εδ).

The gyrokinetic ordering is motivated by many years of experimental and theoretical

analysis of various microinstabilities in fusion plasmas [3]. It is known that Eq. (1) is

usually well satisfied in the core region, with the possible exception of very small devices

and some spherical tokamaks. In the edge region, its appropriateness can be questioned

in certain situations (see, e.g., Refs. [33, 34]). However, for the physics applications
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considered here (mainly stellarators and perturbed tokamaks), the gyrokinetic ordering

is assumed to be valid.

2.2. The gyrokinetic Vlasov equation

A key element of gyrokinetic theory is the gyrokinetic Vlasov equation which describes

the time evolution of the gyrocenter distribution function Fσ(X, v‖, µ, t) for each particle

species σ in the absence of collisions,

∂Fσ
∂t

+
dX

dt
· ∇Fσ +

dv‖

dt

∂Fσ
∂v‖

= 0 . (2)

The corresponding equations of motion are [3]

dX

dt
= v‖b0 + vE0 + vE1 + v∇B0 + vc , (3)

dv‖

dt
= −dX/dt

mσv‖
·
(
qσ∇

(
φ0 + φ̄1

)
+ µ∇B0

)
, (4)

dµ

dt
= 0 . (5)

Here, X is the gyrocenter position, µ = mv2
⊥/(2B0) is the magnetic moment, and v‖ and

v⊥ are the velocity components parallel and perpendicular to the background magnetic

field. Electromagnetic terms have been neglected for clarity, as they are currently not yet

implemented in GENE-3D. The E×B, grad-B, and curvature drift velocities appearing

in Eq. (3) are defined as

vE0 =
c

B2
0

B0 ×∇φ0 , (6)

vE1
=

c

B2
0

B0 ×∇φ̄1 , (7)

v∇B0 =
µc

qσB2
0

B0 ×∇B0 , (8)

vc =
v2
‖

Ωσ
(∇× b0)⊥ . (9)

The equilibrium electrostatic potential φ0 appearing in Eq. (6) can be employed to con-

sider externally imposed (long-wavelength) radial electric field effects, which in stellara-

tors is generally determined by neoclassical processes [35]. A gyroaverage operation is

indicated with an overbar, defined as

φ̄1(X) =
1

2π

˛
φ1(X + r(α)) dα, (10)
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for the electrostatic potential, where the gyroradius vector, r(α), is orthogonal to the

local magnetic field.

In line with the gyrokinetic ordering, the gyrocenter distribution function is split into

an equilibrium part F0σ and a fluctuation F1σ,

Fσ = F0σ + F1σ , (11)

where

F1σ/F0σ ∼ εδ � 1 . (12)

This splitting procedure can be used to separate the "macroscopic" evolution of the

plasma from the microturbulence, reducing the computational cost of the simulations em-

ploying this "delta-F" approach significantly in many situations [5]. A local Maxwellian is

considered as the background distribution function in GENE-3D. Keeping only first-order

terms in the perturbed distribution function, the resulting gyrokinetic Vlasov equation

reads

∂F1σ

∂t
+ v‖b̂0 · Γσ − b̂0 ·

µ

mσ
∇B0

∂F1σ

∂v‖
+ (v∇B0

+ vc) · Γσ + (vE0
+ vE1

) · ∇F1σ

+ vE1
·
[
∇F0σ + µ∇B0

F0σ

T0σ

]
+ (v∇B + vc) · ∇F0σ = 0 ,

(13)

where, for simplicity, the abbreviation

Γσ = ∇F1σ +
qσ
T0σ

F0σ∇φ̄1 . (14)

has been introduced. The last term in Eq. (13) couples neoclassical and turbulent trans-

port; it may affect the long-term evolution of the system in the presence of collisions [36].

In the present paper, neoclassical contributions to transport are neglected for simplicity,

and the E×B nonlinearity is the only nonlinear term kept in the current implementation

of GENE-3D.

In the following, we will describe how collisional effects are incorporated in GENE-3D,

and how the self-consistent electromagnetic fields are calculated.

2.3. The collision operator

For high-temperature, low-density plasmas, as they frequently occur in fusion re-

search, collisional effects tend to be relatively small and can sometimes be neglected
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altogether. For certain parameter regimes, however, collisional effects such as, e.g., de-

trapping of trapped particle modes, collisional damping of zonal flows, etc. may be-

come important. Therefore, in general, a collision operator must be added on the right-

hand side of Eq. (13). Various collision operators have been derived in the literature

[37, 38, 39, 40, 41, 42]. Gyrokinetic codes implement different collision operators de-

pending on the representation of the distribution function and depending on whether

a Eulerian, Lagrangian, or semi-Lagrangian model is used (see Sec. 1 of Ref. [43] for a

review). A linearized Landau-Boltzmann collision operator, C[F1σ], is currently imple-

mented in GENE-3D [44], the same as in the global tokamak version of GENE [28]. The

equilibrium operator, C[F0σ, F0α], is considered small and therefore neglected, so that

only the test particle operator, C[F1σ, F0α], and the field particle operator, C[F0σ, F1α],

are retained in our linearized model,

C[F1σ] =
∑
α

(
C[F1σ, F0α] + C[F0σ, F1α]

)
. (15)

The test particle operator, given by

C[F1σ, F0α] =
∂

∂v
·
(
Dσα ·

∂

∂v
−Rσα

)
F1σ ≡ CTσα [F1σ] , (16)

is then transformed into gyrocenter coordinates, and the velocity derivatives are taken

with respect to v‖ and µ. The diffusion tensor, Dσα, and dynamical friction, Rσα, are

defined as

Dσα =
γσαnαTα
m2
σmα

1

v3

[
1vΦ1(uα) + 3

vv

v2
Φ2(uα)

]
, Rσα = − γσαnα

mσmα

v

v3
Φ3(uα) . (17)

Here, the variable uα ≡ v/vTα is the normalized velocity, where vth,α =
√

2T0α/mα is

the thermal velocity of species α. Above, the shorthand notations

Φ1(uα) = uα erf ′ (uα) +
(
2u2

α − 1
)

erf (uα) , (18)

Φ2(uα) =
(
1− 2u2

α/3
)

erf (uα)− uα erf ′ (uα) , (19)

Φ3(uα) = Φ1(uα) + 3Φ2 (uα) , (20)

γσα = 2πq2
σq

2
α ln Λ, (21)

have been introduced with the Coulomb logarithm ln Λ and the error function erf(uα) =

(2/
√
π)
´ uα

0
exp

(
−u2

)
du.
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As in GENE, the field particle operator is not evaluated explicitly, but rather replaced

by a model operator to ensure that the collision operator as a whole conserves energy,

particles, and momentum along the background magnetic field. In particular,

C[F0σ, F1α] =
v‖F0σ

mσI5,σα
δṖ‖ασ +

I1,σαx
2
α − I2,σα

I3,σαI1,σα − I2,σαI4,σα
F0σ

mσ
δĖασ, (22)

where the collisional parallel momentum transfer δṖ‖ασ and energy transfer δĖασ are

given by

δṖ‖ασ = −
ˆ
CTασ[F1σ]mαv‖d

3v , δĖασ = −
ˆ
CTασ[F1σ]mαv

2d3v . (23)

The integrals I1,σα, I2,σα, I3,σα, I4,σα, and I5,σα are evaluated as

I1,σα =

ˆ
F0σd3v , I2,σα =

ˆ
F0σx

2
αd3v , (24)

I3σα =

ˆ
v2F0σx

2
αd3v , I4,σα =

ˆ
v2F0σd3v , (25)

I5,σα =

ˆ
v2
‖F0σd3v . (26)

GENE has recently been extended to also feature a Sugama collision operator [43, 45]

which could, in the future, also be used in GENE-3D.

2.4. The gyrokinetic Poisson equation

In order to advance the gyrocenter distribution function in time, the electrostatic

potential fluctuation, φ1, needs to be determined self-consistently. Assuming a quasi-

neutral background, Poisson’s equation can be written as

∇2φ1 ≈ ∇2
⊥φ1 = −4π

∑
σ

qσn1σ(x) , (27)

where the gyrokinetic ordering has been employed to replace the Laplacian with its

perpendicular component. As the perturbed density appearing in Eq. (27) is evaluated

at the particle position, x, instead of the gyrocenter position, X, one must make use

of the pull-back operator [3] in order to express the perturbed density in terms of the

gyrocenter distribution function. The final expression for the perturbed density, obtained

using a first order pull-back operator, becomes

n1σ(x) = π
2B0

mσ

ˆ [
〈F1σ〉(x)− qσF0σ

T0σ

(
φ1(x)− 〈φ̄1〉(x)

)]
dv‖ dµ , (28)
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where the notation

〈F1σ〉(x) =
1

2π

˛
F1σ(x− r(α)) dα (29)

and the double gyroaverage operator

〈φ̄1〉(x) =
1

(2π)2

˛
dα

ˆ
dX δ(X + r(α)− x)

˛
dα′ φ1(X + r(α′)) . (30)

have been introduced. Assuming that the electron Debye length is small compared to

other perpendicular scale lengths in the problem, ∇2
⊥φ1 ≈ 0, the gyrokinetic Poisson

equation can be expressed as∑
σ

q2
σ

mσ

ˆ
F0σ

T0σ

(
φ1(x)− 〈φ̄1〉(x)

)
dv‖dµ =

∑
σ

qσ
mσ

ˆ
〈F1σ〉(x)dv‖dµ , (31)

where the left-hand side represents the so-called polarization density, stemming from the

difference between guiding center and gyrocenter coordinates, while the right-hand side

is usually referred to as the gyrocenter density.

Under certain circumstances, it can be useful to assume that the electrons are mass-

less compared to the ions. In this limit, any parallel electric field fluctuation is almost

instantaneously brought into a force balance with the parallel electron pressure fluc-

tuation, and the "infinitely" large parallel electron heat conductivity prevents thermal

fluctuations within any given flux surface. As a result, one has

n1e

n0e
=

e

T0e
(φ1 − 〈φ1〉FS), (32)

with 〈·〉FS denoting a flux surface average [46]

〈 · 〉FS =
∂

∂V

ˆ

V

· dV ′, (33)

and V being the volume enclosed by that flux surface.

3. Non-axisymmetric toroidal magnetic equilibria

Having just described the nonlinear gyrokinetic equations which underlie the GENE-

3D code, we turn next to the way these equations are adapted to complex 3D magne-

tohydrodynamic equilibria. The chosen approach is based on the notion of field-aligned

coordinates, which has proven extremely efficient for simulations of turbulence in the

core region of fusion plasmas for more than two decades [6].
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3.1. Straight-field-line coordinates

The computational domain of GENE-3D is always based on a three-dimensional ideal

MHD equilibrium with closed nested flux surfaces. One introduces a right-handed cylin-

drical coordinate system (R,Z, φ) to represent the plasma volume and a right-handed

straight-field-line coordinate system (ψ, θ∗, φ) to describe a poloidal plane. Here (R, Z)

indicates the position within a poloidal plane, φ is the geometrical toroidal angle, ψ is

a convenient flux-surface label, and θ∗ is the poloidal PEST angle [47]. An example of

such a geometry for a simple stellarator shape generated by a rotated ellipse is shown,

together with the coordinate system, in Fig. 2.

R

Z

Figure 2: Right-handed cylindrical coordinates (R,Z, φ) and right-handed straight-field-line coordinates

(ψ, θ∗, φ) for the definition of the geometry of a general toroidal magnetohydrodynamic equilibrium.

Magnetic field lines are plotted on a section of the outermost flux surface.

In this coordinate system, the contravariant representation of the background mag-

netic field is given by

B0 =
Φ′tor

2π
(∇ψ ×∇θ∗)− Ψ′

2π
(∇ψ ×∇φ) , (34)

where Φtor and Ψ are, respectively, the toroidal and poloidal flux functions, which are

linked via the safety factor q according to

q(ψ) =
Φ′tor(ψ)

Ψ′(ψ)
. (35)

3.2. Field-aligned coordinates

In order to take advantage of the highly anisotropic character of the turbulent fluc-

tuations, GENE-3D uses a field-aligned coordinate system, (x, y, z), derived from the
11



straight-field-line coordinate system previously introduced. With this approach, the num-

ber of grid points can be reduced by up to several orders of magnitude compared to a

non-aligned grid. The field-aligned coordinates are defined as

x = a ρtor , (36)

y = σBpCy(qθ∗ − φ) , (37)

z = σBpθ
∗. (38)

Here, x is the radial coordinate based on the toroidal flux ρtor =
√

Φtor/Φedge, where

Φedge is the toroidal flux at the last closed flux surface and a =
√

Φedge/πBaxis is an

effective minor radius, with Baxis denoting the magnetic field strength on the magnetic

axis. The y coordinate, often called the binormal coordinate, selects a field line on a given

flux-surface, where the constant Cy = x0/|q0| has been introduced to have y as a length

in contrast to the angle-like (α = qθ∗ − φ)-coordinate, and the subscript ’0’ indicates

that the respective quantities are taken at a reference position x0. Finally, z denotes

the position along a field line and for this reason it is often referred to as the parallel

coordinate. Furthermore, we also adopt the convention that the covariant basis vector

ez is always parallel to the magnetic field, and we have defined σBp as the sign of the

poloidal magnetic field σBp = sgn(Ψ′) = sgn(Φ′tor) sgn(q). The y coordinate is periodic,

while a quasi-periodicity condition applies to fluctuating fields at z= ±π, because field

lines, in general, do not close on themselves after one full parallel turn, as shown in Fig. 3.

The equilibrium magnetic field, Eq. (34), can thus be equivalently expressed as

B0 =
Ψ′

2π
∇ρtor ×∇ [q(ρtor)θ

∗ − φ] = C(x)∇x×∇y , (39)

introducing the contravariant basis vectors

∇x = a∇ρtor , (40)

∇y = σBpCy(q′(x)θ∗∇x+ q(x)∇θ∗ −∇φ) , (41)

∇z = σBp∇θ∗, (42)

and defining

C(x) =
x

|q(x)|
Baxis

Cy
. (43)
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Figure 3: Representation of the (y,z) coordinates on a given flux surface of a simple stellarator. (Top)

The white and black arrows point, respectively, in the z and y direction. The white and black lines

indicate, respectively, locations of constant y and z. The solid yellow line (y = 0, 2πCy) and red line

(z=−π, π) depict the boundary of the domain. (Bottom) Close-up sketch of the shifted boundary.

It is clear from Eq. (39) that B ·∇x = B ·∇y = 0, so that x = const and y = const define

a magnetic field line, and (x, y, z) indeed defines a field-aligned coordinate system.

The metric coefficients gij and the Jacobian J , needed to express the differential

operators appearing in the gyrokinetic equations, are defined according to

gij = ∇ui · ∇uj , (44)

J−1 = (∇x×∇y) · ∇z =
B0 · ∇z
C(x)

, (45)

with i and j taking on the values 1, 2, and 3, and (u1, u2, u3) = (x, y, z). Finally, we also

define the following combinations of the metric coefficients

γ1 =gxxgyy − gxygyx, (46)

γ2 =gxxgyz − gyxgxz, (47)

γ3 =gxygyz − gyygxz, (48)

to simplify the notation in the next sections.

3.3. Non-axisymmetric magnetohydrodynamic equilibria from GVEC

In order to carry out GENE simulations for non-axisymmetric toroidal systems like

stellarators or perturbed tokamaks, a numerical ideal MHD equilibrium needs to be
13



computed beforehand. To this end, we use the newly developed Galerkin Variational

Equilibrium Code (GVEC) [31] to provide GENE-3D with all the necessary geometric

coefficients at each simulation grid point. GVEC is an ideal MHD equilibrium solver

which follows the ideas of the well-established VMEC code [48, 49], where the equilibrium

is found by a constraint minimization of the 3D MHD energy. In VMEC, the radial

grid spacing is uniform in the normalized toroidal flux, which always leads to a higher

resolution at the outer boundary and a lower resolution at the axis. In comparison,

the radial grid spacing in GVEC is in general non-uniform, allowing to adapt resolution

radially. In GVEC, Spline Finite Elements of arbitrary polynomial are used to discretize

the radial direction, which allows for smooth representation of radial derivatives needed

in the computation of the equilibrium quantities, such as metrics and magnetic field. A

spline with a higher polynomial degree (k) has a higher continuity (k− 1), which means

that less radial grid points are needed for a certain accuracy and leading to a faster

convergence of the minimization algorithm in GVEC. In current applications, polynomial

degrees range between 3 and 7, depending on the radial grid resolution. In the W7-X

case considered in the benchmark, we used 50 elements with k = 3.

As in VMEC, the flux surface geometry is represented by Fourier modes [cos(mθ −

nφ), sin(mθ − nφ)]. Here, m and n denote, respectively, the poloidal and toroidal mode

number, where n = j · n0 with an integer j and the number of field periods n0 (e.g.,

n0 = 1 for axisymmetric configurations and n0 = 5 for Wendelstein 7-X). An additional

periodic variable λ(ρtor, θ, φ) is used to distinguish the geometrical poloidal angle θ from

the straight field line angle θ∗ = θ + λ in order to optimize the mode spectrum [50].

Finally, a variational formulation is applied, and the equilibrium is found by minimizing

the total energy

W (R,Z, λ) =

ˆ
V

(
B2

0

2µ0
+

p

γ − 1

)
dV . (49)

Here, µ0 is the magnetic permeability of free space, p is the pressure profile, and γ is

the specific heat ratio, which is an input parameter. Assuming a fixed geometry of the

last closed flux surface (fixed boundary) with a given toroidal flux Φedge, for a prescribed

safety factor and pressure profile, the constraints for the minimization are the unknowns

(R,Z, λ) describing closed nested flux surfaces. The solution to Eq. (49) is obtained

by iteratively applying a preconditioned gradient descent algorithm. GVEC has been
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extensively benchmarked against VMEC for both tokamak and stellarator configurations.

These comparisons will be reported in a future publication.

During the initialization phase of a GENE-3D simulation, the MHD equilibrium is

evaluated at the points in space corresponding to the GENE-3D grid. Here, GVEC

provides the toroidal flux at the last closed flux surface Φedge, the minor radius a, the

poloidal flux derivative Ψ′(x), the number of field periods n0, the radial safety factor

profile q(x), the magnetic field B0(x, y, z), the derivatives of the mapping ∇x, ∇θ, ∇ζ

and ∇ |B0|. From these quantities GENE-3D calculates the geometric factors gij , the

derivatives of the magnetic field in the GENE coordinate system dB/du (u = (x, y, z)),

the Jacobian J(x, y, z), and the curvature terms Kx and Ky, defined in Eq. (64).

4. Numerical implementation

On the basis of the theoretical background (in terms of fundamental equations and

magnetic geometry) described in the last two sections, the present section focuses on

the numerical techniques used to discretize the gyrokinetic equations. Using the method

of lines [51], the distribution functions and the electromagnetic fields are discretized on

a fixed grid, while the time coordinate is left continuous at first. This allows for the

hyperbolic integro-differential system of equations to be reduced to a system of ordi-

nary differential equations which is then integrated in time using a fourth-order explicit

Runge-Kutta (RK4) scheme. In a preparatory step, we will first describe the normalized

gyrokinetic equations, however.

4.1. The normalized gyrokinetic equations

Physical quantities are normalized such that all dimensionless quantities are of order

unity. Therefore, the independent variables x and y are normalized with respect to a

reference gyroradius ρref , while the already dimensionless variable z remains unchanged.

A macroscopic length Lref is used to normalize gradients of equilibrium quantities. Indi-

cating the normalized quantities with a hat, one obtains

x = ρref x̂ , y = ρref ŷ , z = ẑ . (50)
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Furthermore, magnetic fields, temperatures, densities, and masses are normalized with

respect to the reference values,

B0 = Bref B̂0 , T0σ = Tref T̂0σ , n0σ = nref n̂0σ , mσ = mref m̂σ . (51)

In velocity space, however, in order to account for potentially differing temperatures, it

is preferable to chose the normalization to be species dependent. The reference temper-

atures are taken at the reference position x0, usually corresponding to the center of the

simulation domain in the radial direction,

v‖ = cref v̂‖v̂th,σ(x0) , µ =
Tref

Bref
µ̂T̂σ(x0) , (52)

where the thermal velocity of species σ, v̂th,σ(x0), and cref are defined as

v̂th,σ(x0) =

√
2T̂σ(x0)/m̂σ , cref =

√
Tref

mref
. (53)

Time normalization thus becomes

t =
Lref

cref
t̂ . (54)

The electrostatic potential and distribution functions are normalized as

φ0 =
Tref

e
φ̂0 , φ1 =

ρref

Lref

Tref

e
φ̂1 (55)

and

F0σ =
nref

c3ref

n̂0σ(x0)

v̂3
thσ(x0)

F̂0σ , F1σ =
ρref

Lref

nref

c3ref

n̂0σ(x0)

v̂3
thσ(x0)

F̂1σ , (56)

respectively, where e is the (positive) elementary charge with qσ = e q̂σ, and ρref is a

reference gyroradius defined as

ρref =
cref

Ωref
, Ωref =

eBref

mrefc
. (57)

In addition, using the abbreviations n̂p(x) = n0σ(x)/n0σ(x0) and T̂p(x) = T0σ(x)/T0σ(x0)

for the density and temperature profiles, one can express the background local Maxwellian

of species σ as

F̂0σ(x, y, z, v‖, µ) =
n̂pσ(x)

[πT̂pσ(x)]3/2
exp

(
−v̂2
‖ − µ̂B̂0(x, y, z)

T̂pσ(x)

)
, (58)
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where the spatial dependency of profiles and the magnetic field have been explicitly

pointed out. Finally, the geometric coefficients are normalized as

J = Lref Ĵ , C = Bref Ĉ , γ1 = γ̂1 , {γ2, γ3} =
1

Lref
{γ̂2, γ̂3} . (59)

Applying these normalization rules to Eq. (13), one obtains

∂F̂1σ

∂t̂
= VΓ,zΓ̂σ,z + VF1,v‖

∂F̂1σ

∂v̂‖
+ VΓ,xΓ̂σ,x + VΓ,yΓ̂σ,y −

1

Ĉ

(
∂x̂

ˆ̄φ1F̂1σ,y − ∂ŷ ˆ̄φ1F̂1σ,x

)
− 1

Ĉ
∂x̂φ̂0F̂1σ,y + Vφ,y∂ŷ ˆ̄φ1

(60)

with

Γ̂σ,i = ∂îF̂1σ +
q̂σ

T̂0σ

F̂0σ∂î
ˆ̄φ1 . (61)

In order to simplify the notation, we have introduced several prefactors, denoted by V.

The first two terms represent the parallel derivative and trapping term prefactors, given

respectively by

VΓ,z = −v̂Tσ(x0)
Ĉ

ĴB̂0

v̂‖ , VF1,v‖ =
v̂Tσ(x0)

2

Ĉ

ĴB̂0

µ̂∂ẑB̂0 . (62)

The curvature and gradient-B drift terms have been combined, leading to

VΓ,x = − T̂0σ(x0)

q̂σ

µ̂B̂0 + 2v̂2
‖

B̂0

K̂x , VΓ,y = − T̂0σ(x0)

q̂σB̂0

(µ̂B̂0 + 2v̂2
‖)K̂y , (63)

where the gradients of the equilibrium magnetic field are given by

K̂x = − 1

Ĉ

(
∂B̂0

∂ŷ
+
γ̂2

γ̂1

∂B̂0

∂ẑ

)
, K̂y =

1

Ĉ

(
∂B̂0

∂x̂
− γ̂3

γ̂1

∂B̂0

∂ẑ

)
. (64)

The prefactor of the linear drive term is defined as

Vφ,y = − 1

Ĉ

[
ωnσ + ωTσ

(
v̂2
‖ + µ̂B̂0

T̂pσ
− 3

2

)]
F̂0σ , (65)

where the logarithmic temperature and density gradients are given by

ωTσ = −Lref∂x lnT0σ(x) , ωnσ = −Lref∂x lnn0σ(x) . (66)
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Applying the normalizations to the gyrokinetic Poisson equation leads to

∑
σ

q̂2
σ

(
n̂0σ(x)

T̂0σ(x)
−
ˆ
dµ̂′K n̂0σ(x)

T̂0σ(x)
e−µ̂

′
G

)
φ̂1 =

∑
σ

n̂0σ(x0)q̂σπ

ˆ
dv̂‖dµ̂KB̂0(x, y, z)F̂1σ ,

(67)

where we have introduced µ̂′ = µ̂B̂0(x, y, z)/T̂pσ(x) as well as the shorthand notation G

and K for the gyroaverage operations in Eqs. (10) and (29).

4.2. Discretization of the configuration space coordinates

Currently, all three spatial dimensions are discretized on a fixed equidistant grid

using fourth-order centered finite difference schemes to compute derivatives. The global

tokamak version of GENE uses the same approach for the derivatives in the x and z

directions, while the y direction is represented in Fourier space where derivatives are

simple multiplications (accurate to machine precision). Centered difference schemes can

introduce non-physical high-k modes, potentially overshadowing the actual physics in a

simulation. For this reason, numerical hyper-diffusion terms are often added to the right

hand side of the gyrokinetic equation to dampen these unphysical grid-scale modes. A

fourth-order hyper-diffusion term with second-order stencils is currently implemented in

GENE-3D for the x, y, z, and v‖ directions,

H = η
−f(xi−2) + 4f(x(i−1))− 6f(x(i)) + 4f(x(i+2))− f(x(i+2))

16
, (68)

where η is an input parameter for GENE-3D and can be set individually for each direction.

Compared to upwind schemes with intrinsic damping, this approach has the advantage

that the level of damping can be controlled by the user and set to fairly low levels if

desired [52, 53].

Radial boundary conditions

In GENE-3D, two different radial boundary conditions are implemented, periodic and

fixed (Dirichlet) boundaries. Periodic boundaries, i.e., f(x, y, z) = f(x + Lx, y, z) with

f denoting any arbitrary function, allow for benchmarks with radially local codes which

typically employ this boundary treatment (a natural consequence of neglecting radial

variations in the background). However, in order to account for radially dependent
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profiles in global simulations, different types of boundary conditions have to be used.

GENE-3D currently employs a Dirichlet-type fixed boundary approach, assuming the

perturbed distribution function to be zero outside the radial domain.

Binormal boundary conditions

In the binormal direction, the boundary condition simply reflects the physical peri-

odicity in the toroidal angle φ,

f(ρtor, φ, θ
∗) = f(ρtor, φ+ 2π, θ∗) . (69)

In the field-aligned coordinate system employed by GENE-3D, this corresponds to

f(x, y, z) = f(x, y − σBp2πCy, z) . (70)

In many cases, to reduce the computational cost, it is assumed that only an integer

fraction of the full flux surface needs to be treated in a given simulation. This procedure

amounts to thinning out toroidal mode number space, retaining only multiples of a

certain integer quantum number n0. Using the common assumption that the turbulence

properties are to be statistically identical at two locations with the same local magnetic

equilibrium characteristics, one still uses the same kind of boundary condition in the

binormal direction,

f(x, y, z) =f(x, y − σBp
2π

n0
Cy, z) . (71)

For non-axisymmetric devices, n0 is constrained by the field period of the device. E.g.,

for the five-fold symmetric Wendelstein 7-X, one can choose n0 = 5 to cover 1/5 of the

flux surface or n0 = 1 to cover it entirely.

Parallel boundary conditions

In the direction along the magnetic field, the boundary condition follows from poloidal

periodicity,

f(ρtor, φ, θ
∗) = f(ρtor, φ, θ

∗ + 2π) . (72)

Eq. (72), expressed in field-aligned coordinates, leads to the so-called ’twist-and-shift’

boundary condition commonly used in codes based on field-aligned coordinates. In the
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x

y

pey = 1

pey = 0

Figure 4: Visualization of the phase shift of the twist and shift boundary condition. The shifted positions

(red crosses) are calculated from the original grid point positions (black dots). The phase shift in y

direction is dependent on x as the q profile has radial dependence, see Eq. (73). The shifted position can

be on a different core pey than the original grid point. Marked in orange are the grid points that are

used to interpolate the function value at the shifted position. As the grid points can also be on different

cores, a boundary exchange in y is necessary.

real-space representation used in GENE-3D, it reads

f(x, y, z) = f(x, y + 2πCyσBpq(x), z + 2π) . (73)

As the implementation of Eq. (73) in a yz-parallelized system is a bit involved, the algo-

rithm is illustrated in Fig. 4. The shift in the y direction leads to the complication that

due to the domain decomposition, the shifted position might lie in another processor’s

domain. The interpolation is then performed by the processor which covers the domain

of the shifted position. The interpolated value is then communicated back. As described

in Ref. [54], the applied interpolation scheme does not have a significant effect on the

simulation. This is in part due to the fact that no y derivatives are calculated in the

boundary cells in the z-direction. Still, to keep the order of the algorithms consistent,

GENE-3D offers the option to do piecewise cubic Catmull-Rom splines [55] interpola-

tion of fourth order to evaluate Eq. (73) between grid points. In contrast, in the global

tokamak version of GENE, the parallel boundary condition is treated in Fourier space so
20



that no interpolation is required.

4.3. Velocity space discretization and integration

The perturbed distribution functions are assumed to decay relatively quickly towards

larger velocities. Hence, the maximum value of the v‖ grid must be chosen such that all

relevant velocity space dynamics are retained. Dirichlet boundary conditions are then

applied outside the parallel velocity domain. For the magnetic moment µ, boundary

conditions are not necessary for collisionless simulations, as no derivatives with respect

to this coordinate need to be computed. If a collision operator is used in the simulation,

µ derivatives are calculated using a finite volume scheme, while assuming vanishing fluxes

across the outer domain boundaries, see Ref. [56]. An extended Simpson’s rule [57] is

used for the v‖ integration. A Gaussian quadrature scheme with Gauss-Laguerre weights

and knots [58] is used in the µ direction to minimize the number of grid points nw0 in

the discretization of the integration,

∞̂

0

e−µp(µ)dµ =

nw0∑
m=1

wmp(µm) , (74)

with the nodes µm and weights wm of the quadrature rule, and a polynomial p(µ) of

maximum degree 2 · nw0− 1.

4.4. Sources and sinks

Without an explicit heat source, temperature profiles in a global nonlinear simulation

will eventually relax to a sub-critical state where the turbulent drive is strongly decreased

and finally completely suppressed. The same happens for the density profile in simula-

tions with kinetic electrons and non-zero particle flux. Appropriate source terms thus

need to be added to the right hand side of Eq. (60). GENE-3D employs the so-called

gradient driven approach, in which background profiles are assumed to be fixed and a

source term is introduced, preventing the actual profiles to completely relax during a

run. Separate Krook-type sources are used - same as in the other GENE versions - to

inject heat and particles at a rate specified by the user while avoiding, at the same time,

nonphysical injection of parallel momentum, similarly to what discussed in Ref. [59]. In
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particular, one defines a particle source

ŜPσ = −κP
〈F̂0σ(X, |v‖|, µ)〉FS∑

σ〈
´
dvF̂0σ(X, |v‖|, µ)〉FS

∑
σ

〈
ˆ
dv〈F̂1σ(X, |v‖|, µ)〉FS〉FS (75)

and a heat source

ŜKσ = −κH

[
〈F̂1σ(X, |v‖|, µ)〉FS −

〈
´
dv〈F̂1σ(X, |v‖|, µ)〉FS〉FS

〈
´
dv〈F̂0σ(X, |v‖|, µ)〉FS〉FS

〈F̂0σ(X, |v‖|, µ)〉FS

]
,

(76)

where

F̂1σ(X, |v‖|, µ) =
F̂1σ(X, v‖, µ) + F̂1σ(X,−v‖, µ)

2
. (77)

The correction term proportional to 〈
´
...〉FS/〈

´
...〉FS in Eq. (76) is introduced to avoid

an undesired injection of particles, while the conservation of parallel momentum is en-

sured by the symmetrization of the distribution function with respect to v‖. The coeffi-

cients κP and κH are specified by the user.

When Dirichlet boundary conditions are used in the radial direction, the temperature

and density at the ends of the simulation box are pinned to their initial values. This

can lead to unphysical profile variations close to the boundaries, which in turn can give

rise to strong turbulence and numerical instabilities. To avoid these nonphysical effects,

an artificial Krook damping operator is applied to a narrow buffer region at both radial

ends of the simulation domain. This additional damping operator reads

ĤK = −v̂K(x)F̂1σ , (78)

where the function v̂K(x) is typically a fourth-order polynomial inside the buffer region

and zero outside. The maximum value of v̂K(x) is set to be comparable to the maximum

linear growth rate, while the radial width of the buffer is typically 5− 10% of the radial

simulation domain on either side [28].

4.5. Discretization of the nonlinear term

The nonlinear term in Eq. (60) can be written in the form

N̂σ = − 1

Ĉ

(
∂x̂

ˆ̄φ1F̂1σ,y − ∂ŷ ˆ̄φ1F̂1σ,x

)
=

1

Ĉ
{F̂1σ,

ˆ̄φ1}x,y , (79)
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where we have defined the two-dimensional Poisson bracket for given functions F and G

as

{F,G}x,y =
∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x
. (80)

GENE-3D uses an Arakawa scheme [60] to numerically satisfy the following analytical

properties fulfilled by the Poisson brackets:
ˆ
{F,G} dx dy = 0 ,

ˆ
F{F,G} dx dy = 0 ,

ˆ
G{F,G} dx dy = 0 . (81)

The exact form of the nonlinear term as implemented in GENE-3D thus reads

N̂σ =
1

3 Ĉ

[
{F̂1σ,

ˆ̄φ1}x,y + ∂x̂

(
F̂1σ∂ŷ

ˆ̄φ1 − ˆ̄φ1∂yF̂1σ

)
+ ∂ŷ

(
ˆ̄φ1∂x̂F̂1σ − F̂1σ∂x̂

ˆ̄φ1

)]
. (82)

4.6. Discretization of the gyroaverage operators

In order to compute the gyroaverage of function f , which is assumed to be known on

a fixed grid in (x, y, z) space, one needs to evaluate it around the gyroring at positions

[x(X + r), y(X + r), z(X + r)] ≈ [x(X + r), y(X + r), z(X)], having used the gyrokinetic

ordering to neglect z-variations of fluctuating quantities. These positions do not coincide

in general with the (x, y) grid, and interpolations are thus required. Therefore, we adopt

a finite-element representation of f , using basis function with local support in both the

x and y directions,

f(x, y, z) =

nx∑
i

ny∑
j

fij(z) Λij(x, y) , (83)

where Λij(x, y) denotes the basis functions, fij(z) denotes the finite element coefficients,

and nx and ny represent the number of grid points in the x and y directions, respectively.

This approach is an extension of what is done in the global tokamak version of GENE

Ref. [28] where only the x-direction is expressed by a finite-element representation. In

contrast to what is done in GENE-3D, the y-direction in GENE is represented in Fourier

space. We use a third-order Hermite representation to approximate f ,

f(x, y, z) =

nx∑
i

ny∑
j

(
H0,0
ij (x, y) +H1,0

ij (x, y)∂x +H0,1
ij (x, y)∂y +H1,1

ij (x, y)∂xy

)
fij(z) ,

(84)
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where fij(z) = f(xi, yj , z) and the bicubic piecewise polynomials Ha,b are the Hermite

elements

Ha,b(x, y) =

3∑
p=0

3∑
q=0

ha,bpq x
pyq , (85)

satisfying, on the patch [xn, xn+1]× [ym, ym+1], the relation

du

dxu
dv

dyv
Ha,b
ij (xn, ym) = δinδjmδuaδvb , (86)

with the Kronecker symbol δ. The derivatives of f appearing in Eq. (84) are evaluated

using fourth-order centered differences.

The gyroaverage operation can now be expressed as

f̄(X) =

nx∑
i

ny∑
j

fij(z)
1

2π

˛
Λij(x(X + r(α)), y(X + r(α))) dα . (87)

By replacing the i = 1 . . . nx, j = 1 . . . ny indices of the base functions by the flattened

index k = 1 . . . nx×ny and introducing an index for the gyrocenter position n = 1 . . . nx×

ny, we can express Eq. (87) at a given grid point Xn as

f̄n = f̄(Xn) =

nx×ny∑
k

fk
1

2π

˛
Λk(x(Xn + r(α)), y(Xn + r(α))) dα =

nx×ny∑
k

Gnkfk , (88)

where we have introduced a gyroaveraging matrix G with elements

Gnk =
1

2π

˛
Λk(x(Xn + r(α)), y(Xn + r(α))) dα , (89)

such that the vector f̄ = (f̄(X1), f̄(X2), . . . , f̄(Xnxny )) of the gyroaveraged values of f

at all x, y grid points is given in a compact matrix-vector product form as

f̄ = Gf . (90)

Within the representation given in Eq. (86), the gyromatrix can also be written as

G = H0,0 +H1,0Dx +H0,1Dy +H1,1DxDy , (91)

where Dx and Dy represent the derivative matrices and H are the matrices containing

the corresponding Hermite elements.
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In order to calculate the gyrointegrals, we need to evaluate the field-aligned coordinate

transformations x = x(X + r(α)), y = y(X + r(α)) along gyrorings. In GENE-3D, the

linearization of the metric around the guiding center position results in

x ≈ x(X) + r · ∇x = x(X) + ρ
√
gxx cosα , (92)

y ≈ y(X) + r · ∇y = y(X) + ρ (gxy cosα+
√
γ1 sinα)/

√
gxx . (93)

In the last expressions, the gyroradius ρ depends on the magnetic moment µ and species

label σ, and the metric coefficients g depend on the location in position space. Therefore,

we have to compute a set of gyromatrices G(z, µ, σ) for every set of discrete (z, µ, σ)

variables.

In addition to this standard gyroaverage operator, a discretized version of the operator

Kf = 1
2π

¸
f(x − r(α)) dα is needed in the context of the gyrokinetic Poisson equation,

Eq. (67). In GENE-3D, as well as in the other versions of GENE, we approximate it by

the adjoint of the G matrix, Kf = G†f , as derived in [61], resulting in Eq. (67) being

Hermitian, same as in Ref. [62]. Therefore, Poisson’s equation can be written in matrix

form as

P
′′
φ1 =

∑
σ

n̂0σ(x0)q̂σπ

ˆ
dv̂‖dµ̂G†B̂0(x, y, z)F̂1σ , (94)

where

P
′′

=
∑
σ

q̂2
σ

(
n̂0σ(x)

T̂0σ(x)
1−
ˆ
dµ̂′G†

(
n̂0σ(x)

T̂0σ(x)
e−µ̂

′
1

)
G

)
(95)

is the so-called field matrix.

We remark that the gyromatrices and field matrices do not vary during a simulation,

as they depend only on the background profiles and the magnetic geometry. They are

sparse and symmetric, with a broad band and non-zero elements also in the outer diago-

nals due to the periodic boundary condition in y. The level of sparsity depends on ρ and

on the grid spacing in (x, y) space. The sparsity patterns of the gyromatrices and field

matrices are illustrated in Fig. 5 for a W7-X case of resolution k = n = nx×ny = 64×64.

These matrices are computed once during the initialization phase and stored using the

PETSc library [63, 64, 65]. This allows for the usage of the PETSc interfaces for direct

solvers such as SuperLU [66] or MUMPS [67], as well as for the use of iterative solvers
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like GMRES [68] in combination with preconditioners like the Jacobi algorithm. Which

solver is computationally most efficient ultimately depends on the problem size and on

the physical model (e.g., adiabatic or kinetic electrons) used. Iterative solvers parallelize

better than direct solvers and are therefore better suited for an HPC application such as

GENE-3D. However, the performance of iterative solvers critically depends on whether

the preconditioner fits to the matrix at hand. The field matrices of kinetic electron sim-

ulations exhibit a different sparsity pattern than the respective adiabatic electron cases,

due to the sum in Eq. (95).

Figure 5: Illustration of the sparsity pattern of (a) the gyromatrix, Gnk(z, µ, σ), and (b) the field matrix,

P ′′nk(z), for a W7-X case of resolution k = n = nx × ny = 64 × 64 (at a given z,µ,σ grid point). Here,

the fraction of non-zero entries is 1.2% for the gyromatrix and 3.4% for the field matrix.

To summarize the numerical implementation section, an overview of the sub-steps of

a single time step of a GENE-3D simulation is given in Alg. 1.

5. Code verification

Having described the fundamental equations underlying GENE-3D as well as the

numerical methods used to solve them, we now turn to the important topic of code veri-

fication. In the present section, simulation results obtained with GENE-3D are reported

and compared to results from other codes.
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Algorithm 1 Steps in the Runge-Kutta-4 time integration
1: procedure Time integration

2: Solve Eq. (67) for Φ via an interface to PETSc

3: Gyroaverage Φ using third-order Hermite polynomials

4: Carry out x, y, z boundary exchanges of F1 and Φ̄ using MPI communication and

Catmull-Rom splines for the twist-and-shift boundary condition

5: Calculate the linear terms in Eq. (60) using fourth-order centered differences

6: optional: Add hyper-diffusion terms using fourth-order centered differences

7: optional: Add E ×B nonlinearity in Eq. (60) for nonlinear simulations

8: optional: Add sources and buffers described in Sec. 4.4

5.1. Linear ITG modes with adiabatic electrons in Wendelstein 7-X geometry

We first consider a high-mirror configuration of Wendelstein 7-X [69] and compute the

linear growth rates of ion temperature gradient (ITG) modes with adiabatic electrons.

GENE-3D results are compared to published results obtained with the EUTERPE code

[70]. Here, the ion background temperature profile is prescribed as

Ti(x)/Tref = exp
(
κT
(
(x2

0 − x2)− (x2
0 − x2)2) sgn(x2

0 − x2)
))
, (96)

where κT sets the maximum logarithmic temperature gradient and x0 is the position

(taken here as x0 =
√

0.5) at which all reference values are calculated. Electrons are

assumed to have the same temperature profile as the ions, while a flat density profile is

considered for both species. The normalized system size is given by 1/ρ∗ = a/ρi = 362.

The GENE-3D simulations shown here employed 120×384×128×48×10 grid points

in (x, y, z, v||, µ) space, with normalized box lengths (Lx, Lv|| , Lµ) = (145, 3.29, 10.8).

Careful tests were carried out to ensure that the simulations at this numerical resolution

are converged. The linear growth rates, normalized to a/vi where vi =
√
Tref/mi, are

shown for different values of κT in Fig. 6. Good agreement between GENE-3D and

EUTERPE results is found for all values of κT considered here.

5.2. Linear ITG modes with kinetic electrons and TEMs in tokamak geometry

Retaining electrons as a fully gyrokinetic species, we now investigate the behavior of

ITG modes and trapped electron modes (TEMs). As there are no available simulation
27



0 1 2 3 4 5 6
κT

0.0

0.1

0.2

0.3

γ
[v

i
/
a
]

GENE-3D

EUTERPE

Figure 6: Linear benchmark between GENE-3D (blue circles) and EUTERPE (green triangles) for ITG

modes with adiabatic electrons in a W7-X geometry. Depicted are growth rates γ as a function of the

logarithmic temperature gradient κT .

results with kinetic electrons in a three-dimensional equilibrium in the existing literature,

we will consider the case of a simple axisymmetric tokamak geometry. This allows us to

compare GENE-3D to the global tokamak version of GENE in which the y-direction is

discretized via a Fourier expansion [28].

The reference case is the one presented in Ref. [71] where the global tokamak version

of GENE is successfully benchmarked with GKW [72] and ORB5 [73]. We summarize

it here for the sake of completeness. One considers a simple tokamak geometry with

circular, concentric flux-surfaces and a safety factor profile defined as

q(x) = 0.86− 0.16(x/a) + 2.52(x/a)2 . (97)

The temperature profiles for the ions and electrons are taken to be

Ti,e(x)/Tref = exp

[
−κTwT

a

R0
tanh

(
x− x0

wTa

)]
, (98)

where wT is the characteristic profile width and x0 is the gradient peak position. The

same functional form, with κn and wn is used to describe the density profile. In this

context, a and R0 indicate, respectively, the minor and major radius of the tokamak. A

realistic mass ratio between the electrons and the ions is assumed me/mi = 1/1836.

The converged GENE-3D resolutions are 2560 × 8 × 30 × 64 × 32 in (x, y, z, v||, µ)

space, with normalized box lengths (Lx, Lv|| , Lµ) = (80, 3, 9). The x-global GENE pa-

rameters are identical, with the exception of retaining only one "point" (Fourier mode)

in the y direction. The reduced resolution requirements and the smaller field matrices
28



of the global tokamak version of GENE make the simulations computationally cheaper.

Hence, GENE-3D should only be used for axisymmetric geometries to benchmark with

axisymmetric codes.

The results obtained for κT = 6.96, κn = 2.23, wT = wn = 0.3, and x0 = 0.5 for

both species are depicted in Fig. 7 for a machine with ρ∗ = 1/180. Here, we compare

the growth rates and frequencies of the most unstable mode for different toroidal mode

numbers n. We observe the existence of two distinct branches. For low toroidal mode

numbers (n < 35), the modes are characterized by a positive frequency ω, which accord-

ing to GENE-3D conventions corresponds to a poloidal direction of propagation in the

ion diamagnetic drift direction and can therefore be identified as ITG modes. For higher

toroidal mode numbers, a negative frequency branch, propagating in the electron diamag-

netic drift direction, is found and identified as TEMs. An excellent agreement between

GENE-3D and the global tokamak version of GENE is recovered for both branches, for

both frequency and growth rates, as well as on the transition point from the ITG to the

TEM branch. The quantitative deviations of the results between the codes are all less

than 5%.
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Figure 7: Linear benchmark between GENE-3D and the global tokamak version of GENE for ITG

modes with kinetic electrons and TEMs a circular tokamak geometry: (a) Growth rates γ and (b) real

frequencies ωr as a function of the toroidal mode number n.
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5.3. ITG turbulence with adiabatic electrons in tokamak geometry

Since there are no available simulation results for ITG turbulence in a three-dimensional

equilibrium in the existing literature, we again carry out a comparison between GENE-

3D and the global tokamak version of GENE. This also allows for a test of the GVEC

interface of GENE-3D with respect to the Tracer EFIT interface in GENE [28]. Here, we

consider ITG turbulence with adiabatic electrons in an axisymmetric geometry (assum-

ing ρ∗ = 1/232) as visualized in Fig. 8 (a) together with the values of the safety factor

q. The temperature and density profiles are the ones described by Eq. (98), using the

parameters κT = 6.96, κn = 2.23, wT = wn = 0.3, and x0 = 0.5. A Krook-type heat

source with κH = 0.035 is used to maintain the profiles and reach a quasi-stationary

turbulent state. A convergence study is performed for GENE-3D, depicted in Fig. 8 (b).

Here, 120 × 16 × 64 × 20 grid points are used in (x, z, v||, µ) space, with the number of

points in the y-direction varying from 32 to 384. The simulation of the last data point

is run with 240× 384× 32× 80× 32 grid points in (x, y, z, v||, µ) space, which does not

significantly change the volume- and time-averaged heat flux compared to the second-to-

last data point. Here, the heat flux is measured in GyroBohm (GB) units and defined

as

Qesi /QGB =

ˆ
1

2
miv

2f1,i vE1 · ∇x dv , (99)

where f1i is the perturbed part of the ion particle distribution function and QGB =

nref Tref vi (ρi/Lref)
2. (For the tokamak geometry considered here, we take Lref = R0,

while for the W7-X simulations shown below, we choose Lref = a.) Hence, 120×256×16×

64×20 grid points in (x, z, v||, µ) space are the converged resolutions with normalized box

lengths (Lx, Ly, Lv|| , Lµ) = (120, 167, 4, 16). For the global tokamak version of GENE,

the resolutions are taken to be 120×32×16×64×20 grid points in (x, ky, z, v||, µ) space.

Increasing the number of ky modes to 48 does not have an impact on the simulation

results.

Fig. 8 (c) shows the time traces of the volume-averaged (electrostatic) ion heat flux.

The difference in the initial (linear) phase of the simulations stems from the use of

different initial conditions in GENE and GENE-3D. Despite that, the time-averaged

heat flux, computed between t = 200 and t = 1000 (indicated with a straight solid
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line), is essentially the same for both codes: Qesi /QGB = 28.0 ± 2.4 for GENE-3D and

Qesi /QGB = 27.8±2.6 for global GENE. The fluctuation level is computed as one standard

deviation of the time trace in the interval used for averaging.
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Figure 8: (a) Poloidal cut of the tokamak geometry used in the nonlinear benchmark between GENE and

GENE-3D. Color coded is the safety factor q. (b) Convergence study of the volume and time averaged

heat flux for GENE-3D in the y-direction and (c) time trace of the volume averaged heat flux for GENE

and GENE-3D.

Furthermore, contour plots of the electrostatic potential φ in the (x, α) plane are

depicted for GENE and GENE-3D in Fig. 9 (a) and (b); they are practically identical.

Also, the radial profile (c) and the ky spectrum (d) of the heat flux show good agreement.

The comparison can therefore be considered successful.
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Figure 9: Contour plots of the time-averaged electrostatic potential for GENE-3D (a) and GENE (b).

Distribution of heat flux over x (c) and ky (d) for GENE-3D (blue) and GENE (red).
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6. Computational aspects

In the present section, we would like to discuss two computational aspects regard-

ing the present version of the GENE-3D code, namely its parallel performance and the

influence of numerical precision.

6.1. Parallel performance

Compared to the tokamak case, gyrokinetic simulations for stellarators tend to impose

challenging resolution requirements which are associated with high computational cost.

For instance, the nonlinear run with adiabatic electrons for Wendelstein 7-X presented

in Ref. [25] required nx × ny × nz × nv‖ × nµ = 240 × 256 × 128 × 48 × 10 ≈ 4 billion

grid points and about 1.5 million CPU-hours. The time traces of the volume averaged

(electrostatic) ion heat flux are plotted for reference in Fig. 10. Good scaling properties

on massively parallel computers are therefore crucial.
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Figure 10: GENE-3D simulation of ITG turbulence with adiabatic electrons for Wendelstein 7-X. Shown

are the time traces of the volume averaged heat flux in units of QGB .

GENE-3D can be parallelized via domain decomposition over all five phase-space

directions as well as over the species index, similar to the global tokamak version of

GENE [28]. At present, this is done by employing a pure MPI approach. Ghost cells

and boundary exchanges are therefore necessary to calculate the derivatives in Eq. (60).

Using fourth-order derivative schemes two ghost cells need to be exchanged between

processors in the (x, y, z, v‖) direction. Hence, a minimum number of two points per core

is required to keep the MPI communication local.

33



Examples of strong scaling (problem size remains fixed for an increasing number of

processors) and weak scaling (fixed problem size per processor), are shown in Fig. 11.

Both scalings are measured on the MPCDF Cobra cluster, an Intel SkyLake machine

with two sockets and 20 cores per socket, considering the aforementioned nonlinear Wen-

delstein 7-X simulation. Fig. 11 a) shows the strong scaling speedup,

Sp = t5120/tp, (100)

which in our case is defined as the time spent by 5120 processors (t5120) to solve a problem

divided by the time p processors need to solve the same problem (tp). The dashed grey

line indicates the ideal performance Sp = p/5120. Increasing the number of cores by

a factor of 4 (from 5120 to 20480) leads to a performance increase by a factor of 3.1.

Here, for the same number of points in z-direction nz = 128 the number of processors

are nprocs,z = (16, 32, 64).

For the weak scaling, shown in Fig. 11 (b), the efficiency,

ηw = t5120/tN , (101)

is plotted with tN being the time N processors need to simulate a problem N times larger

than the problem solved by 5120 processors in time t5120. Going from 5120 to 20480 cores

the efficiency is ηw = 0.95. Both the resolution nz and the number of MPI ranks nprocs,z

in z-direction are changed from (nz, nprocs,z) = (32, 16) to (nz, nprocs,z) = (128, 64) while

keeping the ratio of two points per processor constant. Considering that a realistic case

was chosen for this study, both scalings can be considered satisfactory.

6.2. Influence of numerical precision

Modern CPUs like the Intel Skylake architecture have vectorization units with a fixed

register size which are addressable, e.g., via the Advanced Vector eXtensions (AVX)-512

instruction set. The choice of numerical precision determines the number of variables that

can be processed simultaneously. Theoretically, using single instead of double precision

can improve single core performance by a factor of two while reducing the memory

requirements by 50%. At the same time, the parallel performance can be increased as

less data is communicated. It is therefore desirable to use the lowest precision possible

which still yields correct results. We have explored the possibility of running GENE-3D
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Figure 11: Strong scaling speedup (a) and weak scaling efficiency (b) of GENE-3D. This parallel per-

formance measurement has been carried out on the MPCDF Cobra Intel SKL machine for a nonlinear

Wendelstein 7-X simulation.

using single instead of double precision (which is the default). As an example, in Fig. 12

we plot the electrostatic heat flux obtained from a single precision nonlinear calculation

(green curve) and the one from a double precision run (blue curve) over time and all

three spatial coordinates. Here, we consider ITG turbulence with adiabatic electrons in

a circular axisymmetric geometry with ρ∗ = 1/180. The temperature and density profiles

are defined as

T (x)/Tref , n(x)/nref =

 cosh
(
x−x0+∆T,n

wT,n

)
cosh

(
x−x0−∆T,n)

wT,n

)
−0.5κT,nwT,na/R0

(102)

with κT = 7.1, κn = 2.2, wT = 0.04, x0 = 0.5, and ∆T = ∆n = 0.3. The safety factor

profile is given by

q(x) = 0.85− 0.01(x/a) + 2.28(x/a)2 − 0.09(x/a)3 + 0.22(x/a)4. (103)

A Krook-type heat source with κH = 0.035 is used to maintain the profiles and reach a

quasi-stationary saturated state.

The simulations are performed with 120×256×16×64×24 grid points in (x, y, z, v||, µ)

space, with normalized box lengths (Lx, Ly, Lv|| , Lµ) = (120, 132, 4, 16). In terms of their

statistics, the two simulations are equivalent, Qessingle = 23.3±5.4 and Qesdouble = 22.4±6.2

(in QGB units). Also the localization in the x and z coordinate as well as the ky-spectrum
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Figure 12: Nonlinear transport of heat for GENE-3D in double precision and in single precision. The

time traces of the volume averaged heat flux (upper left) are equivalent in terms of their statistics. The

profiles of the heat flux over all three coordinates also peak at the same positions.
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are the same. This result leads us to the conclusion that single precision is sufficient in the

present situation. A similar conclusion can be reached considering all the cases we have

examined. Note, however, that these findings are not enough to make a general statement

for all parameter sets. To obtain direct feedback about performance for every simulation,

performance measurements are implemented to test run time, load imbalance, and call

count for each part of GENE-3D. This allows a direct performance comparison between

the two simulations. For single precision, the average time to calculate an entire timestep

takes 65% of the time it takes in double precision. Looking further into the sub-steps of

a timestep, the v‖ integration is reduced to 53%, the PETSc field solver is reduced to

70%, and the right-hand-side computation is reduced to 72% of the runtime in double

precision. Therefore, for the investigated case, the overall performance is increased by a

factor of about 1.5, while the physical results are not affected in any significant fashion.

This finding provides motivation for an ongoing project looking more systematically into

lossy data compression techniques as a means to further improve the performance of

GENE-3D.

7. Summary and conclusions

In the present paper, we provided a detailed description of GENE-3D, a newly devel-

oped global stellarator version of the well established gyrokinetic turbulence code GENE.

The underlying gyrokinetic equations were discussed, along with the use of field-aligned

coordinates in non-axisymmetric magnetohydrodynamic equilibria. On this basis, we

described the numerical schemes which are used in GENE-3D to solve these equations

on a structured grid in five-dimensional phase space (plus time). In contrast to all other

members of the GENE family of codes, GENE-3D is formulated completely in real space.

This makes it easier to account for the fact that the geometric coefficients depend on all

three spatial coordinates.

A significant effort was undertaken to verify that the code is solving the underlying

equations correctly. We successfully compared the properties of linear microinstabilities

with adiabatic electrons (in Wendelstein 7-X geometry) and kinetic electrons (in tokamak

geometry) as obtained by GENE-3D and other codes. Furthermore, we demonstrated

that GENE-3D is able to reproduce the correct ion heat flux level from ITG turbulence
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with adiabatic electrons in tokamak geometry.

In addition, two computational aspects of the GENE-3D code were discussed, namely

its parallel performance and the influence of numerical precision. For this purpose, we

carried out nonlinear gyrokinetic simulations for Wendelstein 7-X. On the Cobra cluster,

an Intel SkyLake system at MPCDF, increasing the number of cores by a factor of 4

(from 5120 to 20480), the parallel efficiency is about 95% (80%) in terms of weak (strong)

scaling. While significant further improvements can be expected in the future, the present

implementation already allows for the efficient use of large-scale supercomputers. In this

context, we were also able to show that GENE-3D simulations in single precision do not

deviate in any significant way from the ones in double precision, suggesting that it may

be possible to improve the single core performance by up to a factor of 2, while reducing

the memory footprint by a similar amount.

Physics-driven applications of GENE-3D to various stellarators and perturbed toka-

maks are presently underway and will be published elsewhere (see, e.g., Ref. [25]).

Acknowledgments

We greatfully acknowledge useful discussions and interactions with P. Xanthopoulos,

J. Lobsien, J. Riemann, M. Cole, and the PETSc team. Numerical simulations were

performed at the MARCONI-Fusion supercomputer at CINECA, Italy, and at Cobra

HPC system at the Max Planck Computing and Data Facility (MPCDF), Germany.

A. B. N. and T. G. furthermore acknowledge partial support by the EUROfusion -

Theory and Advanced Simulation Coordination (E-TASC). This work has been carried

out within the framework of the EUROfusion Consortium and has received funding from

the Euratom research and training programme 2014-2018 and 2019-2020 under grant

agreement No 633053. The views and opinions expressed herein do not necessarily reflect

those of the European Commission.

38



References

[1] E. Doyle, W. Houlberg, Y. Kamada et al., Nucl. Fusion 47 (2007) S18. doi:10.1088/0029-5515/47/

6/s02.

[2] E. A. Frieman and L. Chen, Phys. Fluids 25 (1982) 502. doi:10.1063/1.863762.

[3] A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79 (2007) 421. doi:10.1103/RevModPhys.79.421.

[4] J. A. Krommes, Annu. Rev. Fluid Mech. 44 (2012) 175. doi:10.1146/

annurev-fluid-120710-101223.

[5] X. Garbet, Y. Idomura, L. Villard et al., Nucl. Fusion 50 (2010) 043002. doi:10.1088/0029-5515/

50/4/043002.

[6] M. A. Beer, S. C. Cowley and G. W. Hammett, Phys. Plasmas 2 (1995) 2687. doi:10.1063/1.871232.

[7] F. Jenko and A. Kendl, New J. Phys. 4 (2002) 35. doi:10.1088/1367-2630/4/1/335.

[8] F. Jenko and A. Kendl, Phys. Plasmas 9 (2002) 4103. doi:10.1063/1.1507591.

[9] T.-H. Watanabe and H. Sugama, Nuclear Fusion 46 (2005) 24. doi:10.1088/0029-5515/46/1/003.

[10] P. Xanthopoulos and F. Jenko, Phys. Plasmas 14 (2007) 042501. doi:10.1063/1.2714328.

[11] P. Xanthopoulos, F. Merz, T. Görler et al., Phys. Rev. Lett. 99 (2007) 035002. doi:10.1103/

PhysRevLett.99.035002.

[12] T.-H. Watanabe, H. Sugama and S. Ferrando-Margalet, Nucl. Fusion 47 (2007) 1383. doi:10.1088/

0029-5515/47/9/041.

[13] F. Jenko, D. Told, P. Xanthopoulos et al., Phys. Plasmas 16 (2009) 055901. doi:10.1063/1.3089603.

[14] H. E. Mynick, N. Pomphrey and P. Xanthopoulos, Phys. Rev. Lett. 105 (2010) 095004. doi:10.

1103/PhysRevLett.105.095004.

[15] M. Nunami, T.-H. Watanabe and H. Sugama, Plasma and Fusion Research 5 (2010) 016. doi:10.

1585/pfr.5.016.

[16] J. A. Baumgaertel, E. A. Belli, W. Dorland et al., Physics of Plasmas 18 (2011) 122301. doi:10.

1063/1.3662064.

[17] J. A. Baumgaertel, G. W. Hammett, D. R. Mikkelsen et al., Physics of Plasmas 19 (2012) 122306.

doi:10.1063/1.4771587.

[18] G. Jost, T. M. Tran, W. A. Cooper et al., Phys. Plasmas 8 (2001) 3321. doi:10.1063/1.1374585.

[19] L. Villard, S. Allfrey, A. Bottino et al., Nuclear Fusion 44 (2003) 172. doi:10.1088/0029-5515/44/

1/019.

[20] V. Kornilov, R. Kleiber, R. Hatzky et al., Phys. Plasmas 11 (2004) 3196. doi:10.1063/1.1737393.

[21] V. Kornilov, R. Kleiber and R. Hatzky, Nucl. Fusion 45 (2005) 238. doi:10.1088/0029-5515/45/4/

003.

[22] D. Spong, I. Holod, Y. Todo et al., Nuclear Fusion 57 (2017) 086018. doi:10.1088/1741-4326/

aa7601.

[23] S. Matsuoka, Y. Idomura and S. Satake, Physics of Plasmas 25 (2018) 022510. doi:10.1063/1.

5010071.

[24] T. Klinger, T. Andreeva, S. Bozhenkov et al., Nucl. Fusion 59 (2019) 112004. doi:10.1088/

1741-4326/ab03a7.

39

http://dx.doi.org/10.1088/0029-5515/47/6/s02
http://dx.doi.org/10.1088/0029-5515/47/6/s02
http://dx.doi.org/10.1063/1.863762
http://dx.doi.org/10.1103/RevModPhys.79.421
http://dx.doi.org/10.1146/annurev-fluid-120710-101223
http://dx.doi.org/10.1146/annurev-fluid-120710-101223
http://dx.doi.org/10.1088/0029-5515/50/4/043002
http://dx.doi.org/10.1088/0029-5515/50/4/043002
http://dx.doi.org/10.1063/1.871232
http://dx.doi.org/10.1088/1367-2630/4/1/335
http://dx.doi.org/10.1063/1.1507591
http://dx.doi.org/10.1088/0029-5515/46/1/003
http://dx.doi.org/10.1063/1.2714328
http://dx.doi.org/10.1103/PhysRevLett.99.035002
http://dx.doi.org/10.1103/PhysRevLett.99.035002
http://dx.doi.org/10.1088/0029-5515/47/9/041
http://dx.doi.org/10.1088/0029-5515/47/9/041
http://dx.doi.org/10.1063/1.3089603
http://dx.doi.org/10.1103/PhysRevLett.105.095004
http://dx.doi.org/10.1103/PhysRevLett.105.095004
http://dx.doi.org/10.1585/pfr.5.016
http://dx.doi.org/10.1585/pfr.5.016
http://dx.doi.org/10.1063/1.3662064
http://dx.doi.org/10.1063/1.3662064
http://dx.doi.org/10.1063/1.4771587
http://dx.doi.org/10.1063/1.1374585
http://dx.doi.org/10.1088/0029-5515/44/1/019
http://dx.doi.org/10.1088/0029-5515/44/1/019
http://dx.doi.org/10.1063/1.1737393
http://dx.doi.org/10.1088/0029-5515/45/4/003
http://dx.doi.org/10.1088/0029-5515/45/4/003
http://dx.doi.org/10.1088/1741-4326/aa7601
http://dx.doi.org/10.1088/1741-4326/aa7601
http://dx.doi.org/10.1063/1.5010071
http://dx.doi.org/10.1063/1.5010071
http://dx.doi.org/10.1088/1741-4326/ab03a7
http://dx.doi.org/10.1088/1741-4326/ab03a7


[25] J.-F. Lobsien, M. Drevlak, F. Jenko et al., Nuclear Fusion 60 (2020) 046012. doi:10.1088/

1741-4326/ab7211.

[26] F. Jenko, W. Dorland, M. Kotschenreuther et al., Phys. Plasmas 7 (2000) 1904. doi:10.1063/1.

874014.

[27] F. Jenko and the GENE development team, The GENE code, 2019. http://genecode.org.

[28] T. Görler, X. Lapillonne, S. Brunner et al., J. Comput. Phys. 230 (2011) 7053 . doi:10.1016/j.jcp.

2011.05.034.

[29] P. Xanthopoulos, H. E. Mynick, P. Helander et al., Phys. Rev. Lett. 113 (2014) 155001. doi:10.

1103/PhysRevLett.113.155001.

[30] P. Xanthopoulos, G. G. Plunk, A. Zocco et al., Phys. Rev. X 6 (2016) 021033. doi:10.1103/

PhysRevX.6.021033.

[31] F. Hindenlang and O. Maj and E. Strumberger and M. Rampp and E. Sonnendrücker, GVEC: A

newly developed 3D ideal MHD Galerkin Variational Equilibrium Code, Presentation given in ’Si-

mons Collaboration on Hidden Symmetries and Fusion Energy’, 2019. https://hiddensymmetries.

princeton.edu/meetings/simons-hour-video-talks.

[32] N. Tronko and C. Chandre, J. Plasma Phys. 84 (2018) 925840301. doi:10.1017/S0022377818000430.

[33] N. Tronko, A. Bottino, T. Görler et al., Phys. Plasmas 24 (2017) 056115. doi:10.1063/1.4982689.

[34] A. J. Brizard, Phys. Plasmas 24 (2017) 042115. doi:10.1063/1.4981217.

[35] P. Helander and A. N. Simakov, Phys. Rev. Lett. 101 (2008) 145003. doi:10.1103/PhysRevLett.

101.145003.

[36] M. Oberparleiter, F. Jenko, D. Told et al., Phys. Plasmas 23 (2016) 042509. doi:10.1063/1.4947200.

[37] F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48 (1976) 239. doi:10.1103/RevModPhys.48.239.

[38] S. P. Hirshman and D. J. Sigmar, The Physics of Fluids 19 (1976) 1532. doi:10.1063/1.861356.

[39] I. G. Abel, M. Barnes, S. C. Cowley et al., Physics of Plasmas 15 (2008) 122509. doi:10.1063/1.

3046067.

[40] H. Sugama, T.-H. Watanabe and M. Nunami, Physics of Plasmas 16 (2009) 112503. doi:10.1063/

1.3257907.

[41] B. Li and D. R. Ernst, Phys. Rev. Lett. 106 (2011) 195002. doi:10.1103/PhysRevLett.106.195002.

[42] J. Madsen, Phys. Rev. E 87 (2013) 011101. doi:10.1103/PhysRevE.87.011101.

[43] P. Crandall, D. Jarema, H. Doerk et al., Accepted for publication by Computer Physics Communi-

cations (2020).

[44] L. D. Landau, Physi. Z. der Sowjet. 10 (1936).

[45] P. C. Crandall, Collisional and Electromagnetic Physics in Gyrokinetic Models, Ph.D. thesis, Uni-

versity of California, Los Angeles (UCLA), 2019.

[46] W. D’haeseleer, W. Hitchon, J. Callen et al., Flux Coordinates and Magnetic Field Structure, A

Guide to a Fundamental Tool of Plasma Theory, Springer-Verlag, New York, 1991.

[47] M. Li, B. N. Breizman and L. Zheng, J. Comput. Phys. 326 (2016) 334 . doi:10.1016/j.jcp.2016.

09.004.

[48] S. P. Hirshman and J. C. Whitson, Phys. Fluids 26 (1983) 3553. doi:10.1063/1.864116.

40

http://dx.doi.org/10.1088/1741-4326/ab7211
http://dx.doi.org/10.1088/1741-4326/ab7211
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/10.1016/j.jcp.2011.05.034
http://dx.doi.org/10.1016/j.jcp.2011.05.034
http://dx.doi.org/10.1103/PhysRevLett.113.155001
http://dx.doi.org/10.1103/PhysRevLett.113.155001
http://dx.doi.org/10.1103/PhysRevX.6.021033
http://dx.doi.org/10.1103/PhysRevX.6.021033
https://hiddensymmetries.princeton.edu/meetings/simons-hour-video-talks
https://hiddensymmetries.princeton.edu/meetings/simons-hour-video-talks
http://dx.doi.org/10.1017/S0022377818000430
http://dx.doi.org/10.1063/1.4982689
http://dx.doi.org/10.1063/1.4981217
http://dx.doi.org/10.1103/PhysRevLett.101.145003
http://dx.doi.org/10.1103/PhysRevLett.101.145003
http://dx.doi.org/10.1063/1.4947200
http://dx.doi.org/10.1103/RevModPhys.48.239
http://dx.doi.org/10.1063/1.861356
http://dx.doi.org/10.1063/1.3046067
http://dx.doi.org/10.1063/1.3046067
http://dx.doi.org/10.1063/1.3257907
http://dx.doi.org/10.1063/1.3257907
http://dx.doi.org/10.1103/PhysRevLett.106.195002
http://dx.doi.org/10.1103/PhysRevE.87.011101
http://dx.doi.org/10.1016/j.jcp.2016.09.004
http://dx.doi.org/10.1016/j.jcp.2016.09.004
http://dx.doi.org/10.1063/1.864116


[49] S. Hirshman and O. Betancourt, J. Comput. Phys. 96 (1991) 99 . doi:10.1016/0021-9991(91)

90267-O.

[50] S. P. Hirshman and H. K. Meier, Phys. Fluids 28 (1985) 1387. doi:10.1063/1.864972.

[51] W. E. Schiesser, The numerical method of lines: integration of partial differential equations, Aca-

demic Press, San Diego, CA, 1991. URL: http://cds.cern.ch/record/231009.

[52] M. J. Pueschel, Electromagnetic Effects in Gyrokinetic Simulations of Plasma Turbulence, Ph.D.

thesis, Westfälische Wilhelms-Universität Münster, 2009.

[53] M. Pueschel, T. Dannert and F. Jenko, Comput. Phys. Commun. 181 (2010) 1428 . doi:10.1016/

j.cpc.2010.04.010.

[54] B. Scott, Physics of Plasmas 8 (2001) 447. doi:10.1063/1.1335832.

[55] E. Catmull and R. Rom, in: Computer Aided Geometric Design, Academic Press, 1974, pp. 317 –

326. doi:10.1016/B978-0-12-079050-0.50020-5.

[56] F. Merz, Gyrokinetic simulation of multimode plasma turbulence, Ph.D. thesis, Westfälische

Wilhelms-Universität Münster, 2008.

[57] W. H. Press, Science 248 (1990) 234. https://ui.adsabs.harvard.edu/abs/1990Sci...248..234P.

[58] A. Stegun and M. Abramowitz, Appl. Math. Ser 55 (1965). http://people.math.sfu.ca/~cbm/

aands/.

[59] B. F. McMillan, S. Jolliet, T. M. Tran et al., Phys. Plasmas 15 (2008) 052308. doi:10.1063/1.

2921792.

[60] A. Arakawa, J. Comput. Phys. 1 (1966) 119 . doi:10.1016/0021-9991(66)90015-5.

[61] D. Told, Gyrokinetic microturbulecne in transport barriers, Ph.D. thesis, Universität Ulm, 2012.

[62] A. Mishchenko, A. Könies and R. Hatzky, Physics of Plasmas 12 (2005) 062305. doi:10.1063/1.

1925587.

[63] S. Balay, W. D. Gropp, L. C. McInnes et al., in: E. Arge, A. M. Bruaset and H. P. Langtangen

(Eds.), Modern Software Tools in Scientific Computing, Birkhauser Press, 1997, pp. 163–202.

[64] S. Balay, S. Abhyankar, M. F. Adams et al., PETSc Users Manual, Technical Report ANL-95/11 -

Revision 3.10, Argonne National Laboratory, 2018.

[65] S. Balay, S. Abhyankar, M. F. Adams et al., PETScWeb page, 2019. http://www.mcs.anl.gov/petsc.

[66] X. S. Li, ACM Trans. Math. Software 31 (2005) 302.

[67] P. R. Amestoy, I. S. Duff, J. Koster et al., SIAM J. Matrix Anal. Appl. 23 (2001) 15.

[68] Y. Saad and M. Schultz, SIAM J. Sci. Comput. 7 (1986) 856. doi:10.1137/0907058.

[69] J. Geiger, C. D. Beidler, Y. Feng et al., Plasma Phys. Control. Fusion 57 (2014) 014004. doi:10.

1088/0741-3335/57/1/014004.

[70] P. Helander, T. Bird, F. Jenko et al., Nucl. Fusion 55 (2015) 053030. doi:10.1088/0029-5515/55/

5/053030.

[71] T. Görler, N. Tronko, W. A. Hornsby et al., Phys. Plasmas 23 (2016) 072503. doi:10.1063/1.

4954915.

[72] A. Peeters, Y. Camenen, F. Casson et al., Computer Physics Communications 180 (2009) 2650 .

doi:https://doi.org/10.1016/j.cpc.2009.07.001, 40 YEARS OF CPC: A celebratory issue fo-

41

http://dx.doi.org/10.1016/0021-9991(91)90267-O
http://dx.doi.org/10.1016/0021-9991(91)90267-O
http://dx.doi.org/10.1063/1.864972
http://cds.cern.ch/record/231009
http://dx.doi.org/10.1016/j.cpc.2010.04.010
http://dx.doi.org/10.1016/j.cpc.2010.04.010
http://dx.doi.org/10.1063/1.1335832
http://dx.doi.org/10.1016/B978-0-12-079050-0.50020-5
https://ui.adsabs.harvard.edu/abs/1990Sci...248..234P
http://people.math.sfu.ca/~cbm/aands/
http://people.math.sfu.ca/~cbm/aands/
http://dx.doi.org/10.1063/1.2921792
http://dx.doi.org/10.1063/1.2921792
http://dx.doi.org/10.1016/0021-9991(66)90015-5
http://dx.doi.org/10.1063/1.1925587
http://dx.doi.org/10.1063/1.1925587
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1088/0741-3335/57/1/014004
http://dx.doi.org/10.1088/0741-3335/57/1/014004
http://dx.doi.org/10.1088/0029-5515/55/5/053030
http://dx.doi.org/10.1088/0029-5515/55/5/053030
http://dx.doi.org/10.1063/1.4954915
http://dx.doi.org/10.1063/1.4954915
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2009.07.001


cused on quality software for high performance, grid and novel computing architectures.

[73] S. Jolliet, A. Bottino, P. Angelino et al., Computer Physics Communications 177 (2007) 409 .

doi:https://doi.org/10.1016/j.cpc.2007.04.006.

42

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2007.04.006

	Introduction
	The gyrokinetic equations
	The gyrokinetic ordering
	The gyrokinetic Vlasov equation
	The collision operator
	The gyrokinetic Poisson equation

	Non-axisymmetric toroidal magnetic equilibria
	Straight-field-line coordinates
	Field-aligned coordinates
	Non-axisymmetric magnetohydrodynamic equilibria from GVEC

	Numerical implementation
	The normalized gyrokinetic equations
	Discretization of the configuration space coordinates
	Velocity space discretization and integration
	Sources and sinks
	Discretization of the nonlinear term
	Discretization of the gyroaverage operators

	Code verification
	Linear ITG modes with adiabatic electrons in Wendelstein 7-X geometry
	Linear ITG modes with kinetic electrons and TEMs in tokamak geometry
	ITG turbulence with adiabatic electrons in tokamak geometry

	Computational aspects
	Parallel performance
	Influence of numerical precision

	Summary and conclusions
	References

