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EXTREMAL PRIMES FOR ELLIPTIC CURVES WITHOUT COMPLEX

MULTIPLICATION

C. DAVID, A. GAFNI, A. MALIK, N. PRABHU, AND C. TURNAGE-BUTTERBAUGH

Abstract. Fix an elliptic curve E over Q. An extremal prime for E is a prime p of good reduction
such that the number of rational points on E modulo p is maximal or minimal in relation to the Hasse
bound, i.e. ap(E) = ±

[

2
√
p
]

. Assuming that all the symmetric power L-functions associated to E have
analytic continuation for all s ∈ C, satisfy the expected functional equation and the Generalized Riemann
Hypothesis, we provide upper bounds for the number of extremal primes when E is a curve without complex
multiplication. In order to obtain this bound, we use explicit equidistribution for the Sato-Tate measure
as in the work of Rouse and Thorner [RT17], and refine certain intermediate estimates taking advantage of
the fact that extremal primes are less probable than primes where ap(E) is fixed because of the Sato-Tate
distribution.

1. Introduction

Let E denote an elliptic curve over Q. For a prime p of good reduction, E reduces to an elliptic curve over
the finite field Fp, and we denote by ap(E) the trace of the Frobenius automorphism acting on the points of

E over Fp. Then ap(E) = p+ 1−#E(Fp), and |ap(E)| ≤ 2
√
p (the Hasse bound). The following conjecture

for the distribution of the normalized traces ap(E)/2
√
p in [−1, 1] was formulated independently by Sato

and Tate.

Theorem 1.1 (Sato-Tate conjecture). Let E be an elliptic curve without complex multiplication over Q. Let
α, β ∈ R with 0 ≤ α ≤ β ≤ 1. Then, as x→ ∞,

1

π(x)
#

{

p ≤ x :
ap(E)

2
√
p

∈ (α, β)

}

∼ 2

π

∫ β

α

√

1− t2 dt.

If E has at least one prime of multiplicative reduction, the Sato-Tate conjecture was proven by Taylor
[Tay08], in collaboration with Clozel, Harris and Shepherd-Barron [CHT08, HSBT10].

We study in this paper a refinement of the Sato-Tate conjecture concerning the distribution of the primes
p which fall at the extremes of this distribution, i.e. the primes p such that ap(E) = ±[2

√
p], where for

any real number y, [y] denotes the integer part of y. Then #E(Fp) is maximal when ap(E) = −[2
√
p] and

minimal when ap(E) = [2
√
p].

Extremal primes were first studied by James et al. [JTT+16] who conjectured (as refined by James and
Pollack [JP17]) that, as x→ ∞,

# {p ≤ x : ap(E) = [2
√
p]}

∼























8

3π

x1/4

log x
, if E does not have complex multiplication,

2

3π

x3/4

log x
, if E has complex multiplication.

(1.1)

By symmetry, an analogous conjecture has been stated for extremal primes with ap(E) = −[2
√
p]. It is

enlightening to compare this conjecture with another refinement of the Sato-Tate conjecture, namely the
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Lang-Trotter conjecture. For any fixed value h ∈ Z, the Lang-Trotter conjecture [LT76] predicts that

πE,h(x) = # {p ≤ x : ap(E) = h} ∼ CE,h
x1/2

log x
(1.2)

as x→ ∞, where CE,h is a specific constant 1. Comparing (1.1) and (1.2), we notice that for non-CM curves,
there are expected to be fewer extremal primes than primes with a fixed value of ap(E), since the extremal
primes are at the edge of the Sato-Tate distribution of Theorem 1.1, where the measure is small. On the
other hand, for CM curves, an excess of extremal primes is predicted, since in this case, the measure for the
distribution of ap(E)/2

√
p in [α, β] ⊆ [−1, 1] \ {0} is given by

µCM ([α, β]) =
1

2π

∫ β

α

dt√
1− t2

.

The asymptotic (1.1) for CM curves was proven by James and Pollack [JP17]. In a subsequent paper by
Agwu et al.[AHJ+18] the authors obtained asymptotics for a refined question for CM curves, namely the
primes where ap(E) falls within a small range of the end of the Hasse interval. In this article, we focus on
the case of non-CM curves.

Like the Lang-Trotter conjecture, the asymptotic (1.1) for non-CM curves seems to be out of reach with
current techniques. An asymptotic was proven to hold on average for non-CM elliptic curves E/Q in the
Ph.D. thesis of Giberson [Gib17] (see also [GJ18]). However, no non-trivial upper bounds are known for a
single curve E/Q. The goal of this paper is to obtain such upper bounds.

Let NE denote the conductor of the elliptic curve E, and define

(1.3) L(s, E) =
∏

p∤NE

(

1− αp(E)

ps

)−1(

1− αp(E)

ps

)−1
∏

p|NE

(

1− ap(E)

ps

)−1

where we have normalized the L-function so that αp(E), αp(E) satisfy

#E(Fp) = p+ 1−√
p(αp(E) + αp(E)) for p ∤ NE .

For any integer n ≥ 0, the symmetric power L-functions of E are given by

L(s, Symn(E)) =
∏

p|NE

Lp(s, Sym
n(E))

∏

p∤NE

n
∏

j=0

(

1− αp(E)jαp(E)n−j

ps

)−1

,

where the Euler factors Lp(s, Sym
n(E)) at the bad primes are described in Appendix A.3.

The aforementioned proof of the Sato-Tate conjecture was obtained by proving that if E has at least one
prime of multiplicative reduction, then the functions L(s, Symn(E)) have meromorphic continuation to the
whole complex plane, satisfy the functional equation A.1, and are analytic and non-zero for Re(s) ≥ 1. (See
[Tay08, Theorem B], with the difference there that the L-functions are not normalized.) To get an effective
version of the Sato-Tate conjecture in [RT17], the authors need to assume each L(s, Symn(E)) has analytic
continuation to the whole complex plane, and satisfies the Generalized Riemann Hypothesis (GRH). For
convenience, we include the function L(s, Sym0(E)) = ζ(s), which is analytic except for a simple pole at
s = 1.

Under the same hypotheses, one can also obtain upper bounds for the Lang-Trotter conjecture. This was
carried out by K. Murty [Mur85] and extended by Bucur and Kedlaya to arbitrary motives [BK16]. These
results were improved recently by Rouse and Thorner [RT17], who proved (under the same hypotheses as in
Theorem 1.2, stated below) that

πE,h(x) ≪E,h x
3/4(log x)−1/2.

In our case, taking advantage of the fact that extremal primes fall at the edge of the Sato-Tate interval, we
refine the work of Rouse and Thorner to obtain a better upper bound for the number of extremal primes.

1If h = 0, then it is additionally assumed that E does not have complex multiplication. The case h = 0 and E with complex
multiplication was treated in [Deu41].
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Theorem 1.2. Let E be a non-CM elliptic curve over Q. Assume that for any n ≥ 0, the L-functions
L(s, Symn(E)) have analytic continuation to the entire complex plane (except for a simple pole at s = 1
when n = 0), satisfy the functional equation (A.1) and the Generalized Riemann Hypothesis. Then

#{x < p ≤ 2x : ap(E) = [2
√
p]} ≪E x1/2.

Acknowledgements This work was initiated at the WIN4 workshop held at the Banff International Re-
search Station in August 2017, and the authors thank the organizers of the workshop and BIRS. The au-
thors also thank Dimitris Koukoulopoulos, Jesse Thorner, and A. Raghuram for helpful discussions related
to this paper, and Igor Shparlinski for important comments on a previous version of this paper. Turnage-
Butterbaugh thanks the Max Planck Institute for Mathematics for their hospitality and support during July
2018. The authors would also like to thank the anonymous referee for useful comments which have improved
the exposition of the paper.

2. Explicit equidistiribution for the Sato-Tate measure

In this section, we prove upper bounds on Fourier coefficients of certain trigonometric polynomials which
approximate characteristic functions of intervals. By considering short intervals at the edge of the Sato-Tate
distribution, we obtain upper bounds that are stronger than what one obtains for general intervals.

We first briefly review classical results on explicit equidistribution. We refer the reader to [Mon94,
Chapter 1] for a detailed exposition of trigonometric polynomials approximating the characteristic function
on subintervals of [0, 1] with respect to the uniform measure, and for the notations in this section. By the
change of variable t = cos θ, we can view the Sato-Tate measure for non-CM curves, stated in Theorem 1.1,
as the measure on [0, π] given by

µST ([α, β]) =
2

π

∫ β

α

sin2 θ dθ,

for [α, β] ⊆ [0, π]. To approximate the characteristic function of intervals in [0, π] with respect to the Sato-
Tate measure, one uses the Chebyshev polynomials of the second kind, denoted by Un and defined by the
recurrence relation

U0(x) = 1

U1(x) = 2x

Un(x) = 2xUn−1(x) − Un−2(x).

We remark that the polynomials form an orthonormal basis with respect to the Sato-Tate measure on
[0, π]. We refer to [RT17] for the proof of the following lemma, which follows directly from explicit uniform
equidistribution.

Lemma 2.1 ([RT17, Lemma 1.3]). Let I = [α, β] ⊆ [0, π], and let M be a positive integer. There exist
trigonometric polynomials

F±
I,M (θ) =

M
∑

n=0

F̂±
I,M (n)Un(cos θ)

that satisfy the following properties.

• For 0 ≤ θ ≤ π, we have

F−
I,M (θ) ≤ χI(θ) ≤ F+

I,M (θ).

• We have

|F̂±
I,M (0)− µST (I)| ≤

4

M + 1
.

• For 1 ≤ n ≤M , we have

|F̂±
I,M (n)| ≤ 4

(

1

M + 1
+min

{

β − α

2π
,
1

πn

})

.
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The above lemma is valid for any interval [α, β] ⊆ [0, π]. In our case, however, we are interested in
counting at the edge of the Sato-Tate interval, where the measure is very small. More precisely, we will
consider intervals where t = cos θ is close to 1, i.e. where θ is close to 0. In this way, we obtain the following
sharper estimate for the Fourier coefficients F̂+

I,M (n), which will be key inputs in the proof of Theorem 1.2.

Proposition 2.2. Assume the setting and notation of Lemma 2.1. If I = [0, 1
M ] ⊆ [0, π], then for 0 ≤ n ≤

M ,

F̂+
I,M (n) ≪ 1

M2
.

Proof. Since the Un are an orthonormal basis, for 0 ≤ n ≤M we have

F̂+
I,M (n) =

∫ π

0

F+
I,M (θ)Un(cos θ) sin

2 θ dθ

=

∫ π

0

χI(θ)Un(cos θ) sin
2 θ dθ +

∫ π

0

(

F+
I,M (θ)− χI(θ)

)

Un(cos θ) sin
2 θ dθ,(2.1)

The first integral of (2.1) is easily bounded by using the fact that

Un(cos θ) =
sin ((n+ 1)θ)

sin θ
,

yielding
∫ π

0

χI(θ) Un(cos θ) sin
2 θ dθ =

∫ 1/M

0

sin ((n+ 1)θ) sin θ dθ ≪ 1

M2
.

For the second integral of (2.1), we must bound the distance between the approximation of length M and
χI(θ). We recall the definition of F+

I,M (θ). For any J = [0, β] ⊆ [0, 1], it is straightfoward to see that

χJ(x) = β + s(x− β) + s(−x),
where s(x) denotes the saw-tooth function

s(x) =

{

{x} − 1/2 if x 6∈ Z

0 if x ∈ Z.

Next, recall that the Beurling polynomial, BM (x), is defined by

BM (x) = VM (x) +
1

2(M + 1)
∆M+1(x),

where ∆M (x) is the Fejer kernel given by

∆M (x) =
1

M

(

sinπMx

sinπx

)2

,

and VM (x) is the Vaaler polynomial given by

VM (x) =
1

M + 1

M
∑

k=1

(

k

M + 1
− 1

2

)

∆M+1

(

x− k

M + 1

)

+
1

2π(M + 1)
sin(2π(M + 1)x)− 1

2π
∆M+1(x) sin 2πx.

We set

S+
J,M (x) = β +BM (x − β) +BM (−x).

When I = [0, 1/M ], setting the interval J = [0, 1/(2πM)] ⊆ [0, 1/2], we have that

F+
I,M (θ) = S+

J,M

(

θ

2π

)

+ S+
J,M

(

− θ

2π

)

.
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With the change of variable x = θ/2π and β = 1/(2πM), we find

F+
I,M (θ) − χI(θ) = S+

J,M (x) + S+
J,M (−x)− χJ(x)− χJ (−x)

= BM (x− β)− s(x− β) +BM (−x)− s(−x)
+BM (−x− β)− s(−x− β) +BM (x)− s(x).

The second integral of (2.1) then writes as

2π

∫ 1/2

−1/2

(BM (x) − s(x)) Un(cos 2πx) sin2 (2πx) dx;

+ 2π

∫ 1/2

−1/2

(BM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx.

We now compute the second integral in the above expression, since upon taking β = 0 we will recover the
first integral. From the definition of the polynomial BM , we have

∫ 1/2

−1/2

(BM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx

=

∫ 1/2

−1/2

(VM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx(2.2)

+
1

2(M + 1)

∫ 1/2

−1/2

∆M+1(x − β) Un(cos 2πx) sin2 (2πx) dx.(2.3)

To estimate (2.2), we use the bound (for |x| ≤ 1/2)

VM (x− β)− s(x− β) ≪ min

(

1,
1

M3|x− β|3
)

≪







1 if |x− β| < 1/M

(M |x− β|)−3 if 1/M ≤ |x− β| ≤ 1/2,

and find, for β = 1/(2πM) ≪ 1/M , that
∫ 1/2

−1/2

(VM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx

≪
∫ β+1/M

β−1/M

|sin ((n+ 1)2πx) sin (2πx)| dx

+
1

M3

(

∫ 1/2

β+1/M

+

∫ β−1/M

−1/2

)

|x− β|−3 |sin ((n+ 1)2πx) sin (2πx)| dx

≪
∫ β+1/M

0

x dx+
1

M3

∫ 1/2

β+1/M

x

(x− β)3
dx

≪ 1

M2
+

1

M3

∫ 1/2

β+1/M

(

1

(x− β)2
+

β

(x− β)3

)

dx

≪ 1

M2
.

It remains to show that the expression in (2.3) is also ≪ 1/M2. First note that we may write

(2.4) Un(cos(2πx)) =
sin((n+ 1)2πx)

sin(2πx)
.

Moreover, the Fejer kernel may alternatively be expressed as
5



∆M (x) =
1

M

M−1
∑

k=0

Dk(x),

where Dk(x) is the k-th order Dirichlet kernel that has a closed form expression given by

Dk(x) = 1 + 2

k
∑

j=1

cos(2πjx).

Thus, we may express ∆M+1(x) as

(2.5) ∆M+1(x) =
1

M + 1

M
∑

k=0



1 + 2

k
∑

j=1

cos(2πjx)



 .

From (2.4), (2.5), and a trigonometric sum-difference formula, we have

(M + 1)

∫ 1/2

−1/2

∆M+1(x− β) Un(cos 2πx) sin2 (2πx) dx

= (M + 1)

1/2
∫

−1/2

∆M+1(x− β) sin((n+ 1)2πx) sin(2πx) dx

=
1

2

1/2
∫

−1/2



(M + 1) + 2

M
∑

k=1

k
∑

j=1

cos(2πj(x− β))



 (cos(2πnx) − cos(2π(n+ 2)x)) dx

=

M
∑

k=1

k
∑

j=1

∫ 1/2

−1/2

cos(2πj(x − β))
(

cos(2πnx)− cos(2π(n+ 2)x)
)

dx

=
M
∑

k=1

k
∑

j=1

∫ 1/2

−1/2

cos(2πj(x − β)) cos(2πnx) dx(2.6)

−
M
∑

k=1

k
∑

j=1

∫ 1/2

−1/2

cos(2πj(x− β)) cos(2π(n+ 2)x)
)

dx.(2.7)

Using trigonometric identities, we can rewrite the sum in (2.6) as

M
∑

k=1

k
∑

j=1

∫ 1/2

−1/2

(cos(2πjβ) cos(2πjx) + sin(2πjβ) sin(2πjx)) cos(2πnx) dx.(2.8)

Recall that
∫ 1/2

−1/2

cos(mπx) cos(nπx) dx =

{

1
2 if m = n

0 otherwise,

and that for any m,n ∈ Z,
∫ 1/2

−1/2

cos(mπx) sin(nπx) dx = 0.

Therefore, the only term that survives in the inner sum over j in (2.8) is the term j = n. This gives

M
∑

k=1

k
∑

j=1

∫ 1/2

−1/2

cos(2πj(x− β)) cos(2πnx) dx =
M − n+ 1

2
cos(2πnβ),

and a similar calculation gives that the sum in (2.7) is

M
∑

k=1

k
∑

j=1

∫ 1/2

−1/2

cos(2πj(x − β)) cos(2π(n+ 2)x) dx =
M − (n+ 2) + 1

2
cos(2π(n+ 2)β)

6



if 1 ≤ n ≤M − 2 and equal to 0 if n =M − 1,M . Thus, for 1 ≤ n ≤M − 2,

(M + 1)

∫ 1/2

−1/2

∆M+1(x− β) Un(cos 2πx) sin2 (2πx) dx

=
M − n+ 1

2
cos(2πnβ)− M − (n+ 2) + 1

2
cos(2π(n+ 2)β)

= (M − n+ 1) sin(2π(n+ 1)β) sin(2πβ) + cos(2π(n+ 2)β).(2.9)

while for n =M − 1,M we have

(M + 1)

∫ 1/2

−1/2

∆M+1(x− β) Un(cos 2πx) sin2 (2πx) dx

=
M − n+ 1

2
cos(2πnβ).(2.10)

Dividing by 2(M +1)2, the integral in (2.3) is ≪ 1/M2 for β = 1/(2πM). Setting β = 0 in (2.9) and (2.10),
we find that for non-negative integers n,M with M ≥ 1,

1/2
∫

−1/2

(

sin((M + 1)πx)

sin(πx)

)2

Un(cos 2πx) sin
2(2πx)dx =

{

1 if 0 ≤ n < M
1
2 if n =M .

We have thus shown that for β = 1/(2πM),

∫ 1/2

−1/2

(BM (x − β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx≪ 1

M2
,

and using β = 0 in the above formulas, we have

∫ 1/2

−1/2

(BM (x) − s(x)) Un(cos 2πx) sin2 (2πx) dx≪ 1

M2
.

This completes the proof of the Proposition.
�

Remark: The results of Proposition 2.2 also hold for the coefficients F̂−
I,M (n), following appropriate minor

changes, but this is not needed for our application.

3. Proof of Theorem 1.2

We adapt the arguments of [RT17] to prove Theorem 1.2, using the stronger bound on the size of the
Fourier coefficients computed in Proposition 2.2. To estimate the prime counting function

#{x ≤ p < 2x : ap(E) = [2
√
p]},

we first perform the change of variable ap(E) = 2
√
p cos θp(E). Let Iε be an interval of the form [0, ε] ⊆

[0, π/2] and I ′ε = [cos(ε), 1] is such that

cos θp(E) ∈ I ′ε ⇐⇒ θp(E) ∈ Iε.

If ε = ε(x) is such that

(3.1) cos ε ≤ 1− x−1/2,

then using x ≤ p < 2x, we have

cos ε ≤ 1− 1

x1/2
< 1− 1

2
√
p
< 1− {2√p}

2
√
p

< 1.

7



Using this, we obtain the upper bound

#{x ≤ p < 2x : ap(E) = [2
√
p]} = #

{

x ≤ p < 2x :
ap(E)

2
√
p

= 1− {2√p}
2
√
p

}

≤ #{x ≤ p < 2x : cos θp(E) ∈ I ′ε}
= #{x ≤ p < 2x : θp(E) ∈ Iε}
=

∑

x≤p<2x

χIε(θp(E)),

where for any interval I, χI is the characteristic function of the interval.
Let ε = 1/M so that Iε = [0, 1/M ], where M is chosen later. Using the first property in Lemma 2.1, we

have

∑

x≤p<2x

χIε(θp) ≤
M
∑

n=0

F̂+
Iε,M

(n)
∑

x≤p<2x

Un(cos θp(E))

≤
M
∑

n=0

|F̂+
Iε,M

(n)|

∣

∣

∣

∣

∣

∣

∑

x≤p<2x

Un(cos θp(E))

∣

∣

∣

∣

∣

∣

.

(3.2)

To estimate the quantity
∑

x≤p<2x

Un(cos θp(E)), as in [RT17], we get sharper estimates by weighting the

contribution from primes using a test function which is a pointwise upper bound for the characteristic
function on [x, 2x]. Let

(3.3) g(y) =

{

exp
(

4
3 + 1

(y− 1
2 )(y−

5
2 )

)

if 1
2 < y < 5

2 ,

0 otherwise

and gx(y) = g(y/x). Using the bound 1 ≤ log p
log x for all x ≤ p < 2x, this allows us to write

(3.4)

∣

∣

∣

∣

∣

∣

∑

x≤p<2x

Un(cos θp(E))

∣

∣

∣

∣

∣

∣

≤ 1

log x

∣

∣

∣

∣

∣

∑

p

Un(cos θp(E))gx(p) log p

∣

∣

∣

∣

∣

.

We next use a result of [RT17] stated in the following form.

Proposition 3.1 ([RT17, Proposition 3.5]). For each n ≥ 0, assume that the L-function L(s, Symn(E)) is
entire (with the exception of a simple pole at s = 1 when n = 0), satisfies the functional equation (A.1) and
the Generalized Riemann Hypothesis. Then, we have

(3.5)
∑

p

Un(cos θp(E))gx(p) log p ≪E δn,0x+
√
xn logn

where δn,0 = 1 if n = 0 and 0 otherwise.

Remark. Proposition 3.5 of [RT17] has the additional hypothesis that NE is square-free. We describe how
to remove this hypothesis in Appendix A.

Using (3.4) and (3.5) in (3.2) we now have

∑

x≤p<2x

χIε(θp(E)) ≪ 1

log x

M
∑

n=0

|F̂+
Iε,M

(n)|
(

δn,0x+
√
xn logn

)

.

We now use Proposition 2.2 to bound the Fourier coefficients F̂+
Iε,M

(n). Doing so, the right hand side of the
above equation is

≪ 1

M2 log x

(

x+
√
x

M
∑

n=1

n logn

)

≪ x

M2 log x
+
x1/2 logM

log x
.

8



Letting M =

⌈

x1/4

(log x)1/2

⌉

, we see that (3.1) is satisfied, and we have

# {x ≤ p < 2x : ap(E) = [2
√
p]} ≤

∑

x≤p<2x

χIε(θp(E)) ≪ x1/2,

which completes the proof of Theorem 1.2.

Appendix A.

A.1. Proof of Proposition 3.1. We now extend the proof of Proposition 3.5 of [RT17] to all non-CM
elliptic curves over Q, without assuming that NE is square-free, i.e. that the bad primes are primes of
multiplicative reduction. This necessitates a bound on the conductor of Symn(E), and computing the local
factors at the bad primes of all reduction types. We summarize in sections A.2 and A.3 the work of Martin
and Watkins [MW06] which gives us these estimates.

Let NE,n be the conductor of Symn(E). Notice that in this notation, NE,1 = NE (and NE,0 = 1). It is
conjectured that the L(s, Symn(E)) satisfy the functional equation

(A.1) Λ(s, Symn(E)) = εn Λ(1− s, Symn(E)),

where the root number εn ∈ C has absolute value 1, and the completed L-function is

Λ(s, Symn(E)) = N
s/2
E,nγ(s, Sym

n(E))L(s, Symn(E)),

with the gamma factor

γ(s, Symn(E)) =



































(

21−sπ−s
)(n+1)/2

(n+1)/2
∏

j=1

Γ (s+ (j − 1/2)(n− 1)) if n is odd

π−(s+n2)/2Γ((s+ n2)/2)
(

21−sπ−s
)n/2

n/2
∏

j=1

Γ (s+ j(n− 1)) if n is even.

In the above, n2 = n/2 mod 2.
As in [RT17], define the numbers ΛSymn(E)(j) by

−L
′

L
(s, Symn(E)) =

∞
∑

j=1

ΛSymn(E)(j)

js
, Re(s) > 1.

For primes p not dividing NE , and m ≥ 1, it is a straightforward computation to show that

(A.2) ΛSymn(E)(p
m) = Un(cos(mθp(E))) log p.

Also, ΛSymn(E)(j) is zero when j is not power of a prime. Thus,

∑

p

Un(cos θp(E))gx(p) log p =
∞
∑

j=1

ΛSymn(E)(j)gx(j)−
∑

j≥1
j=pm,m≥2
or j=p, p|NE

ΛSymn(E)(j)gx(j)

+
∑

p|NE

Un(cos θp(E))gx(p) log p.

We now show that for any integer j, we have

ΛSymn(E)(j) ≪ (n+ 1)Λ(j),

where Λ(j) is the usual von Mangoldt function. If j = pm and p ∤ NE , the result is clear by (A.2). Suppose
now that j = pm, for p | NE and m ≥ 1. Using the formulas (A.6), (A.7) and (A.8) which give the Euler
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products at the bad primes of −L′

L (s, Symn(E)) for multiplicative, potentially multiplicative and potentially
good reduction, the result follows easily. Thus, we have

∑

j≥1
j=pm,m≥2
or j=p, p|NE

ΛSymn(E)(j)gx(j)−
∑

p∤NE

Un(cos θp(E))gx(p) log p

≪ (n+ 1)















∑

x/2<pm<5x/2
m≥2
p∤NE

log p+
∑

x/2≤pm<5x/2
p|NE

log p+
∑

p|NE

log p















≪ (n+ 1)









∑

x/2<pm<5x/2
m≥2

log p+ logNE









≪E n
√
x.(A.3)

Then, as in [RT17], we have to estimate
∞
∑

j=1

ΛSymn(E)(j) gx(j).

This is done by first writing an explicit formula for the non-smoothed sum

ψSymn(E)(x) =
∑

j≤x

ΛSymn(E)(j),

and evaluating the residues at the poles, coming from the zeroes of L(s, Symn(E)) in the critical strips. In all
those estimates, the authors use the fact that NE,n = Nn

E , which leads to the bound log(NE,n) ≤ n logNE .
From (A.5) of section A.2, it follows that without any hypothesis on the reduction type of E at the bad
primes, we have

logNE,n ≪ n logNE ,

where the implied constant is absolute. The argument of [RT17, Section 8] becomes
∞
∑

j=1

ΛSymn(E)(j)gx(j) = δn,0x

∫ ∞

0

g(t) dt+O
(√
x (n logn+ logNE,n)

)

≪E δn,0x+
√
xn log(n),(A.4)

where we recall that g is defined by (3.3).
Comparing (A.4) and (A.3), we complete the proof of Proposition 3.1 without assumption on NE .

A.2. The conductors NE,n. We now summarize the results concerning the conductors NE,n from [MW06,
Section 3]. For each prime p | N , fix ℓ 6= p, and let Tℓ(E) denote the Tate module at ℓ. Let Hℓ(E) =
Hom(Tℓ(E) ⊗ Qℓ,Qℓ) and Ip ≤ Gal(Qp/Qp) be the local inertia group at p. Define ǫn(Ip) to be the co-
dimension of the subspace of Symn(Hℓ(E)) fixed by Ip. Then, we have that

NE,n =
∏

p|NE

pǫn(Ip)+δn(p),

where δn(p) is the wild part of the conductor. If p is a prime of multiplicative reduction, then ǫn(Ip) = n
and δn(p) = 0 for all n, and then NE,n = Nn

E when NE is square-free as assumed in [RT17, Conjecture 1.1
(a)].

For the other cases, we first remark that the wild conductor δn(p) = 0 when p ≥ 5 for all reduction types.
For p a prime of potentially multiplicative reduction, we have that ǫn(Ip) = n+1 if n is odd, and ǫn(Ip) = n
if n is even. The wild conductors δn(p) are always 0, except for the case p = 2 and n odd, where we have
δn(2) =

n+1
2 δ1(2).

For p a prime of potentially good reduction, the value of ǫn(p) depends on the inertia group of the local
extension Gp = Gal(Qp(Eℓ)/Qp), and the congruence of n modulo 12. The values of ǫn(p) in all cases that
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arise are given in Table 1 of [MW06], and we always have 0 ≤ ǫn(p) ≤ n+1. The wild conductors δn(2) and
δn(3) are given in Tables 2 and 3 of [MW06], and we have that δn(2) ≤ 2(n+ 1) and δn(3) ≤ (n+ 1)/2.

We then have the bound

NE,n ≤ 26(n+1)3(n+1)/2
∏

p|NE

p(n+1) ≪E N6n
E .(A.5)

We also remark that the computation of the conductor NE,n in [MW06] is the idea presented in [Rou07,
Section 5] applied to the special case of elliptic curves.

A.3. The local factors at the bad primes. Next, we summarize the results concerning Euler factors
at primes of bad reduction from [MW06, Section 3]. Since we are using the normalized L-function L(s, E)
defined by (1.3), and Martin and Watkins are using the non-normalized L-function, we adjust their result
accordingly using the fact that

L(s, Symn(E)) = Lnon-norm(s+ n/2, Symn(E)).

Let Lp(s, Sym
n(E)) be the Euler factors at the bad primes p of L(s, Symn(E)).

If p is a prime of multiplicative reduction or potentially multiplicative reduction, then

Lp(s, Sym
n(E)) =

(

1− ap,n
ps+n/2

)−1

,

where ap,n ∈ {0,±1}, and then

(A.6)

∞
∑

m=1

ΛSymn(E)(p
m)

pms
=

∞
∑

m=1

log p

psm
amp,n
pnm/2

.

In the case where p is a prime with potentially good reduction, there are 2 cases depending if the local
decomposition group Gp is abelian or not. When Gp is abelian then the local inertia group is cyclic of order
d, where d = 2, 3, 4 or 6, and

Lp(s, Sym
n(E)) =

∏

0≤k≤n

d|(2k−n)

(

1−
βp(E)n−kβp(E)k

ps+n/2

)−1

,

where βp(E) is obtained by counting points on a pr-th quadratic twist of E (which is non-singular) where r

depends on the p-valuation of the coefficients of E. It follows that |βp(E)| = p1/2. Then,

(A.7)

∞
∑

m=1

ΛSymn(E)(p
m)

pms
=

∞
∑

m=1

log p

psm
1

pnm/2

∑

0≤k≤n
d|(2k−n)

(

βp(E)n−kβp(E)k
)m

.

On the other hand, when Gp is non-abelian, we have

Lp(s, Sym
n(E)) =

(

1− (±1)(−p)n/2
ps+n/2

)−(n+1−ǫn(Ip))

and

(A.8)
∞
∑

m=1

ΛSymn(E)(p
m)

pms
=

∞
∑

m=1

(±1)m(−1)mn/2 log p

psm
(n+ 1− ǫn(Ip)) .
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