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It has become increasingly clear that the neurons in the cerebral cortex are not randomly 
interconnected. This wiring specificity can result from synapse formation strategies that 
interconnect neurons depending on their activity or genetically defined identity. Here we found 
that in addition to such synapse formation strategies, the structural composition of the neuropil 
provides a third prominent source by which wiring specificity can emerge in cortical networks. 
This structurally determined wiring specificity reflects the packing density, diversity and 
similarity of the neurons’ dendritic and axonal processes. The higher these three factors, the more 
recurrent the networks’ topology. Conversely, lower density, diversity and similarity yield 
feedforward networks. These basic principles predict connectivity patterns from subcellular to 
network scales that are remarkably consistent with empirical observations from a rich body of 
literature. Thus, cortical network architectures reflect the specific morphological properties of 
their constituents to a much larger degree than previously thought. 
 

Introduction 
Neuronal networks are implemented in the brain via a plethora of molecular mechanisms, which form 
synaptic connections between the neurons’ long and branched dendrites and axons (1-5). Axo-dendritic 
proximity is hence necessary for the formation of synapses and constrains which neurons could in 
principle be connected to one another – and where along their neuronal processes these connections 
could occur. Yet it is unclear, whether and to what degree the highly diverse morphological properties of 
neurons can impact the architecture of the networks they form (6). For the past decades, the common 
strategy for investigating the impact of neuronal structure on network architecture has been to test the 
validity of ‘Peters’ Rule’ (7). According to this longstanding hypothesis, axons form synaptic connections 
randomly wherever they get in close proximity to a dendrite (8). Proximity would hence not only be 
necessary, but sufficient to account for connectivity. Consequently, Peters’ Rule can be simply restated 
as “proximity predicts connectivity”. If this were true, the morphological properties of neurons would 
directly determine the architecture of neuronal networks, independent of the particular molecular 
mechanisms that form synapses. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2020.11.13.381087doi: bioRxiv preprint 

mailto:marcel.oberlaender@caesar.de
https://doi.org/10.1101/2020.11.13.381087


2 

Tests of Peters’ Rule have consistently failed to support it (9-13). At subcellular scales, dense 
reconstructions showed that dendritic spines, for example in mouse somatosensory cortex, are in close 
apposition to ten axonal branches, of which on average only one establishes a synapse (12). Moreover, 
a subset of these axonal branches formed synaptic clusters by connecting to several close-by spines 
along the same dendrite (see also (13)). At cellular scales, sparse reconstructions showed that axo-
dendritic proximity is insufficient to account for the patterns of synaptic connections (14), or for differences 
in connection probabilities that reflect the neurons’ cell types (11). Because they falsify Peters’ Rule 
directly, such observations are considered to reflect wiring principles that are independent of neuronal 
structure. Thus, the absence of synaptic connections between close-by dendrites and axons, and the 
occurrence of synaptic clusters between them, are commonly interpreted as the result of synapse 
formation strategies that interconnected these neurons based on their cellular identity, cell type or activity 
(12).  
Interpreted as further evidence for this conclusion are observations which showed that neurons form 
particular network motifs – for example feedforward loops – that occur more (or less) frequently than 
expected for randomly connected networks (15, 16). Theoretically, such nonrandom topological 
properties could very well arise from simple sets of wiring rules (4, 5) or via learning (17), and therefore 
be independent of the morphological properties of neurons. However, even if neurons were 
interconnected randomly by axo-dendritic proximity, the resulting networks would also display complex 
connectivity patterns (18, 19) and generally nonrandom topologies (19, 20). Furthermore, recent work 
showed that morphological properties – such as dendrite polarity – can represent a defining source for 
nonrandom occurrences of network motifs (21). These observations indicate that falsifying Peters’ Rule 
may be insufficient to unambiguously conclude whether empirically observed wiring specificity reflects 
morphological properties of the neurons, a particular synapse formation strategy, or combinations 
thereof. Thus, conclusive answers to the questions – Which principles link neuronal structure to network 
architecture, and how can these principles be disentangled from those of synapse formation strategies? 
– remain presently unknown.   
Here, we quantitatively address these questions by introducing a statistical modelling approach that can 
derive how neuronal networks would appear if synapse formation strategies that introduce wiring 
specificity were absent. We apply this approach to a dense model of the vibrissal related part of the rat 
primary somatosensory cortex (i.e., barrel cortex; a link to the model and the underlying anatomical data 
is provided in the Materials and Methods). We demonstrate that the model provides realistic and robust 
estimates for the numbers of axonal and dendritic branches within any subvolume of this brain area, for 
the synaptic structures that they represent, and for the diversity of their respective cellular and cell type 
origins. The model revealed that axo-dendritic proximity can in general not predict connectivity, because 
the number of overlapping branch pairs exceeds the number of synaptic structures by two orders of 
magnitude. However, beyond Peters’ Rule, we found three factors of the neuronal structure that translate 
into nonrandom pairwise and higher-order connectivity patterns. Because of the mismatch between 
synaptic structures and branch pairs, the packing density and morphological diversity of neuronal 
processes affect how sparsely and heterogeneously a network is interconnected. Similarities in projection 
patterns lead to correlated connectivity. The combination of these three structurally determined factors 
defines a network’s specific nonrandom topology. Tissue with high packing density and cellular diversity 
thereby yields recurrent network architectures. Low density and diversity yield feedforward architectures. 
These basic principles predict cell type-specific connectivity patterns, as well as occurrences of synaptic 
clusters and network motifs that are in remarkable agreement with the available empirical data. 
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Figure 1. Concept for testing the impact of neuronal structure on cortical network architecture. 
(A) Schematic illustration: We divide dense reconstructions of the neuropil into subvolumes, count the 
number of pre- and postsynaptic structures along axons and dendrites, and generate different network 
models which can account for them. Here, each of the three axonal boutons (blue) could be connected 
to one of the nine spines from one of four different neurons (green, red, pink, purple), resulting in 504 
different network configurations (Fig. S1A). (B) The resulting statistical ensemble of connectomes allows 
us to calculate how likely each of such network configurations would appear in the absence of synapse 
formation strategies that result in wiring specificity (e.g. molecular recognition and activity dependence). 
(C) Dense model of the structural composition for the rat barrel cortex, in which neurons are represented 
by in vivo labeled axon and dendrite morphologies, including distributions of pre- (i.e., boutons) and 
postsynaptic structures (e.g. spines). Inset illustrating how boutons were quantified along axons is 
adapted from (19). (D) Path lengths of neuronal processes and the number of synaptic structures along 
them (e.g. boutons) for all excitatory (EXC) and inhibitory (INH) neurons in the model, and thalamocortical 
(TC) axons from the ventral posterior medial nucleus (VPM). (E) Matrix representation of the statistical 
ensemble of connectomes for the volume that represents the 24 major facial whiskers (i.e., A1-E4, α-δ). 
Connection probabilities reflect the fraction of networks in which the respective neurons are connected. 
(F) Zoom-in to the barrel column representing the C2 whisker. The matrix is sorted by soma depth and 
cell type: VPM (only presynaptic), INH and EXC (subdivided into pyramidal neurons in layers 2-4 (L2PY, 
L3PY, L4PY), star pyramids (L4sp), spiny stellates (L4ss), intratelencephalic (L5IT), pyramidal tract 
(L5PT), corticocortical (L6CC), corticothalamic (L6CT) and inverted (L6INV) neurons). (G) Axo-dendritic 
overlap between the three example neurons from panel C/F (here at 50 µm resolution). Arrows denote 
the likelihoods that e.g. the axon of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖 is connected by at least one synapse to the dendrites of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑗𝑗 
within one of their overlap volumes (i.e., in 23% of the structurally possible networks). 
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Results 

We had previously introduced a computational framework (19) which can transform dense 
reconstructions of the neuropil into a set of all structurally possible networks, and determine the 
likelihoods of each of those networks for a given selection of mathematically formulated wiring rules (Fig. 
1A). Analogous to statistical mechanics (22), we refer to these rule-based probability distributions of 
neuronal networks as ‘statistical ensembles of connectomes’. Comparing statistical ensembles of 
connectomes that reflect different wiring rules thereby allows exploring the impact of different synapse 
formation strategies on neuronal network architecture. Moreover, the framework allows exploration of 
how the neuronal structure itself could impact network architecture (Fig. 1B). This strategy is illustrated 
in Figure 1A, where a schematized subvolume comprises three boutons along one axonal branch and 
nine spines along the dendritic branches from four different excitatory neurons. When each of these 
boutons is assigned to one of the spines in its vicinity, the particular structural composition of this 
subvolume alone gives rise to 9! (9 − 3)! = 504⁄  possible networks that differ in how the five neurons 
from which these branches originate are connected to one another (Fig. S1A). Here we calculate how 
likely each of such structurally possible networks would occur, when synapse formation strategies that 
result in wiring specificity are neglected (e.g. molecular recognition and activity dependence). For this, 
we assume that all presynaptic boutons are equally likely to connect independently to any of the 
postsynaptic structures (e.g. spines) that are present within the same subvolume (Fig. S1B). Statistical 
ensembles of connectomes based on these wiring rules hence provide the likelihoods for how neuronal 
networks could appear if they were solely due to the underlying structural composition of the neuropil. 
Here we apply this strategy to investigate how neuronal structure impacts cortical network architecture. 
For this, we had previously reverse engineered the structural composition of the neuropil for the volume 
of rat barrel cortex that represents the 24 major facial whiskers (reviewed in (23)). This dense model of 
the spatial distributions of all neurons, and their dendrites and axons – including the distributions of pre- 
and postsynaptic structures along these neuronal processes (Fig. 1C), is based on quantitative 
anatomical data that we had systematically collected during the past two decades for the rat barrel cortex 
and the primary thalamus of the whisker system (i.e., the ventral posterior medial nucleus (VPM)). All 
anatomical data originated from rats of the same strain, sacrificed at similar time points following the 
critical periods of neuron morphology development. The model comprises a cortical volume of 6.8 mm3 
(24), contains 477,551 excitatory and 69,788 inhibitory neurons, and is innervated by 6,225 neurons from 
VPM thalamus (25). These neurons give rise to 25.6 km of axonal and dendritic processes within the 
barrel cortex, which represent more than 5.5 billion pre- and postsynaptic structures, respectively (Fig. 
1D). By applying our computational framework (Fig. S1C), we derived all structurally possible networks 
for this dense model of the rat barrel cortex, calculated how likely these networks are to appear in the 
absence of synapse formation strategies that introduce wiring specificity (Fig. 1E), and analyzed the 
resulting statistical ensemble of connectomes with respect to the neurons’ cell types and locations (Fig. 
1F). Thus, our statistical modeling approach provides quantitative predictions for how neuronal structure 
impacts wiring between arbitrarily grouped neurons across the rat barrel cortex, as well as for where 
along their dendrites and axons connections could occur (Fig. 1G). 
 
The model provides realistic estimates for the structural composition of the rat barrel cortex 
To what degree our reverse engineering approach can provide realistic estimates for the structural 
composition of the neuropil remained so far unclear. This information is however crucial for judging the 
validity of the derived statistical ensembles of connectomes. Consistent with early estimates (26), the 
barrel cortex model predicts that 3.3 km of axons and 0.5 km of dendrites are compressed into each cubic 
millimeter of cortical tissue (Fig. 2A). Such high packing densities represent a major challenge for dense 
electron microscopic reconstructions (27). The largest densely reconstructed cortical volume hence 
comprises only ~500,000 µm3 (13). However, this remarkable effort in layer 4 of mouse barrel cortex had 
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provided first quantitative data about the structural composition of the cortical neuropil, and revealed that 
volumes with such dimensions (Fig. 2B) can comprise more than 45,000 neuronal processes, which 
represent ~2.7 m of path length and ~400,000 synaptic connections. These empirical observations fall 
well within the respective ranges predicted by the model (Fig. 2C). Consequently, the structurally possible 
configurations by which neuronal processes could be connected locally to one another in the model of 
rat barrel cortex (i.e., within subvolumes <500,000 µm3) will be qualitatively and quantitatively very similar 
to those that could emerge from the densely reconstructed volume of mouse barrel cortex. Also consistent 
with the empirical data, the model predicts that more than 97% of the neuronal processes remain 
unconnected to a soma that lies within the same subvolume. The model thereby provides first insight into 
the diversity of the cellular and cell type origins for all unconnected neuronal processes within cortical 
subvolumes (Fig. 2D). 

 
Figure 2. Validation of the dense structural model of rat barrel cortex. (A) Cross-section through the 
barrel cortex model, illustrating the dense distributions of somata, dendrites and axons (fractions shown), 
colored by their respective cell types. (B) Zoom-in shows one example subvolume, whose dimensions 
and location resemble that of the largest densely reconstructed dataset reported so far (13). (C) Path 
lengths, the corresponding numbers of branches, and the synaptic structures that they represent, for 
axons (grey) and dendrites (black) within 500,000 µm3 large subvolumes (n=128) across the model. (D) 
Branches that are unconnected to a soma within the same subvolume (>97%) originate from >25,000 
neurons (left), which reflect a diverse range of cell types (center), and whose somata are ~0.9 mm away 
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(right). The 17 cell types reflect VPM, INH (subdivided by layers 1-6) and EXC neurons (subdivided as in 
panel A). (E) Quantification how robustly our reverse engineering approach can predict the structural 
composition of each subvolume within the rat barrel cortex (see also Fig. S3C). Left: robustness of the 
packing density of neuronal processes for each subvolume depending on the number of morphologies 
per cell type that was used to generate the model (Fig. S2). Black markers represent the coefficients of 
variation (CVs) in path length per subvolume across >30,000 models (i.e., median across 125,000 µm3 
large subvolumes), where all models are based on the same average soma distribution (25). Grey 
markers represent the median CVs for the same subvolumes across models that were based on different 
empirically measured soma distributions. Right: same robustness analysis for the numbers of neurons 
from which these processes originate. (F) Predicted bouton densities per layer versus synapse densities 
measurements in juvenile rats (28). The differences in layers 2/3 (L2/3) between the model and the 
empirical data (denoted by asterisks) likely reflect age differences (i.e., the data for the model was 
acquired after postnatal day P28, the empirical data at P14). Synapse densities increase particularly in 
the upper layers after P14 (29). 
The model predicts for both the amount of neuronal processes and the number of synaptic structures 
that they represent substantial variations across the different subvolumes of the barrel cortex (Fig. 2C/D). 
We therefore tested whether these variations of the structural composition are anatomically realistic. For 
this, we reanalyzed our previously reported anatomical data (Fig. S2) and systematically quantified the 
variability of neuron soma, dendrite and axon distributions across the barrel cortex, as well as across 
animals (Fig. S3A/B). We captured the hereby quantified cellular and morphological variability by 
repeating the reverse engineering approach to generate >30,000 barrel cortex models, which reflected 
different measured soma distributions and/or samples of in vivo labeled dendrite and axon morphologies. 
This revealed that the structural composition of each subvolume within the barrel cortex model would not 
change by more than 12% – the diversity of the cellular origins of neuronal processes by no more than 
8% – even if the model was based on a larger sample of reconstructed morphologies (Fig. 2E). Moreover, 
the model predicts layer-specific density variations of synaptic structures (Fig. 2F) that are consistent 
with electron tomography measurements in the barrel cortex of juvenile rats (28). Thus, our model 
provides realistic and robust estimates for the amounts of axonal and dendritic branches within any 
subvolume of the rat barrel cortex, for the synaptic structures that these processes represent, and for the 
diversity of their respective cellular and cell type origins (Fig. S3C). Consequently, the model-derived 
statistical ensemble of connectomes yields valid, quantitative predictions for how neuronal networks 
could appear in barrel cortex if they were solely due to the structural composition of its neuropil. 
 
Cortical networks cannot be consistent with Peters’ Rule 
We used the statistical ensemble of connectomes to test whether the absence of synapse formation 
strategies that introduce wiring specify would result in neuronal networks that obey Peters’ Rule. For this, 
we determined the axo-dendritic overlap at different spatial resolutions (here: cubic volumes with 1, 5, 
10, 25, 50 or 100 µm edge lengths) for all neuron pairs in the model and quantified the respective amounts 
of synaptic structures that these neuronal processes represent within each overlap volume (Fig. 3A). We 
illustrate these quantifications for one example subvolume at the resolution of 50 µm, which contains 
more than 23,000 axonal and 2,200 dendritic branches that represent more than 100,000 boutons (PREs) 
and postsynaptic structures (POSTs), respectively (Fig. 3B). When each of these boutons is assigned to 
one of the postsynaptic structures, the composition of this particular subvolume alone gives rise to an 
enormous number of structurally possible networks that differ in how the ~15,000 neurons from which 
these neuronal processes originate are interconnected (Fig. S1B). In the vast majority of these networks, 
the axons and dendrites of any particular neuron pair remain unconnected – i.e., their pre- and 
postsynaptic structures connect to those of other neurons that overlap in this subvolume (Fig. 3C). Thus, 
axo-dendritic overlap can in principle predict connectivity for only a small minority of overlapping branch 
pairs. Moreover, most neurons contribute more than one synaptic structure to this subvolume, which 
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results in configurations where axon-dendrite pairs are interconnected by several synapses (Fig. 3D). In 
any of the structurally possible networks and across all subvolumes, 99.6 ± 0.1% of the axon-dendrite 
pairs remain unconnected despite their overlap, while a substantial fraction of them forms synaptic 
clusters of up to five connections – and of even more in some subvolumes. These violations of Peters’ 
Rule are a direct consequence of the high packing density of neuronal processes, which leads to a 
number of axon-dendrite pairs that exceeds the number of synaptic structures that they represent by one 
to two orders of magnitude, irrespective of the spatial resolution at which overlap is determined (Fig. 3E). 

 
Figure 3. Testing of Peters’ Rule. (A) Neurons (grey, 50% shown) in barrel cortex and VPM whose 
axons overlap with the dendrites of the L5PT from Fig. 1C (green) at a resolution of 50 µm. The orange 
marker represents the soma of the L2PY from Fig. 1C. (B) Example subvolume in which the L2PY axon 
represents ten presynaptic structures (PREs; i.e., boutons). The L5PT dendrites represent 114 
postsynaptic structures (POSTs; i.e., spines). The number of 129,263 POSTs reflects all spines in this 
subvolume, as well as target sites on the surfaces of inhibitory somata and dendrites (Fig. S1B). (C) 
Probabilities that none, one or more of the pre- and postsynaptic structures of the L2PY and L5PT are 
connected (Fig. S1C). (D) Axon-dendrite pairs whose overlap at 50 µm resolution yields none, one or 
more connections across all possible networks. (E) Overlapping branch pairs versus the synaptic 
structures that they represent for different resolutions at which axo-dendritic overlap is determined. If 
Peters’ Rule were true, the two lines should match. (F) At 50 µm resolution, the L2PY axon overlaps with 
the L5PT dendrites in 13 subvolumes. (G) Overlap volumes for all neuron pairs versus connections 
between them. 100% indicates that two neurons are connected by as many synapses as they have 
overlap volumes. (H) Neuron pairs that overlap versus connected neurons across all possible networks. 
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The violations of Peters’ Rule become even more severe at cellular scales. The axons and dendrites of 
neuron pairs typically overlap in more than one subvolume (Fig. 3F). The probability that overlap 
translates into connectivity is already very low within each individual subvolume. The likelihood that 
networks occur in which any particular neuron pair is interconnected in all of its overlap volumes is hence 
in general infinitesimally small (Fig. 3G). Irrespective of the spatial resolution at which overlap is 
determined, a vast majority of neurons whose axons and dendrites overlap will remain unconnected in 
any of the networks that could emerge from the structural composition of the rat barrel cortex (Fig. 3H). 
Consequently, testing the validity of Peters’ Rule is not equivalent to testing the impact of neuronal 
structure on network architecture. Thus, empirical observations that falsify Peters’ Rule do in general not 
provide insight into the underlying synapse formation strategies, and in particular do not justify 
conclusions that these neurons must have been interconnected based on their cellular identity or activity. 
 
Wiring specificity at synaptic levels is not required for nonrandom network formation  
Next, we tested whether the absence of synapse formation strategies that introduce wiring specify would 
result in random networks. For this, we compared the topological properties of the structurally possible 
networks in barrel cortex with those of randomly connected networks that have the same underlying 
pairwise statistics. More specifically, we calculated the respective occurrences of the possible wiring 
patterns by which three neurons could be connected to one another – commonly referred to as triplet 
motifs (Fig. 4A). The likelihood that three neurons in the barrel cortex model form a particular motif 
depends on their respective pairwise connection probabilities in the statistical ensemble of connectomes. 
For example, the three neurons shown in Figure 1G will most likely form the motif with a single 
unidirectional connection (i.e., L2PY  L5PT), less likely motifs with one bidirectional connection (i.e., 
L5PT  L6CC), and never motifs with more than one bidirectional connection (i.e., the L5PT and L6CC 
axons do not overlap with the L2PY dendrites). Consequently, the motifs that are formed by any particular 
subset of neurons will differ across the different structurally possible networks (Fig. 4B). However, in any 
structurally possible network, we found that the respective occurrences of motifs deviate in general from 
those of random networks (Fig. 4C), despite the fact that both the barrel cortex and the random networks 
are based on the same pairwise connection probability distributions (Fig. 4D).  
The degrees to which the occurrences of motifs differ from those of random networks depended on how 
we grouped neurons in the barrel cortex model. For example, while feedforward loops (motif 7) occur 
more frequently in the barrel cortex model than in random networks (i.e., overrepresented), they are 
underrepresented in the subnetworks formed by excitatory neurons in layer 5 (Fig. 4E). In general, the 
respective occurrences of any of the triplet motifs changed depending on how we grouped neurons with 
respect to layer, barrel column, cell type, inter-somatic distance, or combinations thereof (Fig. S4). 
Interestingly, these grouping-specific occurrences of motifs correlated with differences in the shapes of 
the underlying pairwise statistics. For example, the occurrences of the recurrent feedforward motif (motif 
10) transition from over- to underrepresentation depending on the respective means of the connection 
probability distributions (Fig. 4F). Moreover, the magnitude of over- and underrepresentation increases 
with increasing and decreasing widths of the connection probability distributions, respectively. These 
relationships indicate that the mean and the coefficient of variation (CV) of connection probabilities – in 
the following referred to as the degrees of network sparsity and heterogeneity – can quantitatively and 
qualitatively impact the nonrandom topological properties of neuronal networks. Beyond triplet motifs, 
strong degrees of recurrence characterize the structurally possible networks, as overrepresentation 
increases with the number of bidirectional connections and with the number of neurons per motif (Fig. 
4G). Conversely, underrepresentation of feedforward motifs increases with the number of neurons per 
motif. Consequently, the topology of cortical networks will deviate in general from those of random 
networks, even if synapse formation strategies that introduce wiring specificity were absent. Thus, 
empirically observed nonrandom motif occurrences do not provide insight into the underlying synapse 
formation strategies, and do not justify conclusions that such patterns must reflect a particular wiring rule. 
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Figure 4. Structurally determined topological properties of cortical networks. (A) Somata of 
neurons (grey, 0.1% shown) whose axons overlap with the dendrites of one of the neurons from Fig. 1G. 
(B) Two possible network configurations for 50 neurons from panel A that are predicted to occur with 
different likelihoods from the structural composition of the barrel cortex model. (C) Random network 
example derived from the same pairwise connection probability distribution that was used to generate 
the networks in panel B. The number of nodes and edges are identical to panel B, but the occurrences 
(n) of motifs differ (e.g. motif 10 in panel E). One motif 10 is highlight in black per network in panels B/C. 
(D) Connection probability distribution for all pairs of neurons from panel A. (E) Ratios between motif 
occurrences in networks derived from the model versus random networks (1: equally abundant; >1: 
overrepresented in the model; <1: underrepresented). (F) Deviations in the occurrences of motif 10 
between the model and random networks for different cell type-specific groupings (n=220) versus the 
respective means and CVs of the underlying connection probability distributions. (G) The likelihoods to 
observe recurrent loops and feedforward chains between up to ten neurons in networks predicted by the 
structural composition of barrel cortex versus in random networks. 
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Structural basis of nonrandom networks 
How is it possible that neuronal structure translates into nonrandom network architectures? How can the 
degrees of sparsity and heterogeneity in pairwise connectivity have such a defining impact on the 
networks’ specific nonrandom topological properties? To address these questions, we systematically 
explored the mathematical foundations that underlie the occurrences of network motifs. For this, we 
consider our statistical ensemble of connectomes as a distribution of pairwise connection probabilities 
that generates network configurations. If each of the connections is drawn independently from any such 
generating distribution, motifs will occur as expected for randomly connected networks – i.e., occurrences 
are independent from the network’s heterogeneity and only reflect the mean of the underlying pairwise 
statistics (Fig. 5A; see Equation S1 in the Supplementary Materials). Thus, our observations of 
nonrandom occurrences of motifs, and their dependencies on network heterogeneity, cannot be 
consistent with the assumption that connection probabilities are independent of one another. Instead, 
only correlations in the statistical ensemble of connectomes could explain our observations (Fig. 5B). 

Figure 5. Mathematical foundations for 
nonrandom motif occurrences. (A) Toy example 
illustrating Eq. S1 in the Supplementary 
Materials. Left: Statistical ensembles of 
connectomes that yield homogeneous pairwise 
connectivity (i.e., standard deviation << mean) will 
result in networks where all nodes have mostly the 
same number of edges (here illustrated by two 
nodes that both have three edges). Right: 
statistical ensembles of connectomes that yield 
heterogeneous pairwise connectivity (i.e., 
standard deviation ≈ mean) will result in networks 
where the nodes have on average the same 
number of edges. Bottom panels: occurrences of 
triplet motifs will be on average random and 
identical in all networks that have the same mean 
connection probability. (B) Toy example illustrating 
Eq. S2-3 in the Supplementary Materials. 
Statistical ensembles of connectomes that yield 
correlations in pairwise connectivity (here 
illustrated by two nodes that both connect to the 
same nodes) will result in motif occurrences that 
deviate from those of random networks. (C) A 
mathematical model (see Supplementary 
Materials) that represents statistical ensembles of 
connectomes with correlations reveals how the 

mean (i.e., sparsity) and width (i.e., heterogeneity) of pairwise connectivity impact nonrandom motif 
occurrences; here illustrated for feedforward chains (left) and recurrent loops (right). 
We therefore investigated how the presence of correlations affects the occurrences of motifs. For this, 
we developed a mathematical model, which assumes that each connection derived from the statistical 
ensemble of connectomes reflects a ‘private’ and a ‘shared’ source (30). The bigger the shared source 
relative to the private one, the more correlated are the connection probabilities. For simplicity, we assume 
here that correlations and heterogeneity are expressed by single parameter 𝜆𝜆 . A comprehensive 
description of the mathematical model is provided in the Supplementary Materials. The mathematical 
model yields motif occurrences that match those in random networks only when correlations are absent 
(i.e., 𝜆𝜆 = 0; see Equation S2-3 in the Supplementary Materials). In turn, for statistical ensembles of 
connectomes with correlations, the mathematical model allows exploring how sparsity and heterogeneity 
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in pairwise connectivity will generally affect nonrandom motif occurrences. For example, in sparsely 
connected networks (e.g. mean connection probability of 10%) feedforward motifs become increasingly 
underrepresented with increasing heterogeneity (Fig. 5C). Conversely, in densely connected networks 
(e.g. mean of 90%) such motifs become increasingly overrepresented with increasing heterogeneity. 
Recurrent loops are always overrepresented in the presence of correlations, and overrepresentation 
increases the sparser and the more heterogeneous a network is interconnected.  

 
Figure 6. Structural determinants for nonrandom motif occurrences in cortical networks. (A) The 
impact of neuronal structure on connectivity is illustrated for EXC neurons in layer 5 of the C2 barrel 
column. (B) Zoom-in shows somata colored by their respective cell type. (C) Part of the matrix 
representation of the statistical ensemble of connectomes from Fig. 1F that represents the neurons 
shown in panel B. (D) Distributions of connection probabilities from the matrix in panel C for different cell 
type combinations. Bottom panel: connection probability distributions between L5PTs for different inter-
somatic distances. (E) In-degree distributions derived from the matrix in panel C. The numbers of 
incoming connections that L5PTs receive from one another correlates with those they receive from 
L6CCs. (F) Motif occurrences in the barrel cortex model versus those in random networks depend on the 
in-degree correlation coefficients, the means and CVs of the corresponding connection probability 
distributions for more than 200 groupings that represent neurons with different cell types. (G) Nonrandom 
motif occurrences for the groupings in panel F are consistent with the mathematical model.  
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We tested whether correlations, in conjunction with sparsity and heterogeneity, could indeed explain our 
observation that the structural composition of the neuropil results in nonrandom network architectures. 
We illustrate these quantifications for excitatory neurons in layer 5 (Fig. 6A). About 80% of these neurons 
represent either intratelencephalic (L5ITs), pyramidal tract (L5PTs) or corticocortical neurons (L6CCs) 
(Fig. 6B). We therefore analyzed the pairwise statistics with respect to these morphological cell types by 
grouping the connection probability values in the statistical ensemble of connectomes accordingly (Fig. 
6C). Even though neuron somata from all of these cell types intermingle, the shapes of the respective 
connection probability distributions differ substantially. For example, L5ITs are predicted to connect more 
densely and less heterogeneously to L5PTs than L5PTs connect to one another (Fig. 6D). Within the 
population of L5PTs, the shapes of connection probability distributions differ substantially depending on 
how far apart their somata are (Fig. 6D). Thus, in any network that could emerge from the statistical 
ensemble of connectomes, the degrees of sparsity and heterogeneity in pairwise connectivity will reflect 
the locations of neurons and their respective morphological properties (Fig. S5). 
Similarly, the shapes of degree distributions depended on the grouping of neurons by their respective 
locations and morphological cell types (Fig. S5). Plotting degree distributions jointly for different 
groupings revealed the presence of substantial correlations in pairwise connectivity within the statistical 
ensemble of connectomes. For example, L5PTs are predicted to receive more connections from one 
another the more connections they receive from L6CCs (Fig. 6E). These in-degree correlations reflect 
similarities in axon projection patterns. More specifically, despite substantial quantitative and qualitative 
morphological differences between L5PTs and L6CCs, the axons of both populations predominantly 
innervate the deep layers, where they span horizontally across several barrel columns (31). In contrast, 
L5IT axons predominately innervate the upper layers and remain largely confined to the dimensions of a 
single barrel column in the deep layers. As a result, in-degree correlations are much weaker between 
L5ITs and the other two cell types (Fig. S5). Thus, correlations in pairwise connectivity will be present in 
any structurally possible network, and the strengths of these correlations will reflect similarities in the 
neurons’ locations and their respective morphologies.  
These observations generalize beyond the example of excitatory neurons in layer 5. We illustrate this by 
calculating the correlation coefficients between degree distributions, as well as the means and CVs of 
the corresponding connection probability distributions, for more than 200 groupings that represent 
neurons with different cell types. For any of the groupings, motif occurrences deviated from those of 
random networks (Fig. 6F). More specifically, the sparser and the more heterogeneous neurons are 
interconnected within a particular group, the more overrepresented are recurrent connections between 
them. Conversely, the more densely the group is interconnected, the more underrepresented are 
feedforward connections. These relationships are consistent with the mathematical model (Fig. 6G). 
Thus, the shapes and correlations of pairwise connectivity statistics that solely reflect the structural 
composition of the underlying neuropil represent a defining source of nonrandom network architectures, 
whose specific topological properties hence reflect the morphological properties of their constituents. 
 
Neuronal structure predicts empirically observed wiring specificity 
The statistical ensemble of connectomes revealed four principles by which neuronal structure impacts 
network architecture. First, because of the mismatch between synaptic structures and branch pairs, the 
vast majority of neurons whose axons and dendrites overlap remain unconnected. As a result, the higher 
the packing density of neuronal processes, the smaller the probability that their respective pre- and 
postsynaptic structures could be connected to one another. Thus, packing density translates into the 
means of connection probability distributions, and thereby defines a networks’ sparsity (Fig. 7A). Second, 
the higher the cellular diversity of neuronal processes that overlap – e.g. with respect to the morphological 
cell types of the neurons that these processes belong to – the broader the shapes of connection 
probability distributions when neurons are grouped by these cellular features. Thus, cellular diversity 
translates into the widths of connection probability distributions, and thereby defines a network’s 
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heterogeneity (Fig. 7B). Third, the more similar the dendrite or axon projection patterns of neurons are, 
the more similar are their respective contributions to the packing density and cellular diversity of neuronal 
processes across subvolumes. Thus, similarities in the neurons’ locations and morphologies translate 
into correlations (Fig. 7C). Fourth, in the presence of correlations, the degrees of sparsity and 
heterogeneity define a network’s specific nonrandom topology. The high packing density and cellular 
diversity of the cortex thereby yield nonrandom recurrent network architectures (Fig. 7D). Tissue with low 
packing density and cellular diversity yields feedforward architectures.  

 
Figure 7. The impact of neuronal structure on network architecture. (A) The packing density of 
neuronal processes translates into the means of connection probability distributions, and thereby defines 
a networks’ sparsity. (B) The cellular diversity of neuronal processes that overlap – e.g. with respect to 
cell type – translates into the widths of connection probability distributions, and thereby defines a 
network’s heterogeneity. (C) Similarities in the dendrite or axon projection patterns of neurons translate 
into correlations of connection probability and degree distributions. (D) In the presence of correlations, 
the degrees of sparsity and heterogeneity define a network’s specific nonrandom topology. Feedforward 
motifs become increasingly overrepresented the denser and the more homogeneously neurons are 
interconnected (i.e., low packing density and low cellular diversity). Conversely, recurrent motifs become 
increasingly overrepresented the sparser and the more heterogeneously neurons are interconnected. 
How strong is the impact of neuronal structure on network architecture compared to that of synapse 
formation strategies that introduce wiring specificity? Here we can address this question, because the 
present statistical ensemble of connectomes provides a proper null hypothesis for testing to what degree 
empirically observed wiring specify in barrel cortex could reflect the structural composition of the neuropil, 
or whether it must be due synapse formation strategies that interconnect neurons based on their activity 
or cellular identity. For this, we compared our model with a rich body of literature that represents several 
decades of quantitative connectivity measurements by many different laboratories and by a variety of 
experimental techniques. First, we tested whether the predicted relationship between packing density 
and sparsity in pairwise connectivity is observed empirically. For example, 500,000 µm³ subvolumes in 
layer 4 of the model comprise on average more than 108 axon-dendrite pairs. In any of the structurally 
possible networks, the vast majority of these branch pairs will remain unconnected (Fig. 8A), while ~105 
are predicted to be connected by a single synapse, ~4,000 by two synapses, ~150 by three synapses 
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and ~20 by four or more synapses (Fig. 8B). These predictions for both the packing density and the 
resulting degrees of sparsity are virtually indistinguishable from those observed empirically via dense 
reconstructions in mouse barrel cortex (12, 13).  

 
Figure 8. Predicted versus empirical connectivity data. (A) Occurrences of unconnected branch pairs 
per 500,000 µm³ large subvolumes in layer 4 of the model (n=252). (B) Occurrences of branch pairs 
connected by one or more synapses for the same subvolumes as in panel A match with empirical data 
from mouse barrel cortex (13). (C) Predicted connection probabilities match those of four example studies 
(32-35). (D) Empirical connection probabilities for 89 layer and/or cell type groupings versus those 
predicted by the model (Tables S1-3). Grey shading represents 95% prediction interval. Asterisks denote 
inconsistencies with empirical data. (E) Ratios of L5PT motif occurrences in the model match empirical 
data (16). Y-axis in log scale. Error bars represent standard deviations estimated by bootstrap method 
for empirical data, and range across models for model data (Fig. S6). (F) Overrepresentation of motifs 
between eight L5PTs increases with the number of connected edges empirically (32) and in the model 
(bottom panel). Y-axis in log scale. 
Second, we tested whether the predicted relationship between cellular diversity and heterogeneity in 
pairwise connectivity is observed empirically. For this, we made groupings of neurons in the barrel cortex 
model analogous to those reported by sparse measurements of pairwise connectivity that sampled 
neurons depending on their soma locations within a particular layer, cell types, inter-somatic distances, 
or combinations thereof (Fig. 8C). In total, we predicted the pairwise connectivity for eighty-nine such 
samplings that reflect different cellular properties, and compared those with the respective empirical data 
reported across a set of twenty-nine studies (Tables S1-3, Fig. S6). The predicted connection 
probabilities correlated significantly with the empirical data (R=0.75, p<10−16). About 2/3 of the empirically 
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determined connectivity values deviated from the prediction by less than half a standard deviation of the 
respective connection probability distribution, 94% by less than one standard deviation (Fig. 8D). To test 
whether this consistency emerges by chance, we performed random permutations of the eighty-nine 
predicted connection probabilities. Permutations yielded correlations with the empirical data that were 
not significant (R=0.00 ± 0.11). 
Finally, we tested whether the predicted nonrandom occurrences of motifs are observed empirically. The 
occurrences of all fifteen triplet motifs and their respective deviations from a random network were 
systematically assessed for L5PTs (16). The statistical ensemble of connectomes predicts motif 
occurrences for this cell type that are remarkably consistent with these empirical data, with the notable 
exception of the feedforward loop and the recurrent feedback motif (Fig. 8E). Moreover, probing the 
occurrences of motifs between up to eight L5PTs revealed that independent of their particular topology, 
motifs become increasingly overrepresented with increasing numbers of connected edges (32). This 
relationship is qualitatively consistent with our predictions (Fig. 8F). Thus, wiring specificity from 
subcellular to network scales that was observed empirically between excitatory neurons – i.e., the 
occurrences of synaptic clusters; layer-, cell type- and distance-specific connectivity; over- or 
underrepresentation of motifs – could reflect the specific structural composition of the neuropil. 
 

Discussion 
We introduce the concept of statistical ensembles of connectomes to quantitatively test the impact of 
neuronal structure on cortical network architecture. We apply this strategy to an anatomically detailed 
model of the rat barrel cortex, which we show provides realistic and robust estimates for the dense 
structural composition of this entire brain area. We found that none of the structurally possible networks 
that could emerge in barrel cortex would be random or consistent with Peters’ Rule – two observations 
so far considered as evidence for synapse formation strategies that interconnect neurons based on their 
activity or cellular identity. We reveal that these nonrandom properties reflect three factors of the neuronal 
structure – packing density, diversity and similarity of the neurons’ processes – which will in general 
impact the networks’ sparsity, heterogeneity, correlations and topology. Thus, unlike the assumption by 
Peters’ Rule, we demonstrate that the impact of neuronal structure on network architecture cannot be 
direct in that it predicts connectivity. Instead, the impact of neuronal structure reflects properties of the 
pairwise and higher-order connectivity statistics that are shared by all structurally possible networks, 
irrespective of which particular neuron pairs whose axons and dendrites overlap are interconnected.  
We emphasize that the impact of neuronal structure on network architecture does not imply that the 
impact of synapse formation strategies on wiring specificity is negligible (e.g. see motifs 7 and 9 in Figure 
8E). For inhibitory neurons in particular, such conclusions are not justified. Depending on their cell type, 
axons of inhibitory neurons preferentially target specific other cell types and specific subcellular 
compartments of excitatory neurons (reviewed in (36)). Neuronal structure can hence be predictive for 
excitatory, but in general not for inhibitory connections (13). Interestingly, recent studies revealed that 
inhibitory neurons can adapt their morphologies to the specific columnar and laminar layout of a cortical 
area (37, 38). Incorporating the target specificity of inhibitory cell types into the wiring rules would hence 
result in statistical ensembles of connectomes that could reveal the impact of these area-specific 
variations of inhibitory morphologies on network architecture. For now, relationships between morphology 
and target specificity of inhibitory neurons are however not fully resolved. Thus, we have limited our 
analyses to excitatory intracortical and long-range thalamocortical connections for which empirical 
connectivity data is accessible. 
Surprisingly, for these excitatory connections, we found that neuronal networks, which solely reflect the 
structural composition of the barrel cortex, predict connectivity patterns that are remarkably consistent 
with those observed empirically. This raises the question which synapse formation strategies could 
implement such strong relationships between neuronal structure and network architecture. Here, the 
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statistical ensemble of connectomes was based on wiring rules that are consistent with synapse formation 
strategies where axons compete with one another to connect to the available postsynaptic structures. 
Such mechanisms represent a dominating strategy for wiring up the peripheral (39, 40) and central 
nervous system (e.g. (41)) during development. It is hence tempting to speculate that neuron morphology 
development, in conjunction with competitive synapse formation strategies, establishes a scaffolding of 
wiring properties that defines a network’s architecture. If this were true, the impact of neuronal structure 
on cortical network architecture may degrade throughout life. Consistency with the empirical data could 
thereby reflect the fact that connectivity measurements in the literature originated from rather young 
animals. In support of this interpretation are recent dense reconstructions of the nematode C. elegans, 
which revealed that the structural composition of its nervous system provides a constant scaffolding upon 
which connectivity is remodeled from birth to adulthood (42). Interestingly, some structurally determined 
wiring properties were maintained throughout life. This may also apply to cortex, because its proper 
function depends critically on the degrees of heterogeneity and correlations in connectivity (43) – two 
network properties that we show are strongly impacted by the neuronal structure. Consequently, to 
ensure robustness of cortical dynamics throughout life, homeostatic wiring mechanisms may maintain 
these structurally defined wiring properties despite the constant remodeling of cortical networks. Our 
statistical modelling approach provides a methodological framework for testing whether the impact of 
neuronal structure on cortical network architecture degrades or is maintained during maturation. 
Scaffoldings of wiring properties that emerge in cortical networks during development were recently 
speculated to reflect an evolutionary strategy for implementing innate sensory representations and 
behaviors, which could facilitate learning (44). What exactly genomes specify about wiring remains 
however unknown. In C. elegans, the genome could have the capacity to specify every connection 
between every neuron with minute detail. In contrast, cortical synapses cannot be specified so precisely, 
even if the entire genome would solely encode for connections. Due to this ‘genomic bottleneck’, it was 
suggested that scaffoldings in cortical networks must be compressed within the genome via wiring rules 
(44). However, we show that the emergence of scaffoldings in networks does not rely on such explicitly 
encoded wiring rules. Instead, scaffoldings could be encoded implicitly via genetically induced 
developmental programs that guide neurons and their processes into specific subvolumes of the cortical 
sheet (45). Compared to explicit wiring rules, implicit encoding would not only solve the issue of 
compression through the genomic bottleneck. It may also explain how cortical networks adapt to 
environmental changes. More specifically, periphery-driven activity can regulate guidance programs that 
shape the structural composition of cortex (46). Accordingly, sensory experience could alter how neuronal 
structure impacts cortical network architecture. Implicit encoding of wiring properties via the development 
of neuronal structure may hence reflect an efficient evolutionary strategy that can transfer cortical network 
architectures across generations, while providing sufficient flexibility for invading new ecological niches 
(47). 
 

Materials and Methods 
All relevant data and codes are available from the authors. We used custom-written routines in C++, 
Python, or MATLAB 2020b software (Mathworks, Natick, MA, USA) for analysis and Amira software for 
visualization. Boxplots were generated with the Matlab built-ins boxplot or boxchart where the bottom and 
top of the box represents the 25th and 75th percentiles, and the line within the box the median. The lines 
extend to the adjacent values. Outliers are all values more than 1.5 times the interquartile range away 
from the top or bottom of the box.  
 
Structural model of rat barrel cortex 
NeuroNet: We reverse engineered the structural composition of the neuropil for the rat barrel cortex by 
using NeuroNet, a custom-designed extension package for Amira software (FEI). NeuroNet was 
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described in detail previously (19). Briefly, NeuroNet requires the following anatomical data as input (Fig. 
S2): (i) a reconstruction of the 3D geometry and cytoarchitecture for the cortical volume of interest, (ii) a 
spatially dense reconstruction of the distributions of excitatory (EXC) and inhibitory (INH) neuron somata 
within the volume, (iii) samples of in vivo labeled dendrite and axon reconstructions that represent 
neurons from all layers and for all major morphological cell types, and (iv) cell type- and target layer-
specific measurements for the densities of pre- and postsynaptic structures along these axons and 
dendrites, respectively. The output by NeuroNet is a digital model of the cortical volume where each 
neuron soma is represented by one axon and dendrite morphology from the sample of morphologies. 
 
Anatomical input data: All anatomical data used here as input for NeuroNet was acquired in Wistar rats 
(primarily during the fifth postnatal week) and has been reported previously. Briefly, to capture the rat 
barrel cortex’ characteristic geometrical, cytoarchitectonic, and cellular organization in the model, we 
reconstructed precise 3D maps of cortical barrel columns with surface reconstructions of the pia and 
white matter (24), and quantified the locations of all EXC and INH neuron somata in the rat barrel cortex 
and in VPM thalamus (25). To capture the rat barrel cortex’ cell type-specific morphological organization 
in the model, we reconstructed a sample of in vivo labeled EXC neuron morphologies (31, 48, 49) and 
the intracortical part of in vivo labeled VPM axon morphologies (50). NeuroNet replaced each neuron of 
the reconstructed distribution of EXC somata with a morphology from this sample of reconstructions. The 
neurons’ locations in the model were on average within ±119 µm of their ‘true’ 3D soma positions (24). 
We placed as many thalamocortical axons as the average measured number of neurons per respective 
VPM barreloid. Each VPM axon was displaced randomly by ±50 µm. To account for EXC connections 
onto INH neurons, we incorporated reconstructions of INH neurons into the model (51-54). In vitro labeled 
INH dendrites were ‘curated’ by assuming radial symmetry of their morphologies. Connections from or 
onto INH neurons were hence not systematically analyzed unless. To capture the rat barrel cortex’ 
distribution of synaptic structures in the model, we derived the number of presynaptic structures (i.e., 
axonal boutons) by multiplying the axon length that each neuron contributes to a particular subvolume 
with the number of boutons per length (19), as measured for all EXC cell types and layer 1 INH neurons, 
and depending on the axons’ target layer (31, 54). For all remaining INH neurons we set the density to 
0.2 boutons per µm axon as reported in (55-57). Based on the resulting density distribution of boutons 
along the cortical depth, we scaled the total number of postsynaptic structures along the dendrites. More 
specifically, we performed the scaling separately for targets of boutons along EXC and INH axons: First, 
for targets of EXC boutons, we derived the number of postsynaptic structures along EXC dendrites (i.e., 
spines) by assuming that spine densities are proportional to dendritic length. For the respective number 
of postsynaptic structures along INH dendrites and somata we assumed proportionality to their respective 
surface areas. The derived density of postsynaptic structures for EXC neurons ranged from 1.04 to 1.68 
spines per µm dendritic length, consistent with empirical spine density measurements (58, 59). The 
derived density of postsynaptic structures for INH neurons was 0.74 per µm² of dendritic or somatic 
surface, consistent with empirical synapse density measurements on INH somata (60, 61). Second, for 
targets of INH boutons, we derived the number of postsynaptic structures along both EXC and INH 
dendrites and somata by assuming proportionality to their respective surface areas. The derived density 
of postsynaptic structures for EXC and INH neurons was 0.06 per µm² of dendritic and somatic surface, 
consistent with empirical data (60-62). 
 
Morphological variability analysis: We tested how representative the sample of EXC axon and dendrite 
morphologies is. For this, we performed the following analysis: First, we aligned the dendrite 
morphologies of each cell type by their lateral soma position and calculated dendrite innervation volumes 
at 50 µm resolution for an increasing sample of morphologies (i.e., 1, 2, etc. to maximum sample size-1). 
For each cell type and sample size, we determined all possible combinations of reconstructed 
morphologies. If there were more than 500 possible combinations, we used a random sample of 500 
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combinations. We calculated the differences between the respectively determined innervation volumes 
and that innervated by all morphologies for this type. Second, we determined the respective dendrite 
length contribution per subvolume of each combination of morphologies. For each sample size of 
morphologies, we calculated the CV of the dendrite length per subvolume across all possible 
combinations. We repeated the same analysis for axons without alignment by somata.  
 
Model robustness analysis: We used NeuroNet to create >30,000 barrel cortex models with different 
anatomical data as input and quantified the variability across models of the structural composition for 512 
(50 µm)³ large subvolumes within layers 2 to 6 of the C2 barrel column – i.e., axonal and dendritic path 
length, number of branches, number of branches that remain unconnected to a soma within the same 
subvolume, number of synapses (i.e., boutons), number of contributing cells and cell types, and path 
length to soma of each branch. First, we assessed how these parameters of the structural composition 
are affected by the limited sample size of morphology reconstructions. For this, we generated models 
where only one morphology per cell type, two morphologies, and so on were used as input to NeuroNet. 
Starting with one morphology per type, we used a random sample of 500 combinations of morphologies 
as input to generate 500 models. All models were based on the same dense distribution of neuron somata 
(i.e., average across measurements from four barrel cortices (25)). For each of the subvolumes, we 
determined the CV of each structural feature across the 500 models. We then calculated the median CV 
of each structural feature across all subvolumes. We refer to the median CV as the ‘morphological 
uncertainty’ per subvolume. We repeated this analysis for two morphologies per cell type and so on until 
the maximal sample size of morphologies was reached, respectively. Second, we assessed how the 
parameters of the structural composition are affected by the variability of soma distributions across 
animals. For this, we repeated the analysis of ‘morphological uncertainty’ with models that were based 
on each of the four measured dense distribution of neuron somata that were used to create an average 
distribution (25). We again calculated the median CV of each structural feature across all subvolumes 
and refer to the median CV as the ‘cellular uncertainty’ per subvolume. 
 
Generation of statistical ensembles of connectomes 
We derived the statistical ensemble of connectomes for the dense model of rat barrel cortex by assuming 
that only the presence of a pre- and postsynaptic structure within the same subvolume is necessary for 
synapse formation – i.e., their particular positions or proximity (e.g. touch) within a subvolume are not 
considered (19). First, we calculated the dense structural overlap (𝑫𝑫𝑫𝑫𝑫𝑫) as the product of the numbers 
of pre- and postsynaptic structures that neurons 𝒊𝒊 and 𝒋𝒋 contribute to a subvolume 𝒙𝒙, relative to the total 
number of postsynaptic structures contributed by all neurons, here indexed with 𝑵𝑵. 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖,𝑗𝑗,𝑥𝑥) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑥𝑥)  ∙  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑗𝑗,𝑥𝑥)

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁,𝑥𝑥)𝑁𝑁
                            Equation (1) 

Based on this quantity, we assume that any presynaptic structure has equal probability of forming a 
connection with any of the available postsynaptic structures present within the same subvolume. The 
probability 𝒑𝒑 for the presence of 𝒏𝒏 connections between neurons 𝒊𝒊 and 𝒋𝒋 within a subvolume 𝒙𝒙 across all 
possible networks is therefore given by a Poisson distribution with parameter 𝒏𝒏: 

𝑝𝑝(𝑖𝑖,𝑗𝑗,𝑥𝑥,𝑛𝑛) =  𝐷𝐷𝑃𝑃𝑃𝑃(𝑖𝑖,𝑗𝑗,𝑥𝑥)
𝑛𝑛

𝑛𝑛!
 ∙  𝐶𝐶−𝐷𝐷𝑃𝑃𝑃𝑃(𝑖𝑖,𝑗𝑗,𝑥𝑥)                                       Equation (2) 

We assume that the formation of connections does not affect synapse formation elsewhere. Thus, the 
probability 𝑷𝑷 that neurons 𝒊𝒊 and 𝒋𝒋 are connected by ≥1 synapse across all possible networks is given by: 

𝑃𝑃(𝑖𝑖,𝑗𝑗) =  1 − 𝐶𝐶−∑ 𝐷𝐷𝑃𝑃𝑃𝑃�𝑖𝑖,𝑗𝑗,𝑥𝑥𝑘𝑘�𝑘𝑘 = 1 −  ∏ 𝐶𝐶−𝐷𝐷𝑃𝑃𝑃𝑃(𝑖𝑖,𝑗𝑗,𝑥𝑥𝑘𝑘)
𝑘𝑘                        Equation (3) 
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where the index 𝒌𝒌  runs over all subvolumes in which neurons 𝒊𝒊  and 𝒋𝒋  overlap. Parameterizing the 
subvolumes of the barrel cortex model by the quantity 𝑫𝑫𝑫𝑫𝑫𝑫, followed by application of equations 2-3, 
thereby yielded the statistical ensemble of connectomes analyzed here. We calculated the statistical 
ensemble of connectomes for subvolumes of (50 µm)³ unless otherwise stated. The color map of the 
matrix representation in Figure 1F was limited to 95% of the connection probability values (i.e., to 55%). 
 
Quantification and statistical analysis 
Testing of Peters’ Rule: To test Peters’ Rule at the subcellular level we restricted our analysis to the 
structural composition of layers 2 to 6 within the C2 barrel column. Within that volume, we calculated the 
number of boutons and branch pairs that form zero to eight or more synapses per (50 µm)³ large 
subvolumes (n=512). We repeated this analysis for 512 subvolumes with 1, 5, 10, and 25 µm edge 
lengths and for 64 subvolumes with 100 µm edge length. At 1 µm edge length we excluded 229 
subvolumes where either no axon or no dendrite were present. To test Peters’ Rule at the cellular level 
we restricted our analysis to a combination of ~400 million neuron pairs. For each pair, we determined 
the number of (50 µm)³ large subvolumes with axo-dendritic overlap, referred to as 𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒍𝒍𝒍𝒍𝒑𝒑. We then 
calculated in how many networks the pair forms zero to 𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒍𝒍𝒍𝒍𝒑𝒑 synapses across all subvolumes. The 
resulting occurrences represent an upper bound since we constrained the overall number of connections 
and not the number of connections per subvolume. We mapped the number of connections per pair on 
bins of 1% width ranging from 0% (no connection between pair) to 100% (as many connections as 
𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒍𝒍𝒍𝒍𝒑𝒑 ). Finally, we determined the average number of occurrences across all pairs per bin. The 
resulting profile was smoothed with a moving median for visualization purposes. We determined how 
many of ~400 million pairs overlap at 1, 5, 10, 25 and 100 µm edge length and how often those were 
connected in the model.  
Analyses of statistical ensemble of connectomes: We used the Matlab built-in digraph to illustrate 
two possible networks of 50 neurons as a graph. Edges between neurons were realized based on their 
predicted connection probability in the statistical ensemble of connectomes. We constrained each 
network to have the same number of edges. We generated the random network example by randomly 
assigning the same number of edges to 50 neurons. To analyze network topologies, we calculated the 
occurrence probability of each of the 15 motifs for a set of 8 million randomly selected neuron triplets with 
each neuron belonging to a particular neuron population (e.g. neurons were grouped by their cell type or 
soma position in a layer). We calculated the mean probability of the occurrences for each motif as 
predicted by the statistical ensemble of connectomes and compared it with those expected in a random 
network: First, we calculated the mean connection probabilities for each of the six edges between all of 
the sampled neurons. Second, we used these six mean connection probabilities to calculate the 
occurrence probability of each motif. Third, we divided the predicted motif probabilities by their respective 
expected probabilities in the random network. We calculated the deviation of motif occurrences of all 15 
motifs for all 220 cell type-specific triplet combinations. For each triplet combination we calculated the 
mean and CV of their connection probability distribution across all six edges. For triplets with neurons 
from at least two different cell types (n=210), we also calculated the mean across all in-degree correlation 
coefficients involving these cell types. We extended our analysis to motifs between more than three 
neurons. We computed the probabilities of motif 1 (recurrent loop) and 13 (feedforward chain) for up to 
ten neurons. For this, we randomly sampled sets of neurons per motif size (10 million for each motif) from 
the statistical ensemble of connectomes (i.e., 3 to 10) and computed the occurrence probabilities, 
respectively. We compared the respective probabilities with those computed in random networks based 
on the mean connection probability across all neurons of the sample. We computed the mean, standard 
deviation, and CV, of the connection probabilities between all cell type groupings. We assessed 
correlations between neurons by calculating the number of incoming edges 𝒏𝒏𝑬𝑬𝑫𝑫𝑬𝑬𝑬𝑬𝑫𝑫 between presynaptic 
neurons 𝒊𝒊 (including those from VPM thalamus) and postsynaptic neurons 𝒋𝒋 by summing their respective 
𝑫𝑫𝑫𝑫𝑫𝑫 across all overlapping (50 µm)³ large subvolumes 𝒙𝒙:  
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𝑛𝑛𝐸𝐸𝐷𝐷𝐸𝐸𝐸𝐸𝑃𝑃(𝑖𝑖, 𝑗𝑗) =  ∑ 𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖,𝑗𝑗,𝑥𝑥𝑘𝑘)𝑘𝑘                                       Equation (4) 

We grouped all pre- and postsynaptic neurons by their cell type identity, and summed 𝒏𝒏𝑬𝑬𝑫𝑫𝑬𝑬𝑬𝑬𝑫𝑫(𝒊𝒊, 𝒋𝒋) across 
each presynaptic population. This resulted in the mean number of connections (i.e., in-degree) each 
postsynaptic neuron 𝒋𝒋 receives from this population across networks. We computed a linear regression 
fit and Pearson's linear correlation coefficient between the in-degrees of two different presynaptic 
populations onto all neurons per postsynaptic cell type. We repeated this computation for all possible 
combinations of presynaptic cell types.  
 
Comparison with empirical data: We calculated the occurrences that two branches form zero, one, 
two, three, and (at least) four synapses for all branch pairs for a sample of 252 subvolumes of 100x100x50 
µm³ in layer 4 for comparison with the empirical data reported for layer 4 of mouse barrel cortex (13). We 
compared our predictions with 89 empirical connection probability measurements reported across a set 
of 29 studies (11, 16, 32-35, 63-85). We emulated the respective experimental conditions in the model. 
For empirical data from in vitro studies, we created twenty virtual brain slices of 300 µm thickness through 
the model (Fig. S6). The slices were shifted by 20 µm with respect to one another along the rostro-caudal 
axis. We truncated the neurites of all neurons whose somata were located within each slice (i.e., we cut 
branches at their intersection with the slice surface, and removed those branches from the model that 
became disconnected from the soma). We computed the connection probabilities between each neuron 
pair in the virtual slices as defined by Equations 1-3 with the quantity 𝑫𝑫𝑫𝑫𝑫𝑫 being the contribution of pre- 
and postsynaptic structures by the truncated pairs’ morphologies with respect to the total number of 
postsynaptic structures contributed by all neurons. We grouped the neurons as described in the 
respective studies (Table S1); i.e., by their laminar soma location and – if reported – by their cell type. 
Layer borders were defined as reported previously (25). If the recording depth underneath the slice 
surface was not reported, we restricted the comparison to pairs within the mean reported range of 
recording depths (31 µm to 130 µm). We computed the Pearson’s linear correlation coefficient between 
the empirical and predicted connection probabilities and the 95% confidence bounds for new 
observations based on a linear regression with no intercept using the Matlab built-ins fitlm and predict. 
We performed a random permutation test on the correlation coefficient by shuffling the empirical and the 
predicted connection probabilities and re-computing their correlation coefficient. We repeated this step 
100,000 times. We compared the model predictions with two empirical studies that performed connectivity 
measurements as a function of inter-somatic distance (32, 63) (Tables S2-3). Here, we grouped neurons 
additionally by their inter-somatic distance along the lateral axis (i.e., the axis running parallel to the 
slicing surface). We compared the predicted deviations of motif occurrences across L5PT triplets and 
doublets with empirical observations (16). We grouped the neurons accordingly and calculated the motif 
occurrences and ratios for ~1.7 million L5PT doublets and ~200,000 L5PT triplets across 20 slice models. 
We used the same analysis as reported by (16) and normalized the resulting triplet ratios by the doublet 
motif occurrences to avoid over- or underrepresentation of triplet motifs due to over- or 
underrepresentation of doublet motifs. We compared the motif probabilities across the number of edges 
in motifs of eight neurons in the barrel cortex model and a random network to empirical observations (32). 
For this, we randomly sampled 20,000 sets of eight L5PTs across 20 slice models. For each set of 
neurons and each number of possible edges (ranging from 0 to 56 possible edges), we computed the 
number of possible edge combinations (e.g., 1 possible combination of 0 or 56 edges, but more than 1010 
possible combinations of 10 edges). If the number of edge combinations was less than 1,000, we iterated 
over all possible combinations. If the number of combinations was larger than 1,000, we randomly 
generated 1,000 motifs that matched the number of edges. We calculated the respective (occurrence) 
probability of each edge motif in the slice models and a random network constrained by the respective 
mean connection probability. 
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