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Abstract

We study binomiality of the steady state ideals
of chemical reaction networks. Considering rate
constants as indeterminates, the concept of un-
conditional binomiality has been introduced and
an algorithm based on linear algebra has been
proposed in a recent work for reversible chem-
ical reaction networks, which has a polynomial
time complexity upper bound on the number
of species and reactions. In this article, using
a modified version of species—reaction graphs,
we present an algorithm based on graph the-
ory which performs by adding and deleting edges
and changing the labels of the edges in order to
test unconditional binomiality. We have imple-
mented our graph theoretical algorithm as well
as the linear algebra one in Maple and made ex-
periments on biochemical models. Our experi-
ments show that the performance of the graph
theoretical approach is similar to or better than
the linear algebra approach, while it is drastically
faster than Grobner basis and quantifier elimina-
tion methods.

1 Introduction

Chemical reactions are transformations between
chemical species where a creation or elimination
of species may happen with respect to changes in
time, pressure, temperature, etc. A set of chem-
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ical reactions is called a chemical reaction net-
work (CRN) and if all the reactions in a CRN are
reversible, it is called a reversible chemical reac-
tion network (RCRN). We assume mass—action
kinetics in this article. The following is an ex-
ample of an RCRN.
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with species A, B, C and D and rate constants
k12, ka1, ko3 and k3a.

Ordinary differential equations (ODE) can be
used to study the changes in the concentration
of species of a CRN. The ODEs associated to the
above CRN are

Ty =p1, p1 = —kiax122 + ko123 + kazxs
— ka2
Ty =p2, p2= —kiow1T2 + ko173
T3 =p3, p3=ki2x172 — k2123 — kagw3
+ ksoxy 22
G4 =pa, P1=2ko3x3 — 2k3om17] (1)

The ideal generated by pi,ps2.p3,psa is called
the steady state ideal of the CRN. The real posi-
tive zeros of the above ideal are called the steady
states. Finding steady states is a fundamental
problem in CRN theory. For a thorough intro-
duction to CRN theory, we refer to Feinberg’s

Book [12].



A CRN is called binomial if its steady state
ideal is binomial. Following the work in [25], in
this article we investigate binomiality over the
ring Q[ki;,z1,...,%y,], which we call uncondi-
tional binomiality. Some authors have consid-
ered binomiality of CRNs over Q(k;;)[z1, ..., Zy]
when k;; are specialised in R, e.g., in [24], which
we call conditional binomiality.

Binomial ideals and toric varieties are his-
toric topics in thermodynamic and go back to
Boltzmann and Einstein. Binomiality and toric-
ity have been widely studied in mathematics
[13, 29] [10]. Binomiality is a hard problem and
the typical approach by computing a Grobner
basis is EXPSPACE-complete [21].

In CRN theory, various articles have been
written on binomiality and toricity, e.g., by Gor-
ban et al. [I4], Grigoriev and Weber [17] and
others [9, 27]. Feinberg [I1] and Craciun, et al.
[7] have studied toric dynamical systems.

Dickenstein et al. have presented sufficient lin-
ear algebra conditions with inequalities for con-
ditional binomiality in [24], which lead to MESSI
CRNs [23]. For homogeneous ideals, it has been
shown that Dickenstein et al.’s condition is nec-
essary as well [6]. The latter has been imple-
mented in Maple and Macaulay II in [19, [18].
A geometric view towards toricity has been con-
sidered by Grigoriev et al. in [16], introducing
shifted toricity and presenting algorithms using
quantifier elimination [8, 15, B0] and Grobner
bases [3, 4] A first order logic test for toricity
has been given in [26]. In [25] unconditional bi-
nomiality has been introduced and for reversible
reactions a polynomial time algorithm, based on
a linear algebra approach, has been presented.

Graph theory has been used in the study of
CRNs, e.g., for detecting concordance and weak
monotonicity [12], 28].

The main contribution of this article is a graph
theoretical approach for testing unconditional bi-
nomiality of an RCRN. We use a modification
of species—reaction graphs and present an algo-
rithm equivalent to the linear algebra approach
presented in [25]. We have implemented the
graph theoretical algorithm as well the linear

algebra algorithm in Maple [20] and compared
them with each other and with the algorithms
based on Grobner basis and quantifier elimina-
tion presented in [16] via experiments on biolog-
ical models from the BioModels repository [5].
Our experiments showed that the graph theoret-
ical and linear algebra approaches are not only
drastically faster, but they can also handle many
cases that were not possible to compute using
Grdbner basis and quantifier elimination.

The plan of this article is as follows. In Section
we briefly review the linear algebra approach
in [25]. Section [3| presents the graph theoretical
algorithm and the proof of its correctness, which
are the main contributions of this article. Imple-
mentations of and experiments using both the
graph theoretical and linear algebra algorithms
are presented in Section @

2 Testing Unconditional Bi-
nomiality via Linear Alge-
bra

In this section we briefly review the linear al-
gebra method in [25] for testing unconditional
binomiality in RCRNs.

Definition 1 (Definition 1, [25]). Let C be a re-
versible chemical reaction network with the com-
plexes Cy, ...,Cg, let k;;,1 <@ # j < s, be
the constant rate of the reaction from C; to C;,
and let z1,---,x, be the concentrations of the
species. b;; := —k;;m; + kjym; is called the bi-
nomial associated to the reaction from C; to C;.
If there is no reaction between C; and C;, set
bij = 0.

Example 1. The binomials associated to the
reversible reactions presented in the introduction
section are b1y = —kiox129 + kor1z3 and bog =
—kosx3 + k3oz123.

Following Definition [I} one can write the cor-
responding ODEs for an RCRN as

S
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where cl(-;-c) is the difference between the stoichio-

metric coefficients of the k—th species in the re-
action C; == C;. It has been shown that if rate
constants are indeterminates then the above sum
of binomials representation is unique [25] .

Definition 2 (Definition 6, [25]). Let C be an
RCRN as in Definition [T|and assume that p;, the
generators of its steady state ideal, are written
as sum of binomials as in Equation 2] We define
the binomial coefficient matrix of C to be the
matrix whose rows are labeled by p1,...,p, and
whose columns are labeled by nonzero b;; and
(k)

the entry in row pi and column b;; is ¢;;”.

The binomial coeflicient matrix can be used to
test the unconditional binomiality of an RCRN.

Theorem 3 (Theorem 8, [25]). A RCRN is un-
conditionally binomial (i.e., assuming the rate
constants to be indeterminates) if and only if the
reduced row echelon form(RREF) of its binomial
coefficient matrixz has at most one nonzero entry
at each row.

The theorem leads to a linear algebra approach
for testing unconditional binomiality [25] Algo-
rithm 1], which is polynomial time in terms of
the size of matrix, which is the maximum of the
number of species and reactions in the RCRN.
In Section [4] we present an implementation of
the algorithm in Maple and compare it with the
other approaches.

3 A Graph Theoretical Ap-
proach

In this section we present a graph theoretical
algorithm equivalent to the linear algebra ap-
proach in [25]. A CRN can be represented as
a graph in several ways. A first idea is the
well-known complex—reaction graph of a CRN,
in which the complexes are considered as the
vertices and the reactions as the directed edges.
Another idea is species—reaction graphs, which
is used to study concordance and weakly mono-
tonicity of kinetics in a CRN [I2 Theorem
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Figure 1: Mod. Spec—Reac. Graph (Example

10.5.5, Theorem 11.5.1, Theorem 11.6.1]. We use
a modified version of the species—reaction graph,
defined only for RCRNs, for detecting uncondi-
tional binomiality. For definition and notations
on graph theory we rely on [31].

Definition 4 (Modified Species—Reaction
Graph of an RCRN). Let S be the set of species
and R the set of reactions of a given RCRN.
The modified species—reaction graph G of the
RCRN is defined as follows.

e For each species s € S, consider a vertex of
G (species vertices)

e For each reaction r € R, consider a vertex
of G(reactions vertices)

e For each reaction vertex, there exists an
undirected edge to the species vertices of the
species that appear in the reaction.

e Each edge of the graph is labeled by an
integer number which is the difference be-
tween the stoichiometric coefficients of the
species(present at one end of the edge) in
the reactant and product complexes.

Example 2. The species—reaction graph of the
following RCRN is showed in Figure

2A+B —

=— 2B.

In order to check unconditional binomiality of
an RCRN using the modified species—reaction



graph, we present an algorithm that modifies the
graph by adding and deleting the edges, and up-
dating the adge labelsso that unconditional bi-
nomiality can be easily read off from the final
graph. The algorithm simulates the procedure
described in Theorem [ from Section Bl and Al-
gorithm 1 from [25] by reducing a binomial co-
efficient matrix to its RREF in order to test un-
conditional binomiality of the network.

The idea of the algorithm is as follows. First,
we iterate through the reaction vertices, select-
ing and marking an (random) unmarked species
vertex connected to the current reaction vertex
(initially all species vertices are unmarked). If
there are no unmarked species vertices, then the
current reaction vertex is skipped. Then, we
delete all the edges incident to the current reac-
tion vertex that are different from the edge go-
ing to the marked species vertex. Furthermore,
if an edge exists from the marked species vertex
to a reaction vertex, then we add the edge from
the reaction vertex to the current species vertex.
Nevertheless, if the edges already exists, then we
update the label accordingly and if the new la-
bel is zero then we eliminate the edge. The final
graph is reached when all reaction vertices have
been visited. At the end of the algorithm, uncon-
ditional binomiality is checked by testing if each
component of the final graph contains either only
one species vertex or one species vertex and one
reaction vertex. The algorithm is fully described
below.

The functions in Algorithm are self-
explanatory. We just mention that ElimEdge
eliminates the edge connecting a species vertex
and reaction vertex, and UpdCf updates the co-
efficient of the edge that goes from a species ver-
tex to a reaction vertex (Detailed description of
the functions can be found in the Git repository

[22])).

Theorem 5. Algorithm[1] is correct, terminates
and its asymptotic worst case time complexity
can be bounded by O(max(r,n)*), where w is the
constant appearing in the complexity of matrix
multiplication, r is the number of reactions and
n s the number of species of an RCRN.

Function BinomialityTestViaGraph(S, R, G)

Input:
S: set of species of the RCRN
R: set of reactions of the RCRN
Output: UnconditionallyBinomial or
NotUnconditionallyBinomial
1 G := CreateGraph(S,R)
2 SV := GetSpeciesVertices(G)
3 RV := GetReactionVertices(G)
a foreach s € SV do
5 L SetMark (s, false)
6 foreach » € RV do
7 speciesFound := false
8 cs == null
9 rSpecies := GetConnectedSpecies (G, r)
10 foreach sr € rSpecies do
11 if IsNotMarked(sr) then
12 speciesFound := true
13 cs = sr
14 break
15 if speciesFound then
16 SetMark (cs,true)
17 foreach s’ € rSpecies do
18 if s’ # cs then
19 multX = %&;’;/;;)
20 ElimEdge(G,s’,r)
21 sReactions 1=
GetConnectedReactions (G, cs)
22 foreach r’ € sReactions do
23 if v’ # r then
24 if
AreConnected (G, s’,r’)
then
25 cf =
GetCoeff (G, cs,r’)*
multi X +
GetCoeff(G,s’,r")
26 if ¢f # 0 then
27 | UpdC£(G, s’ 7’ cf)
28 else
20 | ElimEdge(G,s’,r’)
30 else
31 cf =
GetCoeff (G, cs,r’)*
multi X
32 AddEdge (G, s’,r’, cf)
33 if IsUnconditionallyBinomial(G) then
34 ‘ R := Unconditionally Binomial
35 else
36 L R := NotUnconditionally Binomial
37 return R

Algorithm 1: Testing unconditional binomi-
ality via graphs



Proof. (Proof of the correctness) Assume
that the algorithm output is unconditionally bi-
nomial, then we must prove that the steady state
ideal of the RCRN is binomial. To do so, we
will show that the steps of the graph theoretical
Algorithm [1] are equivalent to the steps of the
linear algebra approach in [25], Algorithm 1] us-
ing Reduced Row Echelon Form (RREF) in the
binomial coefficient matrix. Based on Theorem
Algorithm 1 from [25] initially selects a pivot
in the matrix which is equivalent to marking an
unmarked species vertex that is connected to a
reaction vertex in steps 9 to 14. Reducing the
nonzero entries to zero in the column of the se-
lected pivot in the matrix is equivalent to elimi-
nating the edges from the reaction vertex to all
other species vertices that are not the one se-
lected in step 20. While performing the reduc-
tion, some entries of other rows may be affected.
The equivalent to this in Algorithm [I]is the up-
date of the coefficients in some edges in step 27
or the elimination of edges in step 29 or the ad-
dition of edges in step 32. Then, obtaining the
RREF of the matrix is equivalent to a combina-
tion of the following items:

e species vertices without edges, which are
equivalent to the zero rows and/or

e reaction(species) vertices connected to at
least one species(reaction) vertex, which are
equivalent to the final columns(rows) of the
matrix.

Finally, testing unconditional binomiality in the
matrix (via checking that it has at most one
nonzero entry at each row) is equivalent to check-
ing that the components of the final graph con-
tain either:

e only one species vertex or,

e one species vertex and one reaction vertex
connected to one another.

(Proof of termination) For the proof of ter-
mination, note that the graph has finitely many
edges and vertices. Hence, each of the loops ter-
minates at some point. The loops at lines 6 and

22 eventually terminate as they iterate through
reaction vertices which are finite and there is no
creation of such vertices anywhere. Likewise, the
loops at lines 4,10 and 17 terminate as they iter-
ate through species vertices which are also finite,
and no new vertices are created.

(Proof of the complexity bound) This
comes from the fact that each operation in the
graph theoretical algorithm corresponds to an
operation in the linear algebra approach. O

As a sidenote, for any transformed graph one
can generate a binomial coefficient matrix by
taking the species vertices as rows, reactions ver-
tices as columns and the labels of edges as entries
and vice versa, from any binomial coefficient ma-
trix one can generate a graph by applying the
reverse procedure.

Example 3. Graphs generated at each step of
Algorithm [I] for the following RCRN has been
shown in Figure [

3B=—=2C+ A ~=—2D+2B =— 3B.

The final graph has a component that contains
two species vertices and three reaction vertices
and therefore the RCRN is not unconditionally
binomial. On the other hand, Algorithm 1 in
[25] gives the following matrix which shows that
the RCRN is not unconditionally binomial since
the first and second rows contain more than one
nonzero entries.

4 Experiments

We have implemented our graph theoretical ap-
proach in Algorithm [1] in Section [3] as well as
the linear algebra approach in [25, Algorithm 1]
in Maple. Both algorithms are available in the
Git repository [22]. The performance of the im-
plementations is tested on the biomodels from
the BioModels repository [5] and the results are
compared to the experiments done on the same
biomodels using Grobner basis and quantifier
elimination in [I6]. Note that in order to be able
to test unconditional binomiality of biomodels,
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Figure 2: Algorithm [I] on Example

we have assumed reversibility with free reverse
rate constants, while in [I6] binomiality with pre-
assigned values of rate constants are tested. The
result of the experiments can be found in the Git
repository [22].

One can notice that overall, Algorithm [I] per-
formed equal or better than [25, Algorithm 1].
For a vast amount of models the difference of
the performance of those two algorithms is al-
most zero, which was predictable as the proof of
Theorem [f] suggests that the steps in the graph
theoretical algorithm and the linear algebra ap-
proach are equivalent. However, for some mod-
els (e.g., 205, 293 and 574) the graph theoreti-
cal approach is faster. It is worth noting that
these models have large binomial coefficient ma-
trices, which may suggest that for RCRN with
a large number of species and/or reactions the
graph theoretical approach can be faster. This
will be investigated further in future as the num-
ber of models with large matrices is not enough
for a through comparison at this stage.

Comparing Algorithm [T] with the Grobner ba-

sis and quantifier elimination computations in
[16] shows that for the great majority of the
cases, the graph theoretical approach is much
faster. More importantly, there are twenty
biomodels that Grébner basis and/or quantifier
elimination methods in [16] run out of time (for
a six hour limit of computations), while those
cases were handled in less than three seconds via
both graph theory and linear algebra approaches.
For six biomodels Grobner basis computations
terminate in less than six hours, however, our
graph theory algorithm as well as the linear alge-
bra approach are at least 1000 times faster than
those. For ten biomodels the graph theory (and
the linear algebra) approach is at least 500 times
faster than the computations via Grobner basis
and quantifier elimination.

An interesting observation is the quite high
number (sixty nine) of the biomodels that are
not considered in [I6] for the unclear numeric
values of their rate constants, whereas our graph
theoretical (and linear algebra) approaches on al-
most all of those cases terminated in less than a
second.

A comparison of the performance of our graph
theory algorithm with the algorithms proposed
in [24] [6] are similar to the performance of the
linear algebra algorithm in [25] vs algorithms in
[24, [6]. This is because, as it is mentioned ear-
lier in this section, the graph theoretical algo-
rithm has a similar (or better) performance to
the linear algebra algorithm in [25]. In particu-
lar, for two reversible biomodels in the database
(Biomodels 491 and 492), the graph theoretical
method is more than twice faster than the lin-
ear algebra in [25], which means that it is much
faster than the algorithms in [24] [6]. More de-
tails of some comparisons between the linear al-
gebra methods in the literature for testing un-
conditional binomiality and conditional binomi-
ality can be found in [25] Section 3].

5 Conclusion

The present work introduces an efficient graph
theoretical algorithm for testing unconditional



binomiality in an RCRN, which is different from
the conditional binomiality considered by sev-
eral other authors. The algorithm is essentially
equivalent to the linear algebra approach pre-
sented earlier for testing unconditional binomi-
ality. Implementations of the graph theoretical
algorithm as well the linear algebra approach are
done in Maple and experiments are carried on
over several biomodels.

While the graph theoretical algorithm seem to
have a slight advantage over the linear algebra
approach, the experiments reveal drastic advan-
tage of both of those methods over the existing
algorithms based on Grobner basis and quanti-
fier elimination. Additionally, many cases that
could not be handle by the Grébner basis and
quantifier elimination methods in a reasonable
time, were tested in less than few seconds via
the graph theoretical approach.
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