English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An immersive first-person navigation task for abstract knowledge acquisition

MPS-Authors
/persons/resource/persons226988

Bellmund,  Jacob L. S.
Department Psychology (Doeller), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons221475

Doeller,  Christian F.
Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Kavli Institute, Norwegian University of Science and Technology, Trondheim, Norway;
Department Psychology (Doeller), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Kuhrt_2021.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kuhrt, D., St. John, N., Bellmund, J. L. S., Kaplan, R., & Doeller, C. F. (2021). An immersive first-person navigation task for abstract knowledge acquisition. Scientific Reports, 11(1): 5612. doi:10.1038/s41598-021-84599-7.


Cite as: https://hdl.handle.net/21.11116/0000-0007-B776-6
Abstract
Advances in virtual reality (VR) technology have greatly benefited spatial navigation research. By presenting space in a controlled manner, changing aspects of the environment one at a time or manipulating the gain from different sensory inputs, the mechanisms underlying spatial behaviour can be investigated. In parallel, a growing body of evidence suggests that the processes involved in spatial navigation extend to non-spatial domains. Here, we leverage VR technology advances to test whether participants can navigate abstract knowledge. We designed a two-dimensional quantity space-presented using a head-mounted display-to test if participants can navigate abstract knowledge using a first-person perspective navigation paradigm. To investigate the effect of physical movement, we divided participants into two groups: one walking and rotating on a motion platform, the other group using a gamepad to move through the abstract space. We found that both groups learned to navigate using a first-person perspective and formed accurate representations of the abstract space. Interestingly, navigation in the quantity space resembled behavioural patterns observed in navigation studies using environments with natural visuospatial cues. Notably, both groups demonstrated similar patterns of learning. Taken together, these results imply that both self-movement and remote exploration can be used to learn the relational mapping between abstract stimuli.