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Figure 1. Our human motion transfer framework translates 2D pose skeletons (A) to photorealistic images (D) by explicitly estimating
the actor’s 2D shape (B) and internal structure of clothing (C), enabling direct deformation handling and support of high-frequency details

such as wrinkles and shadows.

Abstract

Video-based human motion transfer creates video ani-
mations of humans following a source motion. Current
methods show remarkable results for tightly-clad subjects.
However, the lack of temporally consistent handling of plau-
sible clothing dynamics, including fine and high-frequency
details, significantly limits the attainable visual quality. We
address these limitations for the first time in the literature
and present a new framework which performs high-fidelity
and temporally-consistent human motion transfer with nat-
ural pose-dependent non-rigid deformations, for several
types of loose garments. In contrast to the previous tech-
niques, we perform image generation in three subsequent
stages, synthesizing human shape, structure, and appear-
ance. Given a monocular RGB video of an actor, we train
a stack of recurrent deep neural networks that generate
these intermediate representations from 2D poses and their
temporal derivatives. Splitting the difficult motion transfer
problem into subtasks that are aware of the temporal motion
context helps us to synthesize results with plausible dynam-
ics and pose-dependent detail. It also allows artistic control
of results by manipulation of individual framework stages.
In the experimental results, we significantly outperform the
state-of-the-art in terms of video realism. Our code and
data will be made publicly available".

Inttps://graphics.tu-bs.de/publications/
kappel2020high-fidelity

1. Introduction

Human motion transfer methods, also known as perfor-
mance cloning or reenactment methods, can generate real-
istic video animations of an actor following a target mo-
tion specified by a user. This has several applications in
AR/VR and video editing. Building upon new advances in
machine learning, current motion transfer methods tackle
this challenging problem by learning a direct mapping be-
tween an actor-independent motion space and the resulting
target actor’s appearance space. These methods often re-
quire a training video of an actor performing a rich set of
motions [0, 32, 22, 20, 2, 38].

Some recent motion transfer approaches parameterize
motion as skeletal pose sequences that can be computed
from videos with off-the-shelf pose detectors [6, 32]. Others
use pre-captured template meshes or parameterized body
models to provide additional guidance to the synthesis
step [22, 20]. Acquisition of such templates [20], however,
requires an extensive structure-from-motion reconstruction
of the static target actor under constant lighting. Further-
more, existing human motion transfer approaches are likely
to produce notable temporal and spatial artifacts when ac-
tors wear loose clothing, such as dresses, skirts and hood-
ies [6, 2, 38, 22]. On such garments, they struggle to real-
istically reproduce the appearance of fine-scale details like
folds and wrinkles, as well as plausible dynamics.

In this paper, we present a new human motion transfer
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framework that generates visually plausible video anima-
tions of humans that are spatially and temporally coherent,
and show natural dynamics, even for actors wearing loose
garments (see Fig. 1). Given a single monocular video of
an actor performing a rich set of motions, we train a stack
of deep generative networks to learn a mapping from 2D
pose to a silhouette with semantic part labels, and per-pixel
appearance of the actor. We model the person’s shape as a
dense foreground silhouette mask with per-pixel labels en-
coding assignment to limbs and garments. We further en-
code the structure of wrinkles and texture patterns of gar-
ments as the orientation and strength of local image gradi-
ents. We extract this structure from images using a bank
of oriented filter kernels [26, 36]. Encoding the actor’s ap-
pearance with these explicitly decoupled intermediate rep-
resentations of silhouette and structure is key to enhance the
temporal and spatial quality of synthesized videos compris-
ing human actors in loose clothing.

Our method improves over current motion transfer ap-
proaches in terms of visual fidelity using a single RGB cam-
era. Furthermore, our representation provides an additional
level of control over the final image generation. For exam-
ple, for the same overall dynamic geometric outline (i.e.,
the same garment geometry), color and appearance, includ-
ing fold and wrinkle style, can be manipulated in a purely
image-based way. Overall, our contributions can be sum-
marized as follows: (1) A new motion transfer framework
with an emphasis on visually-plausible fine-scale deforma-
tions and dynamics in the actor’s clothing. (2) For this, we
propose to decompose the pose-to-image translation task
into better conditioned cascaded processes, where the fi-
nal appearance is conditioned on the predicted shape out-
line and internal structure of the clothing. (3) We show that
our intermediate representations do not only help to provide
more temporally coherent conditioning resulting in more
appealing image synthesis, but also allow controlling indi-
vidual aspects of the final rendering (e.g., enhance wrinkles
and transfer the clothing style).

2. Related Work

Apart from general-purpose image-translation tech-
niques which can be used for novel human view synthe-
sis [13, 42, 2, 38, 37], most specialized techniques can
be classified into still image-based [30, 33, 24, 25, 9] or
video-based [6, 1, 8, 21, 20, 22, 10]. Pix2pix [13] is one
of the most recognized general-purpose image translation
techniques in the literature. Other image-to-image transla-
tion variants include pix2pixHD [38] for processing high-
resolution images, Zhu et al. [42] for learning from un-
paired data, and Wang et al. [37] for video processing.
The work of Bansal ef al. [2] learns a mapping from un-
paired video data with a focus on processing temporal infor-
mation. While general-purpose image-to-image translation

techniques [13, 42, 2, 38, 37] can in principle be applied in
our scenario, their visual accuracy usually suffers from mul-
tiple types of artifacts such as spurious details (e.g., jitter-
ing texture details), unnatural deformations, and temporal
inconsistency, among others.

Neural human motion transfer methods are specifically
designed to generate novel views of a person observed in a
single RGB image. Still-image-based approaches [30, 33,

, 25,9, 8] focus is different from the problem we solve.
Their focus is on re-targeting a person in just a still im-
age and do not produce temporally consistent and visually
pleasing video results. Video-based human motion transfer
techniques [0, 1, 21, 20, 22, 10], however, focus on produc-
ing video results by handling temporal information. Aber-
man et al. [1] combine a skeleton representation with an
image-translation network for human performance cloning.
Additionally, they introduce an actor-independent training
branch for unpaired data to enlarge the set of representable
poses. Recently, Chan et al. [0] introduced a translation
method for human bodies using an intermediate, subject in-
dependent pose representation. Inspired by pix2pix [13],
they learn a pose-to-appearance mapping from video clips
of target identities for human performance transfer. To im-
prove temporal consistency and overall image quality, they
include a temporal discriminator and dedicated face predic-
tion network. While their method produces visually appeal-
ing results, it frequently generates unnatural and inconsis-
tent deformations and texture details for loose clothing, as
it is underconstrained from 2D pose keypoints.

Some video-based techniques aim to improve tempo-
ral and spatial fidelity by incorporating 3D information
through human body meshes [21, 20, 22, 10]. L. Liu et
al. [21, 20] presented high-quality human reenactments. As
a proxy, they use an explicitly rigged, textured and skinned
3D model of the target actor. The underlying deformation
model, however, does not allow to capture small wrinkles
and local deformations. W. Liu et al. [22] use a human
mesh recovery technique to disentangle poses from shapes
as well as a correspondence map for human appearance
transfer and novel view synthesis. They propagate input in-
formation both in the image and feature space and advocate
a warping-based module for the enhanced preservation of
the source information. Along the same lines is the work of
Guan et al. [10] for human action transfer. It shows general-
ization to different target persons without retraining, thanks
to a texture extraction method and a parametric human body
model. However, the resolution of the supported renderings
does not capture fine details and wrinkles. Textured Neu-
ral Avatars [32] can be trained for rendering a target actor
in tight clothes in arbitrary body and camera poses. Pro-
ceeding from monocular videos with extracted 3D poses
and regions of interest (human bodies), they train a convo-
lutional neural network to predict a dense UV-map under a



given target pose. Explicit decoupling of the geometry and
texture results in higher visual quality and temporal con-
sistency; yet, the overall representation is still comparably
coarse and lacks fine details as well as local pose-dependent
deformations and shading. Thus, no body renderings with
loose clothes are demonstrated. While mesh-based tech-
niques impose stronger human shape priors for higher qual-
ity results, they often assume water-tight clothing and a pre-
captured template of the examined subject [10, 21, 20, 32].
This can lead to difficulties in capturing loosely-swinging
garments or fine pose-dependent deformations. Further-
more, getting access to pre-captured templates can lead to
additional assumptions about the scene (e.g., that the target
actor has to stay still for rigid structure-from-motion and
brightness consistency for feature point matching) [21, 20].

3. Method

Our framework Gy generates photorealistic videos of a
target actor mimicking the motion of another source iden-
tity. Given only a single monocular RGB image sequence
I = (i,))_, € RVNX3xhxw containing N frames of width
w and height h showing a target actor performing a rich set
of motions, we extract an identity-independent 2D skele-
tal pose P (i,) for each frame and fit the network parame-
ters @ to approximate the inverse mapping P! back to the
original frames. Instead of performing the translation task
within a single network, our framework can be thought of as
a function composition of four generative neural networks
(Gref, Gapp, Gstr, Gshp) executed in a cascade fashion
to progressively generate higher-level representations, as il-
lustrated in Fig. 2. Next, we describe all individual frame-
work components (Secs. 3.1-3.3), before providing details
on the network architectures and implementation (Sec. 3.4).

3.1. Inputs

As inputs, our method takes the target image sequence
and a static image of the scene background b € R3*"*w
that is fused with the synthesized actor later on. From
the given image sequence, we extract actor-independent
pose representations P : R3*PX®w I x D, where
H = {0,1}9*h>xw symbolizes the set of rasterized binary
pose skeletons with C input channels, and D = RC2*hxw
is the set of temporal derivatives for a single pose consist-
ing of Cy channels. Similar to recent performance cloning
methods [6, 32], we apply an off-the-shelf pose estimator
[4, 34, 40] that predicts 2D keypoints k,, € R'27%2 for the
body (including hands and face), to generate the skeleton
h, € H by connecting adjacent keypoints via binary lines.
We further distribute C; = 9 limbs (face, head, torso, arms,
legs, hands) over multiple channels, which helps the net-
works to distinguish between overlapping or symmetrical
body parts.

However, estimating soft body deformations from a sin-
gle pose remains highly ambiguous as the states depend on
the temporal order of poses. Thus, we calculate a tempo-
ral pose context d,, € D as the first and second temporal
derivatives of k,, with respect to the image index n in x and
y direction, respectively (Ca = 2-2-9), similar to velocities
and accelerations in classical dynamics simulation:

2
K = <8kn 0 kn) ' n

on’ On?

We create rasterizations d,, from k!, in the same way as
for the pose skeletons, and linearly interpolate their val-
ues along the bones, similar to the depth representation of
Shysheya et al. [32]. During the reenactment, we apply the
same procedure to the source image sequence, but addition-
ally perform pose normalization as described by Chan et
al. [6] for inter-target appearance transfer before drawing
the skeletons. Finally, our pose conditioning P(i,) =
(hn, dy) is provided to our framework as the concatenation
of the framewise pose skeleton and temporal context. We
find that the described procedure results in a compact, yet
expressive pose representation, while slightly outperform-
ing a simple sliding window approach in our experiments.

3.2. Garment Conditioning

In our framework, we use two dedicated networks that
pre-estimate the actor’s shape and the internal gradient
structure of clothing in 2D space to improve the consistent
modeling of deforming garments and the fall of the folds.

3.2.1 Shape Estimator

As a first step, our shape estimator G'gpp transforms the
provided pose representations P into the actor’s current sil-
houette

Sy = Gshp(P(in),55_1), 2)

n n—1

where §f € RI*"X ig represented as semantic body-part
segmentation with j labels. We extract a final segmentation
mask 3,, € ([N]7)"*% from our network by extracting the
indices of maximum elements per pixel over the channel
dimension.

As knowledge about the preceding shape is necessary to
achieve temporal coherence of deforming garments, we de-
sign our networks in a recurrent fashion where each exe-
cution is conditioned on the previous output. Thus, Gspp
is tasked to estimate a delta in the observed shape based
on the current pose and the contextual temporal derivatives.
The resulting segmentation mask is a significant prior for
the final appearance network to produce visually-plausible
renderings, and it is further used to segment the actor and
parts of their clothing in later stages. For training, we use
the human parsing method of Li er al. [18] trained on the
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Figure 2. Framework Overview: Our framework synthesizes views of humans from a static background image and a pose sequence
extracted from the target (training) or source (testing) image sequence. Therefore, we apply two consecutive networks to explicitly pre-
estimate human body parsing (yellow) and the internal gradient structure of clothing (green). The resulting outputs are used to condition
final image generation, which is separated into the foreground (blue) and global (red) components to handle loose clothing in a temporally
coherent way. Dashed lines indicate recurrent networks that feedback the last output to generate the next prediction.

ATR dataset [19] to extract pseudo-ground-truth segmen-
tation maps S = (s,)r_; from I. This dataset provides
j = 18 labels for all body limbs and common clothing, en-
abling our method to handle various clothing styles includ-
ing shirts, pants, skirts, dresses and scarfs. We formulate
our shape training loss Lgpy, as the cross-entropy between
the network prediction and the training label:

Lanp =Enwnlog [ > exp(35() | —55(s), 3
J

where 57 (j) is the output channel for a given label j.

3.2.2 Structure Estimator

While our shape representation is sufficient prior to infer the
appearance of solid body parts like arms and faces, it does
not provide information about wrinkles and folds within the
clothing, that are needed to generate temporally consistent
shading and texture patterns. Thus, we apply a second re-
current network G g4, that estimates the internal gradient
structure w,, € R2*"X for clothing regions as indicated
by the segmentation map §,,:

u~}n = Gst’r‘(P(in)7 §n,’ll~)n71). (4)

We model the clothing structure as the pixelwise gradient
direction and strength extracted from the responses of 32

oriented Gabor filters, similar to recent work on neural hair
synthesis [36]. However, as a floating garment comprises
sparser gradients than human hair, we do not only use the
maximum filter responses to smooth the angle field, but ap-
pend a normalized version to the final gradient directions
to model the probability of a wrinkle or texture change at a
specific location, as visualized in Fig. 1 (color and satura-
tion encode the gradient direction and the strength, respec-
tively). We train the structure estimator using the L, dis-
tance between estimated w,, and ground-truth w,, structure
using a mask for garment labels extracted from s,,:

Lstr = Ean Xc(gn) |1Dn - wn|7 (5)

where C denotes the set of segmentation labels correspond-
ing to the actor’s clothing, and ¢ is the indicator function:

1, ifzedC,
xc(z) = (6)
0, else.

3.3. Image Synthesis

The second stage of our framework synthesizes the fi-
nal output image based on the provided pose and garment
conditionings. Again, we use two dedicated networks to in-
dependently generated the actor in the foreground and fuse
it with the provided background image.



3.3.1 Appearance Network

Our first rendering network Ggpp takes provided pose as
well as the pre-estimated shape S and internal clothing
structure W to synthesize the actor’s appearance f,, €
R3xhxw.

fn = Gapp(P(Z.n)a gna ﬁ)n) (7)

We train the appearance module using a combination of L
distance and perceptual reconstruction loss [14]. Again, an
indicator function x g is used to mask the foreground pixels
that are not assigned to the background label 5:

0 ifx =
m(w)z{’ iz =, ®)

1, else.

Thus, our appearance 10ss Lqpp reads

Lapp = EnrrXn(n) (Mlfa = inl + Mpl0(Fa) = (i)l )

©)
where ¢(-) denotes feature maps extracted from different
layers of a pre-trained VGG19 network [35], and A, A, are
free hyperparameters for weighting.

3.3.2 Refinement Network

Finally, we apply a shallow refinement network to fuse the
foreground prediction with the provided scene background.
For this, we first paste the generated foreground f,, onto the
static background image b using the masking function (8):

i = (xB(n) fo) + (L= x5(5n))-b).  (10)

Then, given foreground-background composition 5;2 and ac-
tor segmentation s,, our refinement network Gr.s per-
forms simple transition smoothing and shadow generation
to produce the final output image i,,:

in = Gres(il, 5n). (11)

We use a combination of structural and perceptual losses
similar to our Lgpp (9), but over the entire image plane:

Lref - ]EnNN Arﬁn - Zn| + )\p|¢(5n) - ¢('Ln)| (12)

In contrast to recent pose-to-video translation methods
[1, 6], we do not apply an adversarial loss for our genera-
tor network as we do not want to hallucinate high frequency
details in the clothing based on statistics from the data se-
quence I, but rather encourage the network to stick to the
predicted structure layout.

3.4. Implementation Details

We implement our framework in Python using PyTorch
1.5 [27]. We intend to release the full implementation, in-
cluding data sequences to reproduce the presented results.

Our four translation networks employ the local Pix2PixHD
[38] generator architecture; we halve the number of residual
blocks in our refinement network G ¢ due to the similarity
of the domains. We optimize our final loss

Ltotal = A1-Lseg + >\2Lst7' + )\SLapp + >\4L7‘ef (13)

with hyperparameters (A\; = 0.5,A234 = 1.0,\, =
0.1,A, = 0.9) in a sequential way for 30 epochs us-
ing Adam optimization [16] (momentum 3; = 0.999 and
B2 = 0.5). On a single Quadro RTX 8000 GPU, train-
ing converges after approximately four days for N ~ 23K
frames, while processing a single testing-frame takes ~280
milliseconds at a resolution of 512 x 512 pixels.

4. Experiments

We compare our framework to several state-of-the-art
approaches with subjects wearing different types of loose
clothing with rich wrinkling and textures (Sec. 4.2), con-
duct a user study (Sec. 4.3) and perform an ablation study
for individual framework stages (Sec. 4.4). Since our results
improve upon the temporal consistency and fine texture de-
tails, they are best viewed in our supplementary video.

4.1. Datasets, Methods and Metrics

Existing datasets for the evaluation of recent appearance
transfer methods usually comprise actors in monochromatic
body-tight clothing, as loose garments are a frequent cause
of visual artifacts and temporal irregularities. For our exper-
iments, we capture new sequences of three subjects, each in
up to three clothing styles with a length of seven to ten min-
utes at a resolution of 512 x 512 pixels, and select the last
5% of the frames for testing. Our dataset features various
clothing styles including jeans, loose t-shirts, hoodies, and
two dresses with rich wrinkle and texture patterns.

We compare our framework to current video-based
appearance transfer approaches, i.e., a general-purpose
pix2pixHD network [38] that synthesizes an image from a
rendering of the extracted pose, the Everybody-Dance-Now
(EDN) method by Chan et al. [6], which adds a tempo-
ral discriminator and specialized face GAN, and Recycle-
GAN [2] that performs direct unsupervised retargeting be-
tween two videos. Additionally, we test our approach on
the dataset of Liu et al. [20] comprising various actors in
tight clothes. All results were generated using either the
official implementations or data directly provided by the
authors. Moreover, we have explored pose editing using
NHRR [30] and Liquid Warping GAN [22] but the results
showed poor visual quality on our sequences. Kindly note
that these methods predict pixel correspondences to the
SMPL mesh [23] using DensePose [ 1], and hence strug-
gle with handling loose clothes. We provide exemplary re-
sults showing limitations of mesh-based approaches in our
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Figure 3. Exemplary results of our motion transfer framework. The first column of each block illustrates the driving sequence, while
the last one shows the final result. They anchor the outputs for the different intermediate networks (shape, structure, and appearance). For
clothing gradient structure, we encode the direction and confidence as color and saturation, respectively, similar to optical flow visualization.

supplementary material. Furthermore, the code of Textured
Neural Avatars [32] is, unfortunately, not publicly available,
and we were not able to obtain results on our sequences di-
rectly from the authors. For quantitative analysis, we uti-
lize the widely-used SSIM [39], LPIPS [41] and FID [12]
metrics that assess the pixel-space structural similarity, per-
ceptual distance based on neural network features, and the
Fréchet distance between two data collections, respectively.

4.2. Results and Comparisons

We show exemplary results of every network component
in Fig. 3. As can be seen, our framework is capable of
estimating pronounced body part segmentations, the corre-
sponding wrinkle patterns and resulting target actor appear-
ance for all types of complex clothing in our dataset, in-
dependent of the source actor’s posture or appearance. We
further compare our method to recent state-of-the-art ap-
proaches in Fig. 4. Therefore, we use a bidirectional reen-
actment scenario with two different types of clothing, i.e., a
loose monochromatic t-shirt with jeans, and a dress featur-
ing a delicate arrangement of folds. While all of the tested
methods are able to produce strong wrinkle patterns, our
framework manages to achieve the most plausible temporal
and spatial results due to the explicit handling of deform-
ing garments. Please note that the temporal consistency
can only be evaluated by watching our supplemental video.
Also, we provide results and comparisons on the video se-
quences of Liu et al. [20] in our supplemental material.

We further assess the visual quality by numerically com-
paring our method to related pose-to-video translation ap-
proaches in Table 1. To calculate the metrics, we employ

Driving Motion  Pix2PixHD EDN Recycle-GAN Ours

Figure 4. Comparison to state-of-the-art motion transfer meth-
ods. We compare our method against pix2pixHD [38], EDN [0]
and Recycle-GAN [2] on two sequences of an actress in a loose
t-shirt and a dress. Please note that results of Recycle-GAN are
only available at half of the original resolution, as training on full
resolution produced highly implausible results.

the target actor sequences shown in the first column of
Fig. 4 using the corresponding self-reenactment scenarios,
where ground-truth images are available from the testing
sets. Recycle-GAN [2] focuses on learning from unpaired
data and is upper-bounded by paired translation techniques
when trained on paired data. Hence, we exclude it from
our quantitative analysis. Our method outperforms the cur-
rent state of the art according to the SSIM and LPIPS met-
rics, which perform a direct structural and perceptual com-



Metric pix2pixHD [38] EdN [60] ours
SSIM [39] D 0.9288 0.9043 0.9358
LPIPS [41] 1 0.0401 0.0303 0.0289
FID [12] 1 21.7724 13.5421 17.9573

Table 1. Quantitative comparison to related methods. We assess
the quantitative quality according to SSIM, LPIPS and FID metrics
in a self-reenactment scenario.

parison on a per-frame basis, indicating that the physical
behaviour of clothing synthesized by our method better re-
flects ground truth. On the other hand, FID states that the
pixel distribution generated by EDN is closer to the training
set, presumably due to strong adversarial losses.

4.3. Perceptual Experiment

We find that quantitative metrics do not reveal all aspects
of the visual video quality, and complement our evaluation
by two user studies in which videos are graded according to
human perception. We compare our method against recent
image-based techniques using the video sequences shown
in Fig. 4, including wide clothes with significant deforma-
tions. We also conduct an additional experiment on the
dataset of Liu et al. [20] to evaluate on videos of actors
in tight clothes. In both studies, we show the participants
video reenactments of ~20 seconds in length with results
of two methods at a time and ask them which video looks
the most realistic. To measure both the performance of each
method and the agreement between participants, we fol-
low the linked-paired comparison design [7]. We rank each
method according to the number of times they are preferred
over the rest and perform a significance test of the votes
differences [31, 5]. The total number of votes a method re-
ceived in each experiment is displayed in Table 2. As can
be seen, our method significantly outperforms recent image-
based pose-to-video-translation methods in terms of video
realism for the clothing and is even preferred over Recycle-
GAN, which uses a richer input domain for motion transfer.
Our second experiment on the dataset of Liu et al. [20] fur-
ther confirms that our monocular video-based approach also

Exp. | Method Input #Votes | Ranking
Ours Video (Pose) 257 1
1 Recycle-GAN [2] | Video (RGB) 194 2
EDN [6] Video (Pose) 143 3
pix2pixHD [38] |Video (Pose) 54 4
Liu [20] Textured mesh + Video (Pose)| 103 1
2 |Ours Video (Pose) 76 2
EDN [6] Video (Pose) 13 3

Table 2. Perceptual ranking of the compared methods for our
user studies. Experiment 1 was conducted online with 54 partic-
ipants with various backgrounds, while experiment 2 was in-situ
with 16 CG/CV experts. The rankings are statistically significant.
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Figure 5. Ablation study evaluating the influence of our frame-
work stages in a self-reenactment scenario. For an exemplary
ground-truth frame, we show a plain appearance network condi-
tioned on pose only (P), pose and shape (PS), and our full frame-
work without (PSS-R) and with (PSS/ours) temporal recurrence.

achieves considerably more realistic results than the related
EDN method when exchanging motion between actors in
tight clothing. However, in that scenario, image-based ap-
proaches cannot quite reach the quality of priors provided
by expensively recorded template meshes, which excel for
tight and static shapes (Liu et al. [20]). We provide more
details on the experimental setup and evaluation in our sup-
plementary material.

4.4. Ablation Study

We next conduct an ablation study to assess the influence
of different framework components. Therefore, we retrain
our method on one of our most challenging sequences fea-
turing a swinging dress with complicated texture patterns,
while incrementally dropping the garment conditioning net-
works. In our study, we consider four framework variations,
i.e., the plain appearance network without additional in-
puts (P), the appearance conditioned on our shape estimates
(PS) and our full framework including the internal structure
(PSS/ours); additionally, we examine the effect of remov-
ing the recurrent back-feeding from all network modules
(PSS-R). As shown in Fig. 5, we find that every component
contributes to improving the final image quality.

While our plain pix2pix generator fails to produce sharp
outlines of body parts and garments (P), providing a pre-
estimated shape mask results in distinct transitions and
more realistically-floating garments (PS). Adding informa-
tion about the internal structure of the clothing further en-
hances the generation of high-frequency details within the
given shape (PSS). This effect is also observable in quan-
titative evaluation using structural and perceptive metrics,
as shown in Table 3. Furthermore, we observe that drop-
ping the temporal back-feeding of previous network outputs
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Figure 6. Applications: Our approach allows novel video editing through style transfer and wrinkle intensity manipulation. For style
transfer, we use the source shape and/or structure while keeping the target appearance.

(PSS-R)—while achieving similar quality on a per-frame
basis— significantly decreases temporal consistency, as can
be seen in our supplemental video.

5. Application: Material Editing

On top of high-fidelity motion transfer, our framework
offers an additional level of control over the image genera-
tion, as it incorporates explicit specifications of the actor’s
shape and garment structure. This enables editing and ma-
nipulating the generated videos. For actors wearing simi-
lar clothing, pseudo-ground-truth segmentation or structure
maps extracted from the source sequence can significantly
improve the final image quality and temporal consistency.
Alternatively, after training multiple subjects wearing cloth-
ing of the similar type, garment conditioning networks can
be interchanged to generate clothing with new combinations
of shape, structure and appearance. Furthermore, manually-
edited or completely handcrafted shape and structure pat-
terns can be used to influence the physical behavior of cloth-
ing. Fig. 6 shows two examples of automatic and manual
material and appearance editing. We change the style of the
actress’s dress and the actor’s top while keeping the origi-
nal appearance by applying the shape (left), or both shape
and structure, from the source sequence and feed it to the
appearance network (middle). Also, magnifying the second
channel of structure estimate (gradient confidence map) can
be used to magnify or minify the fall of the folds during

Metric P PS PSS-R PSS (ours)
SSIM [39] 71 | 0.8959 0.9045 0.9045 0.9046
LPIPS [41] | | 0.044 0.036 0.036 0.035

FID [12] | 15.046 12.282 12.925 12.176

Table 3. Quantitative ablation analysis according to SSIM,
LPIPS and FID metrics. We compare different versions of our
framework in a self-reenactment scenario. The numbers indicate
that every component contributes a structural and perceptual im-
provement to the synthesized output.

reenactment (right). While material property exchange is
still currently limited to garments of comparable type or tex-
ture, the proposed approach is the first neural motion trans-
fer method enabling controllable clothing composition for
videos, which can pave the way for many applications in
future (such as virtual try-on).

6. Discussion and Limitations

We have demonstrated high-fidelity results for multiple
challenging human appearances with various deformation
patterns of garments, and were able to manipulate several
properties of the clothing during the reenactment. The abla-
tive study has shown that all stages of our framework are
justified and contribute to the final result. Although our
method is a step forward in the neural rendering of humans,
it has limitations and can provoke further research. First,
the space of depictable poses is currently determined by the
composition and length of the training sequences. Next, in-
accuracies and missing 3D information from the pose key-
point estimator can result in incorrect occlusion maps and
temporal behavior of garments. At the same time, the prop-
agation of errors in the estimated human body parsing can
lead to missing or disconnected body parts and unnatural
transitions between the frames. These aspects can be im-
proved in future by incorporating stronger constraints on
the shape and body structure and enlarging the pose space
by training on unpaired data.

7. Conclusion

We introduced a novel multi-stage framework for high-
fidelity human motion transfer from monocular video. The
tests showed that our method can perform qualitatively ap-
pealing motion transfer for different clothes, improving
over previous image-based techniques in visual quality. The
performance is also confirmed by a comprehensive percep-
tual study, indicating superior temporal and visual qual-
ity compared to current image-based state-of-the-art motion



transfer approaches. All in all, we conclude that explicitly
handling deformations of clothing in a temporally-coherent
way is crucial for high-fidelity neural human motion trans-

fer.
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High-Fidelity Neural Human Motion Transfer from Monocular Video
— Supplementary Material —

In this appendix, we provide more details on the methods
examined in the main paper along with additional results for
the presented framework.

A. Garment Conditioning Representation and
Visualization

Our current implementation uses the self-correction for
human parsing method by Li ef al. [ 18], that was trained on
the ATR dataset [19]. Thus, our method currently supports
a total of eighteen different labels (namely background, hat,
hair, sunglasses, upper clothes, skirt, pants, dress, belt, left
shoe, right shoe, face, left leg, right leg, left arm, right arm,
bag and scarf). To generate training data and visualize the
results, we use the official code of [18] provided by the au-
thors?. Naturally, our framework is compatible with arbi-
trary human parsing methods, and can easily be modified to
support the latest state-of-the-art approaches as well as new
datasets including labels for different types of clothing.

To estimate the internal gradient structure, we adopt the
procedure described by Tan et al. [36] for conditioning hair
structure. More precisely, we extract ground-truth annota-
tions from the video sequence using a set of 32 oriented
Gabor-filters K¢ with © = [0, 7) being the discrete angle
values. By applying the filter stack to every pixel, we extract
a dense orientation o,, and confidence c,, map for image i,
by calculating the angle and amplitude of the maximum fil-
ter response as:

on, =argmax | (Ko ®i,) |,
©

(14)
Cn :mgx| (Ko ®14) |,

where ® denotes the convolution operator. We then follow
their procedure of converting o,, to a continuous represen-
tation, and Gaussian-filter the orientation map based on the
local confidence ¢,, to reduce noise. However, in contrast to
hair, which comprises a dense structure field by nature, the
local gradient structure of clothing is usually sparse (e.g.,
tight monochromatic cloth) and highly dependent on the
texture and material. Thus, unlike the original implemen-
tation that discards confidence after filtering, we normal-
ize ¢, in the range [0,1], and append it to the orientation
map, which results in our final two-channel clothing struc-
ture representation w,, = (o, cy,). Thus, intuitively, the
first channel of our clothing structure tells the appearance
network in which direction a gradient (e.g., produced by a

Zhttps://github.com/PeikelLi/Self-Correction-
Human-Parsing
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Figure I. Example of our garment structure visualization for one
of the dresses shown in Fig. 1 from the main paper. We model the
orientation as hue in HSV-color space, while each pixel’s satura-
tion corresponds to the local gradient confidence.

wrinkle) points, while the second channel models the con-
fidence and strength of texture changes for each individual
pixel. In our figures and supplemental video, we visualize
the structure representation w,, similar to optical flow vec-
tors, where the orientation and length (confidence) are mod-
eled as hue and saturation in HSV-color space, respectively,
as shown in Fig. I.

B. Perceptual Experiment

In our perceptual experiments, we aim at comparing the
reenacting results from an observer’s perspective, which re-
quires multiple stimuli with differences between them often
being quite subtle. More importantly, the quality of the re-
sults that we aim to measure cannot be represented on a
linear scale [15], which advises against ranking the meth-
ods. Therefore, we chose the paired comparisons technique,
where the participants are shown two reenacted videos at
a time, side by side, and are asked to choose the one that
better fits the task question. We thus performed a two-
alternatives-forced-choice (2AFC) preference task assess-
ing reenactments by two compared methods for a given
video.

B.1. Stimuli

The First Experiment — Our Dataset. As described
in the main paper, we trained our method along with
other three state-of-the-art reenacting techniques (EDN [6],
pix2pixHD [38], and Recycle-GAN [2]) on some sequences
of our data set (see the top part of Fig. II).


https://github.com/PeikeLi/Self-Correction-Human-Parsing
https://github.com/PeikeLi/Self-Correction-Human-Parsing

Pix2PixIID

Driving Motion

Recycle-GAN

Driving Motion EDN

Figure II. Exemplary frames from the video sequences used as
stimuli for our perceptual experiments. Top: Exp. I conducted on
our dataset. Bottom: Exp. 2 on the dataset of Liu et al. [20].

The Second Experiment — Liu ef al.’s Dataset. We also
evaluated our technique on the dataset of Liu et al. [20] (see
the second bottom part of Fig. II). Here, we trained two of
the compared methods (EDN [6] and ours) on this dataset.
Furthermore, we used the results of the reenactment ap-
proach of Liu et al. that was provided by the authors. Note
we can not replicate their method on any other dataset as it
requires a sophisticated capturing pipeline using a monocu-
lar structure-from-motion reconstruction of the target actor,
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including delicate pre-processing and mesh fitting. For fair
comparison, all results were down-sampled to the resolu-
tion given by Liu et al. (256x256). Given the set of videos
and the three tested methods (Liu [20], EDN [6] and ours),
the total number of possible paired comparisons reduces to
twelve, making it well suitable for a single participant to
perform a complete test while maintaining the necessary
level of attention.

B.2. Experimental Procedure

The First Experiment. The study was hosted online, and
a total of 54 subjects from various computer science back-
grounds participated in the study. Before starting the exper-
iment, participants were presented a short text describing
the task and the procedure. The subjects were exposed to
several video pairs that play side by side. Each video in a
pair was produced by a different technique, and the order
of pairing between methods, position on the screen and or-
der of display of the pairs was fully randomized. For each
video pair, the subjects were asked to record their answers
to two questions: Q1 ("Which video looks more realistic?”)
and Q2 (”Which video shows more natural motion and de-
formation of the clothes?”). The study included a total of
twelve video pairs and took around ten minutes to complete.

The Second Experiment. The second experiment was
conducted in-situ. A total of 16 people (graphics and vision
experts) participated (age range 22-40 years; four women).
The mean time to complete the experiment was nine min-
utes. Before the experiment began, each participant was
informed about the structure and flow of the experiment—
but not of the research question behind it—and was given
the option to ask any further questions. The participants
performed the experiment one at a time. Before the exper-
imenter left the room, the participant was asked to sit in a
semi-dark room roughly 50 cm in front of a 24” LED mon-
itor (with the resolution of 1920 x 1080). The respondents
then were exposed to a screen describing in detail the in-
structions and were given another chance to ask questions.
The experiment was controlled by Psychophysics toolbox,
version 3.0.15 (PTB-3) [3, 29, 17]. At the start of each trial,
participants were presented with two videos side by side.
Participants were explicitly instructed to focus their atten-
tion on the garments and ignore any potential artifact not
concerning the clothes. The participants were able to en-
ter their answers by clicking on the desired video and also
to replay each video individually as many times as desired;
once a response was entered, the next trial started. Both the
order of the stimuli, their pairing and their position on the
screen (left vs right) were fully randomized, with each par-
ticipant receiving a different random order. Each participant
reported normal or corrected-to-normal vision.



B.3. Analysis

To measure not only the performance of each method
but the agreement between participants, we followed the
linked-paired comparison design [7]. Thus, we rank meth-
ods according to the number of times they are preferred
over the other methods. The total number of votes a
method received is displayed in Table D for the first ex-
periment (“Exp. I”’) and Table E for the second experiment
(“Exp. 27).

Exp. 1|Method Input #Votes | Ranking
Ours Video (Pose) | 257 1
Q1 Recycle-GAN [2] | Video (RGB)| 194 2
EDN [6] Video (Pose) | 143 3
pix2pixHD [38] |Video (Pose) | 54 4
Ours Video (Pose) | 243 1
Q Recycle-GAN [2] | Video (RGB)| 205 2
EDN [6] Video (Pose) | 135 3
pix2pixHD [38] |Video (Pose) | 65 4

Table D. Exp. I: Perceptual ranking of the compared methods
for our online experiment with 54 participants with various back-
grounds for each of the questions (Q1 and Q2). All the rankings
are statistically significant.

Exp. 2|Method |Input #Votes | Ranking
Liu [20] | Textured mesh + Video (Pose)| 103 1
Ours Video (Pose) 76 2
EDN [6]| Video (Pose) 13 3

Table E. Exp. 2: Perceptual ranking of the compared methods on
the in-situ user-study with 16 CG/CV experts. The rankings are
statistically significant. This table is already included in the main
paper at the bottom of Table 2 and is repeated here for conve-
nience.

To analyze the true meaning of this ranking, we perform
a significance test of the score differences. Towards that
goal, we need to find a value R’ for which the variance-
normalized range of scores within each group is lower or
equal to that value. This means that we need to compute
R’ such that P[R > R’] < «, where « is the confidence
level, which we set to 0.01. Then, following the work of
David [7] we can derive R’ from

2R — 0.5
P(W, >0 7)), 15
(t7 m ) ( )

where ¢ is the number of methods to be compared, m is the
number of participants and W, ., has been previously tabu-
lated by Pearson and Hartley [28]. In our case, Wy .01 =
4.405 for Exp. 1 (Table D) and W3 .01 = 4.125 for Exp. 2
(Table E). This leads us to the values R’Ew1 = 32.62001 for
the first experiment and R, , = 14.53942 for the second
experiment. Since all the differences between the ranked

groups are bigger than the obtained R’, we can conclude
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that they are all statistically significant. Thus, the rank-
ing creates four distinguishable groups in Exp. I for both
Q1 (”Which video looks more realistic?”) and Q2 (”Which
video shows more natural motion and deformation of the
clothes?”). Furthermore, the ranking creates three distin-
guishable positions in Exp. 2 (”Which video displays more
realistic clothes? (movement/deformations/appearance)”).

Video Attributes. Additionally, to gain more insight on
the reasons to choose one result over another, in the exper-
iment conducted in-situ with CG/CV experts, the partici-
pants were occasionally asked to pick one or several items
out of a proposed set of reasons for not choosing a result.
This question appeared randomly with the probability of
1/3, i.e., the frequency we found suitable in order to main-
tain the participant’s attention without making the test te-
dious. Table F shows the complete list of reasons and how
often they were selected as a reason for rejecting a given
result. As can be derived from the table, the most frequent
reasons to discard a method were artifacts and implausible
deformations of the clothing.

This is the video you did not choose in the last % cases
comparison. Please specify which of the following reason
bothers you in this video. You may check multiple options. | selected
Unrealistic wrinkles. 37.5%
Unrealistic clothes’ texture. 23.44%
Implausible deformations of the clothing. 59.63%
Temporal inconsistencies in the clothes’ movement. 20.31%
Other artifacts in clothing. 45.31%
The other result was simply more appealing. 10.94%
Other. 3.21%

Table F. Questionnaire displayed after rejecting a result. The par-
ticipant was able to choose as many answers as desired. The sec-
ond column shows the frequency (%) for reporting one type of ar-
tifact when the questionnaire appeared after rejecting a result (four
times per participant). These numbers indicate the most frequent
reasons to discard a method, and thus, the most important features
for participants.

C. Training Details

Our framework G/ consist of four trainable components,
namely Gref, Gapp, Gstr, Gsnp. For every network,
we adapt the local Pix2PixHD [38] generator architecture,
resulting in memory consumption and training times of
~3.5x the reported values for the original implementa-
tion (Gres uses a reduced amount of intermediate blocks
due to the simplicity of the learned mapping). However,
to enable training on current graphics hardware, every in-
stance is currently trained individually using annotations
and losses described in the main document, which allows
for stepwise processing on consumer-grade devices, requir-
ing ~5GB VRAM and ~280 milliseconds per frame. To



achieve temporal smoothness in our garment conditioning
modules—and, thus, temporally consistent renderings of
body parts and clothing—we condition the shape and struc-
ture predictions on the previous outputs of the networks.
Intuitively, this information is crucial to estimate the non-
rigid deformations within clothing, as they do not only de-
pend on forces extracted from the change of pose, but also
the current state of the dynamic system. Thus, instead of
computing two consecutive frames and applying a tempo-
ral discriminator, we process the videos in an entirely se-
quential manner, which results in temporally more stable
results, as shown in our supplemental video. Still, we cut
the gradient to previous outputs, as we find that truncated
temporal backpropagation significantly increases memory
consumption and training times, without contributing much
to the final quality. To further stabilize initial training, we
feedback pseudo-ground-truth annotations during the first
epoch, which encourages the network to expect reliable es-
timates of previous clothing deformations. We further syn-
thesize the first frame of every video based on a black image
(as no predecessor is available) and iteratively execute our
networks on the initial input pose until the output converges
towards a reasonable estimate (in practice, this takes around
20-30 iterations).
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