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HDR Denoising and Deblurring by Learning Spatio-temporal Distortion Models
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Abstract

We seek to reconstruct sharp and noise-free high-dynamic
range (HDR) video from a dual-exposure sensor that records
different low-dynamic range (LDR) information in differ-
ent pixel columns: Odd columns provide low-exposure,
sharp, but noisy information; even columns complement
this with less noisy, high-exposure, but motion-blurred
data. Previous LDR work learns to deblur and denoise
(DISTORTED— CLEAN) supervised by pairs of CLEAN and
DISTORTED images. Regrettably, capturing DISTORTED
sensor readings is time-consuming, as well, there is a lack
of CLEAN HDR videos. We suggest a method to overcome
those two limitations. First, we learn a different function
instead: CLEAN—DISTORTED, which generates samples
containing correlated pixel noise, and row and column noise,
as well as motion blur from a low number of CLEAN sensor
readings. Second, as there is not enough CLEAN HDR video
available, we devise a method to learn from LDR video in-
stead. Our approach compares favorably to several strong
baselines, and can boost existing methods when they are
re-trained on our data. Combined with spatial and temporal
super-resolution, it enables applications such as re-lighting
with low noise or blur.

1. Introduction

Common cameras only capture a limited range of lumi-
nance values (LDR), while many display and editing tasks
would greatly benefit from capturing a higher range of lu-
minance values (HDR) [81]. Modern sensors, such as some
CMOSIS CMYV and Sony IMX sensors, allow one to config-
ure different levels of exposure for different spatial patterns
[17, 35]. This allows HDR by spatial interleaving of differ-
ent exposures across the sensor. The challenge is to combine
different exposures into a coherent natural image.

Let us consider, without loss of generality, a case where
every even row column is captured with a low exposure and
every odd row column with a high exposure. This leads to
three specific distortions: First, pixel noise inside the image
does not follow a single model anymore, but is now strongly
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Figure 1. Our method maps sensor data capturing low-exposure
LDR data with noise and high-exposure LDR data with blur into a
clean HDR image.

correlated with the column. Different exposures lead to
different noise, one of the reasons why different exposures
are being used in the first place: the low exposures have
high noise, but are not clamped, while the high exposures
have less noise but suffer from clamping. Second, such
cameras suffer from increased levels of row/column noise,
so orthogonal to the exposure layout, entire rows/columns
of pixels change coherently, and differently for different
exposures. Third, and most different from other sensors,
the different exposure level also leads to different forms
of motion blur (MB). Not only does MB lead to spatially
varying blur, but this blur rapidly alternates between odd
and even columns. Low exposures have low MB, while
high exposures suffer from strong MB. In summary, these
distortions do not follow any common noise or motion blur
model, and hence no method making such assumptions is
applicable to HDR from dual exposure.

Removing image distortions (deblurring and denoising)
is now typically solved [109, 63, 72, 96] by learning a deep
neural network (NN) such as a convolutional neural network
(CNN) to implement DISTORTED—CLEAN. In our case,
this is difficult, as capturing DISTORTED sensor readings is
time-consuming, and there is also a lack of CLEAN HDR
videos. We suggest a method to overcome both limitations.

Addressing the first, we learn a different function instead:
CLEAN—DISTORTED, which generates samples containing
correlated pixel noise, row and column noise, as well as



motion blur from CLEAN sensor readings. Previous work has
made simplifying assumptions, such as Gaussian or Poisson
noise, none of which apply to our problem. We suggest a
non-parametric noise model that is expressive, yet can be
trained on a low number of CLEAN-DISTORTED pairs.

Second, as there are not enough CLEAN samples which
require HDR video, we devise a method to supervise from
LDR video instead. Unfortunately, this LDR video does
not have the same type of MB as found in the HDR sensor
readings. Hence, we use high-speed LDR video to simulate
column-alternating MB.

Our evaluation shows that this synthetic training data
drives our network, resulting in state-of-the-art HDR images,
but can also boost existing methods, including vanilla non-
learned denoisers like BM3D, when re-tuned. Applications
span different exposure ratios, where we show re-lighting in
a VR/AR context as a typical HDR application.

2. Previous work

In this section, we discuss previous approaches to sin-
gle (Sec. 2.1), multiple (Sec. 2.2), and in particular HDR
(Sec. 2.3) image denoising and deblurring.

2.1. Single-image denoising and deblurring

Noise modeling Classic solutions involve fitting Gaussian
and Poisson [33, 59] or more involved [77] distributions,
sometimes under extreme conditions [10], to many pairs of
CLEAN and DISTORTED images. While parametric noise
models routinely are used as mathematically tractable priors,
we use more expressive non-parametric models, as all we
need is to generate distorted training data.

Denoising Denoising has traditionally been performed di-
rectly on noisy images using state-of-the-art algorithms such
as BM3D [ 18], non-local means [6], and Nuclear Norms [28].
Most deep denoisers [ 10, s ,7,63, 11,29, 54, 37] are
simply trained on pairs of noisy and clean images, while
some work is trained without pairs [98, 55, 48, 52, 49, 5, 80,

R ], using GANSs [12] or self-supervision [103]. The
usefulness of neural networks in denoising for real sensors
has been disputed [77, 10].

Blur modeling Video obtained with a high-speed camera
[93, 72, 71] or beam splitters [112] enables motion blur
synthesis for the purpose of generating training data using
gyroscope-acquired [70] or random [67] motion.

Deblurring Non-blind deconvolution methods [1 15, 87, 95,

, , 14, ] restore sharp images given the blur kernel.
Blind deconvolution methods attempt to derive the kernel
based on various priors on either the sharp latent image or
the blur kernel [22, 57, , 06, 24,94, 8]. Explicit kernel
derivation can be avoided in end-to-end training, where the
sharp image is derived directly [72, 96], by self-supervision

[60] or adversarial training [50, 51]. Video deblurring addi-
tionally capitalizes on inter-frame relationships, while assur-
ing temporal coherence of the result [45, 46, s , 93].
Deblurring can be combined either with spatial [110] or tem-
poral [79, 40, 39] super-resolution, as done in our approach.
The presence of noise, clamping and multiple exposure as in
our condition adds a further challenge. Methods such as Pan
et al. [76] model general distortions using CycleGAN [ 14],
but have not been demonstrated to perform denoising.

2.2. Multi-image denoising and deblurring

A number of solutions have been proposed to capture mul-
tiple images of the same content to provide more information
for ill-posed deblurring and denoising.

Fixed-exposure burst photography Burst photography
combines a handful of low-exposure frames into a high-
quality LDR result using efficient hand-crafted solutions
deployed in cellphones [61, 31, 58, 58] or based on learning
of recurrent architectures [101], or unordered sets [3], or
per-pixel filter kernels [67].

Low/high exposure image pairs Short-exposure images
are sharp but noisy, while long-exposure images are blurry
but free of noise. Such exposure pairs have been used for
non-uniform kernel deblurring [107, 100]. Along a similar
line, Mustaniemi et al. [70] and Chang et al. [9], in concur-
rent work, jointly learn how to denoise and deblur exposure
pairs supervised by synthetic training data. Different from
our goal, they produce LDR output, while we aim for HDR.

2.3. HDR images and video

HDR means covering a large range of luminance via
multiple exposure, special sensors or software expansion.

Multi-shot A typical sensor can capture a wide range of
luminances, just not within one shot. Alternatively, an expo-
sure sequence, 1. €., time-sequential capture of one scene at
different exposure settings, can be merged into one image
[62, 68, 19, 83, 25]. Further, exposure sequences can be
fused into a high-quality LDR image [65, 78, 70]. When
dealing with video [44, 43, 26] or when using neural net-
works [41, 42, ], alignment becomes a challenge.

Single-shot Capturing exposure sequences takes time and
their alignment is challenging, in particular for video. This
can be alleviated by single-shot solutions relying on custom
optics and sensors. Logarithmic response does not require
any exposure control [90], but remains prone to noise in
dark regions. Spatially-varying exposure (SVE) techniques
place a fixed [75, 89, 88, 91, 2] or adaptive [73, 74] mask of
variable optical density in front of the sensor, but face prob-
lems with resolution and aliasing. Beam splitting preserves
resolution with different exposures [97, 1, 47] but requires
involved optics. Dual-ISO sensors, e. g., Gpixel GMAX and
some of the Canon EON sensors, enable varying signal gain



for odd and even scanlines. Their key advantage is that vari-
able blur between scanlines is avoided, as the exposition is
fixed for the whole sensor. On the other hand, instead of
collecting more photons in the long exposure and reducing
noise this way, only a noisy short exposure is taken, and the
long exposure is emulated by increasing ISO, which leads to
further noise amplification. Therefore, denoising and deinter-
lacing are the key challenges for processing dual-ISO frames
[30, 84, 23], including data-driven solutions such as jointly
learned artifact dictionaries [15] and CNNs [116].

Dual-exposure CMOS sensors enable varying exposures
for odd and even scanlines (some Aptina AR and Sony IMX
sensors [35]) or columns (CMOSIS CMV12000 [17]). Gu
et al. [27] perform flow-compensated interpolation for subim-
age deinterlacing so that differently exposed, full-resolution
images are obtained. Cho et al. [13] directly calibrate scan-
lines using bilateral filters followed by motion blur removal
[56] and sharpening. Along similar lines, Heide et al. [34]
propose an end-to-end optimization, which jointly accounts
for demosaicking, deinterlacing, denoising, and deconvo-
lIution. An and Lee [4] restore under- and over-exposed
pixels using a CNN, but no results for real sensor data are
demonstrated. Our work performs joint denoising, deinter-
lacing and deblurring, trained on a small set of captured data,
resulting in high-quality HDR.

Dynamic range expansion LDR can be expanded to HDR
in software. Although immense progress has been made
based on CNNs [64, 21, 20], results do not yet match the
quality of multi-exposure techniques or dedicated sensors.

Gaussian re-synthesis Ours re-synthesis Sensor reading

Image

Noise

Figure 2. A Gaussian noise model (left), our low-exposure re-
synthesis (middle) from a noise-free high-exposure reference (not
shown), and a real low-exposure sensor reading reference (right).
Note the long-range correlation across ours and the reference.

3. HDR exposure distortion and back

Our approach has two steps: learning a model to synthe-
size distortions to train on (Sec. 3.1; an example result in
Fig. 2) and learning to remove distortions (Sec. 3.2).

3.1. Clean-to-distorted

There are three distortion steps we describe in the order
of the underlying physics (Fig. 3): motion blur (Sec. 3.1.1),
pixel noise (Sec. 3.1.2), and row/column noise (Sec. 3.1.3).
For all steps, we will look at the analysis from noisy sensor
readings to devise a statistical model for inference from
DISTORTED, and a synthesis step to apply it to CLEAN.

3.1.1 Motion blur

With different exposures in different columns, their MB is
also different. For example, at exposure ratio r = 4, MB
also is four times longer and the image is a mix of sharp and
blurry columns. As getting reference data without MB, in
particular HDR, is difficult, we turn to existing LDR high-
speed video footage to simulate multi-exposure MB.

Data We use 123 videos from the Adobe High-speed Video
Dataset [93] which have no, or negligible, inherent MB in a
total of 8000 frames. Note that these are not captured with
our sensor, and are LDR. They are neither input to nor output
from of our approach and only provide supervision.

Synthesis Synthesis starts from a random frame of 8-bit
LDR high-speed video I1,pr. Itis converted to floating point,
and an inverse gamma is applied at v = 2.2. We call this
the low frame image, denoted Iy, = I]',. To simulate high
frame exposure, we scale four low frames by the exposure
ratio, clamp them, and average as in

Iy = clamp(r x Eyeco,1,2,33 [IL(1)])-

Finally, the low-frame pixels are inserted into the even
columns and the high frames into the odd ones, resulting in
the motion-blurred image Iyp.

3.1.2 Pixel noise

Pixel noise, which occurs in the sensor, is applied after mo-
tion blur, which happens in the optics. Instead of employing
a parametric noise model that has the strengths as priors and
for analysis, we use non-parametric histograms to capture
a noise model well-suited for generation. Prior to the noise
model derivation, we remove the fixed pattern noise from
the sensor readings [36].

Data We assume we have a limited amount of GT sensor
readings available. In practice, we use no more than 30
pairs of images (not video) captured with the target sensor
of everyday scenes, as well as a ground truth acquired by
averaging the result of 100 captures of the scene at a very
low exposure (so as to make clipping effects negligible) and
using a very long exposure.

Analysis The noise is different for different exposures and
also for different color channels. We build a model p.  (z|y),
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Figure 3. Our proposed HDR distortion generation pipeline: We start from LDR 240 Hz video in the top left, from which frames tto ¢t + n
are extracted, integrated, and virtually exposed to produce an image with MB (first row). Next, we take pairs of noisy and time-averaged
noise-free sensor readings, and produce a non-parametric noise mode (histogram) for low and high exposure. This noise model is added to
the virtual exposure image MB (second row). Finally, a model of row and column noise is extracted by averaging vertically or horizontally;
this can be added to the pixel noise image, producing the final image with all distortions present (third row).

the probability that when the GT value is y, the sensor will
read x for channel ¢ and exposure e. A separate model is
maintained for every channel in every exposure, leading
to six models for three color channels and two exposures.
While we notice the noise models to be similar for different
channels at the same exposure, it is, unsurprisingly, different
for different exposure. Histograms H. .[z][y] are used to
represent the probability distribution over x for each y in
channel c at exposure e. To construct all histograms, every
pair of sensor readings and its ground truth, as well as every
pixel and every channel, are iterated, and bin x for histogram
y is incremented when the GT pixel is y and the sensor
reading is x for channel ¢ and exposure e. The number
of histogram bins depends on the bit depth, typically 12
bits, resulting in 4096 bins. After analysis, all histograms
are converted into inverse cumulative histograms C.. .[z][y],
allowing us to sample from them in constant time.

Synthesis Noise synthesis is applied to Iyg, the image
with simulated MB. Every pixel and every channel of the
MB image Iyp is iterated to obtain a GT value y. A random
number &. . is used to look up the respective cumulative
histogram C'; . to produce a simulated sensor value . Com-
bining all pixels, channels and exposures results in a virtual
synthetic image /py involving MB and pixel noise.

3.1.3 Row/column noise

At short exposures more structured forms of noise can
become important, one of them being row/column noise.

This is not to be mistaken with fixed-pattern noise that fre-
quently is spatially-correlated, but much easier to correct.
In row/column noise, pixels do not change independently;
rather, all pixels in a row/column change in correlation, i. e.,
the entire row/column is darkened or brightened. This is
because in the CMOSIS CMV 12000 (global shutter) sensor
pixel read-out is performed sequentially row-by-row, result-
ing in differences between the rows. The analog pixel values
are then passed to a column gain amplifier and a column
analog-digital converter (ADC), which are used to speed up
processing, but introduce differences between the columns
[17]. As those effects are visually distracting, we synthesize
and ultimately remove them.

Analysis We again iterate all pairs of GT and sensor im-
ages, but instead of working on pixels, we now work on
entire rows/columns. In particular we look at the six sepa-
rate means across every row/column for every channel and
exposure. We denote this mean as Z in the sensor image and
as ¢ in the GT image. We now proceed as with pixel noise
and build a model in the form of a histogram, ultimately
resulting in the inverse cumulative row/column noise model

Ce.c[z][9]-

Synthesis Synthesis of row/column noise starts from the
image with synthetic MB and pixel noise Ipy. We once
more iterate every row, channel and exposure, compute the
row/column mean ¥, . and again use a random number &,e
to draw from C..[¢][g]. To make the row/column mean
match the desired mean, we simply add the difference of
the means to the row/column, resulting in the final synthetic



noisy image Iaj.
3.2. Distorted-to-clean

We use a U-Net [85] with skip connections and residual
connections [32] and sub-pixel convolutions [92] to map
distorted 128 x 64 x 8 patches to 128 x 128 x 8 clean patches
under an SSIM loss [ | 1]. The mapping is performed in the
linear space and output is converted to RGB and gamma-
corrected after the loss.

4. Results

We present quantitative and qualitative evaluation on de-
blurring/denoising tasks (Sec. 4.1), as well as on a tem-
poral (Sec. 4.2) and spatial (Sec. 4.3) super-resolution
task. Interactive comparison and videos can be found at
https://deephdr.mpi-inf.mpg.de.

All test images have been captured using an Axiom-beta
camera with a CMOSIS CMV 12000 sensor [ 1 7] and a Canon
EFS 18-135 mm lens at resolution 4096 x 3072 RAW 12-bit
pixels, using the lowest gain with exposure ratio 4 (or 16
when explicitly mentioned) and (low) exposure time varying
from 1 to 8 ms. All results are shown after gamma correction
and photographic tone mapping [82].

4.1. Denoising/deblur evaluation

We now evaluate the combination of our method and
our synthetic training data as well as other ways to obtain
training data and other methods for denoising and deblurring.

Methods We consider eight methods (color-coded;
“Method” in Tbl. 1): Direct is a non-learned direct, physics-
based fusion of the low and high frame, with bicubic up-
sampling [19]. Next, BM3D [18] is a gold-standard, non-
deep denoiser. When BM3D is “trained” this means per-
forming a grid search on the training data in order to
find the standard deviation parameter with the the optimal
DSSIM. FFDNet [109] is a state-of-the-art deep denoiser.

[51] and SRNDB [96] are recent deblurring ap-
proaches. LLSD [70] is a deep multi-exposure method that
produces denoised and deblurred LDR images. The final
method is [34] which is a general image reconstruc-
tion method, capable of working with multiplexed exposures.

Training data For each method, we study how it performs
when trained with different data (“Train. data” in Tbl. 1).
Each type of training data has a different symbol. We denote
it as “Theirs” ('¥) if the authors provide a pre-trained ver-
sion. “Sensor” (A) means training on the image for which
we have paired training data available directly, i. e., without
our proposed re-synthesis. Please note that this training is
not applicable to tasks that involve removing MB, as the
supervision inevitably contains MB. Next, we study het-
eroscedastic Gaussian noise, “HetGau” (@) which refers to
taking our training data, fitting a linear model of Gaussian

Table 1. Performance of different methods and different training
data (rows) for different tasks (columns). Different icon shapes
denote different training; colors map to different methods.

Task

InLo V X v v

In Hi+MB X v v v

OutMB X X v X

Out HDR X X v v

Train. data Method Error (DSSIM x1072)
V Theirs Direct [19] 7.87 7.08 3.70 5.52
V Theirs 298 4.10 2.00 2.63
A Sensor 284 — 190 —
©® HetGau BM3D [18] 275 3.86 1.76 2.32
¥ OurAll 2.72 393 1.80 2.35
V Theirs 379 431 2.18 2.83
A Sensor FFDNet [109] 278 — 2.03 —
¥* OurAll 2.78 3.92 2.03 2.54
Theirs DBGAN [51] 5.31 4.88 295 3.32
V Theirs SRN-DB [96] 3.28 4.36 2.27 2.60
V Theirs LSD, [70] — 294 324 246

Theirs  Heide et al. [34] 5.27

A Sensor 651 — 462 —
® HetGau 3.14 3.17 235 2.15
4 OurRN Our 5.33 524 441 4.32
* OurPN urs 424 460 3.01 3.06
* OurMB 423 3.63 2.17 3.15
#* OurAll 275 2.64 1.68 1.84

parameters of the error distribution and then re-synthesizing
training. Finally, we study four ablations of our training
data generation: only motion blur (“OurMB”, %), only pixel
noise (“OurPN”, %), only row noise (“OurRN”, 4), and
finally (“OurAll”, %) in Tbl. 1.

Metrics We measure DSSIM [99], where less is better.

Tasks We study four tasks (four last columns in Tbl. 1):
First, we remove noise in the low exposure only (LO2L0).
Second, we remove noise and MB in the high exposure only
(HI2HI1-MB). Third, is a task where input is both exposures
and output is an HDR image without noise, LOHI2HDR.
The fourth task consumes low and high exposures, and re-
moves both noise and MB to output HDR (LOHI2HDR-
MB). In all tasks, the exposure ratio, 1:4, is in favor of
competitors conceived for LDR use. The test set for all tasks
contains 10 images.

Discussion Results are shown in Tbl. 1. Our method trained
on our synthetic training data (%) performs best on all tasks.
Our ablations (4, % and %) all perform worse than the
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Figure 4. Comparison of different methods (columns) on two scenes (rows). Please see the text for discussion.

full method, indicating all additions are relevant. Looking
into how other methods trained on data synthesized using
our distortion model perform (¥ and %), we see that first,
they all improve in comparison to being trained on their
original data (¥, ¥, ¥, ¥ and V, respectively), but, second,

none can compete with our method trained on that data ().

Only %, as a competing method, when tuned on our data,
can compete on its home ground, LO2L0. We also tried
training our network with other data, such as using sensor
data directly (A), hetroscedatic Gaussian noise (@), but none
of these was able to capture the combination of motion blur,

pixel noise and row/column noise, resulting in larger errors.

As a sanity check, we also tuned BM3D on sensor data
(A) and hetroscedatic Gaussian noise (®), but no choice
of parameters, even with that information, can get BM3D
to perform much better on test data. A further test is to
compare to ¥, which is not learned or doing anything except
up-sampling and fusion; this should be a lower bound for any
method or task. Finally, our approach compares favorably
to Heide et al. [34] (V), a general, powerful and flexible

imaging framework that can work on multi-exposure images.

When looking at performance for different tasks, we find that
for simpler tasks, such as LO2L0, i.e., a direct denoising,
unsurprisingly, our best result (%) performs comparably
to the gold standard (V), in particular when tuned on our
data (%). When the task gets more involved, i. ., removing
MB or producing HDR, the methods start to perform more
similarly, but ours tends to win by a larger margin. For
completeness, our analysis includes methods designed for

denoising being applied to a deblurring task or vice versa.

As all tasks except LO2L0O involve components of both
deblurring and denoising, we report those numbers to certify
that no method solving only one of the tasks, does it so well
that the DSSIM is reduced more than another method trying

High exp Direct

e :
h

¥ BM3D 'V FFDNet DBGAN 'V SRNDB #¥Ours

WU\

to solve both tasks. This is probably because both noise and
blur are visually important, and no method, including ours,
can reduce one of them enough to make the other irrelevant.
In summary, using the right training data helps our methods
and others to solve multiple aspects of multiple tasks.

The quantitative results from above are complemented by
the qualitative ones in Fig. 4. The first row shows our (%)
complete image. The second and third row show selected
patches from the the low and high input, which suffer from
noise or blur respectively. Directly (V) fusing both into
HDR, as in the fourth column, reduces noise and blur, but
cannot remove them. The BM3D (%) and FFDNet (V)
columns show that individual frames can be denoised, but
blur remains. This is most visible in moving parts, such as
the dots in the second row. Using de-blurring, as in DBGAN
(V) or SRNDB (V¥), can reduce blur, but this often leads
to ringing. Our joint method (%) performs best on these
images.

Fig. 5 compares our result at an exposure rate of 16:1
to the best single-exposure result. We note our approach
reproduces details in the bright (outdoor) part as well as in
the dark (indoor) part despite the massive contrast. The best
LDR fit can resolve some of the outdoor elements, but has
no details except quantization noise in the dark part.

4.2. Temporal super-resolution

In temporal super-resolution, we extend the LOHI2HDR-
MB task to output not a single image, but n images instead.
To generate training data, we still extract sequences of n
high-speed video frames, and we still call the first frame the
low frame and the integral of all n frames the high exposure,
but the output is not frame 1 but n individual frames. The
architecture is identical, except that it produces n images in
the last layer. Note that the input is still only two interleaving



Figure 5. Comparison of our reconstruction at an exposure rate of
16:1 and the best single exposure result (inset stripes).

exposures, where one has severe MB and the other severe

noise. Fig. 6 shows the outcome of Our reconstruction.
We compare this method with a baseline in which we

first run our non-super-resolution method, then we apply

temporal upsampling [38] to extract n frames in between.

Results are shown in Tbl. 2.

IXOXIXDX

Frame 1

Frame 2 Frame 3 Frame 4

.00

Figure 6. Four frames cropped (top) from an HDR video with
temporal super-resolution using Our approach. The full frame 2
(middle). An epipolar slice for the marked row (bottom).

4.3. Spatial super-resolution

Analogously to temporal super-resolution, we can also
look at spatial super-resolution [53]. Here, training data is
spatially down-scaled before being used to simulate Hi and
Lo frames. At training time, the decoder branch is simply
repeated several times to produce output patches larger than

Table 2. HDR super-resolution in combination with denoising
and deblurring. “Us-Them” in temporal super-resolution means to
first run Our non-super-resolution method, followed by temporal
super-resolution method [38]. “Us-Them” in case of spatial super-
resolution means to first run Our non-super-resolution method,
followed by a simple bicubic upsampling. “End-to-End” means
Our full method.

Us-Them End-to-End

0.032 0.026
0.074 0.035

Temporal
Spatial

the input patches. In Fig. 7 we show a comparison of simple
bicubic upsampling to Our non-super-resolution and Our
full methods.

Bicubic Ours Ours+SR

Figure 7. Spatial super-resolution.

4.4. Application: HDR illumination reconstruction

A key application of HDR information is to use it for
illumination reconstruction [19]. We captured a mirror ball,
removed motion blur and noise using our full method (%),
and re-rendered it using Blender’s [16] path tracer with 512
samples and automatic tone and gamma mapping. The re-
sulting image is seen in Fig. 8. We find that the non-linear
mapping of Monte Carlo rendering amplifies structures and
noise gets more visible, in particular row noise. Using only
the high exposure removes noise, but cannot capture the dy-
namic range, resulting in washed-out shadows. Our method
succeeds in removing it, in particular row noise, resulting in
sharp shadows as well as noise-free reflections. Note that
some noise is present in all images due to finite Monte Carlo
sample count (all images computed 20 minutes). The noise
appears less in the high exposure, as reduced contrast results
in an easier light simulation problem, but the solution is
biased, predicting an apparently more smooth solution to a
different, a simpler, problem.

5. Conclusion

We presented a CNN solution for HDR image reconstruc-
tion tailored for a single-shot dual-exposure sensor. By joint
processing of low and high exposures and taking advantage
of their perfect spatial and temporal registration, our solution
solves a number of serious problems inherent to such sensors
such as correlated noise and spatially varying blur, as well as
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Figure 8. Rendering from a spherical illumination map captured at a low exposure (left), a high exposure (middle) and using our approach
(right). For each approach the illumination is seen as an inset on the left. For the low exposure, the shadows are sharp, as the light source
did not saturate, but the dark regions are clipped and massively noisy. For the high exposure, the dark regions are reproduced, slightly noisy,
but the light source is clamped, leading to a loss in dynamic range and a loss of sharp shadows. Our method reproduces both. Note that
visible overall brightness differences are expected, as clamping is present in some images, which does not conserve energy.
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