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We introduce a way to express compact quantum electrodynamics with dynamical matter on two- and
three-dimensional spatial lattices in a gauge redundancy-free manner while preserving translational
invariance. By transforming to a rotating frame, where the matter is decoupled from the gauge constraints,
we can express the gauge field operators in terms of dual operators. In two space dimensions, the dual
representation is completely free of any local constraints. In three space dimensions, local constraints
among the dual operators remain but involve only the gauge field degrees of freedom (and not the
matter degrees of freedom). These formulations, which reduce the required Hilbert space dimension,
could be useful for both numerical (classical) Hamiltonian computations and quantum simulation or
computation.
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I. INTRODUCTION

Gauge theories appear in several important contexts in
modern physics: most fundamentally, as the mechanism
mediating the interactions in the standard model of
particle physics [1,2]. The role they play in physics
could not be underestimated, but the same could be said
about the challenge they impose due to their strongly
coupled nature that requires the use of nonperturbative
techniques. For decades, lattice gauge theories [3,4] have
provided a very fruitful toolbox for the study of gauge
theories, by discretizing them on a lattice, either as a
regularization scheme or as a computational approach,
with quantum Monte Carlo. However, those numerical
computations, performed in a Wick-rotated, Euclidean
spacetime, still impose two major restrictions en route to
a full understanding of gauge theories: one is the
impossibility to directly observe real-time dynamics in
Euclidean spacetime, and the other is the well-known
sign problem [5], which blocks the way to the study of

several important physical phases in gauge theories, for
example in quantum chromodynamics with a finite
chemical potential [6,7].
Lattice gauge theories can be formulated on either a

discretized spacetime [3] or a discretized space [4]. The
first approach is useful for the path integral, action
formalism, which has been used widely for successful
Monte Carlo computations [8]. The latter is well suited for
a Hamiltonian approach. Besides the formulation proposed
by Kogut and Susskind [4] (and truncations thereof [9]),
there are other formulations such as the quantum link
model [10–12] and the prepotential formalism [13].
In the past few years, these Hamiltonian formulations

have attracted more attention due to the development of new
techniques in quantummany-body physics which might help
overcome the aforementioned problems in the action for-
malism. One method involves quantum simulation [14,15]
of lattice gauge theories, that is, their mapping into quantum
devices that can be controlled and manipulated as laboratory
table-top experiments—cold atoms, trapped ions, supercon-
ducting qubits, or other atomic, optical, or solid-state devices
[16–23]. Another approach uses classical computation with
variational ansatz states (in particular tensor networks)
[18,19,24]. The idea is to find classes of states which are
efficiently computable but at the same time capture the
relevant features of the theory under consideration.
Physical states in gauge theories need to satisfy local

constraints (Gauss’ laws). This has implications both for
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quantum simulations and for classical computations with
variational states. For the former, one has to make sure that
experimental errors do not lead to a violation of gauge
invariance [25,26]. For the latter, the local constraints need
to be incorporated in the variational ansatz. While in some
cases these constraints can be useful for the construction of
variational states (e.g., to build tensor network ansatz
states), it makes it in general more difficult to find suitable
ansatz states.
An alternative approach is to find a formulation of lattice

gauge theories directly in terms of gauge-invariant varia-
bles. In a quantum simulation thereof, gauge invariance
would be robust against experimental errors. For the con-
struction of variational states, one could choose from a
wider class of ansatz states due to the absence of constraints
(e.g., generalizations of Gaussian states [27,28]). Also
since the required resources are reduced by going from
the full Hilbert space to the physical subspace, it seems
worthwhile to find gauge-invariant formulations while
preserving as many symmetries of the original formulation
as possible. So far, works in this direction [29–33] have
mainly focused on (1þ 1)-dimensional lattice gauge the-
ories with dynamical matter and pure gauge theories in 2þ
1 dimensions. The local gauge constraints have also been
used to eliminate the matter degrees of freedom from the
theory, including the Abelian Higgs model, where unitary
gauge fixing is used [34,35], as well as a recent extension to
fermionic scenarios [36,37].
In this work, we discuss compact quantum electrody-

namics (cQED) in two and three space dimensions,
including dynamical gauge fields and matter (either fer-
mionic or bosonic), and show how one can express it in
terms of dual variables that reduce the number of local
constraints: in two space dimensions, no local constraints
are left, while in three dimensions, those constraints do
not involve the matter. The formulation preserves transla-
tional invariance and is based on the decomposition of
lattice vector fields into longitudinal and transverse parts,
allowing us to decouple the matter from the constraints as a
first step.
In the next section, we introduce the model in two

space dimensions and review some lattice vector calculus
basics that are required for our procedure. In Sec. III, we
proceed to introduce a unitary transformation that allows
one to eliminate the matter from the constraints or, in other
words, split the longitudinal and transverse components
of the electric field. In Sec. IV, we show how to formulate
the transformed model in terms of dual variables, as in other
dual schemes, which results in nonlocal gauge-matter
interactions; we proceed and introduce another, new set
of dual variables that makes this interaction local again and
leads to Coulomb-type interactions for both the gauge field
and the matter degrees of freedom. Finally, in Sec. V, we
discuss the generalization to three space dimensions and
differences to the two-dimensional case.

Throughout the paper, we sum over doubly repeated
indices, unless specified otherwise.

II. REVIEW OF THE RELEVANT MODELS

First, we shall restrict our discussion to a two-
dimensional (2þ 1d) system, in which a compact Uð1Þ
gauge field [38] is coupled to some dynamical matter
degrees of freedom: either fermions, as in Kogut and
Susskind’s formulation [4], or other forms of matter, as
described below. The following discussion is valid for both
periodic and open boundary conditions. We will use
periodic boundary conditions (a torus); the differences,
which arise in the case of open boundary conditions, are
mentioned throughout the paper. For periodic boundary
conditions we assume a square lattice of extent N × N, and
for open boundary conditions we consider ðN þ 1Þ × ðN þ
1Þ lattice sites, i.e., a lattice made of N × N plaquettes.

A. The lattice

The matter degrees of freedom reside on the sites of the
lattice, labeled for periodic boundary conditions by integers
x ¼ ðx1; x2Þ ∈ f0;…; N − 1g2 [for open boundary condi-
tions ðx1; x2Þ ∈ f0;…; Ng2], while the gauge fields on the
links are labeled by the site x from which they emanate and
a direction i ¼ 1, 2 to which they extend. The link labeled
by x, i connects the site xwith the site xþ êi, where êi is a
unit vector pointing in the positive i direction.
We consider three different kinds of lattice fields: Fields

fðxÞ, residing on the lattice sites x (such as matter fields or
scalar fields), vector fields FðxÞ, whose components FiðxÞ
reside on the links of the lattice (such as vector potentials
and electric fields), and pseudovector fields BðxÞ (such as
the magnetic field), residing on the plaquettes (denoted by
the site x at the bottom left corner).
We define difference operators—forward

ΔðþÞ
i fðxÞ ¼ fðxþ êiÞ − fðxÞ ð1Þ

and backward

Δð−Þ
i fðxÞ ¼ fðxÞ − fðx − êiÞ ð2Þ

(acting similarly on vector and pseudovector fields). Out of
those, we can construct the lattice versions of the central
differential operators in vector calculus:

1. The gradient of a scalar field on the lattice sites is a
vector field on the links, involving the field’s value
on the links ends:

ð∇fðxÞÞi ¼ ΔðþÞ
i fðxÞ ¼ fðxþ êiÞ − fðxÞ: ð3Þ

2. The divergence of a vector field on the links is a
scalar field on the lattice sites. Its value on a site
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involves the values of the vector components of all
the links surrounding it:

∇ · FðxÞ ¼ Δð−Þ
i FiðxÞ ¼

X
i

ðFiðxÞ − Fiðx − êiÞÞ:

ð4Þ

3. The Laplacian of a scalar field or a component of
another field is given by combining the gradient and
the divergence (see Fig. 1):

∇2fðxÞ ¼ Δð−Þ
i ΔðþÞ

i fðxÞ
¼

X
i

ðfðxþ êiÞ þ fðx − êiÞÞ − 4fðxÞ:

ð5Þ

4. The curl of a vector field gives rise to a pseudovector
residing on the plaquettes (dual lattice sites) as
illustrated in Fig. 1,

∇ × FðxÞ ¼ ϵijΔ
ðþÞ
i FjðxÞ: ð6Þ

5. The curl of a pseudovector field on the plaquettes
gives rise to a vector field on the links,

ð∇ × LðxÞÞi ¼ ϵijΔ
ð−Þ
j LðxÞ; ð7Þ

where ϵij is completely antisymmetric.
As in the continuum, each vector field FðxÞ may be

decomposed into the sum of longitudinal and transverse
parts, FLðxÞ and FTðxÞ, respectively,

FðxÞ ¼ FLðxÞ þ FTðxÞ: ð8Þ

The longitudinal part is the gradient of some scalar function
fðxÞ, and therefore, using the definitions above and similar
to the continuous case, it is curl-free:

FLðxÞ ¼ −∇fðxÞ ⇔ ∇ × FLðxÞ ¼ 0: ð9Þ

Similarly, the transverse part is the curl of some pseudo-
vector, and its divergence vanishes:

FTðxÞ ¼ ∇ × LðxÞ ⇔ ∇ · FTðxÞ ¼ 0: ð10Þ

The decomposition into transverse and longitudinal parts
(illustrated in Fig. 2), normally referred to as the Helmholtz
decomposition, is proven similarly to its continuum version,
as discussed in Appendix B. This decomposition will be
crucial in separating the dynamical (transverse) from the
gauge-constrained (longitudinal) degrees of freedom.

B. The matter

Matter particles reside on the lattice sites x. At each site
we define an operator QðxÞ which measures the local
charge. It has an integer spectrum, which may be bounded
or not, depending on the nature of matter. The charge
operators commute with one another,

½QðxÞ; QðyÞ� ¼ 0: ð11Þ

We define, on each site, matter field operators ΨðxÞ which
lower the local charge, and their Hermitian conjugate which
raises it:

½QðxÞ;ΨðyÞ� ¼ −δðx; yÞΨðxÞ;
½QðxÞ;Ψ†ðyÞ� ¼ δðx; yÞΨ†ðxÞ; ð12Þ

where δðx; yÞ is the Kronecker delta function for the lattice
discrete coordinates (sites).
There are various options to achieve these fairly general

commutation relations. In the most common choice, the
matter will be fermionic, and each site may host a single
species, that is,

FIG. 1. Illustration of the lattice Laplacian ∇2fðxÞ of a scalar
field fðxÞ (left) and the lattice curl ∇ × FðxÞ of a vector field
FiðxÞ (right). The lattice Laplacian at a site x involves all
adjacent sites. The resulting field resides again on the sites. The
lattice curl transforms a vector field, a field on the links, into a
field on the plaquettes, where the plaquette is labeled by the site at
its bottom left corner.

FIG. 2. Illustration of the Helmholtz decomposition on the
lattice. Analogous to the continuum, a vector field can be split
into a transverse component (left) and a longitudinal component
(right). The transverse component can be expressed as the lattice
curl of a field L on the plaquettes (the analog of a vector
potential), whereas the longitudinal component is generated as
the (negative) gradient of a scalar field f on the sites. For details
on this decomposition see Appendix B.
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fΨðxÞ;Ψ†ðyÞg ¼ δðx; yÞ; fΨðxÞ;ΨðyÞg ¼ 0: ð13Þ

Then, following Susskind [39], we can define staggered
charges, which split the lattice into two sublattices (even
and odd) of particles and antiparticles,

QðxÞ ¼
�
Ψ†ðxÞΨðxÞ; x is even;

Ψ†ðxÞΨðxÞ − 1; x is odd:
ð14Þ

On even sites, the charges are 0 or 1 while on odd ones
they are −1 or 0, depending on whether a fermion is
absent or present. Otherwise, one can use naive or Wilson
fermions [40], in which several spin components (two
or four) are introduced at each site, and charges are
defined with some choice of Dirac matrices implementing
the Dirac-Clifford algebra. In all these fermionic options,
the desired commutation relations (11) and (12) are
satisfied.
One could also replace the fermionic matter field by a

bosonic field, e.g., a complex scalar field, for which

½ΨðxÞ;Ψ†ðyÞ� ¼ ½ΨðxÞ;ΨðyÞ� ¼ 0: ð15Þ

Each site can host both particles [created by the bosonic
mode operator a†ðxÞ] and antiparticles [created by the
bosonic mode operator b†ðxÞ], and we expand

ΨðxÞ ¼ 1ffiffiffi
2

p ðaðxÞ þ ib†ðxÞÞ: ð16Þ

The charge operator,

QðxÞ ¼ a†ðxÞaðxÞ − b†ðxÞbðxÞ; ð17Þ

has, in this case, an infinite, nonbounded integer spectrum.
The relations (11) and (12) are satisfied.
Another way to represent this type of matter field is in

the polar representation,

ΨðxÞ ¼ RðxÞeiφðxÞ; ð18Þ

with two real, commuting scalar fields RðxÞ;φðxÞ. In
the presence of a Higgs potential and following the
conventional quasiclassical treatment, the radial degree
of freedom is fixed to a constant, RðxÞ ¼ R0, and the
remaining compact field φðxÞ is the Goldstone mode [41].
It is canonically conjugate to QðxÞ, that is,

½φðxÞ; QðyÞ� ¼ iδðx; yÞ ð19Þ

[the radial field RðxÞ has nothing to do with the charge
even if it is not frozen; the reason it may be frozen in a
Hamiltonian treatment of the Higgs mechanism is that the
Hamiltonian does not contain any terms noncommuting
with it, unlike with the angular field].

Typical Hamiltonian terms that involve only the matter
will commute with the charge operators. For example, in
the case of staggered fermions, one typically uses the mass
Hamiltonian [39],

Hm ¼ m
X
x

ð−1Þx1þx2Ψ†ðxÞΨðxÞ: ð20Þ

Or, in the case of the Higgs field, the charge Hamiltonian

HQ ¼ 1

2R2
0

X
x

Q2ðxÞ: ð21Þ

C. The gauge field

On each link of the lattice we introduce the Hilbert space
of a particle on a ring, where the canonical pair of an
angular, compact coordinate ϕiðxÞ and its conjugate Uð1Þ
angular momentum operator EiðxÞ, which takes an integer,
nonbounded spectrum, is defined, satisfying the canonical
relation

½ϕiðxÞ; EjðyÞ� ¼ iδijδðx; yÞ: ð22Þ

ϕ plays the role of the (compact) vector potential while E is
the electric field. The pure-gauge parts of the Hamiltonian
[4,38] are the electric energy term

HE ¼ g2

2

X
x;i

E2
i ðxÞ ¼

g2

2

X
x

EiðxÞEiðxÞ ð23Þ

(with g2 the coupling constant) and the magnetic energy,

HB ¼ −
1

g2
X
x

cosðϕ1ðxÞ þ ϕ2ðxþ e1Þ

− ϕ1ðxþ e2Þ − ϕ2ðxÞÞ ð24Þ

involving plaquette interactions. The argument of the
cosine is nothing but the curl of the vector potential, which
is the magnetic field—a pseudovector residing at the center
of plaquettes (dual lattice sites):

BðxÞ ¼ ∇ × ϕðxÞ ¼ ϵijΔ
ðþÞ
i ϕjðxÞ; ð25Þ

where ϵij is the completely antisymmetric symbol.
Therefore,

HB ¼ −
1

g2
X
x

cos ðBðxÞÞ: ð26Þ

The remaining piece of the Hamiltonian couples the
matter to the gauge fields. Conventional interaction terms
(the result of standard minimal coupling procedures)
involve charge hopping to the nearest neighbor site,
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combined with the increase or decrease of the electric field
on the connecting link,

Hint ¼
X
x;i

tx;iΨ†ðxÞeiϕiðxÞΨðxþ êiÞ þ H:c: ð27Þ

with tx;i the tunneling amplitude (which might be position
and/or direction dependent). In the case of naive/Wilson
fermions, spin components are included, requiring one to
add some Dirac matrix coupling between them. In all these
interactions, the gauge field on the links mediates the
movement of the charge to maintain gauge invariance, as
shall be discussed now.

D. Gauge invariance and the Gauss law

The full Hamiltonian of a lattice gauge theory as the one
discussed above is

H ¼ HE þHB þHint þHm: ð28Þ

It has a local, or gauge, symmetry; that is, there exist local
operators GðxÞ, which all commute with the Hamiltonian

½GðxÞ; H� ¼ 0 ∀x: ð29Þ

These local symmetry generators are nothing but the Gauss
law operators, defined by the difference between the
electric field divergence on a site and the local charge,

GðxÞ ¼ ∇ ·EðxÞ −QðxÞ ¼ Δð−Þ
i EiðxÞ −QðxÞ

¼
X
i

ðEiðxÞ − Eiðx − êiÞÞ −QðxÞ: ð30Þ

The commutation of all the local constants of motion
GðxÞ with the Hamiltonian splits the Hilbert space to
different sectors, disconnected by the Hamiltonian dynam-
ics, classified by the eigenstates of these operators qðxÞ
which are nothing but static charge configurations, and thus
these sectors are simply a formulation of a charge super-
selection rule; so-called physical states satisfy

GðxÞjphysi ¼ qðxÞjphysi ∀x ð31Þ

or

Δð−Þ
i EiðxÞðxÞjphysi ¼ ðQðxÞ þ qðxÞÞjphysi ∀x: ð32Þ

Below, we will always assume that the static charges
qðxÞ are fixed, which we can do due to the superselec-
tion rule.

III. DECOUPLING THE MATTER

In order to arrive at a redundancy-free formulation, it is
important to single out the degrees of freedom which are

constrained by the Gauss law constraints. By inspection
of Eq. (32), it becomes clear that the longitudinal part
of the electric field is completely determined by the charge
configuration in the physical Hilbert space. The diver-
gence-free (transverse) part of the electric field is not
affected by these constraints.
Compared to previous references where only static

charges were considered, it is not as straightforward in the
presence of dynamicalmatter towrite down aHamiltonian in
terms of transverse gauge field degrees of freedom. This is
due to the appearance of gauge-matter interactions Hint,
which involve the longitudinal component of the gauge field,
whereas in the magnetic HamiltonianHB only the transverse
component contributes.
The idea is to find a unitary transformation to a frame in

which the longitudinal part of the gauge field disappears
from the Hamiltonian [one can intuitively think about it as
rotating to a frame such that the Coulomb gauge holds in

the physical subspace, Δð−Þ
i ϕiðxÞ ¼ 0].

A unitary transformation U, which accomplishes that,
can be defined as

U ¼ exp

�
−i
X
x

ϕiðxÞβiðxÞ
�

ð33Þ

with

βiðxÞ ¼ −
X
y

ΔðþÞ
i;x Gðx; yÞðQðyÞ þ qðyÞÞ; ð34Þ

whereGðx; yÞ is theGreen’s function of the (negative) lattice
Laplacian (seeAppendixA).ΔðþÞ

i;x denotes the lattice forward
derivative in direction êi with respect to the variable x. βiðxÞ
is nothing but the longitudinal electric field in the physical
Hilbert space before the transformation, βiðxÞjphysi ¼
EL
i ðxÞjphysi (see Appendix B for details).
We start by studying the effect of this transformation on

the Gauss law in Eq. (32). It is clear that the charge operator
QðxÞ commutes with the transformation:

UQðxÞU† ¼ QðxÞ: ð35Þ

The electric field gets shifted by β:

UEiðxÞU† ¼ EiðxÞ þ βiðxÞ: ð36Þ

Thus, the divergence of the electric field gives

UΔð−Þ
i EiðxÞU† ¼ Δð−Þ

i EiðxÞ
−
X
y

Δð−Þ
i;x Δ

ðþÞ
i;x Gðx; yÞðQðyÞ þ qðyÞÞ

¼ Δð−Þ
i EiðxÞ þQðxÞ þ qðxÞ: ð37Þ

Hence, the physical states in the rotated frame, jgphysi≡
Ujphysi, obey the transformed matter-free Gauss law,
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Δð−Þ
i EiðxÞj ˜physi ¼ 0 ∀x; ð38Þ

or, in other words, the electric field in the physical sub-
space is transverse (divergence-free) after the unitary
transformation U. This was to be expected since we
removed the longitudinal part of the electric field (in the
physical subspace).
Note that the spectrum of EiðxÞ has changed in the

rotated physical subspace: the integer spectrum becomes
fractional after the transformation. As shown in [28,29],
every charge configuration introduces in the physical
Hilbert space a certain constant shift in the original integer
spectrum of the electric field. However, in the presence of
dynamical matter, the different static charge sectors get
mixed due to the gauge-matter interactions. Therefore, the
spectrum is a shifted integer spectrum where the shift is not
fixed but depends on the charge configuration.
In the next step, we consider the transformation of the

electric part of the Hamiltonian. Using (36) and (34), we
obtain that the transformed electric Hamiltonian has three
parts,

H̃E ¼ UHEU†

¼ g2

2

X
x;i

�
EiðxÞ −

X
y
ΔðþÞ

i;x Gðx; yÞðQðyÞ þ qðyÞÞ
�

2

≡ H̃T
E þ H̃L

E þ H̃TL
E : ð39Þ

The first term will have the same mathematical form as the
pretransformed Hamiltonian, but now, in the physical
Hilbert space, it will only correspond to the transverse
parts of the field (which no longer possess an integer
spectrum),

H̃T
E ¼ g2

2

X
x;i

E2
i ðxÞ ¼

g2

2

X
x

EiðxÞEiðxÞ: ð40Þ

The second part is the purely longitudinal one, taking the
form

H̃L
E ¼ −

g2

2

X
x;y;y0;i

Δð−Þ
i;x Δ

ðþÞ
i;x Gðx; yÞðQðyÞ þ qðyÞÞ

×Gðx; y0ÞðQðy0Þ þ qðy0ÞÞ

¼ g2

2

X
x;y

ðQðxÞ þ qðxÞÞGðx; yÞðQðyÞ þ qðyÞÞ; ð41Þ

where in the first row we used a lattice analogue of
integrating by parts (which is valid for both periodic and
open boundary conditions) and in the second row the
definition of the Green’s function. The resulting inter-
action between the charges (both dynamical and static)
is of Coulomb-type, since the Green’s function Gðx; yÞ
is nothing but the lattice Coulomb potential generated
by a unit charge at y experienced by another unit charge
at x.
The third part involves the cross terms. If we write it as

H̃TL
E ¼ −g2

X
x;y;i

EiðxÞΔðþÞ
i;x Gðx; yÞðQðyÞ þ qðyÞÞ

¼ g2
X
x;y;i

Δð−Þ
i;x EiðxÞGðx; yÞðQðyÞ þ qðyÞÞ; ð42Þ

it becomes clear that it vanishes in the physical Hilbert
space using the transformed Gauss law in Eq. (38).
Intuitively, it can be understood since it corresponds to
the scalar product of the longitudinal and transverse
component of the electric field. We are only interested
in the physical subspace and will therefore neglect this
term in the following.
To study the transformation of the matter degrees of

freedom it is useful to rewrite the transformation U in the
following way:

U ¼ exp

�
i
X
x;y

ϕiðxÞΔðþÞ
i;x Gðx; yÞðQðyÞ þ qðyÞÞ

�

¼ exp

�
−i
X
x;y

ðQðxÞ þ qðxÞÞGðx; yÞΔð−Þ
i;y ϕiðyÞ

�
ð43Þ

(where we used again the lattice analog of integrating by
parts). Using (11) and (12), we obtain the transformation
rule of the charge raising operator,

UΨ†ðxÞU† ¼ Ψ†ðxÞ exp
�
−i
X
y

Gðx; yÞΔð−Þ
i;y ϕiðyÞ

�
;

ð44Þ

and thus the gauge-matter interactions in the transformed
picture are

H̃int ¼ UHintU† ¼
X
x;i

tx;iΨ†ðxÞ exp
�
i

�
ϕiðxÞ þ

X
y

ΔðþÞ
i;x Gðx; yÞΔð−Þ

i;y ϕiðyÞ
��

Ψðxþ êiÞ þ H:c: ð45Þ
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Using the Helmholtz decomposition (see Appendix B for
details), one obtains that the longitudinal part of ϕiðxÞ is
given by

ϕL
i ðxÞ ¼ −ΔðþÞ

i;x

X
y

Gðx; yÞΔð−Þ
i;y ϕiðyÞ; ð46Þ

and hence we remain only with the transverse, divergence
free field in the transformed interaction Hamiltonian,

H̃int ¼
X
x;i

tx;iðΨ†ðxÞeiϕT
i ðxÞΨðxþ êiÞ þ H:c:Þ: ð47Þ

This can also easily be checked by taking the lattice
divergence of the argument in the exponential in Eq. (45).
HB does not change under the transformation, because it

commutes with U, i.e., H̃B ¼ HB. It depends on the curl of
the vector potential ϕ so that only the transverse part of ϕ
contributes (since the longitudinal one is curl-free).
Therefore, H̃B can be formulated with the transverse field
only,

H̃B ¼ −
1

g2
X
x

cos ðϵijΔðþÞ
i ϕT

j ðxÞÞ: ð48Þ

Hm commutes with U as well, and thus H̃m ¼ Hm.
Hence, after the transformation, the Hamiltonian depends

only on the transverse component of the vector potential,ϕT ,
so that we indeed transformed to a frame where the lattice
version of the Coulomb gauge holds. We can therefore
proceed to formulate the remaining transverse degrees of
freedom in terms of dual variables. For that, we will restrict
ourselves from now on to the physical Hilbert space.

IV. DUAL FORMULATION

In the transformed picture, the Gauss law (32) becomes
decoupled from the matter degrees of freedom, leaving the
electric field transverse (38). Therefore it makes sense to
change from the gauge field variables on the links to
another set of variables that will respect this transverse
nature of the electric field. This will allow us to directly
incorporate the Gauss law constraint (38), making the
formulation manifestly gauge invariant.
Since the electric field in the physical Hilbert space of

the transformed frame is transverse, we may express it as
the curl of a pseudovector field LðxÞ defined on the
plaquettes (dual lattice sites), ∇ × LðxÞ. If we apply the
lattice curl again, this gives rise to a Poisson equation for
LðxÞ in terms of EiðxÞ, whose solution is

LðxÞ ¼
X
y

Gðx; yÞϵijΔðþÞ
i;y EjðyÞ: ð49Þ

Using that, one can show that LðxÞ is canonically conjugate
to the magnetic field (see Appendix C for details),

½BðxÞ; LðyÞ� ¼ iδðx; yÞ: ð50Þ

The idea behind these variables is that all transverse
configurations of the electric field are made out of loops
and the localB=Lvariables are a goodbasis to construct these
loops. This geometric picture is also the basis for the dual
formulation in [32]. However, with periodic boundary
conditions there are two global loops (up to modifications
by plaquette operators, similar to the toric code) that cannot
be created out of theB=L variables (they do not appear in the
case of open boundary conditions). These are independent
variables, denoted as B1, L1 and B2, L2. We choose the
B1=L1 variable to wind around the torus along the ê1 axis,
whereas the B2=L2 variable is chosen to wind around the
torus along the ê2 axis. The sets of degrees of freedom in the
dual formulation for both periodic and open boundary
conditions are illustrated in Fig. 3, exemplary for a 3 × 3
lattice. Therefore, to express the electric field in terms of L
variables for periodic boundary conditions, we need in
addition to the curl of L the contributions of the global
loops, i.e.,

FIG. 3. Illustration of the dual formulation in the transformed
frame for a 3 × 3 lattice with both open boundary conditions
(upper row) and periodic boundary conditions (lower row). In the
left column, the original formulation is shown in terms of the
matter degrees of freedom on the sites (blue) and the gauge
degrees of freedom on the links (green). In the right column, the
degrees of freedom of the dual formulation are shown: the matter
still resides on the lattice sites, but the gauge degrees of freedom
are described in terms of plaquette variables. While in the original
formulation there were gauge constraints for every site, there are
no local gauge constraints left in the dual formulation. For open
boundary conditions, there are no gauge constraints in the dual
formulation and for periodic boundary conditions there is a global
constraint left involving all plaquette variables. Since periodic
boundary conditions allow closed loops around the lattice, there
are two global gauge variables, one for each spatial direction
(green circles in the figure).
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EiðxÞ ¼ ϵijΔ
ð−Þ
j LðxÞ þ δxj;0Li ð51Þ

with i ≠ j. The second term is only present on the two axes
and vanishes completely for open boundary conditions. By
formulating the theory in terms of dual variables, there are no
local constraints left.However, there is a global constraint left
(in case of periodic boundary conditions, this is not the case
for open boundary conditions) which can be seen by
summing Eq. (25) over the whole lattice:X

x

BðxÞjphysi ¼ 0: ð52Þ

This is intuitively clear since raising the electric flux around
every plaquette should give the same state (on a lattice
with periodic boundary conditions). To convince us that
the number of physical degrees of freedom in the dual
formulation matches the number in the original formulation
we can do a short counting of degrees of freedom. We can
neglect thematter degrees of freedom in this calculation since
it is the same in both cases.
Starting with periodic boundary conditions, there are in

the original formulation 2N2 links and N2 − 1 Gauss laws
(the constraint at one lattice site is redundant). The number
of physical degrees of freedom is thus N2 þ 1. In the dual
formulation, we have N2 plaquette variables, two global
loop variables, and one global constraint, which amounts
also to N2 þ 1 physical degrees of freedom.
With open boundary conditions, there are originally

2NðN þ 1Þ links and ðN þ 1Þ2 − 1 Gauss law constraints,
i.e., N2 physical degrees of freedom. In the dual formu-
lation, there are N2 plaquette variables which are not
subject to any constraints, thus giving the same number
of physical degrees of freedom.
We can now rewrite the transformed Hamiltonian in

terms of the dual variables. This does not change H̃m and
H̃L

E; the magnetic part will now be noninteracting,

H̃B ¼ −
1

g2
X
x

cos ðBðxÞÞ: ð53Þ

Following Eq. (51), the transverse electric part will involve
some local interactions,

H̃T
E ¼ g2

2

X
x;i

ðϵijðLðxÞ − Lðx − êjÞÞ þ δxj;0LiÞ2; ð54Þ

where the last term denotes the contribution of the two
global loops which is only present on the axes (x1 ¼ 0 or
x2 ¼ 0). This term drops out in the case of open boundary
conditions.
To rewrite the gauge-matter interactions in terms of dual

variables, we express the transverse part of the gauge field
in terms of the magnetic field BðxÞ [the calculation of the
shifts sx;iðyÞ is presented in Appendix B]

ϕT
i ðxÞ ¼

X
y

sx;iðyÞBðyÞ ð55Þ

(note that the sum over y also contains the two global loops
B1 and B2). The gauge-matter interactions then take the
form

H̃int ¼
X
x;i

tx;iΨ†ðxÞei
P

y
sx;iðyÞBðyÞΨðxþ êiÞ þ H:c: ð56Þ

The hopping of a matter degree of freedom from some
site x to an adjacent site xþ êi introduces shifts sx;iðyÞ
[−1=2 < sx;iðyÞ ≤ 1=2] in the LðyÞ operators since B is
canonically conjugate to L. This can be understood in the
following way: the hopping changes the electric field
configuration (by raising/lowering the electric field on that
link) and the change in the transverse part of the electric
field is characterized by the s-shifts. Although the size of
these shifts decays with distance to the link where hopping
occurs, the interaction involves many degrees of freedom
which might be difficult to deal with, in particular for a
quantum simulation. Summing up, the whole transformed
Hamiltonian in the dual formulation with B=L variables
takes the form

H̃ ¼ Hm þ g2

2

X
x;i

ðϵijðLðxÞ − Lðx − êjÞÞ þ δxj;0LiÞ2 þ
g2

2

X
x;y

ðQðxÞ þ qðxÞÞGðx; yÞðQðyÞ þ qðyÞÞ

−
1

g2
X
x

cos ðBðxÞÞ þ
X
x;i

tx;iΨ†ðxÞei
P

y
sx;iðyÞBðyÞΨðxþ êiÞ þ H:c: ð57Þ

with i ≠ j. In the case of open boundary conditions, the
global loop contributions in H̃T

E and H̃int vanish.
We proceed to define another canonical pair of

operators which makes the gauge-matter interactions local
again. The idea is to carry out the same procedure as

before but now with the transverse component of the
gauge field ϕT

i ðxÞ as a starting point, instead of the
electric field.
In complete analogy to Eq. (51), we can express ϕT

i ðxÞ by
a compact field on the plaquettes θðxÞ (and for periodic
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boundary conditions two additional global loops θ1 and θ2),
such that

ϕT
i ðxÞ ¼ ϵijΔ

ð−Þ
j θðxÞ þ δxj;0θi ð58Þ

with i ≠ j. As before, the global loop contribution vanishes
for open boundary conditions. The expression for θ in terms
ofϕ has the same formas the expression forL in terms ofE in
Eq. (49):

θðxÞ ¼
X
y

Gðx; yÞϵijΔðþÞ
i;y ϕjðyÞ: ð59Þ

The canonically conjugate variable to θ is the curl of the
electric field,

MðxÞ ¼ ϵijΔ
ðþÞ
i EjðxÞ: ð60Þ

Since EiðxÞ is integer-valued, MðxÞ, as the sum of integer-
valued operators, will also have an integer spectrum. Using
the expression for θ in terms ofϕ fromEq. (59), the definition
ofM in terms ofE inEq. (60), one can show that also θ andM
fulfill the canonical commutation relations,

½θðxÞ;MðyÞ� ¼ iδðx; yÞ: ð61Þ

Analogous to the B=L variables, there are two global
noncontractible loops denoted as θ1=M1 and θ2=M2 winding

along the respective axis (again, this is only the case for
periodic boundary conditions, not for the open ones). Since
both dual formulations share the same locations on the lattice,
the counting of degrees of freedom can be done in the same
way as for the B=L variables. The relation between the two
sets of dual variables is illustrated in Fig. 4.
If we express the gauge-matter interactions in terms of

the newly introduced field θðxÞ, we arrive at

H̃int ¼
X
x;i

tx;iΨ†ðxÞeiðϵijΔð−Þ
j θðxÞþδxj;0θiÞΨðxþ êiÞ þ H:c:

ð62Þ

with i ≠ j, a local interaction again (up to the contribution
of the global loops θi which is only present on the two axes
and vanishes in the case of open boundary conditions). It
has the following interpretation: when a matter charge hops
from site x to a neighboring site, say xþ ê1, the curl of the
electric field on the plaquette above the link gets raised by
one and the curl of the electric field on the plaquette below
the link gets lowered by one. In the case of bosonic matter
as discussed in Sec. II B, the gauge-matter interactions
become completely symmetric between the matter and
gauge field degrees of freedom.
To express the transverse part of the electric energy in

terms of theM variables, we need to find a relation between
the M and L variables which can then be inserted in the
formula for H̃T

E in terms of L, Eq. (54). Such a relation can
be obtained by plugging the electric field in terms of L,
Eq. (51), into the definition of M, Eq. (60):

MðxÞ ¼ −∇2LðxÞ þ ϵijΔ
ðþÞ
i δxi;0Lj: ð63Þ

The second term is a boundary term coming from the global
loops (only present for periodic boundary conditions). For
open boundary conditions, the relation contains only the
first term, leading to a Poisson equation on the plaquettes.
Thus, for open boundary conditions, L can be expressed in
terms of M by the Green’s function. Inserting this in
Eq. (54) and using the lattice analog of integrating by parts
give a Coulomb interaction between the M variables. For
periodic boundary conditions, this interaction potential is
slightly modified by boundary effects due to the second
term in Eq. (63), i.e.,

H̃T
E ¼ g2

2

X
x;y

MðxÞG̃ðx; yÞMðyÞ; ð64Þ

where G̃ðx; yÞ denotes the modified interaction potential.
Note that it also includes interactions with the two global
variables; i.e., the sum above contains also M1 and M2

(for its exact form see Appendix D). For open boundary
conditions, G̃ðx; yÞ reduces to Gðx; yÞ. Thus, the inter-
actions between the curls of the electric field on the

FIG. 4. Illustration of the two dual formulations in terms of
B=L variables and θ=M variables. Both formulations are based on
expressing the transverse part of either the gauge field ϕiðxÞ or
the electric field EiðxÞ. While the transverse component of the
electric field, ET

i ðxÞ, can be obtained as the lattice curl ∇× of the
plaquette field L, the lattice curl of the plaquette field θ gives rise
to ϕT

i ðxÞ. It can then be shown that the curl of ϕ, which is the
magnetic field B, is canonically conjugate to L. In the same way,
it can be shown that the curl of E is canonically conjugate to θ.
Thus, the two dual formulations are based on the same principle
and complement each other.
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FIG. 5. Illustration of the interactions in the Hamiltonian for a 3 × 3 lattice with open boundary conditions in the original formulation
(left column), the dual formulation in terms of B=L variables (middle column), and the dual formulation in terms of θ=M variables (right
column). We consider the electric Hamiltonian (upper row), the magnetic Hamiltonian (middle row), and the gauge-matter interactions
(lower row). We leave out the mass part since it is not altered by the transformation so that the only difference is that the matter degrees of
freedom participating in it are not subject to local constraints anymore.While the electric Hamiltonian in the original formulation is the sum
over the square of the electric field on every link, in the dual picture it is split into a longitudinal part and a transverse part. The longitudinal
part of the electric field is completely fixed by the charge configuration which gives in the rotated frame rise to Coulomb interactions (given
by the Green’s function Gðx; yÞ but named VCoulðx; yÞ in the figure for illustrative purposes) between charges QðxÞ and QðyÞ. The
transverse part depends on the dual formulation: For the B=L variables the transverse electric field is just the lattice curl of L so that the
electric Hamiltonian on a link involves only the two neighboring plaquettes. For the θ=M variables one can show that the transverse electric
Hamiltonian leads to Coulomb interactions among the M variables, thus generating very similar interactions as between the charges. The
magnetic Hamiltonian in the original formulation is a four-body interaction among the links: it is the sum of a raising and a lowering
operator of the electric field around the plaquette (in the figure we show the effect of the raising operator in the electric basis). In terms of the
B=L variables, since B is the lattice curl of the gauge field around a plaquette, it is a one-body term, raising the L variable by one. In terms
of the θ=M variables, it is a five-body interaction, corresponding to the (negative) Laplacian of θ, which raises theM variable in the center
by four and lowers it on the neighboring plaquettes by one. The gauge-matter interactions describe the effect of a hopping matter degree of
freedom on the gauge field. In the original formulation, the electric field along the link gets raised by one (lowered for hopping in the other
direction). In the rotated frame, only changes in the transverse part of the electric field need to be taken into account. In terms of the B=L
variables, since the L variables generate the transverse part of the electric field, this change can be expressed by shifting the L variables by
the proper amount. These shifts sx;iðyÞ are shown in the figure (for their calculation see Appendix B). They decay away from the link where
hopping occurs, which can already be seen on the 3 × 3 lattice. In terms of the θ=M variables, since the curl of the electric field is only
affected on the two neighboring plaquettes, the gauge-matter interactions become local.
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plaquettes are of Coulomb type; it shows some strong
similarity with the longitudinal part H̃L

E in Eq. (41) where
exactly the same interaction appears between the matter
degrees of freedom. The last remaining part is the magnetic
Hamiltonian. If we express B in terms of θ in the same way
as we did for M in terms of L in Eq. (63), we can write
down H̃B in terms of θ, following Eq. (53):

H̃B ¼ −
1

g2
X
x

cos ð−∇2θðxÞ þ ϵijΔ
ðþÞ
i δxi;0θjÞ

¼ −
1

g2
X
x

cosð4θðxÞ − θðxþ ê1Þ − θðxþ ê2Þ

− θðx − ê1Þ − θðx − ê2Þ
þ ðδx2;0 − δx2;−1Þθ1 − ðδx1;0 − δx1;−1Þθ2Þ; ð65Þ

where the contributions of the global variables θ1 and θ2 are
only present on plaquettes sharing a link with the ê1 or ê2

axis. They vanish completely for open boundary conditions,
and the magnetic Hamiltonian becomes a local interaction—
a five-body one, involving a plaquette and its neighbors. The
action of H̃B in the electric basis is illustrated in Fig. 5, for
both the original and the dual formulations.
Analogous to the dual formulation with B and L, there is

also a global constraint for the formulation in terms of θ and
M. This constraint on physical states can be obtained if we
sum Eq. (60) over the whole lattice (again, this only holds
true for periodic boundary conditions, and it is not the case
for open boundary conditions),

X
x

MðxÞjphysi ¼ 0: ð66Þ

Overall, the original formulation of the lattice gauge theory
has been replaced in this dual formulation of the trans-
formed picture by (assuming periodic boundary conditions)

H̃ ¼ Hm þ g2

2

X
x;y

½ðQðxÞ þ qðxÞÞGðx; yÞðQðyÞ þ qðyÞÞ þMðxÞG̃ðx; yÞMðyÞ�

−
1

g2
X
x

cos ð−∇2θðxÞ þ ϵijΔ
ðþÞ
i δxi;0θjÞ þ

X
x;i

tx;iΨ†ðxÞeiðϵijΔð−Þ
j θðxÞþδxj;0θiÞΨðxþ êiÞ þ H:c: ð67Þ

with i ≠ j. The link variables, the angle ϕiðxÞ and the
integer-valued EiðxÞ, and the multiple local constraints
imposed by the Gauss law (32) are replaced by the dual
plaquette variables, the angle θðxÞ and the integer-valued
MðxÞ, and the single global constraint (66). For open
boundary conditions, the formulation simplifies since the
modified interaction potential G̃ðx; yÞ reduces toGðx; yÞ and
the global loop contributions corresponding to θ1 and θ2
drop out of the gauge-matter interactions and the magnetic
interactions, rendering them completely local. Moreover,
there is no global constraint left, making the formulation
manifestly gauge invariant. The reason why periodic boun-
dary conditions aremore difficult to deal with in the presence
of dynamical matter as compared to static matter is that the
two global loops around the torus become dynamical due to
the appearanceof gauge-matter interactions.Thus, the choice
of open boundary conditions should be preferred, in par-
ticular for quantum simulations as open boundary conditions
are much more natural from an experimental point of view.
To summarize, the required interactions for open boundary
conditions in the original approach, the formulation in terms
ofB=L variables and in terms of θ=M variables are illustrated
in Fig. 5, exemplary for a 3 × 3 lattice.

V. THREE SPACE DIMENSIONS

In this section we consider the generalization of the
previous discussion to 3þ 1d, i.e., three space dimensions.

The difference operators are defined exactly in the same
manner as in the two-dimensional settings of Sec. II A, as
well as the gradient and the divergence. The Laplacian’s
definition changes by a numerical factor to

∇2fðxÞ ¼ Δð−Þ
i ΔðþÞ

i fðxÞ
¼

X
i¼1;2;3

ðfðxþ êiÞ − fðx − êiÞÞ − 6fðxÞ: ð68Þ

We need to generalize the definitions of the curl. The curl of
a vector field on the links will be a pseudovector field
residing at the centers of plaquettes,

ð∇ × FðxÞÞi ¼ ϵijkΔ
ðþÞ
j FkðxÞ; ð69Þ

while the curl of a pseudovector will be a regular vector
field on the links,

ð∇ ×LðxÞÞi ¼ ϵijkΔ
ð−Þ
j LkðxÞ: ð70Þ

If we fix i ¼ 3, we recover the expressions for two space
dimensions.
The original Hamiltonian H in Eq. (28) is straightfor-

wardly generalized: Hm still runs over all lattice sites, HE
and Hint run over all links (each vector now contains
three components), and HB now includes three differently
oriented plaquette interactions (not a single one as for two
space dimensions), taking the form
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HB ¼ −
1

g2
X
x;i

cos ðϵijkΔðþÞ
j ϕkðxÞÞ; ð71Þ

which we will express in terms of the magnetic field
variables

BiðxÞ ¼ ϵijkΔ
ðþÞ
j ϕkðxÞ: ð72Þ

The Gauss law takes the same form as (32), this time with
the three-dimensional divergence.
Decoupling the matter can be done with the same

transformation U used in Sec. III, now in a three-dimen-
sional space and with the d ¼ 3 Green’s function (see
Appendix A) instead of the two-dimensional one used
above. Most of the transformed parts of the Hamiltonian
(H̃T

E, H̃
L
E and H̃int) will have an identical form as in the

d ¼ 2 case with the straightforward dimensional generali-
zation, see Eqs. (40), (41), and (47). Also the Gauss law
transforms in the same manner; i.e., it gets decoupled from
the matter degrees of freedom as in Eq. (38). Hm and HB
still commute with the transformation U.
The crucial difference in three space dimensions appears

when formulating the transformed Hamiltonian in terms of
dual variables. We start with the dual formulation in terms
of the B and L variables in Sec. IV. From Eq. (72) it is clear

that the divergence of B is zero; i.e., ΔðþÞ
i BiðxÞ ¼ 0 ∀x

holds on the operator level. Since this is an operator
identity, it is satisfied by any state; however, when building
a classical or quantum simulation it cannot be assumed to
be satisfied a priori, and thus physical states need to fulfill a
constraint for every cube:

ΔðþÞ
i BiðxÞjphysi ¼ 0 ∀x: ð73Þ

One can intuitively think about it in the electric basis, as
raising the electric flux on all faces of a cube should leave
the state invariant. Therefore, in three dimensions there are
local constraints left. However, they do not involve the
matter degrees of freedom. Note that for periodic boundary
conditions these local constraints are not independent,
since the sum over all local constraints gives zero; i.e.,
there are N3 − 1 independent constraints. This is not the
case for open boundary conditions. In addition, there are
three global constraints, which are a generalization of the
single global constraint in two dimensions (again, only for
periodic boundary conditions):

X
xi¼0
xj;xk

BiðxÞjphysi ¼ 0 for i ¼ 1; 2; 3 ð74Þ

with i ≠ j ≠ k and x ¼ ðx1; x2; x3Þ. These global con-
straints correspond to slices through the lattice. There
are only three independent ones since all other slices can

be obtained by deforming them with the plaquette con-
straints from Eq. (73).
We express the (transverse) electric field EiðxÞ after the

transformation as the curl of a pseudovector LkðxÞ. Thus,
the definition of Eq. (51) is replaced by

EiðxÞ ¼ ϵijkΔ
ð−Þ
j LkðxÞ þ δxj;0δxk;0Li ð75Þ

with i ≠ j ≠ k. The B1=L1, B2=L2, and B3=L3 variables
correspond to the three global loops winding around the
lattice along a specific axis (only present for periodic
boundary conditions). A discussion of the arising topo-
logical phenomena due to these global loops can be found
in [34].
One can show that, similar to the two-dimensional

case, the B and L variables fulfill canonical commutation
relations,

½BiðxÞ; LjðyÞ� ¼ iδijδðx; yÞ: ð76Þ

Similar to the two-dimensional case, we can perform a
counting of degrees of freedom. For that we can neglect the
matter degrees of freedom since their number is the same in
both formulations. In the case of periodic boundary
conditions, we have in the original link formulation 3N3

links and N3 sites, thus N3 − 1 independent Gauss laws,
leading to 2N3 þ 1 physical gauge degrees of freedom. In
the dual formulation, there are 3N3 plaquettes, three global
loop variables winding around the lattice, N3 − 1 indepen-
dent cube constraints as in Eq. (73), and three global
constraints, giving also a total of 2N3 þ 1 physical gauge
degrees of freedom.
In the case of open boundary conditions, we have in the

original formulation 3NðN þ 1Þ2 links and ðN þ 1Þ3 sites,
i.e., ðN þ 1Þ3 − 1 Gauss law constraints and thus 2N3 þ
3N2 physical gauge degrees of freedom. In the dual
formulation, we have 3N2ðN þ 1Þ plaquettes and N3 cube
constraints, resulting also in 2N3 þ 3N2 physical gauge
degrees of freedom.
The (transverse) electric Hamiltonian written in terms of

the L variables takes a similar form as in the two-dimen-
sional case,

H̃T
E ¼ g2

2

X
x;i

ðϵijkΔð−Þ
j LkðxÞ þ δxj;0δxk;0LiÞ2 ð77Þ

with i ≠ j ≠ k (the second term vanishes for open boun-
dary conditions). The difference in three dimensions is that
L variables on four plaquettes (the ones containing the link)
are required to express the transverse part of the electric
field. The magnetic Hamiltonian is still a one-body term, as
in two dimensions, which can be seen from Eqs. (71) and
(72). The gauge-matter interactions have the same form as
in (56) with the difference that the shifts sx;iðyÞ in the LðyÞ
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variables in (55) are computed with the three-dimensional
Green’s function (see Appendix A). Although this inter-
action involves many degrees of freedom, the shifts decay
away from the link (x, i) (and even faster in three
dimensions) which might allow one to neglect contribu-
tions above some certain distance.
The dual formulation in terms of the θ and M variables

can be generalized in a similar fashion. We first define a
pseudovector field on the plaquettes, θkðxÞ, whose curl
generates the transverse part of the gauge field (in addition
to the global loop variables θi):

ϕT
i ðxÞ ¼ ϵijkΔ

ð−Þ
j θkðxÞ þ δxj;0δxk;0θi ð78Þ

with i ≠ j ≠ k (the second term vanishes for open boun-
dary conditions). We also define M variables as the curl of
the electric field

MiðxÞ ¼ ϵijkΔ
ðþÞ
j EkðxÞ: ð79Þ

With the same reasoning as for the B variables, we obtain
similar local constraints as in Eq. (73) for the M variables

ΔðþÞ
i MiðxÞjphysi ¼ 0 ∀x ð80Þ

and the commutation relations

½θiðxÞ;MjðyÞ� ¼ iδijδðx; yÞ: ð81Þ

As in the two-dimensional case, the operators MiðxÞ have
an integer spectrum. For periodic boundary conditions, the
physical states need to fulfill the global constraints in
Eq. (74), with B replaced byM. The counting of degrees of
freedom can be performed in the same way as for the B=L
variables.
The gauge-matter interactions written in terms of the θ

variables result again in local interactions (up to contribu-
tions from the global loop variables θi which are only
present for periodic boundary conditions and then only on
the axes),

H̃int ¼
X
x;i

tx;iΨ†ðxÞeiðϵijkΔð−Þ
j θkðxÞþδxj;0δxk;0θiÞΨðxþ êiÞþH:c:

ð82Þ

with i ≠ j ≠ k. In three dimensions four plaquettes are
contributing compared to two in the two-dimensional case.
If we express the magnetic interactions in terms of the θ
variables, we obtain

HB ¼ −
1

g2
X
x;i

cos ðϵijkϵklmΔðþÞ
j Δð−Þ

l θmðxÞÞ: ð83Þ

The magnetic interaction on a plaquette involves all θ
variables which share a link with the respective plaquette.
To conclude, in three space dimensions, the matter

degrees of freedom can be decoupled from the gauge
constraints, so that only the gauge field variables on the
plaquettes are subject to constraints. However, compared
to two dimensions, the remaining constraints are local;
i.e., every cube on the lattice defines such a constraint.
It involves six plaquette variables, compared to six link
variables and the charge on the site in the original
Gauss law. On the other hand, due to the additional
dimension more degrees of freedom participate in the
interactions, making the dual formulation in three dimen-
sions more difficult to study compared to the two-dimen-
sional version.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have shown how to unitarily transform
compact QED with dynamical matter to a frame, in
which physical states (i.e., states fulfilling the local gauge
constraints) can be expressed by dual, gauge-invariant
variables while keeping translational invariance. The cen-
tral concept in this transformation is the decomposition of
lattice vector fields into transverse and longitudinal com-
ponents (Helmholtz decomposition). In the original for-
mulation, the gauge constraints (Gauss laws) for physical
states fix the longitudinal component of the electric field by
the given charge configuration. The transverse component
is not affected by these constraints. Since the gauge-matter
interactions (which appear due to the presence of dynami-
cal matter) involve the longitudinal part of the gauge field
(the canonically conjugate variable to the electric field),
we transform to a rotated frame, where Coulomb gauge
holds; i.e., only the transverse component of the gauge field
appears in the Hamiltonian. In this transformed picture, the
matter degrees of freedom decouple from the Gauss laws
and the physical (transverse) part of the gauge field and the
electric field is expressed in terms of a new set of canonical
variables on the plaquettes, making the formulation man-
ifestly gauge invariant.
The transformation can be performed in two and three

spatial dimensions, with periodic and open boundary
conditions, and there are two sets of dual variables, in
terms of which one can express the transverse part of the
gauge field/electric field.
While the unitary transformation in two and three spatial

dimensions has a very similar form, the formulation in
terms of dual variables is quite different. In two dimen-
sions, the dual plaquette variables are completely free of
any local constraints. In three dimensions, however, there
exists a local constraint for every cube on the lattice, in
which all plaquette variables on it are involved. This is
related to the fact that every closed surface defines a
constraint for these dual variables because a transverse field
(a curl field) integrated over a closed surface needs to be
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zero. Nevertheless, these local constraints only involve the
gauge field and not the matter degrees of freedom.
The main difference in boundary conditions is that in

the case of periodic boundary conditions there are global
loop variables around the lattice for every spatial direc-
tion, which are not present for open boundary conditions.
The introduction of dynamical charges and therefore the
appearance of gauge-matter interactions makes these var-
iables dynamical which is a big difference compared to the
case of static matter where these variables would just fix a
topological sector [31]. Also, for periodic boundary con-
ditions there are additional closed surfaces (in 2þ 1d the
whole torus), giving rise to global constraints on the dual
plaquette variables.
The two sets of dual variables share the same locations

for their degrees of freedom, and the difference between
them arises in the complexity of the different terms in
the Hamiltonian. The terms where no gauge field is
involved are the same, namely the mass term for the matter
and the (longitudinal) electric Hamiltonian, which is after
the transformation a Coulomb interaction of (static and
dynamical) charges. While the dual formulation in terms
of B=L variables (see Sec. IV) makes the magnetic
Hamiltonian a one-body term and the (transverse) electric
Hamiltonian a local two-body interaction, the gauge-matter
interactions are more complicated since the hopping of a
matter degree of freedom affects many plaquette variables
on the lattice. On the other hand, the dual formulation in
terms of θ=M variables makes the gauge-matter inter-
actions local again, only involving the plaquette variables
containing the link where hopping occurs. The magnetic
interaction becomes (focusing on two dimensions now)
a five-body interaction among a plaquette and its four
neighbors. The (transverse) electric Hamiltonian becomes a
Coulomb interaction among the plaquette variables.
Both formulations could be useful for both classical

variational studies or quantum simulation and computation
of lattice gauge theories, where descriptions with no or less
gauge redundancies help to reduce the required resources
and prevent a possible violation of gauge invariance.
For variational studies, this also allows one to consider a
larger class of possible ansatz states (due to the absence of
constraints).
The B=L formulation could be used to extend variational

ansatz states for compact QED with static matter (as in [28])
to dynamical charges, e.g., by coupling it to a fermionic
Gaussian state with a non-Gaussian transformation [42]. In
this context, a recentMonte Carlo study [43] could serve as a
useful benchmark, as it provides results for an even number
of fermion flavors where the sign problem is absent.
The θ=M formulation could be used to design a quantum

simulation, where the difficult terms in the implementation
are Coulomb interactions and the five-body interaction
corresponding to the magnetic Hamiltonian. However, the
latter is nothing but the ordinary four-body (plaquette)
interaction in the Kogut-Susskind Hamiltonian with an

additional degree of freedom in the center of the respective
plaquette. Over the past years, there has been a lot of effort
in how to implement this interaction in a quantum simu-
lation [44–48] which can be a nice starting point for the
implementation of the interaction above. The more difficult
part is generating a Coulomb potential with quantum
devices. This problem is shared with quantum simulation
of quantum chemistry where a Coulomb potential is a
crucial building block. However, recently, there have been
ideas how to implement such a potential with ultracold
atoms [49] which might also be beneficial to lattice gauge
theory. To further reduce the required resources for a
quantum simulation, one could combine our approach with
a truncation scheme proposed in [33], applied to the Hilbert
space of the dual variables.
As for other gauge groups, the method could be

straightforwardly extended to ZN—as they are all sub-
groups of Uð1Þ. For non-Abelian groups the situation is
different; if one tries to decompose the gauge field/electric
field in a similar way to the Abelian case, the equations
become nonlinear (as opposed to Poisson’s equation), and
thus one cannot perform such a unitary transformation in
the same manner as for Abelian gauge groups. There are
other methods (e.g., the maximal tree approach [50]) but
they do not preserve translational invariance.
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APPENDIX A: THE LATTICE POISSON
EQUATION

In this section, we discuss the calculation of the
lattice Green’s function Gðx; yÞ for both periodic and open
boundary conditions, defined by the equation

−∇2Gðx; yÞ ¼ δðx; yÞ: ðA1Þ
The solutions to Poisson’s equation

−∇2fðxÞ ¼ QðxÞ ðA2Þ

can be constructed out of it as a superposition,

fðxÞ ¼
X
y

Gðx; yÞQðyÞ: ðA3Þ

Starting with periodic boundary conditions in d space
dimensions, the (negative) Laplacian takes the form
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−∇2fðxÞ ¼ 2dfðxÞ −
Xd
i¼1

ðfðxþ êiÞ þ fðx − êiÞÞ: ðA4Þ

We define the Fourier transformation on the lattice as

F ½fðxÞ� ¼ f̃ðkÞ ¼ 1

Nd=2

X
x

ei
2π
Nk·xfðxÞ: ðA5Þ

We can now obtain the lattice Green’s function by Fourier
transformation of Eq. (A1),

Gðx; yÞ ¼ Gðx − yÞ ¼
X
k≠0

ei
2π
N ðx−yÞk

2ðd −
P

i cos ð2πN kiÞÞ
ðA6Þ

with x ¼ ðx1;…; xdÞ, k ¼ ðk1;…; kdÞ, and xi; ki ∈
f0;…; N − 1g. The k ¼ 0 mode can be neglected, since
the total charge on the lattice is always zero due to gauge
invariance. The Green’s function in two and three dimen-
sions differs only by an additional term in the denominator
in Eq. (A6) due to the additional dimension.
For open boundary conditions, one cannot obtain such an

explicit formula due to boundary effects. The lattice sites on
the corners only have half the number of neighboring sites
compared to the bulk so that the Laplace operator looks
different (A4) (say e.g., the bottom left corner, x ¼ 0):

−∇2fð0Þ ¼ dfð0Þ −
Xd
i¼1

fð0þ êiÞ: ðA7Þ

The Laplace operator on the edges is modified in an
analogous way. Therefore, the operator cannot be diagon-
alized by a discrete Fourier transformbut needs to be inverted
numerically. Since the Laplace matrix is singular, one needs
to fix a condition, e.g.,

P
x Gðx; yÞ ¼ 0. By fixing y for

different lattice positions and inverting the Laplace matrix,
one can then obtain the Green’s function Gðx; yÞ.

APPENDIX B: THE LATTICE HELMHOLTZ
DECOMPOSITION

With the Green’s function from the previous section, we
can write down the (Helmholtz) decomposition of a lattice
vector field into transverse and longitudinal components, as
written in Eq. (8). For that, we will need the double curl
identity

½∇ × ð∇ × FÞ�iðxÞ ¼ ϵijkΔ
ð−Þ
j ϵklmΔ

ðþÞ
l FmðxÞ

¼ ðδilδjm − δimδjlÞΔð−Þ
j ΔðþÞ

l FmðxÞ
¼ ΔðþÞ

i Δð−Þ
j FjðxÞ − Δð−Þ

j ΔðþÞ
j FiðxÞ

¼ ∇ið∇ · FðxÞÞ −∇2FiðxÞ: ðB1Þ

One should note that for periodic boundary conditions there
is an additional contribution in the double curl coming from

global loops around the lattice which need to be taken into
account.

1. Periodic boundary conditions

We can now derive the Helmholtz decomposition in an
analogous way to the continuum version (for periodic
boundary conditions):

FiðxÞ ¼
X
y

δðx; yÞFiðyÞ ¼ −∇2
x

X
y

Gðx; yÞFiðyÞ: ðB2Þ

Inserting the double curl identity (B1), we get the sepa-
ration into a longitudinal and a transverse component. The
longitudinal component has the form

FL
i ðxÞ ¼ −ΔðþÞ

i ϕðxÞ ðB3Þ

with the scalar field ϕ on the sites

ϕðxÞ ¼
X
y

Δð−Þ
j;xGðx; yÞFjðyÞ

¼
X
y

Gðx; yÞΔð−Þ
j;y FjðyÞ: ðB4Þ

The transverse component is a little more complicated since
we also need to take into account the contributions from the
global loops Li around the lattice. Without the global part,
we obtain for the transverse component

FT
plaq;iðxÞ ¼ ϵijkΔ

ð−Þ
j Lplaq;kðxÞ ðB5Þ

with the pseudovector field L on the plaquettes

Lplaq;kðxÞ ¼
X
y

ϵklmΔ
ðþÞ
l;x Gðx; yÞFmðyÞ

¼
X
y

Gðx; yÞϵklmΔðþÞ
l;y FmðyÞ: ðB6Þ

If we look at the field generated by the scalar field ϕ and the
pseudovector field Lplaq in Fourier space, it is clear that all
momentum modes of F can be obtained apart from the
k ¼ 0 mode, i.e., a constant field. For that, the global loop
Li is required, which needs to be fixed to

Li ¼
1

N

X
x

FiðxÞ: ðB7Þ

This gives the correct k ¼ 0 mode but in order to get a
constant field this contribution needs to be equally distrib-
uted over the lattice. Thus, we define an additional Lconst
field on the plaquettes, on top of Lplaq (exemplary for L1,
the other spatial directions follow analogously):
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Lconst;3ðxÞ ¼
P

yF1ðyÞ
N2

x2 if x3 ¼ 0;

Lconst;2ðxÞ ¼ −
P

yF1ðyÞ
N3

x3: ðB8Þ

Lconst;3 distributes the field of the global loop L1 in the ê2
direction and Lconst;2 from the ê1; ê2 plane in the ê3
direction over the whole lattice, giving us a constant field
in the ê1 direction. The total plaquette field of the L
variables is then L≡ Lplaq þ Lconst and the total transverse

component FT
i ðxÞ≡ FT

plaq;iðxÞ þ
P

y
FiðyÞ

N3 . The Helmholtz
decomposition of F can thus be written as

FiðxÞ ¼ −ΔðþÞ
i ϕðxÞ þ ϵijkΔ

ð−Þ
j ðLplaq þ LconstÞkðxÞ

þ δxj;0δxk;0Li

¼ −ΔðþÞ
i ϕðxÞ þ ϵijkΔ

ð−Þ
j LkðxÞ þ δxj;0δxk;0Li

¼ FL
i ðxÞ þ FT

plaq;iðxÞ þ
P

yFiðyÞ
N3

¼ FL
i ðxÞ þ FT

i ðxÞ ðB9Þ

with i ≠ j ≠ k.

2. Open boundary conditions

For open boundary conditions, one can perform a similar
decomposition, with the major difference that there is no
global loop participating. It can be written as

FiðxÞ ¼ −ΔðþÞ
i ϕðxÞ þ ϵijkΔ

ð−Þ
j LkðxÞ; ðB10Þ

where the scalar field ϕ has the same form as in Eq. (B4),
with the Green’s function replaced by the one for the open
boundary condition. The plaquette field L also has the
same form as in Eq. (B6), but the sum goes only over all
plaquettes (not all lattice sites) and the Green’s function
Gplaqðx; yÞ is determined by a modified Laplace operator
∇2

plaq on the plaquettes:

−∇2
plaqfðxÞ ¼ 2dfðxÞ −

Xd
i¼1

ðfðxþ êiÞ þ fðx − êiÞÞ;

ðB11Þ
where the difference is the constant factor of 2d, also at the
boundaries, e.g., at x ¼ 0,

−∇̃2fð0Þ ¼ 2dfð0Þ −
Xd
i¼1

fð0þ êiÞ: ðB12Þ

All the above discussion applies immediately to the d ¼ 2
case, by embedding it in d ¼ 3.

3. The shifts sx;iðyÞ
As a result of the Helmholtz decomposition, we obtain

the shifts sx;iðyÞ discussed in Sec. IV, which describe the
shifts in the electric plaquette variables LðxÞ when a matter
degree of freedom hops to an adjacent site. We just need to
replace the general field FiðxÞ with a field which is zero
everywhere and one on the link where hopping occurs. The
resulting values for L computed by Eqs. (B6), (B7), and
(B8) adapted to two dimensions give exactly the shifts
sx;iðyÞ (analogously for open boundary conditions), e.g.,
for a shift in the ê1 direction,

splaq;x;1ðyÞ ¼ Gðy;xÞ − Gðy;x − ê2Þ;

sconst;x;1ðyÞ ¼
1

N2
y2;

sx;1ð1Þ ¼
1

N
; ðB13Þ

so that sx;1ðyÞ ¼ splaq;x;1ðyÞ þ sconst;x;1ðyÞ and with sx;1ð1Þ
the shift in the global loop variable L1.

APPENDIX C: CANONICAL COMMUTATION
RELATIONS

In this section we show that the dual B=L variables fulfill
canonical commutation relations as stated in Eq. (50).
Using the expression of LðyÞ in terms of the original
electric field EiðyÞ on the links [see Eq. (49)], the
expression of BðxÞ as the lattice curl of the gauge field
ϕjðxÞ [see eq. (25)], and the original canonical commu-
tation relations in Eq. (22), we obtain

½BðxÞ; LðyÞ� ¼ ϵijϵkl
X
y0
ΔðþÞ

k;y Gðy; y0Þ½ΔðþÞ
i;x ϕjðxÞ; Elðy0Þ�

¼ ϵijϵkl
X
y0
ΔðþÞ

k;y Gðy; y0Þiδjlðδxþêi;y0 − δx;y0 Þ

¼ ϵijϵkjiΔ
ðþÞ
k;y Δ

ðþÞ
i;x Gðy;xÞ

¼ −iΔð−Þ
i;x Δ

ðþÞ
i;x Gðy;xÞ

¼ iδx;y ðC1Þ

canonical commutation relations also for B and L. In a
completely analogous way one can derive the canonical
commutation relations for θ and M.

APPENDIX D: THE MODIFIED COULOMB
POTENTIAL BETWEEN THE DUAL M

VARIABLES FOR PERIODIC
BOUNDARY CONDITIONS

If we consider periodic boundary conditions in the dual
formulation in terms of the θ=M variables, the electric
Hamiltonian gives rise to Coulomb-type interactions
between the M variables. The interaction potential G̃ðx; yÞ
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is slightly modified compared to the potential for the
matter degrees of freedom due to the global loops as
discussed in Sec. IV in Eq. (64). They change the Laplace
operator (here in two dimensions) on the plaquettes to [see
Eq. (63)]

MðxÞ ¼ −∇2LðxÞ þ ϵijΔ
ðþÞ
i δxi;0Lj

−∇2LðxÞ þ ðδx2;0 − δx2;−1ÞL1 − ðδx1;0 − δx1;−1ÞL2:

ðD1Þ

The plaquettes where the Laplace operator is altered are
the ones sharing a link with one of the two axes. The
relation between the global M variables M1 and M2 and
L is

M1 ¼ NL1 þ
X
x2¼0
x1

ðLðxÞ − Lðx − ê2ÞÞ;

M2 ¼ NL2 −
X
x1¼0
x2

ðLðxÞ − Lðx − ê1ÞÞ: ðD2Þ

If one defines anM vector out of the plaquettevariablesMðxÞ
and the global variablesM1 andM2,M ≡ ðMðxÞ;M1;M2Þ,
and analogously for L, one can construct a system of linear
equations forM andL out of Eqs. (D1) and (D2), denoted by

D, i.e., DL≡M, which can be inverted (after fixing some
condition), resulting in

LðxÞ ¼
X
y

D−1ðx; yÞMðyÞ: ðD3Þ

Note that the sumover y also contains 1 and 2, corresponding
to theglobal loop variablesM1 andM2. Inserting this relation
in the electric Hamiltonian in terms of L in Eq. (54) gives
Eq. (64),

HT
E ¼ g2

2

X
x;y

MðxÞG̃ðx; yÞMðyÞ ðD4Þ

with

G̃ðx; yÞ ¼
X
x0;i

ðϵijΔð−Þ
i;x0D

−1ðx0;xÞ þ δxj;0D
−1ði;xÞÞ

× ðϵikΔð−Þ
i;x0D

−1ðx0; yÞ þ δxk;0D
−1ði; yÞÞ ðD5Þ

with i ≠ j and i ≠ k. Since x and y also include the global
variablesM1 andM2 [denoted by 1 and 2, as for example in
D−1ði;xÞ], there are nontrivial interactions between the
global variables and the plaquette variables. For open
boundary conditions, the above expression for G̃ðx; yÞ
reduces to Gðx; yÞ.
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