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Quantum anomalous Hall phase in synthetic bilayers via twistronics without a twist
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We recently proposed quantum simulators of “twistroniclike” physics based on ultracold atoms and synthetic
dimensions, T. Salamon et al. [Phys. Rev. Lett. 125, 030504 (2020).]. In this scheme, Moiré-like patterns can
be directly imprinted on the lattice by spatially modulating the interlayer coupling via laser induced Raman
transitions, without the need of a physical twist of the layers. As a result, certain “magic” configurations host
Dirac cones and quasiflat bands with tunable bandwidths. In this paper we extend these ideas and demonstrate
that our system exhibits topological band structures under appropriate conditions. To achieve nontrivial band
topology we consider imaginary next-to-nearest neighbor tunnelings that drive the system into a quantum
anomalous Hall phase. In particular, we focus on three groups of bands, whose Chern numbers triplet can be
associated to a trivial insulator (0,0,0), a standard nontrivial (−1, 0, 1), and a nonstandard nontrivial (−1, 1, 0).
We identify regimes of parameters where these three situations occur. We show the presence of an anomalous
Hall phase and the appearance of topological edge states. Our work opens the path for experiments on topological
effects in twistronics without a twist.
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I. INTRODUCTION

Twistronics (from twist and electronics) is a term com-
monly used nowadays to describe the physics resulting from
the twist between layers of two-dimensional materials. This
terminology was introduced in Ref. [1], which conducted
theoretical studies on how a twist between the layers can
change electronic properties of bilayer graphene. But the
history of this new area of research goes back to Ref. [2],
whose authors suggested that twisted bilayer graphene could
provide a new material with unprecedented properties. Flat
bands at the magic angle were discovered in 2011 [3], whereas
Bistritzer and MacDonald showed that for a twisted material
with a “magic angle” the free electron properties radically
change [4]. More recently, two seminal experimental pa-
pers [5,6] demonstrated that such twisted bilayer graphene at
the magic angle can host both strongly insulating Mott states
and superconductivity. These impressive results triggered an
avalanche of experimental and theoretical works [7–24] (see
Ref. [25] for a recent review article). Many of these recent ac-
tivities discuss topological insulators in magic-angle twisted
bilayer graphene and the possibility of creating and control-
ling topological bands in these systems [24,26,27].
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Topological order has now become a central research topic
in physics, exemplified by the 2016 Nobel Prize for D. J.
Thouless, F. D. M. Haldane, and J. M. Kosterlitz [28,29].
The intimate relation between topology and condensed mat-
ter goes back to the discovery of the integer quantum Hall
effect (IQHE) [30]: A 2D electron gas at low tempera-
ture and under a strong magnetic field presents a quantized
transverse conductivity very robust against local perturba-
tions. It was soon realized [31] that this robustness was
coming from a new paradigm: a global topological order
which cannot be described by the usual Ginzburg Landau
theory of phase transitions. In the particular case of the
IQHE, the presence of a strong magnetic field results in the
appearance of flat bands (Landau levels), each of them be-
ing characterized by a distinct topological invariant, called
Chern number, and the transverse conductivity is equal to the
sum of the Chern numbers of the occupied Landau levels.
Soon after, F.D.M. Haldane proposed the quantum anomalous
Hall effect, which presents a quantized transverse conduc-
tivity but no Landau levels [32]. Such a toy model turned
out to be the crucial ingredient for the original proposal
of topological insulators in graphene [33,34] and stimulated
very rapid progress of the area of topological/Chern insula-
tors, topological superconductors, topological flat bands, and
even systems with higher-order topology [35–42]. Recently,
quantum anomalous Hall effect has been reported in Moiré
heterostructures [43,44]. One of the most challenging and still
persisting questions is related to the role of interactions, in
particular strong interaction and correlations [45]. Interest-
ingly, the interactions do not always destroy the topological
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phases. Strong interactions in flat band topological materials
can lead to the fractional quantum Hall effect [46–48] or
to fractional Chern insulators [49–52]. Furthermore, strong
interactions can induce topology through a spontaneous sym-
metry breaking mechanism as is the case in the celebrated
topological Mott insulator [53–60].

Novel insights into the physics of topological order can
be provided by quantum simulators. These highly flexible
experimental systems are used to mimic complex quantum
systems in a clean and controllable environment. Quantum
simulators constitute one of the four major pillars of con-
temporary quantum technologies [61] and can be realized
with various platforms such as ultracold atoms, trapped ions,
superconducting qubits, circuit QED, nitrogen vacancies in
diamond, or nanostructure in condensed matter (for a review
see Refs. [62–67]). In this work, we focus on the simu-
lation of twisted graphene with ultracold atoms in optical
lattices [68]. Such platforms allow one to simulate diverse
geometries leading to, among others, graphenelike physics in
synthetic hexagonal and brickwall lattices [69–71] or flat band
physics in the Lieb lattice [72,73]. There are indeed other plat-
forms for realizing hexagonal lattices [74], but atoms combine
additional advantages, as explained hereafter. Cold atoms pro-
vide a unique playground for synthetic gauge fields [75–77],
combined with time dependent lattice modulations/Floquet
engineering [78,79]. In particular, such techniques led to the
experimental realization of the Hofstadter model [80,81], the
Haldane model [82–84]. Furthermore, artificial gauge fields
can also be engineered with the help of synthetic dimensions
which allows us to engineer topological insulators on ladders
with both nontrivial Chern numbers and topological edge
states [85–91]. Finally, optical lattices offer possibilities to
study bilayer systems and proximity effects [92].

The rapid development of twistronics in condensed matter
physics of 2D material stimulated an extensive quest for quan-
tum simulators of twistronics with ultracold atoms [93] and of
Moiré patterns in photonic systems [94]. We combined these
two worlds in a recent work, quantum simulators and synthetic
dimensions, and proposed twistronics without a twist [95]. In
this paper we considered a single 2D optical lattice with a
desired geometry (honeycomb, brick, or �-flux square) and
created multilayer systems employing the internal state of the
atoms inserted in the lattice. These could be in the simplest
case fermions with spin 1/2 or 3/2. The Moiré patterns were
generated by spatial modulations of the Raman transitions
coupling the internal states. Since the strength of the Raman
coupling can be efficiently controlled in this system, the ap-
pearance of flat bands is expected to occur for much larger
“magic” angles, or better to say for elementary cells of much
more modest sizes, like a unit cell consisting of only 2 × 8 lat-
tice sites. We analyzed the properties of the band structure in
such systems and showed that these expectations were indeed
correct. In the present paper we develop further the idea of
Ref. [95] and demonstrate that such a system is very flexible
and can be tweaked to exhibit topological band structure in
various situations. In particular, to achieve nontrivial topol-
ogy we engineer artificial complex next-to-nearest neighbor
tunneling analogous to the ones appearing in the Haldane
model [32]. Typically, the energy bands of our interest in
this system form three groups and the Chern number changes

from trivial (0,0,0) to a topological phase with a trivial flat
band (−1,0,1) and a topological phase with a nontrivial flat
band (−1, 1, 0). We identify the regimes of parameters where
these three situations occur and study properties of the system
with periodic and open boundary conditions. The paper is
organized as follows. In Sec. II we present the details of the
model [95], together with modifications required for achieve-
ment of topological bands. In Sec. III we discuss magic
configurations and quasiflat bands. Section IV is devoted to
the investigations of the effects of onset of staggered hoping
and appearance of topological insulators. Similar effects and
topological properties are discussed for dimerized lattices in
Sec. V. Section VI contains a short discussion of feasibility of
experimental realization of the discussed physical effects. The
conclusions and outlook are presented in Sec. VII.

II. THE SYSTEM

We consider a system of synthetic spinful fermions in a
bilayer material. The fermions are subjected to a synthetic
magnetic field which leads to a supercell structure. We pro-
pose the following scheme to realize such a Hamiltonian in
a quantum simulator. We consider ultracold fermionic atoms
with four internal states, m, σ = ±1/2, in a two-dimensional
spin-independent optical square lattice with lattice spacing d .
The four internal states are chosen such that two spin flavors of
electrons are described by two pairs of the internal states, de-
noted by σ . The pair of spin states corresponding to the same
σ are subjected to the Raman coupling. The index m, which
distinguishes the Raman coupled pairs, is the labeling of the
synthetic dimension. The two possible values of m effectively
realize a synthetic bilayer structure. A Moiré-like supercell
structure can be obtained by modulating the Raman coupling
strength, �(x, y), in space. The complete Hamiltonian reads

H = Ht + Hλ + H� + Hμ, (1)

where

Ht = −
∑

r,m,σ

t (r)[a†
m,σ (r+1x )+a†

m,σ (r + 1y)]am,σ (r) + H.c.

(2)

is the nearest neighbor hopping Hamiltonian with a real and
space dependent tunneling amplitude t (r),

Hλ =
∑

r,m,σ

λ[exp(iφR(�r))a†
m,σ (r + 1x + 1y)

+ exp (iφL(�r))a†
m,σ (r − 1x + 1y)]am,σ (r) + H.c. (3)

is the next-to-nearest hopping Hamiltonian with a complex
tunneling amplitude λ and a staggered phase �,

H� =
∑

r,m,σ

�(r) exp(−iγ · r) a†
m+1,σ (r)am,σ (r) + H.c. (4)

denotes the synthetic hopping Hamiltonian with a space de-
pendent Raman coupling � and a magnetic phase γ = γ (1x +
1y), and

Hμ =
∑

r,m,σ

μ(r) a†
m,σ (r)am,σ (r) (5)
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FIG. 1. The supercell structure and effects of complex hopping.
(a) The left panel illustrates a sketch of a single plane of the bilayer
structure corresponding to one of the spin states m = ±1/2. We
consider square lattice potential. The maroon and dark-blue sites
are Raman coupled with the second plane under the chosen spatial
modulation of the synthetic tunneling. The pink sites (in both the lay-
ers) experience onsite energies μ. The real-space nearest-neighbor
tunneling t is shown by the solid lines. The next-nearest-neighbor
complex tunneling depending on directions of hopping and the po-
sition of the lattice sites is shown by staggered dotted lines. The
red line shows a top view of the elementary unit cell of the system
containing 2 × 8 sites for Raman periodicities lx = ly = 4, where the
factor of 2 accounts for the two layers. The right top panel depicts
the arrangement of elementary unit cells and the two translation
vectors as arrows. This leads to the first Brillouin zone shown in
the right bottom panel, indicating also the position of the high-
symmetry points. (b) The three-dimensional view of the six band
manifold in the vicinity of E = −�0(1 − α) for �0α/h = 40t with
α = 0.2, γ = π/2, and μ = 0. The left panel shows the case when
next-nearest-neighbor complex hopping is absent, i.e., λ = 0. It has
two quasiflat bands at the Dirac points of two dispersive bands in the
form of Dirac cones. The right panel shows the same set of bands but
in presence of the complex tunneling, λ = 0.2t . This causes opening
of a hard gap between the quasiflat bands and the nearby dispersive
bands.

is the onsite energy Hamiltonian with an amplitude μ(r).
Figure 1 provides a schematic depiction of the system under
study. Moreover, we present the matrix form of the Fourier
transformed Hamiltonian (1) in the Appendix.

The spatial modulation of the Raman coupling is chosen
to be �(x, y) = �0[1 − α(1 + cos (2πx/lx ) cos (2πy/ly))],
where lx (ly) is its periodicity along the x (y) axis. In the
following, we consider two distinct cases: (i) Staggered com-

plex hopping (SCH). We set t (r) = t and fix the phases
associated with the next-nearest neighbor complex tunnel-
ing amplitude by setting φL(r) − φR(r) = π , where φR(r) =
(2 r.1y + 1)π/2 and φL(r) = (2 r.1y + 3)π/2. (ii) Dimerized
lattice (DL). We consider dimerized real tunneling amplitude,
such that t (r) takes the form of t1 and t2 in alternative sites
in the x and y directions, along with the next-nearest neighbor
complex hopping, where we set φR(r) = φL(r) = π/2.

III. MAGIC CONFIGURATIONS AND QUASIFLAT BANDS

In the following, we study the Hamiltonian (1) under var-
ious boundary conditions: (i) periodic boundary conditions
in both spatial (x and y) direction, (ii) periodic boundary
condition in one of the spatial directions (here along x), and
(iii) open boundary conditions in all spatial directions. We
first consider the case (i), for which the quasimomentum
k = (kx, ky) is a good quantum number. In this case, we can
apply the Bloch theorem, along with a gauge transforma-
tion, such that am,σ (r) = ∑

k exp (i(k · r + mγ · r))am,σ (k).
The Hamiltonian can then be rewritten as H = ∑

k Hk and
can be diagonalized. The spatial periodicity of the synthetic
tunneling fixes the supercell dimension and hence the dimen-
sion of Hk. The notation �(lx, ly) is introduced to represent
corresponding supercell configuration.

The band structure corresponding to the case with λ = 0
and μ = 0 has been studied in detail in the previous work.
Remarkably, �(4ν, 4ν) configurations, i.e., when lx = ly =
4νd , with ν integer, were identified as magic configurations.
�(4ν, 4ν) configurations host quasiflat bands surrounded by
dispersive Dirac cone spectra with controllable Dirac veloc-
ities and hence share certain characteristics associated with
magic angle twisted bilayer graphene. In this work we focus
on the the smallest possible configuration �(4, 4) consisting
of only 16 lattice sites. The corresponding Brillouin zone
of the bilayer system showing the high-symmetry points is
depicted in Fig. 1(a). In the following we briefly review few
consequences for the case with λ = 0 and μ = 0.

In the strong Raman coupling limit (�0α) � t , isolated
sets of narrow spin degenerate bands appear at the energies
±�0, ±�0(1 − α), and ±�0(1 − 2α). We identify the energy
spectrum of the system to be symmetric around zero energy,
i.e., E (�q) = −E (�q) and therefore we restrict our discussion
to the negative energy bands. A nonisolated set of six bands
around the energy E/t = −�0(1 − α) are of particular in-
terest in this work. Figure 1(b) shows the energy spectrum
for a representative case with �0α/h = 40t , α = 0.2, λ = 0,
μ = 0, and the flux γ = π/2 [also see Fig. 2(a), which de-
picts the energy spectrum along the paths passing through the
high-symmetry points]. Here the parameters are chosen by
considering an experimentally accessible regime in practice.
Within this six band manifold, the top and bottom three bands
are symmetric around the energy −�0(1 − 2α). Noticeably,
two middle bands, which are quasiflat, are formed closest
to −�0(1 − α) and they are sandwiched between dispersive
bands in the form of Dirac cones. These well isolated six band
manifolds with a total dispersion of 
6 = 4

√
2t cos(γ /2) +

O(t2/(�0α)) are separated from remaining nearby bands by
an energy gap of �0α. The flatness of the quasiflat bands (two
middle bands) can be tuned precisely by adjusting the Raman
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FIG. 2. Magic configuration band structures in the presence
of staggered complex hopping. Band structures corresponding to
�(4, 4) supercell along the paths passing through the high-symmetry
points �, X, M, �, X′, M for �0α/h = 40t , α = 0.2, and γ = π/2.
Panel (a) shows the set of six bands around energy −�0(1 − α) with
λ = 0.0, while other bands, which are well separated (by at least
the energy of �0α) are not shown. There is no hard gap between
the two middle quasiflat bands and adjacent dispersive Dirac cones.
Panels (b) and (c) reveal evolution of the spectrum with respect to
the onsite energy, μ. Panels (a), (b), and (c) correspond to μ = 0,
0.4t , and 1.2t , respectively. Finite λ induces a hard gap between
the quasiflat bands and dispersive bands. The onsite energy leads
the system through a nontrivial gapped-gapless transition, given the
Fermi energy is adjusted accordingly.

coupling strength. Their approximate width can be derived
within the second order perturbation theory as


F = t2 cos2 (γ /2)

�0α

(
24α3 − 88α2 + 106α − 32

3α3 − 11α2 + 12α − 4

)
. (6)

The relative flatness of the bands is defined as F = 
F /
6.
As a result, the relatively flatter middle bands can be obtained
by increasing �0α. The parameters here are chosen from an
experimentally accessible regime. It is worth mentioning that
the Dirac velocity is proportional to cos(γ /2), and hence the
bandwidths of the dispersive Dirac bands can be controlled
separately by tuning γ .

Within these six bands, the system has no gaps. The upper
dispersive Dirac cone touches the middle quasiflat bands at
the high symmetry point �, i.e., kx = ky = 0. A nonzero flux,
however, opens a tiny local gap between the lower dispersive
bands and the middle quasiflat bands at �. Finite flux breaks
rotational and time reversal symmetries, c4τ , of the system. In
the following we discuss strategies for opening a gap around
the Dirac band touching and the resulting topological phases
of matter.

IV. STAGGERED COMPLEX HOPPING

A. Bulk properties of the system

We investigate the staggered complex hopping case [see
Eq. (1) and Fig. 1(a)]. We first set μ = 0 and consider periodic
boundary conditions in both x and y directions. A finite value
of λ breaks time-reversal symmetry. We focus on the same
six-band subset of the energy spectrum. A nonzero value of λ

induces a mass term at the Dirac crossing. As a result, three
isolated sets of bands are formed—each of them consists of
two hybridized bands. The resulting band structure along the
high-symmetry points is shown in Fig. 2(b) for �0/h = 200t ,
α = 0.2, γ = π/2, and λ = 0.2t . While the quasiflat bands
remain closest to the energy �0(1 − α), the top (bottom)
dispersive bands shifts upwards (downwards). The band gaps
can be controlled by tuning the value of λ. As we will see,
such hopping amplitude λ drives the system into a quantum
anomalous Hall phase [32].

We further investigate the influence of a nonzero staggered
onsite energy μ on the system. A finite value of μ breaks the
inversion symmetry of the system and the energy spectrum
is no longer exactly symmetric around the zero energy. Nev-
ertheless, the overall qualitative features of the negative and
positive energy bands remain closely similar for a value of μ

smaller than the central band gap. Moreover, this staggered
onsite energy results in a significant asymmetry between the
two top and two bottom bands within the six band manifold
under study. As we discuss below, this staggering potential
has a prominent impact on topological phases of the system.
Figures 2(b)–2(d) show the evolution of the band structure
for increasing values of μ: The band gap between the top
dispersive bands and the middle quasiflat bands shrinks, and
the gap closes at μc � 2λ. For μ > μc, the gap then reopens.
Figure 3 shows the energy gap between the set of quasiflat
bands and the upper set of bands. We also observe a gap clos-
ing and reopening of the lower gap for increasing staggering
potential with opposite sign. The latter is reminiscent of the
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FIG. 3. (a) Chern number of the five lowest bands as a function
of system parameters λ/t and μ/t . As seen in (b) the system is
gapless for μ = 2λ, which makes C5 undefined in this region. The
gapless region visible in (b) is marked by the red line in (a). Topo-
logical transition presented in Fig. 2 can be seen by looking at the
vertical cross section at λ/t = 0.2. Blue region of Chern number −1
indicates the configurations at which system has standard nontrivial
topology since C3 = −1 and the order is (−1, 0, 1), while the yellow
area depicts parameters’ values for which nonstandard topological
order (−1, 1, 0) can be obtained. Red and blue points mark the
values of the parameters for which edge states have been plotted in
Figs. 5(a) and 5(b), respectively. (b) Second band gap (energy gap
between the hybridized quasiflat middle bands and the dispersive
upper band) as a function of λ/t and μ/t . Vanishing energy gaps
mark a topological phase transition in the system. Meaning of red
and blue points remains the same as in panel (a).

interplay between the staggering potential and the imaginary
next-to-nearest neighbor hopping in the Lieb lattice [96]. In
fact, the system undergoes a topological phase transition. We
characterize the topology of the system with the help of the
Chern number C, a topological invariant for the class of Chern
insulators. The Chern number of the nth band is defined as

Cn = i
∫

BZ
F xy

n (k)dS = i
NxNy∑
l=1

∫
Pl

F xy
n,l (k)dS, (7)

the integral of the Berry curvature F xy
n,l (k) = ∇k × An(k)

written in terms of the Berry connection An(k) =
〈un(k)|∂k|un(k)〉. In the second equality, we have rewritten
this integral as a sum of integrals over the plaquettes of
the discretization grid of the Brillouin zone. For a such
a discretized grid, the Berry curvature can be computed

numerically with the help of the FHS algorithm [38]

Cn ≈ 1

2π i

∑
Pl

(〈
un

k

∣∣un
m

〉〈
un

m

∣∣un
o

〉〈
un

o

∣∣un
p

〉〈
un

p

∣∣un
k

〉)
, (8)

where Pl denotes a plaquette in the Brillouin zone with four
vertices (k, m, o, p) labeled in the anticlockwise order with
k being the top left vertex and |un

k〉 is a Bloch function cor-
responding to the nth eigenvalue at point k. The summation
is performed over all plaquettes in the Brillouin zone. We
emphasize that for degenerate bands one has to use the algo-
rithm proposed in Ref. [97] to compute the non-Abelian Berry
curvature. In this paper, we use the total Chern number

Ci =
i∑

j=1

C j (9)

defined as the sum of the Chern numbers of the i first occupied
bands.

As can be seen in Fig. 3(a), for μ < μc, the hybridized
middle set of bands are topologically trivial with zero Chern
number, while the bottom (top) set of dispersive band is topo-
logically nontrivial with C = −1(1). The gap closing leads to
a topological phase transition with a transfer of Chern number
from the upper set of bands to the middle set of bands [98],
and for μ > μc, the middle set of bands becomes nontrivial
with C = 1 and the upper set of bands becomes trivial with
C = 0. The bottom dispersive bands remain nontrivial with
C = −1. In the following subsections, we discuss in detail the
topological edge states appearing in a system with boundaries.

B. Cylindrical geometry and edge states

In order to study the topological edge states of the system,
we consider a cylindrical or strip geometry. Calculations are
conveniently performed using an enlarged unit cell consisting
of plaquettes of size 4 × 4 site per layer. More specifically, we
consider a bilayer strip of finite length along the x direction
and infinite length in the y direction through periodic bound-
ary conditions. As a result ky remains a good quantum number.
The enlarged unit cell is repeated nx times in the x direction.

In the following, we fix the set of parameters as in the
previous section, i.e., �0/h = 200t , α = 0.2, γ = π/2, and
λ = 0.2t , and we concentrate on the same energy window
close to the energy −�0(1 − α). Figure 4 shows the energy
spectrum as a function of the quasi momentum ky for nx = 30.
Figure 4(a) depicts the energy spectrum for μ = 0 [red dot
in Fig. 3(b)]: The system presents three energy bands that
were already present in the previous section, which we call
bulk energy bands. Interestingly, the bulk energy gaps host
topological edge states in accordance to the celebrated bulk-
edge correspondence [97]. These topological edge modes
are responsible for edge currents and their number at each
edge is equal to the sum of Chern numbers of the occupied
bands. Hence, setting the Fermi energy EF at one of the two
energy gaps, one finds one edge state at each edge, which
is as expected. Figure 4(b) shows the energy spectrum for
μ = 1.2t > μc [blue dot in Fig. 3(b)]. In this case the first
(bottom) energy gap supports topological edge states, while
the second energy gap does not. This is again consistent with
the fact that for this case the bottom band has C = −1, and
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FIG. 4. Edge and bulk dispersions for cylindrical geometry. En-
ergy spectrum is shown to demonstrate two distinct cases with
(a) μ = 0 and (b) μ = 1.2 for the parameters �0α/h = 40t , α = 0.2,
γ = π/2, λ = 0.2t . The midgap states due to open boundaries along
the x axis are shown by red lines. These midgap states are edge states
connecting the energetically separated bulk bands.

hence there is one edge state at each edge in the first gap, while
the sum of Chern numbers of bottom and middle bands is zero.
Hence depending on the choice of EF , we can have a Chern
insulator insulator or a trivial insulator. In order to achieve a
closer understanding of the edge states and the bulk-boundary
correspondence, we further analyze a finite square lattice in
the following discussion.

C. Finite square lattice and edge states

We finally consider a bilayer finite square lattice with 2 ×
L × L sites. We do not impose periodic boundary condition,
i.e., both the layers are open in both the x and y directions.
Unlike previous cases, the system cannot be associated with a
good quantum number due to the absence of any periodicity.
We solve the Hamiltonian in Eq. (1) by diagonalizing the
matrix with 2L2 × 2L2 entries. We again focus on the energy
bands close to −�0(1 − α) (see Figs. 2 and 4). Figure 5
shows the sorted eigenvalues of the Hamiltonian for a system
of length L = 40 and for the same set of parameters of the
previous subsections. We again show two different topological
phases for μ = 0 [Fig. 5(a)] and μ = 1.2t [Fig. 5(b)].

The appearance of the new states due to the absence of pe-
riodicity are shown by red crosses. These states are detached

FIG. 5. Energy spectrum of the synthetic bilayer square lattice
with 2 × 40 × 40 sites and open boundary condition for (a) μ = 0
and (b) μ = 1.2t for the parameters �0 = 200, α = 0.2, γ = π/2,
and λ = 0.2t . The bulk states are shown by black plus symbols. The
new midgap states appearing due to open boundary condition are
shown by red crosses. These are the edge states. For (a) μ = 0, the
edge states appear in both the energy gaps. However, for μ > μc

[shown here (b) μ = 1.2t], the edge states appear only within the
first energy gap.

from the bulk states and clearly are a manifestation of the
open boundaries of the layers. These are edge states and, as
we demonstrate below, live on the boundaries of the layers.
For μ < μc, the edge states appear in both energy gaps. This
is consistent with the discussions for the cylindrical geometry
and the computation of the bulk Chern numbers. This is illus-
trated in Fig. 5(a) as an exemplary case with μ = 0. For μ >

μc, as expected, the first energy gap hosts new states, while
the second energy gap does not. Figure 5(b) demonstrates this
via an example with μ = 1.2t . The corresponding density of
states (DOS) are shown in Fig. 6. For μ < μc, two regions
with low density of states appear adjacent to −�0(1 − α)
under open open boundary condition. These correspond to the
energies of the midgap states in the energy gaps of the bulk
spectrum. For μ > μc, one of these two regions has vanishing
DOS due to absence of the midgap states between the middle
band and the upper dispersive band.

235126-6



QUANTUM ANOMALOUS HALL PHASE IN SYNTHETIC … PHYSICAL REVIEW B 102, 235126 (2020)

FIG. 6. DOS (in arbitrary units) of the synthetic bilayer square
lattice with 2 × 40 × 40 sites and open boundary condition for
(a) μ = 0 and (b) μ = 1.2t for the parameters �0 = 200, α = 0.2,
γ = π/2, and λ = 0.2t .

In order to characterize the edge states in real space, we
define probability density of the edge state corresponding to
m = ±1, p±(r) = |〈ψE

± (r)|ψE
± (r)〉|2, where ψE

± (r) denotes
the eigenvector whose energy is the closest to E and m = ±1
denotes the projection on one of the synthetic dimensions.
Interestingly, the edge states have a different real space profile
depending on the commensurability of the number of sites
with the supercell: Lattices with the length commensurate
with the periodicity of the unit cell have two edges with Ra-
man coupled sites and two edges that do not contain such sites
[see Fig. 1(a)], while lattices with the length mod ( L

�
) = ±1

have all four edges of the same kind. Therefore to maintain the
symmetry of the edges, where we expect the wave function to
localize, the system depicted in Fig. 7(a) was decreased by one
site in each direction to Lx,y = 39 resulting in symmetric prob-
ability distribution over all four edges of the lattice. On the
other hand, for the lattice lengths being a integer multiple of
unit cell’s periodicity the edge states are also localized on the
borders of the lattice, but the probability density is not equally
distributed, favoring two edges, which are not Raman coupled.
Such behavior can be observed in Fig. 7(b), which shows the
spatial density distribution, p(r), of a typical edge states in the
topologically insulating phases of the system with L = 40. We
have verified that p−(r) exhibits similar features. The chosen

FIG. 7. Probability density plots for an edge mode corresponding
to energy E ≈ −160.28t for (a) and E ≈ −160.13t for (b). (a) The
wave function is fully localized on the edges of the lattice, which in
this case has a length of 39 sites. (b) The wave function is localized
on two edges of the lattice which contain raman coupled sites. In this
case it has a length of 40 sites, commensurate with the periodicity of
the unit cell.

edge state is a midgap state in the first band gap for μ = 0. The
spatial distribution has an asymmetric nature, which comes
from the finite size synthetic bilayer geometry governed by the
interlayer coupling pattern. The edge states are more localized
at two adjacent edges of lattice corners, which host alternative
sites with Raman coupled internal states and are rather weakly
localized in the rest of the boundaries, where internal states in
any of the sites are not subjected to such Raman coupling by
construction.

V. DIMERIZED LATTICE

We now focus on the DL case, which is based on the
alternating NN tunneling both in x and y direction and a com-
plex NNN hopping. In particular we consider both dimerized
NNN hopping, as in the SCH case as well as unstaggered
NNN tunneling with φR = φL that provides a zero net flux
per plaquette. First, we analyze the possibility of using dimer-
ization as a substitute for space dependent onsite energy for
obtaining the nontrivial gap between dispersive and quasiflat
sets of bands. Second, we simplify the NNN hopping leaving
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FIG. 8. Chern number of the lower dispersive set of bands (Chern
number of the set of quasiflat bands is always 0). In the absence
of the staggered NNN hopping the topology is trivial, regardless
of the strength of dimerization (this case is depicted by the first
column of the plot). Increasing the NNN hopping causes the change
of the topological order into the standard nontrivial one after reaching
gapless phase, which is visible in (b) and marked by the red line in
(a). The order of the signs of the Chern numbers depends on the
dimerization sign. Moreover for t2/t1 = 0 the discussed set of bands
consists of three separate subsets of bands with trivial topology (this
case is depicted by the lowest row of the plot). Dispersion of each
of these subsets depends on the value of λ and for λ = 0 all three
subsets are almost perfectly flat.

the dimerization untouched, since realizing constant diagonal
hopping experimentally is less complicated.

The effect of the lattice dimerization has been primarily
studied in Ref. [99]. The asymmetry of the hopping leads
to the shift of the bands in the energy spectrum together
with energy gap openings. It allows for the isolation of the
set of quasiflat bands, which originally are not separated by
the global gap from the rest of the spectrum [see Fig. 9(a)].
However, this gap opening is trivial and leads to the triplet of
Chern numbers (0,0,0).

A. Staggered NNN hopping

The interplay of the NN dimerization and the staggered
NNN hopping results in a topological phase diagram depicted
in Fig. 8. Such order was also obtained in the SCH case
in the absence of onsite energy. Hence, one can conclude
that dimerization does not affect order-changing processes but
allows one to observe the edge states of the well separated
bands.
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FIG. 9. Magic configuration band structure in the presence of
uniform complex NNN hopping. (a) t2/t1 = 0.7 and λ = 0 shows
the effect of pure dimerization of the lattice in the absence of NNN
hopping resulting in vanishing Dirac cones. In comparison with
Fig. 2(b), which represents staggered NNN hopping without onsite
energy, one can see that dispersion of the quasiflat bands is much
bigger. (b) t2/t1 = 1 and λ = 0.2 represents the spectrum of the sys-
tem with uniform NNN complex hopping generating the increased
dispersion of the quasiflat bands and the lack of the global gap. (c) In
this case λ = 0.2 t2/t1 = 0.7. Dispersion of the quasiflat bands is
further increased but lattice dimerization provides the global gap.
However, these two effects compete and the system can be gapless
for different values of λ [see Fig. 10(b)].

B. Uniform hopping

We now consider dimerized lattice with uniform NNN
hopping within the single layer. As discussed in the previ-
ous paragraph, in this approach the opening of a global gap
is guaranteed by the dimerization of NN hopping. The role
of complex NNN tunneling is more complicated to explain,
since unlike staggered NNN it cannot be associated with Hall
phase nor opens a global gap between quasiflat and dispersive
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FIG. 10. Chern number of the lower dispersive set of bands
(Chern number of the set of quasiflat bands is always 0). In the
absence of the uniform NNN hopping the topology is trivial, regard-
less of the strength of dimerization (this case is depicted by the first
column of the plot). Increasing the NNN hopping causes the change
of the topological order into the standard nontrivial one. However the
order of the signs of the Chern numbers depends on the dimerization
sign. Moreover for t2/t1 = 0 discussed set of bands consists of three
separate subsets of bands with trivial topology (this case is depicted
by the middle row of the plot). Dispersion of each of these subsets
depends on the value of λ and for λ = 0 all three subsets are almost
perfectly flat.

bands, as shown in Fig. 9(b). On the other hand, similarly to
Ref. [33] in such a case the net flux per plaquette is 0. All
the above suggests that applying diagonal (NNN) hopping of
the complex value does not imply topological nontriviality.
Indeed uniform NNN hopping does not open the global gap
under any parameters’ configuration. On the other hand, sim-
ilarly to the effects caused by dimerization in the absence of
NNN hopping, previously quasiflat bands become dispersive
with increasing λ together with the shift in the xy plane. All
effects of the uniform complex NNN tunneling can be seen
in Fig. 9(c). The effect of dimerized NN hopping is similar to
band separation observed in staggered NNN hopping except,
of course, the topological order of the system with uniform
NNN tunneling varies between the trivial and standard non-
trivial with no possibility of reaching nonstandard topology,
as presented in Fig. 10.

VI. EXPERIMENTAL SCHEME

We here discuss a quantum simulation scheme of the sys-
tem. As we will see below, all elements of the proposed
scheme have been successfully implemented in state-of-the-

art experiments. The challenge consists of combining all the
necessary ingredients. We proceed in this section in steps,
with the message directed mostly to the experimentalists.
First, we review the basic scheme for twistronics without a
twist, proposed already in Ref. [95]. Then, we discuss the nec-
essary additional ingredients of both proposed schemes: (I)
Staggered complex hopping and (II) dimerized real tunneling.
We discuss possible methods that can be used to realize our
schemes: (i) Laser induced tunneling, (ii) Floquet engineer-
ing, and (iii) superlattice and holographic potential imprinting
methods. Finally, we discuss possible detection schemes of
the topological properties of the model.

A. Basic experimental scheme

We proposed in Ref. [95] to use a subset of four states
out of the large nuclear spin manifold I = 9/2 of 87Sr, or
173Yb (I = 5/2). The SU (N ) invariance inhibits collisional
redistribution of the atoms among the different states. We
select two of them to be σ = ↑ and the other two to be σ =
↓. All are subjected to a two-dimensional spin-independent
optical lattice potential, created by two counterpropagating
lattice beams. We choose the laser wavelength λL = 813 nm
(corresponding to the magic wavelength of the clock transi-
tion 1S0 → 3P0). We set a lattice depth to about eight recoil
energies, 8 EL , which yields tunneling of the order of 100 Hz.
Lattice constant as usual is d = λL/2.

To create the synthetic layer tunneling, we exploit two-
photon Raman transitions between spins m = ±1/2. A pair
of Raman beams with λR = 689 nm near-resonant to the
intercombination transition 1S0 → 3P1, would produce a cou-
pling of amplitude �0 = �1�2/
0. Here �1 and �2 are
the individual coupling amplitudes of the Raman lasers and

0 the single-photon detuning. The Raman beams propa-
gate in a plane perpendicular to the lattice potential, are
aligned along its diagonal, and form an angle θ with the
lattice plane (see Fig. 1 in Ref. [95]). This yields an in-
plane momentum transfer per beam kR = ±2π cos θ/λR, with
projections kR/

√
2 along the lattice axes. Therefore, the

phase of the synthetic tunneling is γ · r = γ (xx̂ + yŷ), with
γ = ±2π cos θλL/(

√
2λR). The sign is determined by the

relative detuning of the Raman lasers. Experimentally, the
simplest choice is to use counterpropagating Raman beams
(θ = 0◦), which yields γ = 0.8 (mod 2π ). However, other
magnetic fluxes can be easily realized by adjusting the value
of θ .

To implement a periodic modulation of the Raman cou-
pling amplitude on the scale of several lattice sites, we
propose to exploit a periodic potential created by a laser
close detuned from the excited state to excited state transi-
tion 3P1 → 3S1 (corresponding to 688 nm [100]). This results
in a large light shift of the 3P1 excited state of amplitude
δ, leading to a detuning of the Raman beams 
(x, y) =

0 + δ(1 + cos (2πx/lx ) cos (2πy/ly)). Its effect is to mod-
ulate the Raman coupling amplitude �(x, y) � �0[(1 − α) −
α cos (2πx/lx ) cos (2πy/ly)], with α = δ/
0 ∼ 0.2 for realis-
tic experimental parameters [100,101]. We therefore named it
“modulation laser.”

Note that [102] it also proposed to use spatially modu-
lated Raman couplings to generate Moiré patterns in 2D 87Rb
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systems, originally designed by J.-W. Pan’s group [103] to
study robust spin-orbit coupling with bosonic atoms. In a
related development, twistroniclike physics has been demon-
strated in Ref. [104] in monolayer graphene undergoing a
strain induced buckling transition. The buckling is associated
with a periodically modulated pseudomagnetic field that has
the effect of creating a material with flat electronic bands.

B. Extensions of the basic scheme

1. SCH case

Here the NN tunneling is standard and constant, t (r) =
t . The staggered onsite energy can be realized relatively
easily using superlattice or holographic potential imprinting
methods. The challenging part here is relate to the phases
associated with the next-nearest neighbor complex tunnelings,
set to φL(�r) − φR(r) = π , where φR(�r) = (2r.1y + 1)π/2.
We suggest to use here laser induced tunneling or lattice shak-
ing. For laser induced tunneling one possibility would be to
employ the clock transition from 1S0 →3 P0, using appropriate
polarization of the assisting laser to couple to different excited
states (for instance, coupling +3/2 → +1/2 via σ− polar-
ized light, coupling +3/2 → +3/2 via π -polarized light, and
+3/2 → +5/2 via σ+ polarized light). The main problem is
that the clock transitions will cross talk immensely with the
light-shifting scheme of the 3P0 state that we proposed to use
to get the Moiré pattern. In fact, we should expect that the
staggered complex hoppings will not only be staggered (if we
design and realize the staggering well), but they will be spa-
tially modulated as well. The period of the latter modulation
should follow the period of our “Moiré” pattern, i.e.,

λ(r) = λ0 + 
λ cos (2πx/lx ) cos (2πy/ly). (10)

After a careful study one observes, however, that as long as

λ ∼ t , the effects of the spatial modulation of the NNN
complex hopping remain marginal. In fact they are limited to
negligible bandwidth corrections, which do not affect topo-
logical order nor open/close new gaps in the system.

2. DL case

In Eq. (1), we considered dimerized real tunneling, such
that t (r) takes the form of t1 and t2 in alternative sites in the
x and the y directions, along with the next-nearest neighbor
complex hopping. Here the situation seems to be easier from
the experimental point of view. The alternating tunneling can
be achieved using the superlattice techniques (dimerization).
The next-nearest neighbor complex hopping with the homoge-
neous phase set to φR(r) = φL(r) = π/2 should be accessible
via lattice shaking and Floquet engineering techniques.

C. State-of-the-art experimental techniques

1. Laser assisted tunneling

The idea of employing laser assisted tunneling for genera-
tion of synthetic gauge fields goes back to the seminal paper
of Jaksch and Zoller [75]. It was generalized to non-Abelian
fields in Ref. [105]. These ideas all seemed very “baroque” at
that time but finally were realized in experiments with amaz-
ing effort but equally amazing results [77,80,81,106,107].

2. Floquet engineering

In the context of cold atoms this technique goes back
to the pioneering theory works of A. Eckardt and M.
Holthaus [108], followed by experiments of E. Arimondo
and O. Morsch [109]. In condensed matter the works con-
cerned creation of topological phases in graphene [110,111]).
The possibility of generating artificial gauge field was first
discussed in Ref. [78] and realized in experiments of the
Hamburg group [112]. This culminated with the experimental
realization of arbitrary complex phases [113], and theoretical
proposals combining shaking and onsite excitations [114].
In recent years many fascinating results were obtain using
shaking (cf. [115,116], for a review see Ref. [78]). In a sense,
from the perspective of the present paper a culmination of
these efforts consisted of realization of the Haldane model
with next nearest neighbor complex tunnelings in a brick
lattice [70,82]. Recently, the Hamburg group combined the
studies of the Haldane model with the use of machine learning
methods [83,117,118].

3. Superlattice and holographic potential imprinting methods

These are nowadays standard methods, developed already
many years ago and described in textbooks such as [68]. They
have a plethora of applications ranging from designing traps
of special shape, through creation of dimerized lattices, to
imprinting random potentials. All of these methods can be
useful for our purposes, for instance for designing a lattice
with dimerized tunneling, etc.

D. Detection of the topological order

In cold-atom quantum simulators, the standard transport
experiment techniques used to characterize the transverse
conductivity in 2D materials are feasible but very demand-
ing [119,120] and there is therefore the need for other
detection schemes to characterize the topology of the sys-
tem. In the last decade, many detection schemes have been
developed for quantum simulators [76,121] and we briefly
review here the nonexhaustive list of techniques that could
be applied to the synthetic twisted bilayer material. The total
Chern number and the Berry curvature could be measured
through the anomalous velocity of the center of mass of the
atomic cloud [122,123]. This technique, already applied in
recent experiments [124,125], would require an additional
optical gradient. Alternatively, the Chern number could mea-
sured through the depletion rate of the bands in the presence of
heating [126]. This effect, called quantized circular dichroism,
has been implemented in state-of-the-art experiment [84] and
would require an additional shaking of the lattice. Finally, the
topology could be characterized through the observation of
the chiral edge states. The latter could be done by a suitable
quench protocol [127,128].

VII. CONCLUSIONS AND OUTLOOK

In the present paper we developed further the idea of
“twistronics without a twist” and demonstrated that it can
be used to engineer interesting topological band structures
under various conditions. Focussing on a square lattice sys-
tem with synthetic dimensions, we showed the appearance
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of an anomalous Hall phase in presence of artificial complex
next-to-nearest neighbor interlayer tunneling. Moreover, we
discussed the emergence of topological bands via another
mechanism—lattice dimerization. In general, the bands of
interest can be categorized into three groups—trivial and two
categories of topologically nontrivial bands differing by their
Chern number combinations: standard nontrivial and nonstan-
dard nontrivial.

Possible directions of this research line in the near fu-
ture concern the incorporation of interaction effects. On the
technical side, in the first stage, incorporation of the inter-
action effects can be carried out via a mean field theory at
the Hartree-Fock as well as “slave boson/fractionalization”
level. Moreover, as our scheme provides the possibility of
observing physics similar to magic angle twisted bilayer
graphene with an effectively large rotation angle, implying
a much smaller supercell, performing ab initio calculation
could be possible via advanced tensor network algorithms.
The pressing questions in these realm are: (i) the origins of
strongly correlated phenomena in twisted materials, such as
unconventional superconductivity phenomena, (ii) the coex-
istence of superconducting and correlated insulating states in
magic-angle twisted bilayer graphene, and their relationship,
(iii) the role of topology in the interacting systems, which can
be probed by altering the quasiflat band topology. Recently,
flat Chern bands have been reported from twisted bilayer
MnBi2Te4 [129]. In this respect, further investigations will
be conducted to identify experimentally feasible parameters
(mechanisms) that support nontrivial quasiflat bands with sup-
pressed bandwidths.
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APPENDIX

Here we present the Hamiltonian (1) transformed into mo-
mentum space. Spatially dependent hopping t (r) indicated in
Ht takes the form of dimerized hopping terms t1,2 used in
the DL case. Nondimerized case can be obtained by setting
t1 = t2. The complex staggered NNN hopping terms have
been written with φL(r) − φR(r) = π , as in the SCH case.
Hamiltonians Ht , Hλ, Hμ couple the sites of the same synthetic
level m, hence they are described by joint Hm. The spatially
modulated interlayer coupling is given by H�. Onsite energy
μ is divided by 2 due to hermitian conjugate summation.

Hk =
(

Hm=− 1
2

H�

H� Hm= 1
2

)
, (A1)

where

Hm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ/2 t1e(−i(kx+γ m)) 0 t2e(i(kx+γ m)) t2e(−i(ky+γ m)) iλe−i((kx+ky )+2γ m) t1e(i(ky+γ m)) −iλe−i(kx−ky )

0 0 t2e(−i(kx+γ m)) 0 −iλe−i(kx−ky ) t1e(−i(ky+γ m)) iλe−i((kx+ky )+2γ m) t2e(i(ky+γ m))

0 0 μ/2 t1e(−i(kx+γ m)) t1e(i(ky+γ m)) −iλe−i(kx−ky ) t2e(−i(ky+γ m)) iλe−i((kx+ky )+2γ m)

0 0 0 0 iλe−i((kx+ky )+2γ m) t2e(i(ky+γ m)) −iλe−i(kx−ky ) 0

0 0 0 0 0 t2e(−i(kx+γ m)) 0 t2e(i(kx+γ m))

0 0 0 0 0 0 t1e(−i(kx+γ m)) 0

0 0 0 0 0 0 0 t1e(−i(kx+γ m))

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+H.c.,

and

H� = �0(1 − α)18 − �0α

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos(π/2) cos(π/2) 0 0 0 0 0 0 0

0 cos(π ) cos(π/2) 0 0 0 0 0 0

0 0 cos(3π/2) cos(π/2) 0 0 0 0 0

0 0 0 cos(2π ) cos(π/2) 0 0 0 0

0 0 0 0 cos(π/2) cos(π ) 0 0 0

0 0 0 0 0 cos(π ) cos(π ) 0 0

0 0 0 0 0 0 cos(3π/2) cos(π ) 0

0 0 0 0 0 0 0 cos(2π ) cos(π )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A2)

where 18 represents an 8 × 8 identity matrix.
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