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Dissipative analog of four-dimensional quantum Hall physics
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Four-dimensional quantum Hall (QH) models usually rely on synthetic dimensions for their simulation in
experiment. Here, we study a QH system which features a nontrivial configuration of three-dimensional Weyl
cones on its boundaries. We propose a three-dimensional analog of this model in the form of a dissipative Weyl
semimetal (WSM) described by a non-Hermitian (NH) Hamiltonian, which in the long-time limit manifests the
anomalous boundary physics of the four-dimensional QH model in the bulk spectrum. The topology of the NH
WSM is captured by a three-dimensional winding number whose value is directly related to the total chirality
of the surviving Weyl nodes. Upon taking open boundary conditions, instead of Fermi arcs, we find exceptional
points with an order that scales with system size.
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I. INTRODUCTION

Topological phases of matter have been at the forefront of
research in condensed-matter physics over the last decades
[1–8]. The communality between models describing such
phases is the presence of robust states, which appear in an
anomalous configuration on the boundaries of the system
and whose existence is described by a topological invariant
as dictated by the bulk-boundary correspondence [9]. An
early example of a topological model is the four-dimensional
quantum Hall (QH) model [10,11], which may feature three-
dimensional Weyl cones on its boundaries captured by the sec-
ond Chern number. While many proposals exist for the exper-
imental simulation of four-dimensional QH systems ranging
from photonic setups [12–14] to ultracold atoms [15–17] and
electrical circuits [18–20], only three experiments have been
reported [21–23] which make use of topological pumping in
two-dimensional setups [21,22] and of electrical circuits [23].
Additionally, in Ref. [24], the second Chern number asso-
ciated with a five-dimensional Yang monopole is measured
through quantum simulation. Due to the physical obstruction
of having four spatial dimensions, the majority of the pro-
posals [12–17] as well as the experiments [21,22,24] nec-
essarily rely on synthetic dimensions rendering the physical
realization of this system highly nontrivial. Here, we propose
an alternative approach to probe the topology of the four-
dimensional QH system, namely, through studying a topologi-
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cally equivalent, three-dimensional analog with dissipation in
the form of a non-Hermitian Weyl semimetal.

Weyl semimetals (WSMs) are three-dimensional topolog-
ical models, which feature Fermi arcs on the surfaces that
connect Weyl cones in the bulk [25–31]. As such, a WSM
can be seen as the surface realization of the four-dimensional
QH model with one important caveat: The total chirality
of the Weyl cones appearing in the bulk spectrum has to
disappear, meaning that an anomalous configuration of Weyl
cones cannot exist [32]. However, if we allow for the system to
be dissipative, this obstruction can be circumvented. Indeed,
we find that introducing modulated gain and loss in the WSM,
which renders the Hamiltonian of the model non-Hermitian
(NH) (see Ref. [33] for a recent review), results in the ap-
pearance of an anomalous configuration of Weyl cones in the
bulk spectrum in the long-time limit: The spectrum of NH
Hamiltonians is generally complex, where the imaginary part
is associated with the inverse lifetime, such that only states
with Im(E ) > 0 survive when t → ∞ [34].

The three-dimensional NH WSM studied in this paper is
ensured to be equivalent to the four-dimensional QH system
by making use of arguments that are grounded in topology.
Specifically, this means that there exists a connection between
the topological invariants of the two models: Whereas the chi-
ralities of the Weyl cones that appear in the bulk spectrum of
the NH WSM are found to be directly related to the values of
the second Chern number of the QH model, we also find that
the total chirality of the Weyl cones in the positive imaginary
energy plane is given by a three-dimensional spectral winding
number [35], which captures the point-gap topology of the NH
WSM, where point gaps are a purely NH phenomenon with
the complex energy bands not crossing a reference point [35]
[cf. Fig. 2(a)]. Our three-dimensional NH WSM thus indeed
mimics the four-dimensional QH model.

In addition to studying the bulk properties of the NH WSM,
we also investigate its boundary behavior. Interestingly, in-
stead of finding Fermi arcs, we find that the boundaries feature
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exceptional points (EPs) with an order scaling with system
size, where EPs are degeneracies in the complex spectrum at
which both the eigenvalues and the eigenvectors coalesce, thus
rendering the Hamiltonian matrix defective at these points,
where the order of an EP is set by the number of eigenvectors
that collapse [36]. At the high-order EPs in the model studied
here, all bulk states are found to collapse and localize to either
one of the boundaries. The appearance of these EPs is in line
with the recent proposal that a nontrivial point-gap topology
is linked to the NH skin effect [37–39], which refers to the
piling up of bulk states at the boundaries, and the NH skin
effect is in turn linked to the appearance of or vicinity to EPs
of this kind [40,41]. We nevertheless do not observe a piling
up of bulk states away from the EPs, which may be attributed
to the fact that the EPs are well isolated from the rest of the
spectrum.

This paper is organized as follows: In Sec. II, we briefly
summarize the four-dimensional QH system, which is fol-
lowed by the derivation of the NH WSM model and a dis-
cussions of its properties in Sec. III. We conclude with a
discussion in Sec. IV.

II. FOUR-DIMENSIONAL QUANTUM HALL MODEL

We study the following Bloch Hamiltonian, which de-
scribes a four-dimensional QH system:

HQH(k) = d(k) · �, (1)

where k ≡ (kx, ky, kz, kw ),

d(k) =
(

h +
∑

i

cos ki, sin kx, sin ky, sin kz, sin kw

)
, (2)

with i ∈ {x, y, z,w}, and � = (�1, �2, �3, �4, �5) is the vec-
tor of gamma matrices respecting the Clifford algebra with
�1 = −σ2 ⊗ σ0, �2 = σ1 ⊗ σ1, �3 = σ1 ⊗ σ2, �4 = σ1 ⊗ σ3,
and �5 = σ3 ⊗ σ0, with σ0 the identity and σ j the Pauli
matrices [11]. The eigenvalues for Dirac Hamiltonians of the
type of Eq. (1) can be straightforwardly computed, and read

EQH,±(k) = ±|d(k)|, (3)

where both EQH,+(k) and EQH,−(k) are doubly degener-
ate. Gap closings corresponding to four-dimensional mass-
less Dirac cones occur when EQH,+(k) = EQH,−(k) = 0, i.e.,
when

k = (0, 0, 0, 0), h = −4,

k = P[(π, 0, 0, 0)], h = −2,

k = P[(π, π, 0, 0)], h = 0,

k = P[(π, π, π, 0)], h = 2,

k = (π, π, π, π ), h = 4,

with P[(·)] denoting all perturbations of the coordinates.
The topological invariant associated with this model is the

second Chern number C2,

C2 = 3

8π2

∫
BZ

εabcded̂a∂kx d̂b∂ky d̂c∂kz d̂d∂kw
d̂e, (4)

where the integral is taken over the Brillouin zone (BZ),
εabcde is the antisymmetric Levi-Civita symbol, a, b, c, d, e ∈

FIG. 1. Band spectrum of the four-dimensional QH system with
OBC in w with N = 50 unit cells for (a) h = 1 and (b) h = 3 along
a path in the three-dimensional surface BZ, which is shown in the
inset in (a). In agreement with the Bloch spectrum, this spectrum
is doubly degenerate such that each band-gap crossing corresponds
to a doubly degenerate Weyl cone. The color of the bands with
the color bar shown in (b) corresponds to the inverse participation
ratio (IPR), In = ∑4N

j=1 |�n, j |4/(
∑4N

j=1 |�n, j |2)2, where �n, j is the
eigenfunction associated with energy band En, j is the site index, and
there are a total of 4N sites. The IPR measures the localization of the
eigenstates: It goes to zero for extended states, whereas it acquires a
finite value for localized states.

{1, 2, 3, 4, 5}, d̂i ≡ di/|d|, and leads to [11]

C2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |h| > 4,

1, −4 < h < −2,

−3, −2 < h < 0,

3, 0 < h < 2,

−1, 2 < h < 4.

(5)

The value of the second Chern number C2 is related to the
presence of three-dimensional Weyl cones on the boundaries
of the four-dimensional lattice model, where the number of
boundary Weyl cones corresponds to |C2|, while the chirality
of the cones is given by sign(C2) [11]. Indeed, when we take
open boundary conditions (OBCs), we find Weyl cones at the
high-symmetry points of the three-dimensional boundary BZ,
as shown in Fig. 1. Unlike the two-dimensional QH system,
four-dimensional QH physics may be realized in models
with time-reversal symmetry [42], and indeed we find that
T H∗

QH(−k)T −1 = HQH(k) with T = i�3 and T T ∗ = −1. The
model in Eq. (1) thus belongs to symmetry class AII [43–46].
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III. NON-HERMITIAN WEYL SEMIMETAL

Here we introduce a three-dimensional NH model, which
is topologically equivalent to the four-dimensional QH model
and realizes Weyl cones with a nonzero total chirality in
the positive imaginary plane of the spectrum. We start by
reexpressing the Hamiltonian in Eq. (1) as

HQH(k) =
4∑

i=1

di(k)�i + sin kw�5

≡ H̄ (k) + sin kw�5,

where di(k) are the components of the vector d(k) defined in
Eq. (2). H̄ (k) has a chiral structure, i.e.,

H̄ (k) =
(

0 ih0(k)σ0 + h(k) · σ

−ih0(k)σ0 + h(k) · σ 0

)

≡
(

0 H0(k)
H†

0 (k) 0

)
,

where σ is the vector of Pauli matrices, h0(k) ≡ d1(k) and
h(k) ≡ [d2(k), d3(k), d4(k)], and anticommutes with �5, i.e.,
{H̄ (k), �5} = 0. The term proportional to �5 can thus be
interpreted as a mass term. Therefore, the gap in the energy
spectrum of HQH(k) closes when there is a gap closing in
the spectra of H̄ (k) and sin kw�5 simultaneously. This means
that the topology of HQH(k) is captured by H̄ (k, kw = 0)
and H̄ (k, kw = π ). Due to the chiral symmetry (given by
�5) of H̄ (k, kw = 0, π ), we can compute a winding number
to characterize the topological properties of these Hamil-
tonians [45,46]. This means that we need to compute the
winding number for one of the NH off-diagonal compo-
nents of H̄ (k, kw = 0, π ), i.e., H0(k, kw = 0), H0(k, kw = π ),
H†

0 (k, kw = 0), or H†
0 (k, kw = π ). We find that equivalent

results can be derived for all of these four NH choices: The
term h(k) · σ, which determines the gap closings of these
NH Hamiltonians, is Hermitian and independent of kw, which
means that all four possible choices of NH Hamiltonians are
topologically equivalent. Indeed, the only difference between
the four Hamiltonians is a constant and/or overall minus
sign that goes with the identity term. Therefore, we may
focus on the topological characterization of the following NH
Hamiltonian:

HNH(k) = i

⎛
⎝h +

∑
i∈{x,y,z}

cos ki

⎞
⎠σ0 + h(k) · σ,

h(k) = (sin kx, sin ky sin kz ), (6)

which is topologically equivalent to H (†)
0 (k, kw = 0, π ). This

model is time-reversal symmetric according to HNH(k) =
T HT

NH(−k)T −1 with T = iσy and T T ∗ = −1, and as such
belongs to class AII† [38,47]. This is in line with the statement
in Ref. [34] that a (d + 1)-dimensional Hermitian model in
class s is characterized by a d-dimensional NH model in class
s†. The topological properties of the four-dimensional QH
model in Eqs. (1) and (2) are thus captured by the three-
dimensional NH model in Eq. (6).

The eigenvalues of HNH(k) are E±(k) = i(h +∑
i cos ki ) ± |h(k)|, such that gap closings, E+(k) = E−(k),

appear when |h(k)| = 0 is satisfied, i.e., when k = (0, 0, 0),

FIG. 2. Spectrum of the three-dimensional NH Hamiltonian in
Eq. (6) for (a) periodic boundary conditions (PBCs) and (b) OBCs
with h = 0. (a) The chirality χ of the gap closings is explicitly
indicated in agreement with Eq. (7), and the winding number w3D

equals 2 for this plot (h = 0). (b) Spectrum for OBC in x for N = 14
unit cells and with ky and kz parametrized between −π and π with
steps of 2π/40. The red points appearing inside the gap are EPs
with an algebraic multiplicity of 2N and a geometric multiplicity
of 2. The EPs have energies E = −2i, 0 and 2i when (ky, kz ) =
(π, π ), P[(0, π )], and (0,0), respectively. This spectrum is computed
analytically due to the strong numerical instability existing at the EPs
(see Appendix A for more details).

P[(π, 0, 0)], P[(π, π, 0)], and (π, π, π ). Despite the
abundance of second-order exceptional lines in the complex
spectra of three-dimensional NH models [48–50], these eight
gap closings correspond to “ordinary” three-dimensional
Weyl cones and are degenerate in the usual sense, i.e., the
geometric and algebraic multiplicities of the gap closings are
equivalent. Indeed, the vector h(k), which determines the
occurrence as well as the nature of the degeneracies, is entirely
real, i.e., h(k) ∈ R3, and as such prohibits the appearance of
exceptional structures in the complex spectrum of HNH(k).
The Hamiltonian HNH(k) thus describes a three-dimensional
NH Weyl semimetal.

Due to the conventional nature of the gap closings, we
can ascribe a chirality χ to each Weyl cone in a similar
fashion as in the Hermitian case: By performing a low-energy
approximation around the Weyl points, we obtain an effective
Hamiltonian of the form Mk · σ with k = (kx, ky, kz ), where
the determinant of the matrix M determines the chirality,
detM = χ . This leads to the following energies and chiralities
at the eight degeneracies:

k = (0, 0, 0), E = i(h + 3), χ = 1,

k = P[(π, 0, 0)], E = i(h + 1), χ = −1,

k = P[(π, π, 0)], E = i(h − 1), χ = 1,

k = (π, π, π ), E = i(h − 3), χ = −1. (7)

We observe that the three Weyl cones at k = P[(π, 0, 0)]
and at k = P[(π, π, 0)] have the same energy, such that we
find four band-gap closings in the spectrum with chiralities
1, −1, 3, and −3, as shown in Fig. 2(a). We notice that
these chiralities correspond to the values of the second Chern
number C2 of the four-dimensional QH model [cf. Eq. (5)],
which is in line with the expectation that HNH(k) [cf. Eq. (6)]
realizes the boundary behavior of the four-dimensional QH
model: Indeed, the gap closings in the spectrum of HNH(k)
correspond to all four different Weyl-cone configurations that
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can appear on the boundary of the four-dimensional QH
model as determined by the second Chern number C2.

The three-dimensional winding number reads

w3D = 1

24π2

∫
BZ

d3k εμνσ Tr(QμQνQσ ), (8)

where the integral is over the BZ, εμνσ is the Levita-Civita
symbol, μ, ν, σ ∈ {kx, ky, kz}, and Qα ≡ (HNH)−1∂αHNH

[45–47]. Computing w3D for HNH(k) with EB = 0 as a
reference point, we find

w3D =

⎧⎪⎨
⎪⎩

0, |h| > 3,

−1, −3 < h < −1,

2, −1 < h < 1,

−1, 1 < h < 3.

The value of the winding number can be understood from
the energy eigenvalues: When |h| > 3, the energy bands do
not wind around E = 0 such that w3D = 0. When |h| < 3,
on the other hand, the bands wind around E = 0 and w3D

acquires a nonzero value. In fact, we notice that the value of
the winding number corresponds to the difference between the
total negative chirality, χ ImE>0

− , and the total positive chirality,
χ ImE>0

+ , of the cones with positive imaginary energy, i.e.,
w3D = χ ImE>0

− − χ ImE>0
+ , and as such is indirectly related to

the values of C2. For example, when −1 < h < 1, there are
three cones with negative chirality, χ ImE>0

− = 3, and one cone
with positive chirality, χ ImE>0

+ = 1, with Im(E ) > 0, such that
w3D = 3 − 1 = 2 in this energy region. This result is in anal-
ogy with the result in Ref. [34], where the one-dimensional
winding number is found to correspond to the difference
between the number of left- and right-moving modes with
positive imaginary energy appearing in the one-dimensional
Hatano-Nelson model [51]. We thus find that the value of
the three-dimensional winding number w3D corresponds to
the total chirality of the Weyl cones surviving in the long-
time limit, such that a nonzero w3D signals the realization of
anomalous Hermitian boundary physics in the bulk on the NH
model.

As the three-dimensional NH model realizes Weyl cones
in the bulk of its spectrum in the same fashion as in the
Hermitian case, we naively expect the appearance of Fermi
arcs on the surfaces connecting the cones. In Fig. 2(b), we
plot the spectrum for OBC in x and see that, instead of Fermi
arcs, EPs (in red) appear, whose orders scale with system size.
These EPs appear when ky, kz ∈ {0, π} and have an algebraic
multiplicity of 2N , with N the total number of unit cells,
while the geometric multiplicity remains 2 regardless of the
system size (see Appendix B for an analytical derivation
of these results). The appearance of these EPs, where all
eigenstates collapse onto two eigenstates of which one is
localized entirely on one boundary and the other entirely on
the other (see Appendix B), is consistent with the statement in
Refs. [37–39], where it is shown that having a topologically
nontrivial point gap results in the appearance of skin states,
i.e., bulk states that are localized to the boundary. However,
as the EPs are well isolated from the rest of the bands in
the spectrum, the states away from the EPs do not pile up
and behave as ordinary bulk states (see Appendix B for the
derivation of the localization of the bulk states), as is also

FIG. 3. Exceptional lines (red) and points (black) in the bulk
spectrum of the model in Eq. (6) with the addition of −iγ σ3 for
kz ∈ {0, π}, and γ = 1 and γ = √

2, respectively. The exceptional
lines have energy E = i(h + cos kx + cos ky ) with kx and ky solutions
to sin2 kx + sin2 ky = 1, while the exceptional points all have the
energy E = i h.

found in Ref. [38], where a two-dimensional version of our
model is studied. This is consistent with the logic presented
in Refs. [40,41], where the presence of higher-order EPs is
linked to the NH skin effect. Indeed, only when the other
states can “feel” the presence of such EPs will they also start
to pile up at the boundaries. As such, this model provides an
interesting insight in the interplay of the presence of EPs with
high order and the piling up of bulk states.

IV. DISCUSSION

In this work, we have studied a three-dimensional analog
of a four-dimensional QH model in the form of an NH WSM.
The NH model in Eq. (6) is special in the sense that its gap
closings can never be exceptional as h(k) ∈ R3 as discussed
above. By introducing NH terms into the vector h(k), how-
ever, it is straightforward to find exceptional structures, as
shown in Fig. 3.

NH Hamiltonians are well suited to describe classical sys-
tems with dissipation (see, e.g., Refs. [52–54]), but also find
applications in the quantum realm (see, e.g., Refs. [55–58]),
and it may thus be possible to access the NH model in Eq. (6)
in experiment. One potential platform for the realization of
our model is in photonic setups, where gain and loss can
be implemented in experiment [59–61]. In particular, three-
dimensional photonic crystals form suitable candidates, where
gain can be introduced through external pumping, while the
presence of defect states provides a mechanism for radiative
losses [62]. Here, the real part of the band spectrum corre-
sponds to the resonance frequency of the crystal, whereas
the imaginary part sets the linewidth of the resonances [63].
In Ref. [63], the real part of the spectrum of the realization
of an NH model in a two-dimensional setup is accessed
through measuring the isofrequency contours of the crystal,
whereas in Refs. [30,64], it is demonstrated that both the bulk
dispersion [30] and the boundary features [64] of a Hermitian
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WSM are experimentally accessible. Therefore, if one were to
implement our NH model, we expect that one would be able
to resolve the Weyl cones in the bulk, as well as EPs on the
boundaries.

Another promising platform for the realization of our
model is that of electric circuits [65,66], which were used
very recently to realize a four-dimensional quantum Hall
model in class AI with T T ∗ = 1 [23] as well as a Hermitian
WSM [67], while the realization of an NH model has also
been reported [54]. In these circuits, capacitors and inductors
act as Hermitian components, and resistors and amplifiers
as anti-Hermitian ones [54]. Circuits can be used to realize
models of any dimension, and in particular three-dimensional
models can be realized by simply stacking two-dimensional
circuit boards, as in Refs. [23,67]. Alternatively, our three-
dimensional NH model could also be realized in a lower-
dimensional circuit as the nodes, which play the role of the
lattice sites, can be connected along more than three directions
[19]. The circuits are governed by Kirchhoff’s law, which
relates the admittance matrix (or Laplacian matrix) J to the
current I and voltage V via I = JV , where the admittance
matrix J/(iω) plays the role of the Hamiltonian, with ω the
current frequency [66]. It is thus possible to realize nonin-
teracting Hamiltonians such as the one in Eq. (6) through
appropriately arranging the various electronic tools that are
available. Moreover, by changing the connectivity between
the nodes, one can interpolate between PBC and OBC, such
that both of these cases can be studied. The eigenvalues of
the system can subsequently be accessed by measuring the
impedance Z , which is related to the admittance matrix via its
inverse and both its real and imaginary parts are readily acces-
sible in experiment [19]. Indeed, in Ref. [54], this technique
was used to measure the real and imaginary parts of the eigen-
spectrum of an NH anisotropic chain. Additionally, it is shown
in that work [54] that the NH skin effect is manifested as a
nonlocal voltage response in the circuit. We thus expect that
both the PBC and OBC spectrum of our three-dimensional
model should be directly measurable via the impedance, and
that it is also possible to study the skin effect when performing
response measurements when the system is operating at one of
the EPs in the OBC system.

A connection between (d + 1)-dimensional Hermitian
topological insulators and d-dimensional NH models with
nontrivial point-gap topology was recently also made on an
abstract level by Lee et al. in Ref. [34]. As an illustration,
they present one- and two-dimensional NH examples, which
emulate the edge and surface physics of a two-dimensional
Chern insulator and three-dimensional chiral topological in-
sulator, respectively, which is complemented by the higher-
dimensional model treated in this work. A three-dimensional
model mimicking four-dimensional QH physics was also pro-
posed in a Floquet system in Ref. [68], where it is shown that
it is possible to find Weyl cones with a nonzero total chirality
by making use of the adiabatic limit. We point out that the
approach used in that work [68] is different from the one in
this paper.

We note that the exotic feature displayed by the NH
WSM under OBC, namely, the appearance of EPs with an
order scaling with system size, has previously been associated
with the breaking of bulk-boundary correspondence [40,41],

as well as an extreme spectral instability against boundary
conditions [40,41,69–73]. It may thus be tempting to attribute
the same properties to the model in this work. The models
studied in those papers, however, all have so-called line gaps,
where line gaps are a straightforward generalization of the
gap in Hermitian spectra with the bands not crossing a line
[35], whereas the model in Eq. (6) only features point gaps.
Indeed, comparing Figs. 2(a) and 2(b), we see that there is
no spectral instability, and we may thus conclude that these
phenomena—a breaking of bulk-boundary correspondence,
the NH skin effect, and associated higher-order EPs, and the
spectral instability—do not appear as a triad for models with
only point gaps in the spectrum.

Lastly, we point out that due to the pivotal role played
by time in obtaining an anomalous Weyl-cone configuration
in the bulk spectrum of our model, strictly speaking, we
need four dimensions, namely, three spatial and one time
dimension, to realize our NH analog of the four-dimensional
QH model. Therefore, while it is thus possible to mimic the
boundary physics of (d + 1)-dimensional Hermitian models
in d-dimensional NH models, where the dimensions refer
to spatial dimensions, one crucially needs d + 1 spacetime
dimensions to obtain the desired bulk behavior.
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APPENDIX A: NUMERICAL INSTABILITY AT
EXCEPTIONAL POINTS

Here we compare the analytically and numerically com-
puted spectra of the three-dimensional NH WSM Hamiltonian
with OBC in x. In Fig. 4(a), we plot the OBC spectrum with
N = 14 unit cells with the analytical results in orange and
the numerical results in blue, such that the orange (analytical)
spectrum is equivalent to the spectrum in Fig. 2(b). Whereas
the results for the bulk spectrum are in good agreement with
each other up to machine precision—the difference of the real
part of the numerically and analytically obtained eigenvalues
is of the order ∼10−15, whereas the difference of the imagi-
nary part of the numerical and analytical results ranges from
∼10−15 for most of the eigenvalues to ∼10−4—the results for
the in-gap states, i.e., the EPs, deviate significantly, hinting
at a numerical instability at these points. This numerical
instability becomes even larger upon increasing the system
size, as shown in Fig. 4(b) for N = 60 unit cells, where the
deviation (in blue) away from the EPs (orange) is significant.
We point out that the numerical eigenvalues are obtained using
the standard eigensolver in MATHEMATICA, and that changing
the eigensolver, decreasing the tolerance, and increasing the
maximum iteration do not alter the numerical results. Indeed,
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FIG. 4. The spectrum of the three-dimensional NH WSM Hamil-
tonian with OBC in x for h = 0 with (a) N = 14 unit cells, (b) the
eigenvalues with ky, kz ∈ {0, π} and N = 60 unit cells, and (c) N =
60 unit cells. The analytically (numerically) computed spectrum is
shown in orange (blue).

numerical computations performed in PYTHON (_geev LA-
PACK routines) yield the same results. This failure of standard
numerical techniques to correctly find the spectrum is due to
the extreme defectiveness of the matrix Hamiltonian at the
EPs, i.e., there are only two eigenvectors instead of 2N , which
prevents the convergence of numerical values. Due to the
apparent correspondence of the analytically and numerically
computed bulk bands [cf. Fig. 4(a)], we plot the bulk bands
numerically (in blue) and the EPs analytically (orange) in
Fig. 4(c) for a large system (N = 60), and see that the bulk gap
remains open with the increase in system size. We stress that
the results in Fig. 4 tell a cautionary tale, and one needs to be
extremely careful when performing numerical computations

on NH matrices that have a large defectiveness. Indeed, for
such matrices, analytical checks should be made.

APPENDIX B: ANALYTICAL COMPUTATION OF
EIGENSYSTEM

In this Appendix, we compute eigenvalues and eigenvec-
tors for the NH WSM with OBC in x.

Eigenvalues. The Hamiltonian with OBC in x and a total of
N unit cells reads

HN,x = c†
NHN,xcN ,

where cN = (c1,A, c1,B, c2,A, c2,B, . . . , cN,A, cN,B)T with A, B
the degrees of freedom and c†

x, j (cx, j) creating (annihilating)
a state with degree of freedom j in unit cell x, such that we
find

HN,x =

⎛
⎜⎜⎜⎜⎜⎝

H1,x H⊥,x 0 · · · 0
H̃⊥,x H1,x H⊥,x · · · 0

0 H̃⊥,x H1,x · · · 0
...

...
...

. . . H⊥,x

0 0 0 H̃⊥,x H1,x

⎞
⎟⎟⎟⎟⎟⎠,

where

H1,x = ih0σ0 + h2σ2 + h3σ3,

H⊥,x = i

2
(σ0 + σ1), H̃⊥,x = i

2
(σ0 − σ1),

with h0 = h + cos ky + cos kz, and h2 and h3 defined in
Eq. (6), i.e., h2 = sin ky and h3 = sin kz. The eigenvalues λ

for this Hamiltonian are found by solving the characteristic
equation

det(HN,x − λ12N ) = det H̃N,x = 0,

where we define H̃N,x ≡ HN,x − λ12N . We use Schur’s deter-
minant identity,

det

(
A B
C D

)
= detD × det(A − BD−1C), (B1)

to reduce this eigenvalue equation to

det H̃1,xdet
(
H̃N−1,x − HN−1×1

⊥,x H̃−1
1,x H̃1×N−1

⊥,x

) = 0, (B2)

where we identify A = H̃N−1,x, D = H̃1,x, and

B = HN−1×1
⊥,x ≡

⎛
⎜⎝

0
...

H⊥,x

⎞
⎟⎠,

C = H̃1×N−1
⊥,x = (0 · · · H̃⊥,x ),

such that

H̃N−1
⊥,x ≡ HN−1×1

⊥,x H̃−1
1,x H̃1×N−1

⊥,x

=

⎛
⎜⎝

0 · · · 0
...

. . .
...

0 · · · H⊥,x H̃−1
1,x H̃⊥,x

⎞
⎟⎠.

Making use of the specific form of the matrices, we find

H⊥,x H̃−1
1,x H̃⊥,x = 1

2

(h2 − ih3)σ2 + (h3 + ih2)σ3

det H̃1,x
(B3)
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and

det H̃1,x = (ih0 − λ)2 − h2
2 − h2

3. (B4)

We note that the matrix H̃N−1
⊥,x has nonzero entries only in its

lower right 2 × 2 block, such that subtracting it from H̃N−1,x

only changes the lower right block, i.e.,

H̃N−1,x − H̃N−1
⊥,x =

⎛
⎜⎜⎜⎝
H̃1,x H⊥,x · · · 0
H̃⊥,x H̃1,x · · · 0

...
...

. . . H⊥,x

0 0 H̃⊥,x
˜̃H1,x

⎞
⎟⎟⎟⎠,

where

˜̃H1,x ≡ H̃1,x − H⊥,x H̃−1
1,x H̃⊥,x.

Again applying Schur’s determinant identity [cf. Eq. (B1)],
we can reduce Eq. (B2) further,

det H̃N,x = det H̃1,x × det ˜̃H1,x

× det
(
H̃N−2,x − HN−2×1

⊥,x
˜̃H−1

1,x H̃1×N−2
⊥,x

) = 0,

where HN−2×1
⊥,x

˜̃H−1
1,x H̃1×N−2

⊥,x is again only nonzero in the
bottom-right corner. Repeating this step N times, and defining

a1 ≡ H̃1,x, ai ≡ a1 − H⊥,x a−1
i−1 H̃⊥,x, i � 2,

we finally arrive at the expression

det H̃N,x =
N∏
i

det ai = 0. (B5)

We thus find that the determinant of the 2N-dimensional OBC
Hamiltonian can be expressed in terms of a product of N
determinants of two-dimensional matrices. We note that each
determinant in this product can ultimately be expressed in
terms of the (inverse of the) determinant of H̃1,x—each ai de-
pends on a−1

1 = adj a1 det−1a1—such that it is not possible to
find eigenvalue solutions by simply setting each determinant,
det ai, to zero separately. Instead, one should explicitly reduce
this equation by making use of the explicit form of ai to obtain
a polynomial equation of the order of 2N . Interestingly, as we
will see in the following, an elegant and straightforward solu-
tion can be derived for some special points in the spectrum.

Degeneracies. We notice that Eq. (B3) equals zero, when
h2 = 0 and h3 = 0 simultaneously, i.e., when ky, kz ∈ {0, π}.
As a consequence, we straightforwardly find that ai = a1, ∀i,
such that

det H̃N,x = (det a1)N = 0, ky, kz ∈ {0, π},
which, by making use of Eq. (B4), leads to

(ih0 − λ)2N = 0. (B6)

We thus find that at these specific values of ky and kz, all
eigenvalues λ are 2N-fold degenerate, and equal to ih0, where

λ = i(h + 2) when (ky, kz ) = (0, 0),

λ = i h when (ky, kz ) = P[(0, π )],

λ = i(h − 2) when (ky, kz ) = (π, π ).

Eigenvectors at EPs. Next, we turn to the eigenvectors at
these k points, i.e.,

HN,x� = λ�, XHN,x = λX,

where � = (φA,1, φB,1 , . . . , φA,N , φB,N )T and X =
(χA,1, χB,1 , . . . , χA,N , χB,N ) are the right and left
eigenvectors, respectively, with the index A, B referring
to the degrees of freedom inside the unit cell, as before. Using
that H1,x is an identity matrix with ih0 = λ on the identity for
ky, kz ∈ {0, π}, we find, for the right eigenvectors,

λφA,1 + i

2
(φA,2 + φB,2) = λφA,1, (B7)

λφB,1 + i

2
(φA,2 + φB,2) = λφB,1, (B8)

and

λφA,N + i

2
(φA,N−1 − φB,N−1) = λφA,N , (B9)

λφB,N + i

2
(φB,N−1 − φA,N−1) = λφB,N , (B10)

for the two boundaries, and

λφA,n + i

2
(φA,n−1 − φB,n−1 + φA,n+1 + φB,n+1) = λφA,n,

(B11)

λφB,n + i

2
(φB,n−1 − φA,n−1 + φA,n+1 + φB,n+1)

= λφB,n, ∀n ∈ 2, . . . , N − 1, (B12)

for the bulk. From these equalities, we obtain the following:

φA,n−1 − φB,n−1 = 0, φA,n+1 + φB,n+1 = 0,

φA,2 + φB,2 = 0, φA,N−1 − φB,N−1 = 0,

for n ∈ 2, . . . , N − 1, such that we immediately find

φA,n = φB,n = 0, ∀n ∈ {2, . . . , N − 1},
φA,1 = φB,1, φA,N = −φB,N .

The Hamiltonian matrix HN,x thus has two linearly inde-
pendent eigenvector solutions when ky, kz ∈ {0, π}, namely,
�1 = (1, 1, 0, . . . , 0)T and �2 = (0, . . . , 0,−1, 1)T .

When repeating the same exercise for the left eigenvectors,
we find

λχA,1 + i

2
(χA,2 − χB,2) = λχA,1,

λχB,1 + i

2
(χB,2 − χA,2) = λχB,1,

and

λχA,N + i

2
(χA,N−1 + χB,N−1) = λχA,N ,

λχB,N + i

2
(χA,N−1 + χB,N−1) = λχB,N ,

for the two boundaries, and

λχA,n + i

2
(χA,n−1 + χB,n−1 + χA,n+1 − χB,n+1) = λχA,n,

λχB,n + i

2
(χA,n−1 + χB,n−1 − χA,n+1 + χB,n+1)
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= λχB,n, ∀n ∈ 2, . . . , N − 1,

for the bulk. Therefore, following the same steps as before, we
arrive at

χA,n = χB,n = 0, ∀n ∈ {2, . . . , N − 1},
χA,1 = −χB,1, χA,N = χB,N ,

such that we again obtain two linearly independent solutions,
i.e., X1 = (1,−1, 0, . . . , 0)T and X2 = (0, . . . , 0, 1, 1)T .
These left eigenvectors are self-orthogonal to the right
eigenvectors, i.e., 〈X |�〉 = 0, and the degenerate eigenvalues
with energy λ = ih0 thus correspond to exceptional points of
the order of 2N − 2.

This piling up of states can also be understood from
studying the form of the OBC Hamiltonian at the EPs in more
detail, where this argument is inspired by the argument in Sec.
SVIII in Ref. [38]. In the following, we perform a unitary
transformation such that σx → σz in HNH(k) in Eq. (6), and
find the following Hamiltonian when taking OBC in x:

H ′
N,x = i h0

N∑
x=1

∑
j∈{A,B}

c†
x, jcx, j

+ h3

N∑
x=1

(c†
x,Acx,B + c†

x,Bcx,A)

− i h2

N∑
x=1

(c†
x,Acx,B − c†

x,Bcx,A)

+ i
N−1∑
x=1

(c†
x,Acx+1,A + c†

x+1,Bcx,B),

where we use the same conventions for c(†)
x, j as before. First,

we note that at the EPs, i.e., h2 = h3 = 0, this reduces to

H ′
N,x,EP = λ

N∑
x=1

∑
j∈{A,B}

c†
x, jcx, j

+ i
N−1∑
x=1

(c†
x,Acx+1,A + c†

x+1,Bcx,B),

where λ is the eigenvalue of the EP as before. This Hamil-
tonian describes two decoupled chains, where there is only
hopping to the left in the “A chain” and only hopping to the
right in the “B chain,” thus explaining the appearance of the
EPs and the existence of only two eigenvectors. This model
thus realizes two decoupled Hatano-Nelson chains [51] in the
extreme limit, i.e., hopping in one direction only. Second,
away from the EPs, H ′

N,x can be interpreted as describing
two coupled Hatano-Nelson chains, which still reside in the
extreme limit. Therefore, one would naively expect that when
h2 and h3 are small, the eigenstates still pile up, albeit now
with different eigenvalues. Interestingly, however, both from
numerical checks as well as analytical computations (see be-
low), we find that this is not the case. This is in agreement with
the result in Ref. [74], where it is shown that the presence of
a magnetic field, which couples the two (pseudo)spin sectors,
i.e., coupling A and B to each other, suppresses the NH skin

effect. Third, we stress that performing the unitary transfor-
mation (σx → σz ) does not alter the physics of our model
upon considering OBCs. Indeed, it is possible to show that
UN = 1N ⊗ U , where U †(σx, σy, σz )U = (σz, σy,−σx ) with
U = (σ0 − iσy)/

√
2, is a unitary matrix, which transforms

HN,x into H′
N,x according to U †

NHN,xUN = H′
N,x. This means

that the spectra of HN,x and H′
N,x are equivalent, and U †

N� and
XUN are right and left eigenvectors of H′

N,x, respectively. Due
to its specific form, UN only acts locally in the eigenvectors
and thus does not change their overall behavior. Lastly, as one
would expect, we find that H′

N,x equals the Hamiltonian for
OBC in z, HN,z, with kx → kz in the latter. Indeed, all results
in this paper are independent of whether one takes OBC in x,
y, or z as the Hamiltonian is equivalent in all three directions.

Eigenvectors away from EPs. Here, we follow the method
presented in Ref. [75] to find an explicit form for the eigenvec-
tors away from the EPs. We start by rewriting the equalities for
the right eigenvectors in Eqs. (B7)–(B12) for general k, which
yields the following:

(ih0 + h3)φA,1 − ih2φB,1 + i

2
(φA,2 + φB,2) = λφA,1, (B13)

ih2φA,1 + (ih0 − h3)φB,1 + i

2
(φA,2 + φB,2) = λφB,1, (B14)

and

(ih0 + h3)φA,N − ih2φB,N + i

2
(φA,N−1 − φB,N−1) = λφA,N ,

(B15)

ih2φA,N + (ih0 − h3)φB,N + i

2
(φB,N−1 − φA,N−1) = λφB,N ,

(B16)

for the two boundaries, and

(ih0 + h3)φA,n − ih2φB,n + i

2
(φA,n−1 − φB,n−1)

+ i

2
(φA,n+1 + φB,n+1) = λφA,n, (B17)

ih2φA,n + (ih0 − h3)φB,n + i

2
(φB,n−1 − φA,n−1)

+ i

2
(φA,n+1 + φB,n+1) = λφB,n, ∀n ∈ 2, . . . , N − 1,

(B18)

for the bulk.
Next, we make the following ansatz for the eigenfunction

in unit cell n [75]:

�n =
(

φA,n

φB,n

)
=

∑
j

rn
j

(
φ

( j)
A

φ
( j)
B

)
.

Plugging this into Eqs. (B17) and (B18), we find[
ih0 + h3 − λ + i

2
(r−1 + r)

]
φA =

[
ih2 + i

2
(r−1 − r)

]
φB,

(B19)[
ih2 − i

2
(r−1 − r)

]
φA
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=
[
−ih0 + h3 + λ − i

2
(r−1 + r)

]
φB, (B20)

where we have dropped the index j for brevity, which leads to

(h0 + iλ)(r−1 + r) = −1 − (h0 + iλ)2 − h2
2 − h2

3.

Rewriting this equation, we find the following second-order
polynomial:

r2(h0 + iλ) + r
[
1 + (h0 + iλ)2 + h2

2 + h2
3

] + (h0 + iλ) = 0,

with solutions

r± = −1 − (h0 + iλ)2 − h2
2 − h2

3 ± √
D

2(h0 + iλ)
,

D = [
1 + (h0 + iλ)2 + h2

2 + h2
3

]2 − 4(h0 + iλ)2.

Therefore, we find that the general solution for �n reads

�n =
(

φA,n

φB,n

)
= rn

+

(
φ

(+)
A

φ
(+)
B

)
+ rn

−

(
φ

(−)
A

φ
(−)
B

)
, (B21)

with r± as specified above. Note that r+ → 1 when ih0 →
λ, i.e., at the EPs, whereas r− diverges. However, as we are
interested in the eigenvectors away from the the EPs, i.e., λ �=
ih0, this is not a problem.

From the explicit expressions of r±, we immediately find
that r+r− = 1. Moreover, we know from Ref. [75] and further
generalizations in Ref. [76] that |r+| = |r−| for the continuum
eigenfunctions, such that we trivially find |ri| = 1. This means
that the bulk states do not pile up as the localization coeffi-
cients of the bulk states ri equal a phase, such that the skin
effect does not appear away from the EPs.
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