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“We wander around strictly as amateurs equipped only with some elementary physics

even if we don’t throw much light on the other subjects.”

Edward Mills Purcell (Life at Low Reynolds Number)
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Abstract
This thesis deals with the collective motility of microswimmers in complex environ-
ments. We study the motility of a single alga in complex environments, the hydrody-
namic interactions between microswimmers, the collective effects of the run-reverse-
flick swimming strategy, and the statistical effects of an active Brownian particle
exhibiting two motility stages.

We investigate the swimming behavior of the green alga Chlamydomonas rein-

hardtii in confinement and find an increased probability of the cell swimming close
to the confining wall. We discovered that the near-wall swimming probability scales
with the local wall curvature. The model that we propose, consisting of an asymmet-
ric dumbbell, describes the near-wall swimming accurately and does not require any
fitting parameter. In fact, we found that the important ingredient to the curvature-
guided navigation is the torque stemming from the asymmetry of the organism.

Hydrodynamic interactions between microswimmers can also play an important
role in their collective behavior. To investigate the effects of hydrodynamic inter-
actions we propose a new model based on an asymmetric dumbbell that takes into
account the hydrodynamic flow fields of puller- or pusher-type microswimmers. We
explore the corresponding nonequilibrium phase diagram and find density hetero-
geneities in the configuration of swimmers. In fact, we find a maximum heterogeneity
at intermediate filling fractions and high Péclet number. Using simulations with only
hydrodynamic and only steric interactions between the swimmers we show that the
maximum in heterogeneities of swimmers stems from a competition of hydrodynamic
and steric interactions. This result is supported by an analytical theory that we
propose. Importantly, this maximum represents an optimum for microswimmers’ col-
onization of their environment.

Bacteria have different swimming strategies for finding nutrition. Escherichia coli

bacteria follow a run and tumble strategy, whereas Vibrio alginolyticus bacteria have
a run-reverse-flick pattern. We study the collective effects of the run-reverse-flick
strategy from a theoretical point of view using molecular dynamics simulations and
analytical theory. We present the collective diffusion coefficient of the system and find
using both approaches that there is maximum in collective diffusion at a forward-to-
backward runtime ratio of 1.2. Intriguingly this is the same runtime ratio that was
found experimentally for Vibrio alginolyticus.

We study the statistical effects of a microswimmer that can switch from a highly
motile state to a low motility state. By solving the underlying Fokker-Planck equa-
tion we find the mean square displacement as well as the intermediate scattering
function analytically, which we verify using Brownian dynamics simulations. We find
an interesting subdiffusive behavior of the mean square displacement and point out
implications for experimental systems. The intermediate scattering function that we
find shows non-ergodic effects that resemble the properties of a supercooled liquid.
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Chapter 1

Introduction

1.1 Motivation

Microorganisms, such as bacteria or microalgae, form the largest amount of biological
mass on our planet and are ubiquitous in our environment. It has been estimated that
in total there are approximately 5 ⇥ 1030 bacteria on our planet [17]. In the body of
a human alone, one can find about 3.8 ⇥ 1013 bacteria [18], which is similar to the
number of human cells in a body (⇠ 3.0 ⇥ 1013).

A large amount of bacteria are found in the planktonic state, i.e., they freely
swim within a fluid, in wet soil, lakes, or oceans. Bacteria in the planktonic state
can only react to local stimuli such that the ecologically relevant interactions have
also a local character. Hence, the motion of a bacterium is not only governed by
their biological nature, but is largely affected by physical or chemical interactions.
Physically, steric and hydrodynamic interactions play an important role in their motile
behavior, but also chemical gradients of, for example, nutrients effect the motility
of bacteria. These interactions are especially important when dense collections of
bacteria are investigated and can lead to fascinating effects.

Figure 1.1(a)-(b) show the collective motion of a dense suspension of Bacillus sub-

tilis bacteria. These are rod-shaped microorganisms of 5µm in length and 0.8µm
width that move by means of multiple flagella. The emergent behavior of a dense
suspension is rather surprising, and difficult to predict from the features of an indi-
vidual. As Fig. 1.1(a)-(b) show, a pattern resembling classical turbulence in a fluid
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is apparent. Although the Reynolds numbers associated to bacterial turbulence are
much lower than in the classical one, a simple picture of fluctuating vortical motion
of stochastic intensity can be recognized in Fig. 1.1(a)-(b). Another example of an
interesting, structural collective effect is shown in Fig. 1.1(c) where cells of the so-
cial bacteria Myxococcus xanthus exhibit ripple-like, multicellular structures as they
penetrate and prey on an Escherichia coli colony.

A different type of microorganism that is important for life on Earth are microal-
gae. They are responsible for the production of about half of our atmospheric oxygen
by processing the greenhouse gas carbon dioxide. Additionally, they can show interest-
ing collective effect such as the suspension of Euglena gracilis depicted in Fig. 1.1(d).
The structure that is collectively formed by the algae resembles the plumes of Rayleigh-
Bénard-convection and accordingly the effect was termed “bioconvection”. However,
microalgae can also organize on much larger scales and form structures such as the
alga bloom shown in Fig. 1.2(a). Although these algal blooms are stunningly beauti-
ful, they can be harmful, as they lower the oxygen concentration in water or secrete
toxic substances, killing marine life either way.

Both bacteria and microalgae can be found in the motile planktonic state, as it is
shown in Fig.1.1-1.2, but when the conditions are feasible they can adhere to surfaces,
colonize them, and collectively form a biofilm. Figure 1.2(b) shows a striking example
of a biofilm growing in a hot spring. Biofilms can form on a vast amount of surfaces,
and are often found in hospitals, where they constitute a health hazard. In fact, they
can grow in infected human tissue, they can infect the mucus membrane in the respira-
tory tract of patients with cystic fibrosis. Medical devices such as catheters, prosthetic
heart valves, cardiac pacemakers, and orthopedic devices can harbor pathogens, and
because of their intimate contact biofilms can grow in the human body and trigger
virulent infections [19]. Due to their physical and chemical properties, once formed
biofilms are difficult to extinguish as antibiotics are usually ineffective, making the
surgical removal of tissue the only method for treatment.

Even within a biofilm, many microorganisms can exhibit active motion. In physics,
active particles are defined as synthetic or natural entities that are able to convert
mechanical, chemical or biological energy into some form of persistent motion. The
energy sources can be stored within the active particle, or they can be extracted
from the environment, for example with stored sugars within a cell, or by means of
photosynthesis.

Active motion is a general archetype in physics that can be employed to investigate
the dynamics of both isolated particles and the collective behavior of large numbers
thereof. In fact, the concept of active motion is not restricted to particles at the
colloidal scale (such as microorganisms), but has been successfully employed to study
a myriad of systems besides microswimmers such as sheep herds [20, 21], bird flocks
[22–25], or schools of fish [26].

In addition to the microswimmer’s intrinsic activity, the interactions between
swimmers or between swimmers and their physical boundaries play an important role
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Figure 1.1: (a) Dense suspension of Bacillus subtilis showing bacte-

rial turbulence; yellow lines show the flow field of bacteria. Reprinted

from [1]. (b) Turbulent vorticity field obtained from the flow field in

(a). Reprinted from [1]. (c) Rippling structure of Myxococcus xanthus
preying on an Escherichia coli colony. Reprinted from [2] Copyright

2008 National Academy of Sciences. (d) Example of a bioconvection

pattern of Euglena gracilis. Reprinted from [3].
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Figure 1.2: (a) Algal bloom of phytoplankton, around the Swedish

island Gotland in the Baltic Sea. [4] (b) Biofilm in a hydrothermal hot

spring. (Biscuit Basin, Yellowstone National Park, USA) Reprinted by

permission from Springer Nature, Nature Reviews Microbiology, [5],

Copyright 2004, Springer Nature.
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in the swimmer’s dynamics. Steric interactions between active particles can already
lead to a fascinating clustering effect called motility induced phase separation [11, 27–
31]. Confining a self-propelled particle into a narrow channel shows an interesting
nonequilibrium effect, as the probability to find the particle close to the confining
wall increases with self propulsion velocity [32–40]. This is especially interesting for
the motility of soil dwelling microalgae that regularly encounter solid surfaces such as
Chlamydomonas reinhardtii.

However, microswimmers are typically immersed in aqueous solutions and thus
subject to the corresponding hydrodynamic flow field. As the swimmers active mo-
tion imposes hydrodynamic flows, collective effects due to the hydrodynamic coupling
between swimmers or walls can arise. An example for the influence of hydrodynamic
interactions is the circular motion of Escherichia coli cells close to flat surfaces [41–43].
Theoretical considerations also suggest self-concentration effects due to hydrodynamic
interactions [44–48].

Another important aspect of microswimmer interactions are their chemical sig-
naling mechanisms. The simplest is the chemotaxis, i.e., a bacterium can follow a
gradient of a nutrient chemical [15]. To follow the gradient, the organisms need a way
of steering, often referred to as swimming strategy. It has been found that multiflagel-
lated microswimmers usually follow a run-and-tumble mechanism [15], which consists
of two phases of motility: the run phase in which they move on straight paths, and
the tumble phase in which they reorient. Monoflagellated bacteria such as Vibrio al-

ginolyticus have a different swimming strategy, that is, they follow a run-reverse-flick
pattern [16]. In the run phase they simply propel forward, then in the reserve phase
swim backwards, and finally reorient by a flick of their flagellum [49].

1.2 Swimming at low Reynolds number

The Reynolds number is a dimensionless number used in hydrodynamics that com-
pares the inertial forces to the viscous forces in a fluid flow. For a microswimmer,
like algae or bacteria, that swims in water the Reynolds number is typically around
R = O(10�5), meaning that inertial effects are negligible for microswimmers and vis-
cous friction dominates. This manifests itself in the motion of microswimmers, if for
example a bacterium would suddenly stop moving, it would only coast for 0.1 Å [50].
Another essential consequence is that reciprocal motions do not lead to a net propul-
sion. For example, a scallop, which moves by opening and shutting its shell, would not
have a net displacement at a low Reynolds number, as its motion is time reversible.
An analogy that is often used is that for a human to experience similar conditions,
they would have to swim in a pool of honey, which exerts considerable viscous forces.
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Figure 1.3: (a) Scanning electron microscopy image of Chlamy-
domonas reinhardtii algae. [6] (b) Hydrodynamic flow field around

a Chlamydomonas reinhardtii alga. Reprinted with permission from

[7] Copyright 2010 by the American Physical Society.

1.2.1 Examples of biological microswimmers

There is a myriad of biological microswimmers that can be found in nature, but in the
biological sciences a few organisms have been selected by the scientific community be-
cause of their ease of cultivation, whose genomes have been fully mapped, and a lot is
known about their biomolecular machinery. Such organisms are referred to as “model
organisms”. Here, we will shortly present two multiflagellated organisms: the bac-
terium Escherichia coli, and the alga Chlamydomonas reinhardtii. The hydrodynamic
flow field that these two organisms produce as they swim in the surrounding fluid
is inherently different, since Escherichia coli is a pusher-type swimmer and Chlamy-

domonas reinhardtii a puller-type. Additionally, we will describe the organism Vibrio

alginolyticus, which is a mono-flagellated bacterium. In contrast to Escherichia coli

and Chlamydomonas reinhardtii, it does not follow the run-and-tumble swimming
strategy but uses the run-reverse-flick strategy.

Puller-type swimmer

Chlamydomonas reinhardtii is a green alga that is typically found in wet soil, and
is distributed worldwide. It is widely used as a model organism in biology, not only
because the genome has been fully sequenced, but it also has an easy culturing pro-
cedure, and a great potential for genetic manipulation. Commercially, it is used for
the production of biofuel and biopharmaceuticals.

An electron microscopy image of a few Chlamydomonas reinhardtii cells can be
seen in Fig. 1.3(a). It can be seen that the cell has a pear shaped body and two
flagella that beat in a breaststroke-like motion, by which the organism propels itself
forward. The body is approximately 10µm in diameter and the flagella are about
10µm long. Furthermore, Chlamydomonas reinhardtii uses an analog of the run and
tumble swimming strategy. In the run phase the two flagella beat in synchrony, and
the cell swims on a straight path. When the organism decides to turn, the flagella
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Figure 1.4: (a) Transmission electron microscopy image of an Es-
cherichia coli bacterium. [8] (b) Hydrodynamic flow field around an

Escherichia coli bacterium. Reprinted from [9].

desynchronize, the cell starts tumbling [51], and it can reorient towards gradients of
nutrient or light.

As the organism propels itself forward, it produces the flow field in the surrounding
fluid as shown in Fig. 1.3(b). It can be seen that the fluid is pulled towards the
swimmer in its front and rear, hence it is called puller. However, on the sides of the
swimmer the fluid is pushed away.

Pusher-type swimmer

Escherichia coli is a Gram-negative bacterium that is typically found in the intestine
of humans and animals. In biology it is used as a model organism since its culturing
procedure is rather simple, it is suitable for genetic manipulation and the genome has
been sequenced.

A transmission electron microscopy image of an Escherichia coli is displayed in
Fig. 1.4(a). It can be seen that it is rod-shaped and has a number of flagella emerging
from different points in its body. The body is approximately 4µm in length and its
flagella are about twice as long. Escherichia coli uses the run and tumble swimming
strategy [15]. In the run state the flagella all rotate in the same direction, form a
bundle, and the cell swims on a straight path. As the cell decides to turn, some
(but not all) of the flagella start rotating in the opposite direction, the flagella bundle
dissolves, and thus the cell tumbles and reorients.

When Escherichia coli propels forward it produces the hydrodynamic flow field
shown in Fig. 1.4(b). Here, it can be seen that the fluid is pushed away from the
organism in its front and its back, and thus it is termed a pusher. However, on the
sides the fluid is pulled towards the swimmer.
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Figure 1.5: Transmission electron microscopy image of a Vibrio al-
ginolyticus cell. Reprinted from [10].

Mono-flagellated swimmer

Vibrio alginolyticus is a Gram-negative marine bacterium, that can cause wound infec-
tion [52] and otitis. A transmission electron microscopy image of a Vibrio alginolyticus

cell is depicted in Fig. 1.5, where it can be seen that it is rod-shaped and has a single
flagellum. Its body is approximately 1µm in length and its flagellum is about three
times larger.

Since Vibrio alginolyticus is single-flagellated it cannot use the run and tumble
swimming strategy to find nutrient gradients. In fact, it was found that they use
the run-reverse-flick strategy [16]. Here, the organism runs forward, by propelling
its flagellum in a counterclock-wise manner (run), then it reverses the direction of
rotation and swims backward (reverse). Finally, it reorients (flick) due to a buckling
instability in the flagellum [49].

From a theoretical point of view the statistics of a single run-reverse-flick swimmer
was studied by [53]. It was found that the velocity correlation function and the mean-
square-displacement (MSD) of the run-reverse-flick motility pattern differs vastly from
the run and tumble pattern.

1.3 Literature review

In this section we give a short review of the relevant literature for this thesis. As the
microswimmer and active matter fields are vastly growing it is not possible to cover all
aspects within this section, nor in this thesis but the reader is referred to the reviews
that are given in the following.

The swimming behavior inside a confinement is an interesting question as biolog-
ical microswimmers such as bacteria or algae encounter this situation frequently in
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their natural environment. Kantsler et al. [54] measured the interaction of a Chlamy-

domonas reinhardtii cell approaching and scattering at a wall using high-speed micro-
scopic imaging. They found that the interaction of the cell with the wall is dominated
by the ciliary contact and extracted a scattering angle of 16�. Furthermore, the cor-
responding micrographs show evidence that the short ranged contact dominates over
long ranged hydrodynamic interactions with the wall. Lushi et al. [55] study this
scenario in more detail by considering a simulation using a three-bead-spring model
including hydrodynamic interactions in combination with experiments. They show
that a shape asymmetric model is essential to capture the dynamics of a Chlamy-

domonas reinhardtii cell scattering off a wall, but also hydrodynamic interactions
should not be neglected.

For the pusher-type swimmer Escherichia coli approaching a wall the hydrody-
namic interactions are more important. In one of the most studied, surprising phe-
nomena of active swimmers Berg and Turner [41] (see also the work of DiLuzio et al.

[56]) showed that the motion of an Escherichia coli cell is influnced by the proximity
to a flat solid surface. Later, Lauga et al. [42] and Berke et al. [43] showed that this is
a hydrodynamic interaction with the solid surface. For a review on the hydrodynamics
of swimming microorganisms see [57–59].

Another interesting model of a shaped asymmetric dumbbell swimmer has been
put forward by Wysocki et al. [33]. They study the dynamics of a dumbbell swim-
mer inside a channel, a spherical cavity, and on a convex boundary and find a relation
between the shape asymmetry of the dumbbell swimmer and the wall curvature. How-
ever, Wysocki et al. [33] also find that in a confining channel the swimmer shows an
increased probability to stay close to the walls. This is a consequence of the nonequilib-
rium nature of the system and has also been found for simpler active particle systems
[34–40] (see also [12]).

Collections of active particles with only steric interactions can show a clustering
effect that was termed motility-induced phase separation (MIPS)[11, 27–31], which
has been shown to correspond to a liquid-gas phase separation [11, 28, 29, 60, 61]
(for a review see [62]). Including fixed objects into such a system of active particles
influences the collective dynamics vastly. One finds for example an active depletion
when two plates are included [63] or collective rotations around circular obstacles
[64]. Models that extend the active particle to an asymmetric shape such as self
propelled hard rods have an even richer phase diagram. Here, one can find a swarming,
laning, jammed and a turbulent state [65–68]. The turbulent state was also found
experimentally by Wensink et al. [69]. An essential question for biological systems is
whether MIPS is influenced by the hydrodynamic interactions between the swimmers
[70, 71]. Matas-Navarro et al. [72] and Theers et al. [73] both studied the collective
dynamics of squirmers, which are spherical particles with a prescribed surface flow
field and thus interact not only steric but also via hydrodynamics. They showed
that the hydrodynamic interactions are suppressing the effect of MIPS. Here, the
hydrodynamic interactions give torques that increase the reorientation of particles,



10 Chapter 1. Introduction

which hinders MIPS.
The simulation of single squirmers was studied intensely by Downton and Stark

[74] and by Götze et al. [75] using a mesoscale simulation technique for the fluid called
multiparticle collision dynamics (MPCD) (for a review on squirmer simulations see
[76]). The MPCD technique was originally developed by Malevanets and Kapral [77]
and reproduces the hydrodynamic modes up to the Navier-Stokes level (an extensive
review can be found in [78]).

As mentioned above the hydrodynamic flow field of microswimmers can have im-
portant influences on the swimmer’s collective behavior. Theoretical studies sug-
gest that the hydrodynamic interactions between swimmers lead to self-concentration
effects [44–48] (for a review see also [79]). In [44] a theoretical model that takes
into account the hydrodynamic interactions between microswimmers using the Stokes
equation is proposed. The resulting continuum model shows an instability of the
homogeneous state of both puller and pusher-type swimmers which implies a self-
concentration effect.

Since the hydrodynamic interactions usually have a polar or nematic nature a
myriad of self propelled particle models that take into account angular interactions
have been proposed [80–86] (for a review see also [87]). These models also apply to
another class of active system, so called dry active matter. Examples for experimental
systems that are classified as dry active matter are melanocytes [88], vibrated granular
rods [89] or particles [90], migrating animal herds [91], and migrating cell layers [92]
(for a review see also [93]).

It is often useful to eliminate the complexity of biological interactions and effects
by investigating well controlled artificial microswimmers; this choice allows one to
isolate specific physical effects and study the resulting active dynamics. Examples
of artificial microswimmers are the catalytic Janus colloids [94, 95], or oil droplets
in an aqueous solution [96–101] (a comprehensive list of artificial swimmers can be
found in [12]). Kurzthaler et al. [102] used differential dynamic microscopy and
particle tracking to study the behavior of an active Janus colloid. They compare the
measured intermediate scattering function (ISF) to the analytical solution of the ISF
of an active Brownian particle in 2d. Similar solutions for the ISF, which are also in
3d can be found in [103–105].

1.4 Scope and main results of the thesis

This thesis deals with the collective microswimmer motility in complex environments.
It is organized as follows: in Chapter 2 we will review the theoretical background.
Starting from the Stokes flow, we will point out the relevant hydrodynamics for the
dynamics of microswimmers. We will then introduce the overdamped limit and dis-
cuss the concept of active Brownian particles. In Chapter 3 molecular dynamics and
Brownian dynamics simulations are reviewed. Additionally, the multiparticle colli-
sion dynamics technique is introduced, which is used to simulate hydrodynamic flows.
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Chapter 4 deals with the dynamics of a single microswimmer in complex geometries.
We will first give a brief review of the literature on nonequilibrium wall accumulation,
and then present our results on the near-wall swimming behavior of Chlamydomonas

reinhardtii. Our main discovery is that the motility of Chlamydomonas reinhardtii

in confinement is dominated by the curvature of the confining walls. In Chapter 5
we aim towards understanding the influence of hydrodynamic interactions between
microswimmers. We first briefly review the relevant literature, and then present our
study which predicts an optimal filling fraction for the self-concentration of biological
microswimmers. In Chapter 6 we describe mathematically the swimming strategies
of microorganisms, which are the run-and-tumble and the run-reverse-flick strategy.
We present our study on the collective effects that are induced by the run-reverse-
flick strategy, where we find an optimum in collective diffusion. In Chapter 7 we aim
towards understanding the statistics of active particles with two motility stages. We
provide a toy model that is exactly solvable and point out non-ergodic effects that
can be relevant in the adhesion statistics of active particles. Finally, in the Appendix
we give the CUDA kernel code snippets for integrating force poles next to microswim-
mers in an MPCD simulation. We would like to emphasize that the CUDA algorithms
used for all MPCD and MD-MPCD hybrid simulations are in-house codes that were
developed as part of this thesis work.

1.4.1 Main results

In Chapter 4, we study the motility of Chlamydomonas reinhardtii inside a confine-
ment. We use an experimental setup in which we capture the statistical mechanics
of a single cell in a controlled environment and compare to Brownian dynamics sim-
ulations of an asymmetric dumbbell. We show that the motility of Chlamydomonas

reinhardtii is governed by the local wall curvature of the confining chamber. Using
our simulations we find an excellent agreement to our experiments, without any fitting
parameters. Additionally, we show that a dumbbell is the minimal model to explain
the curvature guidance, where the corresponding torque that acts at the wall is the
crucial ingredient. However, it is noteworthy that we did not need to include any
hydrodynamic interactions into our model.

In Chapter 5 we study the influence of hydrodynamic interactions on the collective
behavior of biological microswimmers from a theoretical point of view. We propose a
new model for biological microswimmers, which accounts for asymmetric shape and
the hydrodynamic flow fields that were measured experimentally. Here, we employ
the multiparticle-collision-dynamics technique (MPCD) to capture the hydrodynamic
interactions. We study the nonequilibrium phase diagram as Péclet number and filling
fraction are varied and find heterogeneities in the swimmer’s density. Furthermore,
we find that there is a maximum in the density heterogeneities for an intermediate
filling fraction, which is supported by an analytical theory that we propose. For both
simulations and analytical calculations we show that this maximum results from a
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competition of hydrodynamic and steric interactions. Ecologically, this maximum
represents an optimum for the microswimmers’ colonization of their environment.

The influence of the run-reverse-flick swimming strategy on the collective behavior
of microswimmers is studied in Chapter 6. We use Brownian dynamics and squirmer
simulations, as well as an analytical theory based on a probabilistic approach to study
the collective diffusion behavior of interacting run-reverse-flick swimmers. Here, both
our simulations and analytical theory predict a maximum in the collective diffusion
coefficient at a forward- to backward-runtime ratio of ⇠ 1.3. This coincides with the
runtime ratio that was measured for Vibrio alginolyticus bacteria, which brings us to
the hypothesis that these bacteria fine-tuned the intracellular molecular signaling to
this runtime ratio.

In Chapter 7 we study the statistics of an active particle that has two motility
stages. We explicitly solve the underlying Fokker-Planck equations for the interme-
diate scattering function (ISF), and validate these results using Brownian dynamics
simulations. The ISF that we find shows an interesting behavior which resembles
the properties of a supercooled liquid. We also study the MSD of the system and
find a subdiffusive regime, for which we point out the implications on experimental
measurements of adhesion statistics.
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Chapter 2

Theoretical background

In this chapter we will review the theoretical background of the motility of microor-
ganisms. In Sec. 2.1 we will describe the Stokes equation, which governs flows at low
Reynolds numbers, and point out implications for the motion of microorganisms, as
well as solutions of model flow fields. In Sec. 2.2 we will discuss the limit of overdamped
dynamics, show the classical example of a Brownian particle, and introduce the active
Brownian particle model. We will also address the theory of motility induced phase
separation.

2.1 Stokes equation

The hydrodynamics of an incompressible viscous fluid are governed by the Navier-
Stokes equations

⇢

✓
@v

@t
+ v · rv

◆
= �rp + ⌘r2v, (2.1)

r · v = 0, (2.2)

where ⇢ is the fluid’s density, v its velocity, p the pressure, ⌘ the dynamic viscosity
and t the time. Physically, Eq. (2.1) arises from applying Newton’s second law to fluid
motion, and Eq. (2.2) represents the incompressibility condition for the fluid. When
a body is immersed in a fluid, additional boundary conditions need to be applied to
Eqs. (2.1)-(2.2). Usually, the no-slip boundary condition is applied, meaning that the
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velocity v(S) at the surface S of an embedded object vanishes. This is motivated
by the fact that adhesive forces at a boundary are greater than the cohesive forces.
The resulting force imbalance gives the condition that the flow decays to zero at the
boundary.

Given the solution of the Navier-Stokes equations (2.1)-(2.2) for a Newtonian fluid,
the stress tensor can be calculated as

� = �pI + ⌘
⇥
rv + rvT

⇤
, (2.3)

where I is the unit tensor and the superscript T denotes the matrix transposition. The
stress tensor has two characteristic terms; the first term �pI represents the hydrostatic
pressure and produces isotropic stresses; the second term ⌘

⇥
rv + rvT

⇤
, called the

deviatoric stress tensor, produces the viscous stresses. From the stress tensor the force
F and torque ⌧ acting on a body inside the fluid can be calculated as

F =

Z

S
� · ndS, (2.4)

⌧ =

Z

S
r ⇥ � · ndS, (2.5)

where n is the outward normal vector to the surface S of the body.
The Navier-Stokes equations (2.1)-(2.2), can be seen as a balance of inertial forces,

which are on the left hand side of the equation, and viscous forces on the right hand
side of the equation. The Reynolds number compares the inertial Finertial and viscous
Fviscous forces and is given by

R =
Finertial

Fviscous
=

⇢UL

⌘
, (2.6)

where U is a characteristic velocity and L a characteristic length scale of the system.
The density of water is ⇢ ⇡ 103kg m�3 and its viscosity is ⌘ ⇡ 10�3Pa s. Considering
the organism Escherichia coli with a typical length of L ⇡ 2µm and typical velocity of
U ⇡ 20µm s�1, we arrive at R ⇡ 10�5. Similarly for Chlamydomonas reinhardtii we
have L ⇡ 10µm and U ⇡ 100µm s�1 and arrive at R ⇡ 10�3. In both cases we have
a very low Reynolds number, thus viscous forces dominate and inertial effects can be
neglected. This allows for a great simplification of the Navier-Stokes equations, since
the non-linear inertial terms on the left hand term of Eq. (2.1) can be neglected. The
resulting equations are called the Stokes equations

rp = ⌘r2v, (2.7)

r · v = 0. (2.8)

We note in passing that Stokes flow is relevant also in lubrication theory, rheology,
flow of biological fluids, and in geophysical settings.
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2.1.1 Swimming at low Reynolds numbers

The Stokes equations (2.7)-(2.8) are linear, which implies that the relation between ki-
netics and kinematics is linear. Thus, the force and torque acting on a body immersed
in a Stokesian fluid can be written as

F = �⌘ (A · V + B · ⌦) , (2.9)

⌧ = �⌘ (C · V + D · ⌦) , (2.10)

where V is the translational and ⌦ the rotational velocity of the body. The matrices
A,B,C,D are the resistance matrices of the body, which obey the relations [106]

A = AT
, D = DT

, B = CT
. (2.11)

For a solid sphere of radius R one can find that

A = 6⇡⌘RI, D = 8⇡⌘R
3I, B = CT = 0, (2.12)

but in general these matrices are not of diagonal form. In fact, if A is not diagonal
then there will be an anisotropic drag, which means that force and velocity are not
parallel. Furthermore, when F · V < 0 the motion results in a loss of energy due
to viscous dissipation. An example to illustrate this fact is a prolate ellipsoid with
a major axis l1 and minor axis l2, for which l1 � l2. Given its orientation e the
resistance matrix is A = Ake ⌦ e + A?(I � e ⌦ e), where ⌦ is the tensor production
and A? ⇡ 2Ak. The result of the anisotropic form of A is that the force perpendicular
to the orientation is twice as large as in the parallel direction.

An important consequence of drag anisotropy is the possibility of locomotion at
low Reynolds numbers. Most biological microswimmers propel by means of a flagel-
lum, which is a slender appendage that moves in a periodic wave-like manner. In the
following we assume that the microswimmer moves in x direction and that the flagel-
lum beats normal to the x axis. A small segment of the flagellum can be approximated
as a straight, thin rod, with a viscous drag force f = ⇠kvk+⇠?v?, and where ⇠? = 2⇠k,
vk is the velocity parallel to the segment’s tangent and v? is the velocity perpendic-
ular to the segment’s tangent. Using |vk| = v cos ✓ and |v?| = v sin ✓, the total force
in the x direction, i.e. the propulsion force, is given by fprop = (⇠k � ⇠?)v sin ✓ cos ✓.
Therefore, a periodic change in shape can give a net propulsion force, which results
in locomotion.

Going back to the Stokes equation (2.7), it is important to realize that it is time
independent. A direct consequence of the time independence is that a periodic time
reversible motion of an object inside the fluid does not lead to net motion. This is also
known as the Purcell’s scallop theorem [50]. A scallop moving at low Reynolds number
will not have any net displacement, since its motion is completely time reversible.
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2.1.2 Stokeslet solution and multipole expansion

The Stokes equation with an external force fext is given by

rp = ⌘r2v + fext, (2.13)

r · v = 0. (2.14)

In free, three dimensional space the solution for the velocity field can formally be
written as a convolution of the external force with the Green’s function

v(r, t) =

Z
O(r � r0) · f ext(r0, t) dr0 . (2.15)

The Green’s function is called the Oseen tensor and is given by

O(r) ⌘ 1

8⇡⌘r
(I + r̂ ⌦ r̂) , (2.16)

where r = |r| and r̂ = r/r. Considering a point force fext = fe�(r), at position r

with the direction e and strength f , where �(r) is the Dirac distribution, the velocity
field can be found explicitly as

v(r) = fO(r) · e =
f

8⇡⌘r
[e + (r̂ · e)r̂] , (2.17)

which has been known as a ‘Stokeslet’ since the work of Hancock [107]. Useful model
flow fields for microswimmers can be constructed from Eq. (2.17) as explained in the
next section.

In most cases external forces are placed at a position x, while one is interested in
the flow field at position r, as for example

v(r) = fO(r + x) · e. (2.18)

For analytical treatability it is then very useful to consider the multipole expansion
of the Oseen tensor, which in components i, j 2 {x, y, z} is given by [108]

Oij(r + x) =
1X

n=0

1

n!
(x · r)n Oij(r). (2.19)
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In the expansion Eq.(2.19), derivatives of the Oseen tensor are needed, here we give
the first and second

@

@rk
Oij =

1

8⇡⌘


1

r3
(��ijrk + �jkri + �ikrj) � 3

r5
rirjrk

�
, (2.20)

@

@rm

@

@rk
Oij =

1

8⇡⌘


1

r3
(��ij�km + �jk�im + �ik�jm)

� 3

r5
(��ijrmrk + �jkrmri + �ikrmrj

+�mirjrk + �jmrirk + �mkrirj) +
15

r7
rirjrkrm

�
. (2.21)

We will use this multipole expansion to treat microswimmers, including hydrodynamic
interactions, analytically in Sec. 5.1-5.2.

The velocity field induced by a force monopole, that is the Stokeslet solution
[Eq.(2.17)], scales as 1/r. It shows an anisotropy, as the flow in the direction parallel
to the force vk is twice as large as in the perpendicular direction v? = vk/2. This has
important consequences for the locomotion of swimming microorganisms as already
stated in Sec 2.1.1.

The Stokes equation [Eq. (2.7)] has some interesting mathematical properties:
(i) it is linear, and (ii) contains no homogeneous (space independent) fields. It follows
immediately from these two properties that if (v, p) is a solution of the Stokes equation,
then the pair (vn ⌘ rnv, pn ⌘ rn

p) of arbitrarily-high order derivatives is also a
solution, where the external forcing fext is replaced by the corresponding derivative
[109]. These higher order derivatives are already included in the Taylor expansion
in Eq. (2.19). We have then the interesting situation where the formal multipole
expansion of the fundamental solution produces all solutions based on a distribution
of singularities in the flow. The first derivative [Eq. (2.20)] gives a flow singularity
corresponding to a force dipole, whose resulting velocity field scales as 1/r

2 (see also
Sec. 2.1.3). The second derivative [Eq. (2.21)] is a force quadrupole and its velocity
field scales as 1/r

3. Combinations of these solutions (and higher order derivatives)
can be used to construct solutions in a variety of geometries such as the flow past a
sphere [110].

In the presence of confining walls the flow fields are modified. Because of the
mathematical analogy with the equations of electrostatics the solution (v, p) can be
found using the method of images. Here, an image of the flow singularity is placed
behind the corresponding wall such that the correct boundary conditions are imposed
at the wall.

2.1.3 Model flow fields

The dynamics in the Stokes regime are overdamped, which means that all inertial
effects in the locomotion of a microorganism are negligible. This means that the
forces in the system, microorganism together with fluid, have to add up to zero, i.e.,
the system has to be force free. Therefore, the simplest configuration of forces that can
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model the effect of a swimming microorganism on the fluid is given by a force dipole.
The Stokes equation for a force dipole can be solved exactly using two Stokeslets
[Eq. (2.17)], with the following result for the flow velocity

v(r) =
lf

8⇡⌘r2


3
⇣r

r
· e
⌘2

� 1

�
. (2.22)

Here, l is the distance between the force poles i.e. the dipole length, f the applied
force, e the unit vector connecting the poles, and r = |r|. If the force is positive, the
swimmer is called a pusher like Escherichia coli, whereas a negative force corresponds
to a puller like Chlamydomonas reinhardtii. A sketch of the characteristic flow field
for pushers is shown in Fig. 2.1(a). It can be seen that the fluid is pushed away in the
front and back of the swimmer, and pulled in on the sides. The sketch for pullers is
shown in Fig. 2.1(b), where the fluid is pulled towards the swimmer in the front and
the back and pushed away on the sides. In fact, it has been shown experimentally that
the force dipole model [Eq. (2.22)] reproduces the fluid flow around an Escherichia

coli cell very accurately [9]. For the puller-type swimmer Chlamydomonas reinhardtii

Figure 2.1: Sketch of the flow fields produced by (a) a pusher-type

swimmer and (b) a puller-type swimmer. Black arrows are a sketch

of the fluid velocity around the swimmers and gray arrows show the

direction of motion.

it is more accurate to use a force-free configuration of three Stokeslets, as it was shown
in [7].

In general, it is useful to have simple models for the flow field around microswim-
mers, since the role of hydrodynamic interactions between microswimmers is still a
matter of debate in the literature. In fact, both publications presented in this thesis
(see Sec. 4.1 and Sec. 5.1) address this matter.
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2.2 Overdamped dynamics

The dynamics of a Brownian particle immersed in a fluid can be described by the
Langevin equation [111]

m
du(t)

dt
= ��u(t) + F (r, t) + �(t), (2.23)

where m is the mass of the particle, � is the friction coefficient, r its position, u(t) its
velocity and F (r, t) is an external force. The term �(t) is a fluctuating and random
force, which represents the force stemming from the collisions with the surrounding
fluid molecules, that are subject to thermal motion. Typically, it is assumed to have
zero mean h�(t)i = 0 and the correlation function h�(t)⌦�(t+�t)i = 2DT�

2
�(�t)I,

where �(·) is the Dirac distribution, and DT is the translational diffusion coefficient.
For micron-sized objects, such as colloids, bacteria or microalgae, the Reynolds num-
ber, which compares inertial and viscous effects, is low (see also Sec. 2.1). Therefore,
we can neglect the inertial terms in Eq. (2.23), namely the left hand side and write

u(t) = �1

�
[F (r, t) + �(t)] , (2.24)

which is called the overdamped Langevin equation.

2.2.1 Brownian particle

For a single particle immersed in a fluid without an external force Eq. (2.24) reads

dr(t)

dt
= �1

�
�(t). (2.25)

This stochastic ordinary differential equation was found and solved by Einstein and
Smoluchowski [112–114] to explain the motion of a particle immersed in a resting fluid.
Because of the random force �(t), Eq. (2.25) cannot be solved explicitly for r(t), but
there are various methods to derive a deterministic equation [111] for the probability
distribution P (r, t) to find the particle at position r at time t. For Eq. (2.24) one
finds

@P (r, t)

@t
= DTr2

P (r, t), (2.26)

which is the diffusion equation with translational diffusion coefficient DT . The solution
of this equation is

P (r, t) =

✓
1

4⇡DT t

◆3/2

e
� r2

4DT t . (2.27)
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Equation (2.26) is the simplest case of a class of partial differential equations (PDE’s)
called “Fokker-Planck equation”. The MSD, which is the square of the particles dis-
tance traveled during a time t, is defined as

h(r(t) � r(0))2i. (2.28)

Without loss of generality we can assume that r(0) = 0, using the definition of the
average we have

h(r(t) � r(0))2i =

Z
P (r, t)r2dr =

Z ✓
1

4⇡DT t

◆3/2

e
� r2

4DT tr2dr. (2.29)

Introducing polar coordinates, yields

4⇡

✓
1

4⇡DT t

◆3/2 Z 1

0
r
4
e

r2

4DT t dr, (2.30)

where we already performed the angular integration. The integral in Eq. (2.30) can
be solved with the following result for the MSD

h(r(t) � r(0))2i = 6DT t, (2.31)

which is linear in time. This linear growth in time of the MSD characterizes diffusive
transport.

2.2.2 Active Brownian particle

The key difference between a simple particle immersed in a fluid and a bacterium or
microalgae is that the last two propel themselves forward inside the fluid. This can
be modeled by including an active force Factive = �v0e(t) in Eq. (2.24), giving

dr(t)

dt
= �v0e � 1

�
�(t), (2.32)

where v0 is the self-propulsion velocity and e is the orientation of the particle. The
orientation is also a dynamical variable which (in 3d) obeys the equation

de(t)

dt
= ⌘(t) ⇥ e(t), (2.33)

where ⌘(t) is a Gaussian white noise with zero mean h⌘(t)i = 0 and correlator h⌘(t)⌦
⌘(t + �t)i = 2DR�(�t)I, where DR is the rotational diffusion coefficient. When
modeling biological organisms, the thermal diffusion is usually small compared to the
fluctuations that are caused by the biological nature of the organisms. Hence, it is
useful to reinterpret the translational and rotational diffusion in terms of biological
fluctuations.
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Similarly to the Brownian particle, a Fokker-Planck equation for the probability
P (r, e, t) of finding the particle at position r with orientation e at time t can be
computed, and reads

@P (r, e, t)

@t
= �v0e · rP (r, e, t) + DR

✓
e ⇥ @

@e

◆2

P (r, e, t) + DTr2
P (r, e, t).

(2.34)

On the right-hand side of this equation we can recognize three characteristic terms; the
first term stems from the self-propulsion of the active particle; the second term comes
from the rotational diffusion of the particle; and the last term is due to translational
diffusion. An interesting property that can be calculated is the MSD of an active
particle. One possibility to compute this is to formally solve Eq. (2.32), which reads

r(t) � r(0) = �
Z

v0e(t) +
1

�
�(t)dt. (2.35)

From Eq. (2.35) we proceed by taking the square and averaging, giving

h[r(t) � r(0)]2i =

Z
v
2
0he(t) · e(t0)i dtdt

0 +

Z
1

�2
h�(t) · �(t0)i dtdt

0
. (2.36)

For the second term in the sum in Eq. (2.36) we can use the correlator h�(t)⌦�(t0)i =

2DT�
2
�(t � t

0)I that was prescribed before. The correlator of the orientation can be
calculated in a similar manner to Eq. (2.36) by using the formal solution of Eq. (2.33).
The final result of the MSD from Eq. (2.36) then reads

h[r(t) � r(0)]2i =
v
2
0

2D2
R

�
e
�2DRt + 2DRt � 1

�
+ 6DT t. (2.37)

A different method to compute the MSD in Eq. (2.37) is to consider the second
moment of the probability

R
P (r, e, t)r2drd', which can be determined by solving

Eq. (2.34) 1. The MSD in Eq. (2.37) is shown in Fig. 2.2 for different self-propulsion
velocities. One can recognize three characteristic regimes: (i) at very small time scales
the translational diffusion dominates and the motility is diffusive; (ii) on intermediate
time scales the ballistic regime is dominant, where particles move on straight lines; (iii)
on long time scales a second diffusive regime, which stems from the rotational diffusion
can be found. Note that the situation is very different for the Brownian particle [see
Eq. (2.31)], which only shows a diffusive regime stemming from the translational
diffusion, whereas the two additional regimes of the active Brownian particle are
activity induced. From the MSD in Eq. (2.37) the effective diffusion coefficient can
be calculated as

De↵ = DT +
v
2
0

6DR
, (2.38)

1In practice only approximate solutions or solutions in Fourier space of Eq. (2.34) can be found
(see also Sec. 2.2.3 and Sec. 7.1).
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which involves both translational diffusion and a term stemming from the combination
of self-propulsion and rotational diffusion. For bacteria or microalgae the latter is
usually dominant, because of their large self-propulsion velocity.
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Figure 2.2: The solid lines show the MSD [Eq. (2.37)] of an active

Brownian particle. The dotted line shows a linear scaling, and the

dashed-dotted line a quadratic scaling.

The importance of the self-propulsion over the diffusion can be measured in terms
of the Péclet number P, which is typically defined as the ratio of advective to diffusive
transport

P =
v0�

D
, (2.39)

where � is the typical size of the particle and D is a diffusion coefficient. Different
choices for the diffusion coefficient have been proposed in the literature, as we can
choose the rotational, translational or effective [Eq.(2.38)] diffusion coefficient. For
microswimmers the Péclet number is typically large, at least of O(10).

2.2.3 Motility-induced phase separation

A simple toy model to study the collective effects of active swimmers is given by a
collection of active Brownian particles [Eq.(2.32)], where particles are assumed to be
spherical and the interactions are assumed to be purely repulsive. The equations of
motion in 3d for particle i are then given by

dri
dt

= v0ei + Fi/� + �i, (2.40)

dei
dt

= ⌘i ⇥ ei, (2.41)

where one typically uses a Weeks-Chandler-Anderson potential to calculate the steric,
repulsive forces between particles

�(rij) = 4✏

"✓
�

rij

◆12

�
✓

�

rij

◆6
#

+ ✏, (2.42)
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if rij < 21/6�, and 0 otherwise and with ✏ the energy scale and rij ⌘ |ri � rj | the
distance between two particles. The system can be characterized by two dimensionless
numbers, the filling fraction � and the Péclet number P. These span the nonequi-
librium phase space, which was studied extensively in the recent years [11, 27–31]. It
was found that above a typical filling fraction and Péclet number (see [11, 27–31]),
the system phase separates into a gas and a dense phase. A typical snapshot of a
simulation can be seen in Fig. 2.3, where a clear separation between large, solid-like
clusters with little to no active motion within them and a gas phase can be seen. This
state was termed motility-induced phase separation (MIPS). An intuitive explanation

Figure 2.3: Representative snapshot of a simulation of active Brow-

nian particles ( reprinted with permission from [11] Copyright 2010

by the American Physical Society. ) showing motility-induced phase

separation. A clear separation between dense and gas phases can be

seen.

for MIPS is the following: in a typical implementation of this model, the time for
reorientation of a particle due to rotational diffusion is rather large, so on a small to
intermediate time scales the particles all move on straight lines. If the filling fraction
is sufficiently high, enough particles will encounter each other, effectively blocking
each other. Since the reorientation time is rather large, the particles are likely to stay
in this configuration and form a solid phase. A simple analytical model by [29] can
also explain this effect.

An active Brownian particle [Eq. (2.34)] performs a persistent random walk with
a step length of l0 = v0/DR. Within this distance, particles can encounter each other,
effectively reducing the persistence length l0. The particle is then stalled for a time
⌧c by each collision, and encounters an average number of particles nc. Therefore, the
effective persistence length is l = v0(1/DR � nc⌧c), which translates into the effective
velocity

v = lDR = v0 (1 � nc⌧cDR) . (2.43)

Using the mean free time between collisions ⌧MF = (v0⇢�s)�1 with density ⇢ and cross
section �s, the average number of collisions is nc = 1/[DR(⌧MF + ⌧c)]. Inserting into
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Eq. (2.43) and assuming ⌧MF ⌧ ⌧c gives the density dependent velocity

v(⇢) = v0 � ⇢⇣, (2.44)

where ⇣ = v
2
0�s⌧c quantifies how much particles are slowed down by an interaction

event (see also [29, 30]).
For the ease of analytical treatment we consider now a 2d case of Eq. (2.34).

Taking particle interactions into account, Eq. (2.34) in two dimensions becomes

@P (r, ', t)

@t
= �e(') · r [v(⇢)P (r, ', t)] + DR

@P (r, ', t)

@'
+ DTr2

P (r, ', t), (2.45)

where we used the orientation angle ' for the orientation e = (cos ', sin ')T . We now
expand P (r, ', t) in multipoles

⇢(r, t) =

Z 2⇡

0
P (r, ', t)d', (2.46)

p(r, t) =

Z 2⇡

0
cos 'P (r, ', t)d', (2.47)

where we only consider the first two fields in the expansion, which are the density
⇢(r, t) and polarization p(r, t). The resulting equations for density and polarization
(neglecting higher-order terms such as the nematic tensor) are given by

@⇢

@t
= �r · [v(⇢)p � DTr⇢] , (2.48)

@p

@t
= �1

2
r [v(⇢)⇢] + DTr2p � DRp. (2.49)

In a long time scale and large length scale limit, Eq. (2.49) can be approximated as

p ⇡ � 1

2DR
r [v(⇢)⇢] . (2.50)

Plugging Eq. (2.44) and Eq. (2.50) into Eq. (2.48) gives

@⇢

@t
= r ·

⇢
DT +

(v0 � ⇢⇣) (v0 � 2⇢⇣)

2DR

�
r⇢

�
= r · Dr⇢, (2.51)

where we defined a collective diffusion coefficient D . The homogeneous state of the
system becomes unstable when D < 0, which results in the criterion that ⇣�  ⇣  ⇣+

with

⇢0⇣±
v⇤

=
3v0

4v⇤
± 1

4

s✓
v0

v⇤

◆2

� 1, (2.52)

where v⇤ = 4
p

DTDR and a mean density ⇢0. Equation (2.52) predicts an instability
of the homogeneous state, i.e., the emergence of clustering similarly to the simulations
shown in Fig.2.3.
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Similar models including rods have also shown this effect [65]. In general, these
models are very interesting from a theoretical perspective, as they show a nonequilib-
rium phase transition. Their biological relevance will be further discussed in Sec. 5.
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Chapter 3

Computational methods

In this chapter we will discuss the basic computational concepts that are used in this
thesis. Starting from the simplest example of a molecular dynamics (MD) simulation
[Sec. 3.1], we will explain the concept of a neighbor list [Sec. 3.1.1] and then turn to
Brownian dynamics [Sec. 3.1.2] and quaternion dynamics simulations [Sec. 3.1.3]. In
Sec. 3.2 the multiparticle collision dynamics (MPCD) technique to simulate a fluid
will be introduced and we will show how to introduce confining walls and how to
couple solid objects to the surrounding fluid.

3.1 Molecular dynamics simulations

Molecular dynamics (MD) simulations are used to numerically integrate Newton’s
equations of motion, and therefore to study the movement of collections of atoms or
molecules, when classical mechanics applies. Newton’s equations for particles i with
mass m, position ri, momentum pi are given by

dri
dt

= pi/m,

dpi

dt
= fi, (3.1)

for each i = 1, · · · , N in the system, where the forces between particles i and j are
typically given by a pair potential fi = �r�(ri � rj). To discretize and integrate
Eq. (3.1) a myriad of methods have been proposed [115]. The simplest discretization
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method is the Euler algorithm, which is given by a simple Taylor expansion of the
positions and velocities at the new time step

ri(t + �t) = ri(t) + �tvi(t) +
1

2
�t

2ai(t),

vi(t + �t) = vi(t) + �tai(t), (3.2)

where vi(t) is the particle’s velocity, ai(t) is its acceleration and �t is the discretization
time step. The MD algorithm then typically works as follows: first the accelerations
ai(t) are computed by using the position and velocity values at time t. Second, the
positions and velocities are updated to time t + �t according to the rule in Eq. (3.2).
Afterwards, the boundary conditions are applied and finally, the list of neighbors for
each particle (see also Sec. 3.1.1) is updated.

We will now first discuss the neighbor list, which is relevant for all MD simulations
that have local interactions, then the case of Brownian dynamics simulations and
quaternion dynamics simulations.

3.1.1 Neighbor list

An important ingredient for any MD simulation is the neighbor list, which contains in-
formation about the neighbors of a particle. The simplest way of finding all neighbors
is of course to compute the distance between each particle, but this is computation-
ally very inefficient as it scales with O(N2), where N is the number of particles in the
system. There are more efficient methods for computing the neighbors that scale with
O(N). We use a cell linked-list, as it is convenient for the parallelization of an MD
algorithm on a Graphics Processing Unit (GPU). For the cell linked-list, the system at
hand is first divided into a regular grid which has a lattice constant L � rc, where rc

is the cutoff radius of the potential that is used to compute forces between particles.
As the forces are local, it is then sufficient to compute the forces between particles
that are in the same cell, or in neighboring cells. This reduces the computational cost
tremendously and enables us to integrate a system of O(105) particles or larger with
local interactions on a modern computer within a reasonable computational time.

3.1.2 Brownian dynamics

Although the equations of motion we are concerned with are different from the classical
Newton’s equations of motion, the methods developed for classical MD simulations
such as the neighbor list [Sec. 3.1.1] also apply to the stochastic differential equations
that were presented in Sec. 2.2.
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The equations of motion for N spherical active Brownian particles with position
ri and orientation ei are given by (see also Sec. 2.2.3)

dri
dt

= v0ei + Fi/� + �i, (3.3)

dei
dt

= ⌘i ⇥ ei, (3.4)

where we use a Weeks-Chandler-Anderson potential [Eq.(2.42)] to calculate the re-
pulsive, hard-core forces Fi among particles. Here, � is the friction coefficient, �i is a
Gaussian white noise with zero mean and ⌘i are random vectors uniformly distributed
on the unit sphere. The equation for the position ri [Eq. (3.3)] can be discretized using
a second order stochastic Runge-Kutta algorithm [116]

ri(t + �t) = ri(t) + v0ei�t +
1

�
(Fi(ri) + Fi(Ri)) �t + �i

p
�t, (3.5)

where Ri = ri + v0ei�t + 1
�Fi(ri)�t + �i

p
�t, such that the force is calculated at two

stages. The second order stochastic Runge-Kutta method is useful, since it computes
the forces between the particles more accurately than a simple Euler scheme; this
choice effectively allows for a larger time step �t and thus a reduction in computational
time.

For the orientation equation (3.4) a simple stochastic Euler algorithm is sufficient

ei(t + �t) = ei + ⌘i ⇥ ei
p

�t + �e, (3.6)

where � is a Lagrange multiplier used to impose the constraints ei · ei = 1. A
straightforward calculation starting from this normalization condition gives

� = �1 +
q

1 � �t (⌘i ⇥ ei)
2
. (3.7)

The simulation is then carried out in the following way: first, the forces Fi(ri) +

Fi(Ri) are calculated; second, these forces are used to update the position Eq. (3.5)
and the orientation Eq.(3.6); third, the boundary conditions are applied; and finally
the neighbor list is updated.

Using this integration scheme one can study MIPS, as presented in Sec. 2.2.3. We
are going to use these simulation methods in Sec. 4.1, Sec. 5.1 and Sec. 6.3.

3.1.3 Quaternion dynamics

The equations of motion for non-deformable, shape anisotropic objects, are usually
formulated in terms of the Euler angles [117]. Attempting to discretize the Euler
angles runs into a number of problems; first, trigonometric functions produce large
rounding-off errors which accumulate over time and produce unphysical results; sec-
ond, and most importantly, the Euler angles have discontinuous jumps and thus are
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not a covering map of the rotation group SO(3). However, the group SO(3) is diffeo-
morphic to the real projective space P3(R), which is represented by the quaternions
q = (q0, q1, q2, q3)T, where qi 2 R. This means that we can use the quaternions to
formulate our equations of motion [115]

mR̈ = F , (3.8)

q̈ =
1

2

"
W (q̇)

 
0

⌦b

!
+ W (q)

 
0

⌦̇b

!#
, (3.9)

q̇ =
1

2
W(q)

 
0

⌦b

!
, (3.10)

⌦̇b
↵ = (Ibm)�1

↵

⇣
T
b
↵ +

⇣
(Ibm)� � (Ibm)�

⌘
⌦b
�⌦b

�

⌘
, (3.11)

where R is the center of mass position, ⌦ the angular velocity, Ibm the moment of
inertia tensor, m the mass, F the force, T

b
↵ the torque in the body frame, and (↵, �, �)

are cyclic permutations of the indices (x, y, z). The matrix W is constructed from the
quaternions (see also [115])

W (q) =

0

BBBB@

q0 �q1 �q2 �q3

q1 q0 �q3 q2

q2 q3 q0 �q1

q3 �q2 q1 q0

1

CCCCA
. (3.12)

As for Euler angles, the quaternions can be used to switch between the laboratory
frame and the body frame of an object. The superscript b denotes that the variable
is computed in the body frame of the object. Switching between a vector in the body
frame fb and the laboratory frame f is done using the quaternion rotation

fb = D(q)f , (3.13)

where the matrix D(q) is [115]

D =

0

B@
q
2
0 + q

2
1 � q

2
2 � q

2
3 2 (q1q2 + q0q3) 2 (q1q2 � q0q2)

2 (q2q1 � q0q3) q
2
0 � q

2
1 + q

2
2 � q

2
3 2 (q2q3 + q0q1)

2 (2q3q1 + q0q2) 2 (q3q2 � q0q1) q
2
0 � q

2
1 � q

2
2 + q

2
3

1

CA . (3.14)

The equations (3.8)-(3.11) can be discretized and integrated using a Verlet algo-
rithm [118]. The integration step starts by first updating the center of mass position
and the quaternions according to

R(t + �t) = R(t) + U(t)�t +
�t

2

2M
F (t), (3.15)

q(t + �t) =
⇣
1 � �̃

⌘
q(t) + q̇�t +

�t
2

2
q̈, (3.16)

�̃ = 1 � q̇2�t2/2 �
p

1 � q̇2 � q̇ · q̈�t3 � (q̈2 � q̇4) �t4/4, (3.17)
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where �̃ is used to keep the quaternion normalized: q2 = 1. Second, the boundary
conditions are applied and right after, the neighbor list is updated. After this, the
force F (t+ �t) and torque T (t+ �t) at time t+ �t are computed, and the velocity and
angular velocity are updated according to

U(t + �t) = U(t) +
�t

2M
[F (t) + F (t + �t)] , (3.18)

⌦(t + �t) = ⌦(t) +
�t

2
DT (Ib)�1D · [T (t) + T (t + �t)] . (3.19)

By using this algorithm we can integrate the equations of motion of shape anisotropic
objects such as dumbbells, which are used in Sec.5.1. Additionally, this algorithm is
convenient to couple the dynamics of a solid object to a fluid simulation technique such
as multiparticle collision dynamics (MPCD), which is discussed in the next section.

3.2 Multiparticle collision dynamics

Hydrodynamic interactions between microswimmers are a matter of discussion in the
literature, and we will address this topic in both Sec. 4.1 and Sec. 5.1. Simulating
the hydrodynamic interactions of microswimmers or even colloids is a daunting task,
because the interactions are not local. Therefore, the hydrodynamic forces between
particles cannot simply be computed as the local two-body forces that were treated
in the last section. In fact, one should consider the full dynamics of the Navier-Stokes
equations (2.1)-(2.2), including correlations between multiple particles. Direct dis-
cretization and integration of the Navier-Stokes equations (2.1)-(2.2), including the
proper boundary conditions for microswimmers, is computationally unfeasible. Luck-
ily, Malevanets and Kapral proposed the multiparticle collision dynamics (MPCD)
method, which is a particles based, mesoscale method, that reproduces the hydro-
dynamic modes up to the Navier-Stokes level. In fact, this technique and lattice
Boltzmann simulations have been the most prominent computational frameworks for
simulating the fluid surrounding microswimmers. MPCD, however, is a particle based
method, which is easy to couple to an MD simulation and it can resolve the entire
hydrodynamics including lubrication forces, and thus proves to be ideal for our applica-
tions. There are various forms of the MPCD technique; here we present a version which
includes an Andersen thermostat, denoted by MPCD-AT and then show an extension
including angular momentum conservation denoted by MPCD-AT+a [78, 119, 120] in
Sec. 3.2.1.

The MPCD fluid is modeled by Nfl point particles with mass m moving in a
continuous two or three-dimensional domain (as opposed to lattice Boltzmann where
only lattice position are allowed). The basic algorithm consists of two steps: the
streaming step and the collision step. In the streaming step the positions are changed
according to a simple ballistic evolution

ri(t + �t) = ri(t) + vi(t)�t, (3.20)
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Figure 3.1: Sketch of MPCD particles inside cells. The gray and

black grids represent the position of the grid used in the collision step

before and after the grid shift.

where ri are the particles positions, vi(t) are their velocities and �t is the MPCD time
step.

In the collision step the system is divided into collision cells with lattice constant
a (see also Fig. 3.1). In each collision cell C(i) the center of mass velocity is kept
constant and the fluctuating part of the velocity of particle i is randomized. This
effectively models the randomization of the velocities due to thermal motion. The
velocity of particle i is updated according to

v0
i =

1

NC(i)

X

j2C(i)

vj + vran
i � 1

NC(i)

X

j2C(i)

vran
j (3.21)

where NC(i) is the current number of particles in cell C(i) (to which i belongs), and
vran
i is a random velocity, whose components are Gaussian distributed with zero mean

and variance
p

kBT/m. Here, kB is the Boltzmann constant and T is the fluid’s
temperature. Finally, the grid is shifted by a random vector at every time step, to
ensure Galilean invariance and prevent the build-up of spurious correlations (see also
Fig. 3.1). The components of the shifting vector are uniformly distributed on the
interval [�a/2, a/2].

3.2.1 Conservation laws

The number of particles in an MPCD simulation and their mass is fixed, thus mass is
conserved by construction.
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The conservation of momentum is valid within each cell C(i). Starting from the
updated center of mass velocity at time t + �t within the cell, we calculate
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X
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where the final result is the center of mass velocity at time t. This calculation shows
that the center of mass velocity in one collision cell is conserved and therefore also
the momentum in that cell is conserved.

Additionally, the temperature is conserved in an MPCD fluid, which can be shown
by considering the local temperature in the cell C(i) after collision, that is

NC(i)TC(i) =
X

k2C(i)

v02
k � 1

NC(i)

0

@
X

k2C(i)

v0
k

1

A
2

=
X

k2C(i)

0

@ 1

NC(i)

X

j2C(i)

vj + vran
i � 1

NC(i)

X

j2C(i)

vran
j

1

A
2

� 1

NC(i)

0

@
X

k2C(i)

vk

1

A
2

=
X

k2C(i)

2

4

0

@ 1

NC(i)

X

j2C(i)

vj

1

A
2

+ (vran
k )2 +

0

@ 1

NC(i)

X

j2C(i)

vran
j

1

A
2

+
2

NC(i)
vran
k ·

X

j2C(i)

vj � 2

NC(i)
vran
k ·

X

j2C(i)

vran
j � 2

N2
C(i)

X

j2C(i)

vj ·
X

j2C(i)

vran
j

3

5

� 1

NC(i)

0

@
X

k2C(i)

vk

1

A
2

, (3.23)

collecting similar terms gives
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where we used the momentum conservation in the first step. The result of Eq. (3.23)-
(3.24) is the temperature of the random velocities vran

j , which is by definition the
temperature of the fluid. Thus, the derivation in Eq. (3.23)-(3.24) proves the conser-
vation of temperature within a cell.

Multiparticle collision dynamics with angular momentum conservation

The MPCD-AT algorithm is momentum and temperature conserving, as we have
shown in the last section, but it is not angular momentum conserving. However, the
conservation of angular momentum is important for the dynamics of a fluid, especially
when we consider objects like microswimmers immersed in a fluid.

During each collision step there will be a change in angular momentum �L. This
can be accounted for in the collision step by subtracting the angular velocity !, which
is found by solving the equation ��L = ⇧ · !. Here, ⇧ is the moment of inertia
tensor given by

⇧ ⌘
X

j2C(i)

m [(rj · rj)I � rj ⌦ rj ] , (3.25)

where the sum extends also to particle i 2 C(i). The new collision rule of the MPCD-
AT+a algorithm then reads

v0
i =

1

NC(i)

X

j2C(i)

vj + vran
i � 1

NC(i)

X

j2C(i)

vran
j

+ m

8
<

:⇧�1
X

j2C(i)

[rj,c ⇥ (vi � vran
i )]

9
=

;⇥ ri,c, (3.26)

where rj,c is the position of particle j with respect to the center of mass of the cell.
Note that the moment of inertia tensor of the cell has to be updated at every time
step.

3.2.2 Boundaries in MPCD

On the surface of a confining wall or a solid object immersed in a fluid, the no-slip
boundary condition is usually imposed (see also Sec. 2.1). For the MPCD fluid this
can be done using the bounce-back rule: when a particle collides with a wall within the
streaming step its velocity v is reversed at the point of collision to �v. If the collision
happens at a fraction � of the time step, the particle then travels the remainder (1��)

of the time step into the direction �v. Since there is a grid shift at each time step,
there can be partially filled collision cells when a wall is introduced. These lead to
the generation of a slip velocity at the wall. An effective way to prevent this is to
introduce ghost particles that fill up the cells. These are virtual particles behind
the wall that fill up the partially filled cells to the average number of particles per
cell. The velocities of the ghost particles are Maxwell-Boltzmann distributed and the
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temperature matches the fluid’s. The collision step is then carried out for all particles
including the ghost particles.

3.2.3 Forced flow

The no-slip condition can be tested simulating a Poiseuille flow. A direct way to create
a Poiseuille flow is to use a forced flow, where a constant force acts on each particle
in the system. Because the driving force injects energy into the system, in order
to maintain a stationary state, dissipation must be also included. This is typically
achieved by introducing two parallel walls confining the fluid and inducing viscous
dissipation at the solid-liquid interface. Here, it is assumed that the force is in the x

direction and the gap between the walls is in the z direction of a Cartesian coordinate
system. The resulting flow profile can be predicted analytically and shows a parabolic
profile in the direction of the force given by

vx =
|f |⇢z (Lz � z)

2⌘
, (3.27)

where Lz is the extend of the channel in the z direction, ⇢ is the fluid’s density and ⌘

is the viscosity. The viscosity of the MPCD-AT+a fluid can be computed analytically
[78, 120, 121] and reads

⌘ = ⇢

✓
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
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� 1

2

�
+

a
2

24�t


NC � 7/5

NC

�◆
, (3.28)

where NC = hNC(i)i is the average number of MPCD particles in a collision cell. The
viscosity has two contributions: the first part of the right-hand side of Eq. (3.28) is
the kinetic contribution and the second part is the collisional contribution. As the
time step is usually small �t ⌧ 1 the collisional contribution is dominant.

For the MPCD simulation, the walls are implemented using the bounce-back rule
described in the Sec. 3.2.2 and the force on the particles is implemented by modifying
the streaming step to [122]

ri(t + �t) = ri(t) + vi(t)�t + f�t
2
/2,

vi(t + �t) = vi(t) + f�t, (3.29)

where f is the force that acts on every fluid particle.
In Fig. 3.2 our simulated profile and the analytical prediction can be seen. In

the simulation we used a system size of 50a ⇥ 50a ⇥ 48a, with an average number of
NC = 20 particles per cell, a time step of 0.01

p
ma2/(kBT ) and the force was set to

f = 0.005kBT/a ex, where ex is the unit vector in the x direction. It can be seen
that the simulations and theoretical prediction match well and that the slip at the
wall is very small.
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Figure 3.2: Parabolic flow profile from a forced flow simulation

(squares) and theoretical prediction (line) between two walls.

3.2.4 Rigid objects immersed in an MPCD fluid

When a colloid or model microswimmer is immersed in the MPCD fluid the situation
is slightly more complex, as momentum between the fluid and the object immersed in
the fluid needs to be exchanged. Given a rigid object inside the fluid, the total change
in momentum due to a bounce-back collision with an MPCD particle is

Ji = 2m [vi � U � ⌦ ⇥ (r̃i � R)] , (3.30)

where U is the object’s velocity, ⌦ its angular velocity, R its center of mass position,
and r̃i is the position of the MPCD particle upon collision with the object. The
updated velocity of the MPCD particle is then given by

v0
i = vi � Ji/m. (3.31)

After the collision the MPCD particle then travels for the remainder of the time
step with velocity v0

i away from the object. Note that for multiple immersed objects
the MPCD particle can collide multiple times within one time step. The linear and
angular momentum of the immersed object are also updated according to

U 0 = U +
X

i

Ji/M, (3.32)

⌦0 = ⌦ + I�1
m

X

i

(ri � R) ⇥ Ji , (3.33)

where M is the object’s mass and I its moment of inertia tensor. Note that these
rules conserve both linear and angular momentum of the full system, that is, fluid
and immersed object.

As mentioned above, there are MPCD collision cells which are cut off by the
surface of the embedded object, and thus contain fewer fluid particles than average.
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Similarly to the case of confining walls, the object is filled up with ghost particles
that are uniformly distributed within the object. The ghost particles velocities are
updated before each collision step according to

vg
i = U + ⌦ ⇥ (rgi � R) + vran

i , (3.34)

where the components of vran
i are Gaussian random numbers with zero mean and

variance
p

kBT/m. The ghost particles then take part in the usual collision step
[Eq.(3.26)], and their updated velocities are vg0

i . The change in linear Jg
i = m

�
vg0
i � vg

i

�

and angular Lg
i = (rgi � R) ⇥ Jg

i momentum are then transferred to the swimmer

U 0 = U +
X

i

Jg
i /M , (3.35)

⌦0 = ⌦ + I�1
m

X

i

Lg
i . (3.36)

Together with the quaternion dynamics presented in Sec. 3.1.3 we are able to
simulate a collection of shape anisotropic objects immersed in a fluid while taking
into account the full hydrodynamic interactions. This method is used in Sec. 5.1 to
simulate microswimmers and their motion.

Simulation details

In the simulations that are described in the following section unless otherwise specified,
we use an average number of particles NC = 20 per cell and a time step of �t =

0.01
p

ma2/(kBT ). The resulting viscosity of the MPCD fluid is ⌫ = 3.88a
p

kBT/m

and we use a system size of 30a ⇥ 30a ⇥ 30a.

Laminar flow around sphere and dumbbell

To test our implementation of the MPCD fluid, we simulate a laminar flow regime
around a sphere and a dumbbell. We use periodic boundary conditions in all direc-
tions, which effectively gives a plug flow around the sphere, where the strength of the
force on every MPCD particle is f = 0.05kBT/a ex.

The resulting flow profile around a sphere with diameter d = 6a can be seen in
Fig. 3.3. It can be seen that the no-slip boundary condition on the surface of the
sphere is achieved. A similar picture can be seen in Fig. 3.4, where the flow around a
dumbbell with diameters d1 = 7a and d2 = 3a is shown.

Equipartition theorem

The equipartition theorem is a simple direct test of the correct implementation of the
dynamics of an object inside the MPCD fluid. For each component of the object’s
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Figure 3.3: Two-dimensional cross section in the z = 0 plane of a

sphere inside a 3d plug flow. The white arrows show the flow direction

and the color code shows the magnitude of the flow velocity. It can be

seen that the no-slip boundary condition on the sphere is well achieved.

velocity U↵ with ↵ 2 {x, y, z} the following relation has to hold

hU2
↵i = kBT/M, (3.37)

where M is the object’s mass. Additionally, we can test the rotational motion by
computing the following average for the angular velocity ⌦b

↵, which reads

h(⌦b
↵)2i = kBT/Im↵, (3.38)

where Im↵ is the moment of inertia tensor of the object.
For a sphere of diameter d = 6a we find the theoretical value for the velocity square

as hU2
theoryi = 4.4 ⇥ 10�4

kBT/m and the simulations yield hU2
xi = hU2

y i = hU2
z i =

3.9 ⇥ 10�4
kBT/m. The theoretical value for the angular velocity is h(⌦b

theory)
2i =

3.1 ⇥ 10�3
kBT/ma

2 and our simulations give h(⌦b
x)2i = h(⌦b

y )2i = h(⌦b
z )2i = 2.6 ⇥

10�3
kBT/ma

2.
Additionally, we performed the simulations with an asymmetric dumbbell with

diameters d1 = 7a and d2 = 3a. Here, the value of the theoretical prediction for
the translational motion is hU2

theoryi = 2.7 ⇥ 10�4
kBT/m and the simulations yield

hU2
xi = hU2

y i = hU2
z i = 2.3 ⇥ 10�4

kBT/m. For the angular velocity the theoretical
prediction in x and y direction gives h(⌦b

x,y)
2i = 1.3 ⇥ 10�3

kBT/ma
2 and our sim-

ulations yield h(⌦b
x)2i = h(⌦b

y )2i = 1.1 ⇥ 10�3
kBT/ma

2. For the z direction, the
theoretical prediction is h(⌦b

z )2i = 1.4 ⇥ 10�3
kBT/ma

2 while the simulations yield
h(⌦b

z )2i = 1.2 ⇥ 10�3
kBT/ma

2.



3.2. Multiparticle collision dynamics 39

Figure 3.4: Two-dimensional cross section in the z = 0 plane of

a dumbbell inside a 3d plug flow. The white arrows show the flow

direction and the color code shows the magnitude of the flow velocity.

It can be seen that the no-slip boundary condition on the dumbbells

surface is well achieved.

Stokes drag of a sphere

The drag force that acts on a slowly moving, spherical particle in a viscous fluid is
given by the Stokes’ drag, which reads

Fd = �6⇡⌘RU , (3.39)

where R is the particle’s radius, U its velocity and ⌘ the fluid’s viscosity. Neglecting
all other forces (for example diffusion), the equation of motion for the particle is given
by

M
dU

dt
= �6⇡⌘RU , (3.40)

which has the solution

U = U0e
� 6⇡⌘R

M t
, (3.41)

where U0 is the velocity at time t = 0.
We simulate the Stokes’ drag by giving an initial velocity of U0 = 0.5

p
kBT/m ey

to a spherical particle. In Fig. 3.5 the theoretical prediction Eq. (3.41) and our
simulation of the Stokes’ drag can be seen. The prediction and our simulation match
quite well, given that we are neglecting all contributions from the intrinsic noise of
the MPCD fluid.
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Figure 3.5: Velocity of a spherical particle slowing down due to

Stokes’ drag. Circles represent MPCD simulations and line show the

theoretical prediction from Eq. (3.41).

Diffusion of a sphere

The translational diffusion coefficient of a spherical particle with radius R immersed
in a fluid is given by

DT =
kBT

6⇡⌘R
, (3.42)

where T is the fluid’s temperature, kB is the Boltzmann constant, and ⌘ is the fluid’s
viscosity. In Fig. 3.6 the MSD resulting from a simulation of a single spherical particle
inside the MPCD fluid can be seen. It matches the theoretical prediction that h(r(t)�
r(0))2i = 6DT t where we use DT from Eq. (3.42).

3.2.5 Computational complexity of MPCD

A major advantage of the MPCD technique is the small computational cost. In MD
simulations we always need to search for neighbors in the system and compute forces
between them, which is not necessary in MPCD. Here, the particles only need to be
sorted into boxes and the interactions between particles are mediated by the collision
step, which does not need nearest-neighbor information or direct force computations.
The resulting computational cost is of order O(N).

Another advantage of MPCD is that it is an ideal example of a parallel algorithm.
Therefore, we implemented our code on graphical computational units (GPU). This
enables us to integrate a system with a number of MPCD particles of order O(107).
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Figure 3.6: MSD of a spherical particle inside an MPCD fluid.

Squares show the results of the MPCD simulations and the line shows

the theoretical prediction from Eq. (3.42).
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Chapter 4

Microswimmer motility in complex
environments

The swimming behavior of microswimmers in complex environments can trigger fasci-
nating phenomena, such as bioconvection [123], spiral vortices [124] or directed motion
[125]. The natural habitat of microbes such as Chlamydomonas reinhardtii is in soil
[126], porous media [127] or microdroplets [128], such that these complex environ-
ments are ubiquitous in the microbes’ life. An important ingredient to understand
these complex phenomena is understanding the motility of a single cell.

For the pusher-type swimmer Escherichia coli it was found that cells approaching
a flat surface tend to swim in circles [41], and get trapped close to the surface. The
reason for the circular motion are the hydrodynamic interactions with the boundary
[42, 43]. For puller-type swimmers like Chlamydomonas reinhardtii this behavior is
not expected, as their hydrodynamic flow field differs strongly from the pusher-type.
In fact, it was found that Chlamydomonas reinhardtii tends to scatter off flat surfaces
with an average angle of 16� [54]. This numerical value can be explained by the model
we present in Sec. 4.2. The study we present in Sec. 4.1-4.2, concerns Chlamydomonas

reinhardtii in a circular quasi 2d confinement.
From a theoretical point of view the motion in a circular 2d confinement shows in-

teresting nonequilibrium phenomena. Consider an active Brownian particle [Eq.(2.32)-
(2.33)] in a circular confinement. Figure 4.1 shows the simulated trajectories of such
a particle and the corresponding probability distributions along the diameter can be
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Figure 4.1: Simulated trajectories (top) and probability distributions

(bottom) of an active Brownian particle. The radius of the particle is

1µm and the circular confinement 20µm. The self-propulsion speed is

(a) v0 = 0µms�1
, (b) v0 = 5µms�1

and (c) v0 = 10µms�1
. Reprinted

with permission from [12] Copyright 2010 by the American Physical

Society.

seen. Figure 4.1(a) shows the limit of zero propulsion speed, which is the equilibrium
case. In fact, for the equilibrium case the Boltzmann relation p(r) ⇠ e

�U(r)/kBT , with
an external potential U(r) is valid. As we have a simple circular confinement, the
expectation of a homogeneous distribution is confirmed in Fig. 4.1(a). Increasing to
propulsion speed [Fig. 4.1(b)-4.1(c)], the probability to stay at the wall increases. This
is a result of the nonequilibrium nature of the active Brownian particle: as the particle
encounters the wall it will stay oriented towards the wall until the rotational diffusion
changes its direction. Therefore, it will slide along the wall as seen in Fig. 4.1(c), and
the probability to stay at the wall increases. In experiments this accumulation has
been seen in [32], or also in Sec. 4.1. Furthermore, it has been shown that for specific
classes of active particles a Boltzmann solution can be found [34–40]. However, in
Sec. 4.1-4.2 we consider numerical solutions of the underlying Langevin equation, and
analytical approximations for the corresponding Fokker-Planck equation.

An interesting modification of the active Brownian swimmer [Eq.(2.32)-(2.33)]
with a dumbbell shape has been proposed by [33]. In Sec. 4.1-4.2 we use a modification
of this model to explain the motion of a single Chlamydomonas reinhardtii cell in a
circular quasi 2d confinement. An important point here is that we do not need to
include hydrodynamic interactions into the model. As mentioned before, the situation
is very different for a pusher-type swimmer such as Escherichia coli, since its dynamics
are strongly influenced by the hydrodynamic interactions with walls. Importantly, the
model we put forward in Sec. 4.1 also predicts that the motility of a Chlamydomonas

reinhardtii cell is governed by the curvature of the confining walls, which is confirmed
by the experiments also shown in Sec. 4.1. Furthermore, the curvature guidance
is a direct consequence of the torque that the particle experiences due to its shape
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anisotropy.
Finally, we would like to address the question of novelty for the publication in

Sec. 4.1. First, many researchers have reported on the entrapment of pusher-type
swimmers close to wall, whereas ours is the first experiment showing the near-wall
swimming of a puller-type swimmer. Second, until now, it was assumed that pullers
“scatter off” interfaces, however, we show that the interactions are rather different,
as they are dominated by the curvature of the confining walls. Third, we were the
first to be able to capture, both experimentally and theoretically, the statistics of
a single Chlamydomonas reinhardtii cell, which enables us to obtain the essential
physics underlying the near-wall swimming. Forth, we demonstrate that an active
Brownian particle approach is not sufficient to explain the curvature guidance of the
wall, but rather a shape anisotropic dumbbell is needed. Fifth, we do not need to
incorporate hydrodynamic interactions into the theory, which is quite the opposite
when comparing to pusher-type swimmers.
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4.1 Publication: Curvature-Guided Motility of Microal-

gae in Geometric Confinement
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Kreis, Jan Cammann, Marco G. Mazza, and Oliver Bäumchen,
Physical Review Letters 120, 068002 (2018).
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Individual contribution: I theoretically investigated the model and implemented
the numerical scheme. The simulations in Fig. 3 were performed by me and all other
simulations were performed using codes developed on my own. Here, Jan Cammann
modified the code to an elliptical geometry and performed simulations with my help.
In the Supplemental Material, the theoretical considerations and analytical model
were developed by me. Tanya Ostapenko and I contributed equally to the work.
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Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a
plethora of interfaces. The precise ways in which these motile microbes behave in their confined
environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility
of a single Chlamydomonasmicroalga in an isolated microhabitat with controlled geometric properties. We
demonstrate how the geometry of the habitat controls the cell’s navigation in confinement. The probability
of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular
and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall
interactions, captures this curvature-guided navigation quantitatively with no free parameters.

DOI: 10.1103/PhysRevLett.120.068002

Life in complex geometries can manifest itself at the
microscopic level through the myriad of ways in which
microorganisms interact with their environment. This
entails a broad spectrum of microbiological phenomena,
ranging from amoebic crawling [1,2] and fibroblast migra-
tion [3], the directional migration of epithelial cells on
curved surfaces [4], and microbial proliferation in space-
limited environments [5] to the motility of biological
microswimmers in confinement [6,7]. In fact, the natural
habitats for microbial life are often nonbulk situations,
including aqueous microdroplets [8] and the interstitial
space of porous media, such as rocks [9,10] and soil [11].
The study of how self-propelled microorganisms in a liquid
medium interact with their confining boundaries finds
application in physiology with regards to spermatozoa
motility in the reproductive tract [12–15], the motion of
parasites in the vertebrate bloodstream [16], and in micro-
biology in the context of biofilm formation [17–20].
Upon interaction with a boundary, these microswimmers

might undergo long-range hydrodynamic interactions, in
addition to contact interactions [21,22]. For the description
of their motility near interfaces, a distinction between
“puller”- and “pusher”-type swimmers is required [23],
since the flow fields around the two classes entail funda-
mental differences [24–28]. At flat interfaces, the contact of
a spermatozoon’s flagellum with a surface tends to rotate it
towards a boundary, thus preventing these pusher-type
swimmers from escaping flat or weakly-curved surfaces
[29]. However, for the puller-type microswimmer,
Chlamydomonas, a soil-dwelling microalga with two
anterior flagella, steric interactions were found responsible
for its microscopic scattering off of a flat interface [29].
Single scattering events of Chlamydomonas cells were also
reported at convex interfaces, where two regimes emerge as

the cell scatters off: an initial, contact force regime and a
second, hydrodynamics-dominated regime [30]. Beyond
these details of the microscopic interactions at interfaces,
the way in which the motility of a single cell is affected by
the geometry of a confining domain remains elusive.
In this Letter, we report on the motility of a single

Chlamydomonas cell in tailor-made microhabitats to elu-
cidate the effects of geometric confinement. We find that
the dominant attributes of the swimming statistics are the
alga’s spatial confinement, which limits its motion to its
swimming plane, and the compartment’s curved boundary
in this plane. Our experiments are in quantitative agreement
with Brownian dynamics simulations, whose main ingre-
dients are steric wall interactions and the alga’s torque at
the compartment interface during a finite interaction time.
While a conclusive description of the microscopic details of
wall interactions might remain debated today, our results
illuminate how a single puller-type cell’s navigation in
confinement is primarily dominated by the details of the
environment’s geometric constraints.
We employed optical microscopy techniques and particle

tracking to study the motility of a single wild-type
Chlamydomonas reinhardtii cell (SAG 11-32b) contained
within an isolated quasi-two-dimensional microfluidic
compartment (see the Supplemental Material [31],
Sec. S1 for details). We study precisely a single isolated
cell in order to exclude any cell-cell interactions or
collective effects. Experiments were performed in circular
compartments with radii rc ¼ 25–500 μm, and elliptical
chambers with comparable semiaxes dimensions. The
height of all compartments was approximately 20 μm,
about one cell diameter (body and flagella); thus, out-of-
plane reorientations of the cell are inhibited. Each single-
cell experiment was repeated up to 10 times using different
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cells each time. Figure 1(a) displays an image from an
experiment (Movie 1 in Ref. [31]) for rc ¼ 50 μm from
which the trajectory of the alga’s body center was extracted
[Fig. 1(b)]. The alga’s trajectory shows a higher density of
trajectory points closer to the concave interface, as com-
pared to the compartment’s center, which we study in
greater detail in this work.
We use the mean-squared displacement (MSD) to

characterize the alga’s swimming behavior. Here, the
MSD for the observation time t was extracted from a
single alga’s experimental trajectory for each compartment
size; see Fig. 1(c). We find that the MSD curves show no
clear transition between ballistic behavior, i.e., MSD ∼ t2

on short time scales to diffusive, i.e., MSD ∼ t on long time
scales, as reported in previous studies on Chlamydomonas
swimming in unconfined 2D environments (transition time
from ballistic to diffusive ∼2 s) [29]. A linear fit to the

initial regime of the experimental data yields an exponent
of 1.90" 0.03, in approximate agreement with a regime of
ballistic swimming. On long time scales, the MSD reaches
a plateau corresponding to the explorable area of its
confined environment. Hence, we find that the alga’s
run-and-tumble-like motion in environments unconfined
in the swimming plane [35] becomes predominantly
ballistic swimming in confinement.
The experimental cell trajectories were statistically

averaged and converted into relative probability density
maps. Figure 2 displays a series of 2D heat maps of the
relative probability density of the cell’s positions for
different compartment sizes. Our experimental data provide
evidence for a pronounced near-wall swimming effect
inside the compartment, whose significance decreases for
increasing compartment size. This near-wall swimming
effect is further quantified by azimuthally collapsing the
heat maps into radial probability densities, PðrÞ, as
depicted in Fig. 3(a). We define PðrÞ as:

PðrÞ ¼ hðrÞ=ð2πrΔrÞ
R rc
0

hðrÞ
2πrΔr dr

; ð1Þ

where r is the distance from the center of the compartment,
and hðrÞ is the count of all the alga’s positions in a circular
shell at distance r with thickness Δr. In order to compare
data from different compartment sizes, we normalize PðrÞ
such that

R rc
0 PðrÞdr ¼ 1. Note that a homogeneous dis-

tribution of trajectory points would result in PðrÞ ¼ 1=rc ¼
const by this definition. We observe that PðrÞ starts from a
plateau in proximity of the compartment’s center and
increases significantly close to the wall. The lateral extent
(full-width-half-maximum) of the peak of PðrÞ ranges from
3–5 μm, about half a cell body diameter; the peak position
is consistently 9–11 μm away from the wall. At the
compartment wall, PðrÞ drops off, representing a possible
zone of flagella-wall contact interactions. As shown in
Fig. 3(a), the maximum of PðrÞ decreases for increasing
compartment size, while the overall shape of PðrÞ
described above is preserved.
We compared these experimental results to Brownian

dynamics simulations, where the Chlamydomonas cell is

(a) (b)

(c)

FIG. 1. Experimental design and trajectory analysis. (a) Optical
micrograph of a single alga contained in a quasi-two-dimensional
(2D) circular compartment. (b) Exemplar single-cell trajectory for
rc ¼ 50 μm. (c) Mean-squared displacements (solid lines) for
different compartment radii. The dashed line is a best fit to the
short-time ballistic behavior (∼t2).

FIG. 2. Relative probability density for a single cell in circular confinement. Heat maps represent the alga’s position obtained from
experimental data for different compartment sizes: (L–R) rc ¼ 25 μm, 50 μm, 100 μm, 150 μm, 500 μm. Each map contains
statistically averaged data from a minimum of 2–5 independent experiments.
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modeled as an active asymmetric dumbbell (Sec. S2,
Ref. [31]) consisting of two rigid spheres [36]. The smaller
sphere represents the cell’s body, and the larger spheremimics
the stroke-averaged area covered by the beating of the two
anterior flagella. The Langevin equation represents a balance
of forces, both deterministic and stochastic ones, experienced
by the microswimmer [23]. The position r⃗ of the dumbbell’s
center of mass is described by the equation of motion

dr⃗
dt
¼ v0e⃗þ μwF⃗w þ η⃗: ð2Þ

Here, v0 is the propulsion speed, kBTμw denotes the diffu-
sivity, μw is the mobility (ratio of velocity to an applied force),
F⃗w is the force associated with the steric wall interaction

(Weeks-Chandler-Andersenpotential [37]) and η⃗ is aGaussian
white noise. The unit vector e⃗ represents the direction of the
propulsionvelocity pointing from the small to the large sphere.
The orientational equation of motion is

de⃗
dt
¼ ðT⃗w=τw þ ξ⃗Þ × e⃗; ð3Þ

where T⃗w is the torque acting at the wall, τw is the rotational
drag coefficient, and ξ⃗ is a Gaussian white noise. The torque is
a major ingredient in the simulations, since it may reorient the
alga away from the interface.We also explicitly account for the
alga’s run-and-tumble swimming behavior [35].
Note that all geometric and dynamic parameters that

entered the simulations were either measured directly from
our experiments or extracted from the literature, including a
microscopic interaction time ðτw=kBTÞ at the interface [29].
We take the center of the segment connecting the centers of
the small and large spheres as the dumbbell’s axis of
rotation. Hydrodynamic interactions are absent in this
model and the dynamics are determined by steric inter-
actions at the confining wall, where only the normal
component of F⃗w is considered. The radial probability
densities PðrÞ were extracted from both simulations and
also an analytical approach; we refer the reader to the
Supplemental Material for the details of the analytics
(Sec. S3, Ref. [31]). An exemplar simulation curve is
presented in the inset of Fig. 3(a), and we find excellent
quantitative agreement of these data with the experiments.
In order to quantify the near-wall swimming statistics,

we define the near-wall swimming probability, ΦðrcÞ, as
the relative probability of finding the alga or dumbbell
towards the wall as compared to the center. In our notation,
this is written as:

ΦðrcÞ ¼ 1 −
rc

rc − b

Z
rc−b

0
PðrÞdr; ð4Þ

where b is the extent of wall influence, measured from
high-resolution optical micrographs of wall interaction
events (see [29]) as approximately 15 μm. This corresponds
to approximately the length of the flagella plus one cell
radius (independent of compartment size). Figure 3(b)
presents ΦðrcÞ for experiments and Brownian dynamics
simulations, which all agree quantitatively and show a
monotonic decrease for increasing compartment radius rc.
Analysis of the temporal swimming statistics (Sec. S4,

Ref. [31]) reveals that the alga spends up to several seconds
within the near-wall swimming zone for the smaller
compartments. For large compartments, this time becomes
comparable to the characteristic wall interaction time of
about 0.15 s for a single wall interaction event [29]. Note
that the alga swims with a typical velocity of
100" 10 μm=s, in agreement with swimming velocities
reported in bulk [35]. The angular swimming statistics are
based on the local swimming angle, measured relative to

(a)

(b)

FIG. 3. (a) Radial probability densities PðrÞ for compartment
sizes, rc, each from 2–10 independent experiments. (Inset) Close-
up of the experimental data (average: solid line, standard
deviation: background) and Brownian dynamics simulations
(dashed line) for rc ¼ 100 μm. (b) Near-wall swimming prob-
ability ΦðrcÞ: experimental data (circles) denote mean values
averaged over independent experiments (crosses) and Brownian
dynamics simulations (diamonds). (Inset) Log-log representation
of the same data.
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the local wall tangent. Within the near-wall swimming
zone, this angle features a maximum around zero degrees,
indicating that the wall induces a preferred swimming
direction parallel to the concave interface. Note that these
angular statistics represent all navigational movement of
the alga near the wall, which may include any microscopic
interactions the alga might have with the boundaries.
Upon interaction with an interface, the alga reorients due

to its characteristic torque with the wall and scatters off at
some shallow angle (see also [29]). If the compartment is
sufficiently curved, the alga will encounter another section
of the interface in a short time, interact, scatter off, and
continue swimming. This processwill repeat itself such that,
for small compartments (high curvature), it appears that the
alga swims nonstop parallel to the interface in a clockwise or
counterclockwise direction, since the alga will encounter
another interface during its characteristic persistent swim-
ming time. In contrast, for large compartments (low curva-
ture), the alga will travel farther before meeting another
interface. Thus, it is more likely that the alga’s reorientation
will direct it towards the compartment center. Nonetheless,
due to the confinement the alga will encounter an interface
before undergoing a run-and-tumble-like motion. The sim-
ulations and analytics capture this process: using an asym-
metric dumbbell model, the alga will naturally experience a
torque at the interface and reorient with a finite interaction
time, subsequently encountering another interface before it
can “tumble.” This description is confirmed by a simulta-
neous comparison of concave and convex interfaces by
adding a central pillar to the circular chambers. The analysis
of experimental and simulated trajectories show that the alga
scatters off at the pillar and escapes the convexwall (Sec. S5,
Ref. [31]), consistent with studies on single microscopic
scattering events [29,30].
To uncouple the effects of curvature from size-

dependent geometric factors, we consider elliptical cham-
bers. Experiments [Fig. 4(a)] and Brownian dynamics

simulations [Fig. 4(b)] show a higher likelihood of finding
the alga swimming in one of the apex regions of the
compartments. We find in both experiments and simula-
tions that the near-wall swimming probability density in
elliptical chambers increases monotonically with the cor-
responding wall curvature, in line with the results obtained
for circular compartments [Fig. 3(b)]. Hence, we have
established unambiguous evidence that the (local) wall
curvature controls the near-wall swimming effect in con-
finement. Note that the curvature scaling found in [38] is a
consequence of assuming sliding motion along the con-
fining surface, whereas our results derive from the dynamic
action of the cell’s characteristic torque at the wall due to
steric wall interactions of its flagella. In contrast to the
active dumbbell model, we find that a torque-free, spherical
active Brownian particle cannot reproduce the experimental
data. In fact, a simple active Brownian particle (e.g. [39])
strongly overestimates the magnitude of wall influence,
nor does it capture the scaling with the wall curvature
(Sec. S2, Ref. [31]).
In the absence of external flow, cell-cell interactions,

photo- and chemotaxes, we isolated a curvature-guided
motility mechanism for a single microalga in a confined
microfluidic habitat with controlled geometric properties.
The concave nature of the confining walls leads to an
enhanced probability of near-wall swimming for puller-type
microswimmers, as quantified by a statistical analysis of
experimental cell trajectories. Brownian dynamics simula-
tions based on an active asymmetric dumbbell model
quantitatively capture the experiments and validate a char-
acteristic curvature scaling of the near-wall swimming
probability. The main ingredients of this curvature guidance
are the torque that the alga experiences during an interaction
event with the wall, the compartment’s wall curvature, and
the suppression of the alga’s diffusive swimming regime in
confinement. Hydrodynamics are not explicitly necessary to
understand this swimming behavior, yet they might be
required to capture the microscopic details of flagellar
interactions with interfaces [29,30]. These findings provide
evidence that enhanced near-wall swimming in confinement
is not exclusive tomicroorganisms propelling themselves by
rear-mounted appendages. The fact thatwe track themotility
of a single cell allows for dissecting the fundamental physics
of a puller-type microswimmer in confinement, whereas
earlier studies focused on the collective behavior of bacterial
suspensions in confinement, which is governed by cell-cell
interactions and excluded volume effects [40–42].
These results may pave the way towards a fundamental

understanding of the motility of microorganisms in their
natural habitats. A consequence of enhanced detention
times at a highly curved wall is a greater likelihood for the
surface-association of planktonic cells at walls, which can
trigger the formation of biofilms in liquid-immersed porous
media. Thus, we expect that these insights are highly
relevant in environmental applications, water filtration

(a)

(b)

FIG. 4. Relative probability density for elliptical compartments
(eccentricity ¼ 0.91): (a) experiments and (b) simulations.
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systems, and photobioreactors [43]. We also anticipate that
these insights may inspire new design principles for the
guidance of cellular motion [44–47], complementary to
existing rectification approaches [29].
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S1. EXPERIMENTAL METHODS

Cell Cultivation

Cultures of wild-type Chlamydomonas reinhardtii (SAG 11-32b) were cultivated axeni-

cally in Tris-Acetate-Phosphate (TAP) medium on a 12 h–12 h day-night cycle, with daytime

temperature of 24 �C and nighttime temperature of 22 �C in a Memmert IPP 100Plus incu-

bator. The daytime light intensity was held at 1000–2000 Lux, and reduced to 0% during

the night. All experiments were performed at the same time in the cell’s life cycle in order

to ensure consistency in the cell’s size and behavior. In preparation for experiments, 15 mL

of cell suspension were centrifuged for 10 minutes at 100 g at room temperature; 10-13 mL

of solution were subsequently removed and the remaining 2-5 mL suspension was allowed

to relax for 60-90 minutes. This suspension was diluted with room temperature TAP to

enhance the likelihood for capturing precisely one cell in an isolated microcompartment.

Microfluidics

Arrays of stand-alone (i.e. no inlet or outlet) circular microfluidic compartments with a

height of 20µm were created using standard PDMS-based soft lithography techniques in a

cleanroom. Additional experiments were conducted with circular compartments containing

a pillar located at the center of the compartment, as well as elliptical chambers. Prior to

experiments, both the PDMS device and a glass microscope slide were cleaned using air

plasma (Electronic Diener Pico plasma system, 100% exposure, 30 seconds). After plasma

cleaning, a small amount of 8wt% polyethelyne glycol was gently rinsed over both surfaces

to prevent adhesion of the alga to the surfaces. After placing a droplet of the diluted algal

suspension onto the feature side of the PDMS, the glass slide was placed on top and gently

pressed to seal the compartment. Only compartments containing precisely one cell were

used for experiments.

Microscopy

Cell imaging was conducted using an Olympus IX-81 inverted microscope contained in

a closed box on a passive anti-vibration table with an interference bandpass filter (� �
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671 nm, full-width-half-maximum of 10 nm) in order to avoid any photoactive response of

the cell. Videos ranging from 5-30 minutes were recorded using a Canon 600D camera at a

frame rate of 24 frames per second at full resolution (1920 px⇥1080 px). This corresponds to

approximately 7⇥103–40⇥103 total trajectory points for a single experiment. The single-cell

experiments were repeated 2–10 times for each compartment size, corresponding to 35⇥103–

120⇥103 total trajectory points.

Image Processing and Particle Tracking

The videos were sequenced into 8-bit grayscale images with improved contrast using

custom-made Matlab algorithms. The compartment boundaries were manually defined

in order to denote the region of interest, as well as the compartment’s center, for particle

tracking. Two-dimensional particle detection was performed using algorithms written for

colloidal systems; particle tracking was subsequently done in Matlab based on tracking

algorithms developed by Crocker and Grier [1].

Data Analysis

Mean-squared displacements (MSD) were extracted using a custom-made Matlab script,

based on trajectories containing a minimum of 7⇥103–14⇥103 data points for the rc =

25�250µm and at least 40⇥103 data points for the rc = 500µm. This corresponds to MSD

curves containing 2⇥103–10⇥103 points each.

A custom-made Matlab algorithm based on a pixel grouping method for the data bin-

ning was applied to the trajectory data to compute the relative probability density heat

maps by c(x, y) = nbin/(Afrac⌃nbin), where nbin is the number of trajectory points within

bin area Abin, and Afrac = Abin/Achamber is a geometric normalization factor. The radial

probability densities P (r) of the alga’s distance r from the center of the compartment were

calculated using Eq. 1 (main text) such that
R rc
0 P (r)dr = 1. We define the near-wall

swimming probability as in Eq. 2 (main text).
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S2. STOCHASTIC BROWNIAN DYNAMICS SIMULATIONS

FIG. S1. Asymmetric dumbbell model representing the Chlamydomonas alga. The smaller sphere

(radius a2) represents the cell’s body, and the larger sphere (radius a1) mimics the stroke-averaged

area covered by the beating flagella.

rc =25

FIG. S2. (Color online) Relative probability density in confinement from Brownian dynamics

simulations. The heat maps indicate the cell position for the same circular compartment sizes as

in experiments: (L–R) rc = 25µm, rc = 50µm, rc = 100µm, rc = 150µm, rc = 500µm.

The force acting on the dumbbell at the wall is given by ~Fw = ~F1+ ~F2 with ~F↵ = �~rU↵(r),

↵ = 1, 2. We use the Weeks–Chandler–Anderson repulsive potential U↵(d)/(kBT ) =

4✏
h�

a↵
d

�12 �
�
a↵
d

�6i
+ ✏, if d < 21/6a↵, and 0 otherwise, where d is the distance of the

sphere ↵ 2 {1, 2} to the wall of the compartment, a1 = 5µm, a2 = 2.5µm are the radii

of the spheres (see Fig. S1) and ✏ = 10 is chosen to achieve a strong screening. The val-

ues for a1 and a2 were extracted from high-speed, high-resolution optical micrographs of

Chlamydomonas.

The torque is given by ~Tw = ~T1 + ~T2 where ~T1 = (~r1 � ~r) ⇥ ~F1 = l(~e ⇥ ~F1)/2, ~T2 =

�l(~e ⇥ ~F2)/2, and l = 5µm. The position ~r of the dumbbell’s center of mass has the

following equation of motion d~r
dt = v0~e + µw

~Fw + ~⌘. Here, ~Fw is the steric wall interaction

and ~⌘ is a Gaussian white noise with zero mean and h~⌘(t)~⌘(t0)i = 2kBTµw1�(t � t0). We

use v0 = 100µm/s and kBTµw = 250µm2/s, both based on experimental measurements.
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Furthermore, the cell swims in the direction ~e represented by a versor (a unit vector) pointing

from the second to the first sphere (see Fig. S1). The orientational equation of motion is

d~e
dt = (~Tw/⌧w + ~⇠) ⇥ ~e, where ~Tw is the torque acting at the wall and ~⇠ is a Gaussian white

noise with h~⇠(t)~⇠(t0)i = 2kBT
⌧p

1�(t � t0). Note that the shear time at the wall ⌧w
kBT

= 0.15 s

(extracted from [2]) and the persistence time ⌧p
kBT

= 2 s (also taken from [2]) of synchronous

flagella beating are not connected via the fluctuation-dissipation theorem. This is motivated

by the fact that the tumble time is associated with the active motion of the cell, whereas

the shear time is connected to the interactions between wall and cell.

The tumbling motion is explicitly included as follows: the cell is instantaneously reori-

ented with a relative angle �tumble, where �tumble is selected from a Gaussian distribution

with a mean of ⇡
2 and standard deviation of 0.1. The time between tumbling events, ttumble,

is sampled from an exponential distribution, with mean ⌧p
kBT

.

Figure S2 presents the relative probability density from our simulations of the model

alga’s position for di↵erent compartments.

Microscopic Scattering Angle Distribution in Simulations

FIG. S3. Distribution of scattering angles from the dumbbell model. Values were taken at a

distance of (20 ± 2.5)µm away from the wall, after the dumbbell scattered o↵ to ensure that the

dumbbell is no longer in contact with the wall and has completed the turning process.

Our simulated system quantitatively reproduces the maximum of the microscopic scat-
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tering angle distribution, found experimentally in [2] (Fig. S3). To measure the scattering

angle in the simulations, the active dumbbell was confined within a straight channel, with

solid walls in the y-direction and periodic boundary conditions in the x-direction. After each

scattering event o↵ the wall, the angle spanned by the x-axis and the swimming direction was

recorded. This was done for a channel of width 300µm. The scattering angle was recorded

when the cell was separated by a distance of (20± 2.5)µm from the wall. This distance was

chosen to directly compare with experimental values from [2], where the authors considered

a distance of 20µm from the wall, and also to make sure the dumbbell scattered o↵ the wall

and swam freely. These measurements yield the angle distribution shown in Fig. S3, with

a maximum for the scattering angle of ⇠ 18�, which is in agreement with the experimental

value reported in [2].

Torque-Free Active Brownian Particle in Simulations

Simulations of a circular swimmer
Experiments
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FIG. S4. (Color online) Probability density of a torque-free active Brownian particle in an ellip-

tical compartment. Simulations were performed for a circular active Brownian particle, for which

torque is absent during interaction with the compartment wall. The elliptical compartment has an

eccentricity = 0.91 and a total area of Atot = 31316.7µm2 (see also Fig. 4). The figure displays the

maximum probability density close to the wall as a function of the local wall curvature. Compared

to the experiments and the dumbbell model, a circular swimmer exhibits a much larger probability

to be located near the wall, and a non-linear dependence on curvature. The torque that the active

dumbbell model experiences during wall interactions is an essential ingredient in order to capture

the experimental data (see Fig. 4 in main text).
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S3. ANALYTICAL MODEL

The equations of motion for the analytical model are the same as for the Brownian

dynamics simulations

d~r

dt
= v0~e + µw

~Fw + ~⌘, (S1)

d~e

dt
= (~Tw/⌧w + ~⇠) ⇥ ~e. (S2)

First, we assume that the total force ~Fw is now in r̂ direction, with

~Fw = �(f1(r) + f2(r))r̂,

where f1(r) and f2(r) are the absolute values of the forces of first and second sphere respec-

tively. We now change to polar coordinates (r, '), where r is the distance of the cell from

the center of the compartment and ' the polar angle of its position vector. Furthermore,

the unit vector ~e is represented by the angle ✓. Equation (S1) becomes

dr

dt
= v0cos(✓ � ') � µw(f1(r) + f2(r)) + ⌘r .

The torque is defined as in the simulation as ~Tw = ~T1 + ~T2, where ~T1 = (~r1 � ~r) ⇥ ~F1 =

l(~e ⇥ ~F1)/2 and ~T2 = �l(~e ⇥ ~F2)/2. Using the relation (~e ⇥ r̂) ⇥ r̂ = sin(✓ � ')r̂, equation

(S2) becomes

d✓

dt
=

l

2⌧w
(f2(r) � f1(r))sin(✓ + ') + ⇠.

Since the system is symmetric in ', we neglect the dependence on ' and choose ' = 0. We

obtain the following equations

dr

dt
= v0cos(✓) � µw(f1(r) + f2(r)) + ⌘r,

d✓

dt
=

l

2⌧w
(f2(r) � f1(r))sin(✓) + ⇠.

The Fokker-Planck equation of this system reads

@tp(t, r, ✓) = � 1

r
@r [r (v0cos✓ � µw(f1(r) + f2(r)) � µw@r) p(t, r, ✓)]

� @✓

✓
l

2⌧w
(f2(r) � f1(r))sin(✓) � 1

⌧p
@✓

◆
p(t, r, ✓)

�
.
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From this, we compute e↵ective hydrodynamic equations by taking the following averages

⇢r(t, r) =

Z 2⇡

0

p(t, r, ✓)d✓,

⇢✓(t, r) =

Z 2⇡

0

cos(✓)p(t, r, ✓)d✓,

neglecting higher order contributions, this approach gives the following two equations

@t⇢r = �1

r
@r [r (v0⇢✓ � µw(f1(r) + f2(r))⇢r � µw@r⇢r))] ,

@t⇢✓ =
1

r
@r

h
r
⇣
µw(f1(r) + f2(r))⇢✓ � v0

2
⇢r + µw@r⇢✓

⌘i
� 1

⌧p
⇢✓

+


l

2⌧w
(f2(r) � f1(r))

�
⇢r.

Here, ⇢r corresponds to the density and ⇢✓ to the polarization of the particle. We now try

to find stationary solutions of these

0 = �1

r
@r [r (v0⇢✓ � µw(f1(r) + f2(r))⇢r � µw@r⇢r))] ,

0 =
1

r
@r

h
r
⇣
µw(f1(r) + f2(r))⇢✓ � v0

2
⇢r + µw@r⇢✓

⌘i
� 1

⌧p
⇢✓

+


l

2⌧w
(f2(r) � f1(r))

�
⇢r.

The first equation can be solved for ⇢✓:

⇢✓ =
µw

v0
[(f1(r) + f2(r)) + @r] ⇢r +

C1

r
.

The constant C1 is determined by the boundary condition. To find the correct boundary

condition we consider the probability flux of the original Fokker-Planck equation:

~J =

0

@� (v0cos✓ � µw(f1(r) + f2(r)) � µw@r) p(t, r, ✓)

�
⇣

l
2⌧w

(f2(r) � f1(r))sin(✓) � 1
⌧p

@✓

⌘
p(t, r, ✓)

1

A

The radial part of the flux for ⇢✓, is then given by:

Jr,⇢✓ = �
Z 2⇡

0

cos✓ (v0cos✓ � µw(f1(r) + f2(r)) � µw@r) p(t, r, ✓)

= µw(f1(r) + f2(r))⇢✓ � v0
2

⇢r + µw@r⇢✓

The flux should vanish at the boundary ~J · ~n = 0, such that C1 is determined by:

h
µw(f1(r) + f2(r))⇢✓ � v0

2
⇢r + µw@r⇢✓

i

r=rc
= 0.
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In the following we will neglect di↵usion, which is justified by Fig. 1(c) in the main text.

Hence we continue to treat the following equations:

0 =
1

r
@r

h
r
⇣
µw(f1(r) + f2(r))⇢✓ � v0

2
⇢r

⌘i
+


l

2⌧w
(f2(r) � f1(r))

�
⇢r,

⇢✓ =
µw

v0
[(f1(r) + f2(r))] ⇢r +

C1

r
,

h
µw(f1(r) + f2(r))⇢✓ � v0

2
⇢r

i

r=rc
= 0. (S3)

To solve the equations (S3) we need to specify a model for the cell-wall interaction. For the

sake of analytical treatability, we choose exponential repulsive forces

fi(r) =
U0

�
exp


r � (rc � ai)

�

�
,

where ai, i = 1, 2, are the sizes of the spheres, rc is the size of the compartment, U0 is

the strength of the interaction potential, and � is the associated interaction length scale.

Furthermore, we define A+ = U0
� [e

�(rc�a1)
� + e

�(rc�a2)
� ] and A� = U0

� [e
�(rc�a2)

� � e
�(rc�a1)

� ].

Combining the first two equations (S3) and performing a coordinate transformation z = e�
r
�

yields:
✓

1 � v2
0

2µ2
wA2

+

z2
◆

@z⇢r(z) +

✓
1

zln(z)
� 1

z
� v0�A�l

2⌧wµ2
wA2

+

� z

ln(z)

v2
0

µ2
wA2

+

◆
⇢r +

1

ln(z)

C1v0
µwA+

= 0.

The terms � v20
2µ2

wA2
+
z2 and z

ln(z)
v20

µ2
wA2

+
are of higher order in z and only give a contribution for

r ⌧ 1. Therefore these can safely be neglected and we have to solve the equation:

@z⇢r(z) +

✓
1

zln(z)
� 1

z
� v0�A�l

2⌧wµ2
wA2

+

◆
⇢r +

1

ln(z)

C1v0
µwA+

= 0.

The solution of this equation is

⇢r(z) =
e↵zz2

ln(z)

✓
C2 +

C1v0
µwA+


e�↵z

z
+ ↵Ei(�↵z)

�◆

where ↵ = v0lA��
2⌧wµ2

wA2
+

and Ei is the exponential integral, defined by:

Ei(z) =

Z 1

�z

et

t
dt.

C1 and C2 are determined from the following boundary conditions:

h
µw(f1(r) + f2(r))⇢✓ � v0

2
⇢r

i

r=rc
= 0,

Z rc

0

r⇢r(r) = 1,
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which are in terms of z:


µ2
wA2

+

v0

1

z2
⇢r � µwA+C1

�

1

zln(z)
� v0

2
⇢r

�

z=z(rc)

= 0,

Z z(rc)

1

�2 ln(z)

z
⇢r(z)dz = 1.

Furthermore the following indefinite integral is needed:

Z
�2 ln(z)

z
⇢r(z)dz = �2


C2e

↵z

✓
� 1

a2
+

z

a

◆
+

C1v0
µwA+a

(ln(z) + (↵z � 1) e↵zEi(�↵z))

�
.

The radial probability density is then given by P (r) = r⇢r(z(r)) and is shown below in

Fig. S5. For both plots, we used U0 = 0.12kbT and � = 3.75µm as best fits for the strength

of the interaction potential and the interaction length, respectively.

0 20 40 60 80 100
-0.01
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Simulation
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P
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) /
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m
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FIG. S5. (Color online) Comparision of experiment, simulation, and analytics for a compartment

radius rc of 100µm.
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S4. TEMPORAL AND ANGULAR STATISTICS OF NEAR-WALL SWIMMING
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FIG. S6. (Color online) Statistics of near-wall swimming. (a) Schematic illustration of the swim-

ming angle with respect to the wall tangent. (b) Detention time distributions for swimming near

the concave interface for rc = 50µm and rc = 500µm. (c) Experimental swimming angle dis-

tributions for rc = 50µm near and far (“center”) from the wall of the compartment. The inset

illustrates the definition of “wall” and “center” for the purposes of the distributions.

We define the wall detention time ⌧ as the time that the alga spends within the near-

wall swimming zone (distance b from the wall). As depicted in Fig. S6(b), the distribution

of experimental detention times exhibits a maximum at approximately ⌧max = 0.5 s for

rc = 50µm, featuring an exponential decay e�t/⌧⇤ towards longer detention times with

a decay time of ⌧ ⇤ = 1 s. For larger compartments, the maxima of the detention time

distributions are shifted to shorter times and the decay times are also significantly reduced

(see Fig. S6(b)): ⌧max < 0.2 s and ⌧ ⇤ = 0.3 s are found for rc = 500µm, indicating that

the wall detention time becomes comparable to the typical interaction time reported for flat

interfaces [2].

Since the cell has a non-zero velocity at all times during experiments, these results imply

that the alga tends to spend more time swimming near the interface in smaller compartments

than for larger ones. However, the alga’s detention time at the interface does not yield any

information about the directionality of the alga’s swimming. It also does not allow us to

distinguish between two possible extreme cases: (i) the alga probes the wall repeatedly at

the same location, eventually escaping the interface after some time, and (ii) the alga swims

non-stop either clock- or counterclockwise along the curved interface.

In order to characterize the swimming direction, we analyzed the local swimming angle

✓ (see Fig. S6(a)), which is measured relative to the local wall tangent. We consider two
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regions in the compartment: “wall” and “center” (see Fig. S6(c) inset). As discussed above,

the near-wall region is defined from a distance b from the interface for all compartment

sizes. All trajectories outside this region contribute to the swimming angle distribution

towards the center of the compartment. As shown in Fig. S6(c), we find that ✓ displays an

isotropic distribution towards the center of the compartment. However, within the near-wall

swimming zone, ✓ shows a maximum around zero swimming angle, indicating that the wall

induces a preferred swimming direction parallel to the concave interface. The distribution

decays towards larger angles in line with Gaussian statistics (standard deviation 12�, solid

line in Fig. S6(c)). Note that these experimental distributions represent all navigational

movement of the alga, which may include any microscopic interactions the alga might have

with the compartment boundaries.
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S5. MOTILITY IN COMPARTMENTS EXHIBITING CONCAVE AND CONVEX

INTERFACES
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FIG. S7. (Color online) Motility in circular compartments containing a central pillar. (a) An

exemplar image from an experiment for compartment radius rc = 150µm and pillar radius rp =

25µm. The relative probability density heat maps for experiment (b) and simulations (d) show an

increased relative probability at the concave interface, as compared to the rest of the compartment,

consistent with what we observed for circular compartments without a central pillar. (c) The radial

probability density P (r) for experiments (symbols) and simulations (lines) with and without a

central pillar. In the presence of a pillar, P (r) slightly increases at the convex wall. This e↵ect can

be attributed to a finite interaction time of the alga at the pillar, in accordance with the previously

reported transition between an incoming flagellar contact regime and an outgoing hydrodynamic

regime [6].

The results described in the main text suggest that the alga may not remain swimming

near the convex interface of a cylindrical obstacle, in contrast to pusher-type swimmers, e.g.

bacteria [4] and spermatozoa [5]. An alga contained in a circular compartment including a

central pillar establishes a simultaneous comparison between the behavior at concave and

convex interfaces within the same compartment. The analysis of experimental and simulated

trajectories (see Fig. S7) show that the alga scatters o↵ at the pillar and escapes the convex
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wall. This observation is consistent with studies on single microscopic scattering events at

flat [2] and convex [6] interfaces. We also note that P (r) in the vicinity of the convex pillar

interface is slightly increased as compared to the value of P (r) away from any walls (see

Fig. S7), which can be attributed to the alga’s finite interaction time at the interface.
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Chapter 5

Implications of hydrodynamics on
microswimmer dynamics

The scientific literature of active swimmers reflects the young age of the field with its
explosive growth and fierce debates. Interestingly, and sometimes maddeningly, op-
posing claims are made on the relevance of hydrodynamic interactions in very similar
setups. Thus, to understand these phenomena it is important to disentangle effects
due the different interactions, such as hydrodynamics and steric effects between mi-
croswimmers.

To tackle this task from a theoretical point of view it is essential to have a model
microswimmer that includes all relevant degrees of freedom. In the recent years a
number of models have been proposed like the shape-anisotropic raspberry swimmer
[129–131], the force-counterforce model [14, 132–134], the catalytic dimers [135], the
squirmer model [70–72, 74, 75, 136–149], or other hydrodynamic models [14, 150–
152, 152, 153]. We will now discuss the squirmer and force-counterforce model, as
they are the most prominent in the literature.

The squirmer model, first introduced by [136], imposes a velocity field on the
surface of the swimmer given by

vs =
3

2
v0 (1 + �e · r̂s) [(e · r̂s)r̂s � e] , (5.1)

where e is the squirmer’s orientation, r̂s is the unit vector connecting the center of the
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Figure 5.1: (a) Puller-type squirmer with � = 5, (b) neutral

squirmer, (c) pusher-type squirmer with � = �5 [13].

squirmer to the surface, v0 is the self-propulsion velocity and � is a tunable parameter
used to switch between a neutral, pusher, or puller-type squirmer. Figure 5.1 shows
the resulting flow fields in the lab frame of a puller [Fig. 5.1(a)], neutral [Fig. 5.1(b)], or
pusher-type squirmer [Fig. 5.1(c)]. This model has also been extended to a spheroidal
shape, but constructing more general shapes is not straightforward.

Figure 5.2: The force-counterforce model: one force acts on the

spherical body, the second force on the fluid. Reprinted with permis-

sion from [14] Copyright 2010 by the American Physical Society.

The force-counterforce model [14, 132–134] is motivated by the dipolar flow field
of an Escherichia coli cell (see also Sec. 2.1.3). Figure 5.2 shows the setup of the force-
counterforce model. One force pole is placed on the spherical swimmer body and the
other force pole is acting on the fluid. Usually only hydrodynamic interactions are
considered here and no excluded volume effects are resolved.

In Sec. 5.1 we propose a novel model, that takes into account the polar nature
of the flow fields and the shape anisotropy of microswimmers. As we have shown in
Sec.4.1 the anisotropic shape has vast implications on the motility of Chlamydomonas

reinhardtii. Having this in mind, we continue using the stroke-averaged model and
add the force pole structure that was measured experimentally (see also Sec.2.1.3).
Using this model, we study the nonequilibrium phase behavior of microswimmers.

The effect of steric interactions can give rise to motility-induced phase separation
(see also Sec 2.2.3), which is a self-concentration effect that is possible at high filling
fractions (� & 0.4). Although it is a fascinating theoretical result, its biological rele-
vance is questionable because this kind of high filling fraction is very rare in biological
systems. Furthermore, hydrodynamic interactions suppress motility-induced phase
separation, as they enhance the reorientation of swimmers [72, 73]. It is thus unlikely
to see it in experimental systems [72, 73].

However, hydrodynamic interactions can also lead to self-concentration effects.
Using coarse-grained analytical models, it was found that a homogeneous state in the
configuration of microswimmers is destabilized by hydrodynamic interactions among
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the microswimmers [44–48]. In Sec. 5.1 we report on density heterogeneities due to
hydrodynamic interactions using our model and find a maximum of density hetero-
geneities with respect to the filling fraction in the system. This maximum is also recov-
ered by the analytical model we propose. Both theory and simulations show that this
maximum results from a competition between hydrodynamic and steric interactions
between the microswimmers. Importantly, the maximum in density heterogeneities
that we find occurs at much lower filling fraction as opposed to motility-induced phase
separation, and can therefore have an ecological effect. Finally we would like to stress
that for both our theory and simulations in Sec. 5.1, the self-concentration effect is
very different from motility-induced phase separation, as it is induced by the hydro-
dynamic interactions.
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5.1 Publication: Maximum in density heterogeneities of

active swimmers

Reprinted article with permission from:
Fabian Jan Schwarzendahl and Marco G. Mazza,
Soft Matter 14, 4666-4678 (2018).
https://doi.org/10.1039/C7SM02301D

Licensed under a Creative Commons Attribution 3.0 Unported Licence, Published by
The Royal Society of Chemistry.

Individual contribution: I developed the model and wrote the manuscript in close
collaboration with M. G. Mazza. I implemented the numerical code and performed all
simulations of all data shown in the publication. The theoretical model was developed
by me in close collaboration with M. G. Mazza.
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Maximum in density heterogeneities of active
swimmers†

Fabian Jan Schwarzendahlab and Marco G. Mazza *a

Suspensions of unicellular microswimmers such as flagellated bacteria or motile algae can exhibit

spontaneous density heterogeneities at large enough concentrations. We introduce a novel model for

biological microswimmers that creates the flow field of the corresponding microswimmers, and takes

into account the shape anisotropy of the swimmer’s body and stroke-averaged flagella. By employing

multiparticle collision dynamics, we directly couple the swimmer’s dynamics to the fluid’s. We

characterize the nonequilibrium phase diagram, as the filling fraction and Péclet number are varied, and

find density heterogeneities in the distribution of both pullers and pushers, due to hydrodynamic

instabilities. We find a maximum degree of clustering at intermediate filling fractions and at large Péclet

numbers resulting from a competition of hydrodynamic and steric interactions between the swimmers.

We develop an analytical theory that supports these results. This maximum might represent an optimum

for the microorganisms’ colonization of their environment.

I. Introduction
Physical interactions in suspensions of microswimmers consisting
of bacteria or algae have been recognized to play an important
role in the swimmers’ collective behavior.1–3 The nonequilibrium
character of active suspensions, where the energy injection takes
place at the scale of the microorganisms, produces myriad
mesmerizing phenomena, such as complex interaction with
solid surfaces,4–6 the spontaneous formation of spiral vortices,7

directed motion,8 swarming,9 bacterial turbulence,10 and self-
concentration.11

Almost invariably, motile microorganisms move in an aqueous
environment, where, because of their size, viscous forces
dominate, and inertial forces are completely negligible. In fact,
consideration of the Navier–Stokes equations identifies that the
nature of the dynamics is dictated by the ratio of viscous to
inertial forces, known as the Reynolds number R = svr/Z, where
s is the typical size of the microorganism, v its mean velocity,
and r, Z are the fluid’s density and viscosity, respectively. For
Escherichia coli, e.g., s E 10 mm, v E 30 mm s!1, and for water
r E 103 kg m!3, Z E 10!3 Pa s, which result in R E 10!5. As
noted by Purcell,12 this means that if the propulsion of a swimmer
were to suddenly disappear, it would only coast for 0.1 Å.

Thus, the state of motion is only determined by the forces
acting at that very moment, and inertia is negligible.

Due to the microswimmers’ low Reynolds numbers, the sum
of viscous drag and thrust balances out to zero, in most
situations. A direct consequence of force-free motion is that
the leading term of the solution of the Stokes equation for a
microswimmer is a symmetric force dipole (or stresslet).

Biological microswimmers are complex systems because
of the combination of biological, biochemical and physical
processes all taking place at the same time. It is thus of great
scientific value to develop theoretical models that isolate the
relevant degrees of freedom and interactions. Considerable
work has been done in recent years, and various models have
been introduced, like the squirmer model,13–31 the shape
anisotropic raspberry swimmer,32–34 the force–counterforce
model,35–38 the catalytic dimers,39 or other hydrodynamic
models.40–43 Experiments have confirmed that the flow field
of flagellated bacteria like E. coli is to very good approximation
modeled by a simple force dipole,44 whereas Chlamydomonas
reinhardtii are modeled by three Stokeslets.45 Furthermore, as
cell shapes vary greatly in the natural world, and realistic steric
interactions are important in dense suspensions, a model that
allows for flexibility in the shape of a microswimmer is a highly
desirable feature. In this article we fill this lacuna. We derive a
model for a flexible-shape microswimmer that produces self-
propulsion by means of a force dipole for pusher-like micro-
swimmers, or three Stokeslets for puller-like microswimmers.

An efficient method to simulate fluids at mesoscopic scales,
and their hydrodynamics is the multiparticle collision dynamics
(MPCD) technique.46 MPCD is a particle-based simulation method
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that correctly produces hydrodynamic modes. Due to its particle
nature MPCD naturally includes thermal fluctuations, and can
be easily coupled to molecular dynamics methods of solutes,
colloids,47 and active swimmers.20,24,26 The MPCD technique in
fact proves to be ideal for our purposes.

The nonequilibrium phase diagram of microswimmers has
been subject to considerable interest, especially with regard to
the emergence of density heterogeneities in the swimmers’
distribution.2 We explore the phase diagram of active swimmers
and describe the presence of heterogeneities in the spatial dis-
tribution of both pushers and pullers. These heterogeneities arise
due to the hydrodynamic interactions between the swimmers and
relate to existing hydrodynamic theories.2,48–50 Interestingly, we
find a maximum in the heterogeneities as filling fraction and
Péclet number are varied. By using both computer simulations and
analytical theory, we demonstrate that this maximum results from
a competition between hydrodynamic and steric interactions,
where the latter temper the hydrodynamic instability at higher
filling fractions. This optimum might have important biological
implications on the ability of motile bacteria and algae to form
colonies or biofilms.

The remainder of this article is organized as follows. In
Section II we introduce the model for the microswimmer.
Section III describes the physical properties of the fluid and the
microswimmer’s flow field. In Section IV we present the non-
equilibrium phase diagram of our model microswimmers, and
specifically we characterize the density heterogeneities emerging
from their hydrodynamic interactions and show that these
are tempered by steric interactions at higher filling fractions. In
Section V we present an analytical theory and show that we also find
a maximum in heterogeneity, which is mediated by the interplay
of hydrodynamic and steric interactions. Finally, in Section VI we
discuss our main results and summarize our conclusions.

II. Model
We employ a stroke-averaged model of biological microswimmers,
similarly to,1,10,51 taking into account the asymmetric shape of
biological microswimmers due to the cell’s body and the flagella.
The swimmer is thus modeled as an asymmetric dumbbell, as
depicted in Fig. 1, that mimics a C. reinhardtii or an E. coli cell.
The smaller sphere models the swimmer’s body and the larger
sphere is a stroke average of the region spanned by flagellar
motion. The rigid body dynamics of the dumbbells is simulated
using Newton’s equations and quaternion dynamics (for details
see Appendix A1 and A2).

In addition to the rigid body dynamics, we simulate the fluid
surrounding the swimmers using MPCD (see Appendix A3),
which is a mesoscopic, particle based method, that reproduces
hydrodynamics at the Navier–Stokes level.47 Precise measure-
ments44 show that the flow field of pusher-type microswimmers
is well modeled by a force dipole. The pullers flow field, on the
other hand, is well represented by a three-Stokeslet solution of
the Stokes equation.45 These two flow-field models are included
in our simulations by adding force regions to the fluid, as

depicted by the red regions (3) in Fig. 1. Furthermore, we couple
the fluid and swimmers’ dynamics by imposing a no-slip
boundary condition on the swimmers’ surface (for details see
Appendix A4).

It should be noted that the dumbbell model introduced here
has an anisotropic rigid shape that can be easily modified to
more complex shapes. Squirmer models have so far been
described for spherical or ellipsoidal shapes.25 Our hydro-
dynamic flow field is very similar to the three-bead-spring
model.52 However, the rigid body dynamics differ in the fact
that in the three-bead-spring model the beads are connected by
springs, whereas ours is a rigid model.

In the following, we express all physical quantities in terms
of the MPCD particle mass m, the size of an MPCD grid cell a,
and the temperature T of the fluid. We simulate (see Section IV)
N = 300–1560 active swimmers in a cubic domain with side
length of 100a, which is approximately 20 times the size of an
individual swimmer, and with periodic boundary conditions.
The resulting filling fraction ranges between f = 0.05 and
f = 0.29. The average number of MPCD particles per cell is
hNCi = 20 such that the total number of MPCD particles in a
simulation is 2 " 107. The Reynolds number considered here
ranges from R B 0.01 to R B 0.1 and the Péclet number
reaches from 2.2 " 102 to 2.6 " 103.

The full details of our numerical implementation are given
in Appendix A.

Fig. 1 Schematic representation in a perspective view of the active
swimmer model for (a) a puller-type, and (b) a pusher-type microswimmer.
In both panels, the small green spheres (1) represent the swimmer’s body,
and the larger transparent spheres (2) represent the stroke-averaged space
spanned by the flagella. The red spheres (3) with embedded arrows
represent the regions where the forces are applied. The golden arrows
(4) represent the swimming direction. The lines with arrows (5) are a sketch
of the hydrodynamic streamlines generated by the swimmers.
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III. Characterization of the fluid and
active hydrodynamics
In the following we describe calculations aimed at characterizing
the thermal (equilibrium) properties of our model in the passive
case, and also the flow field generated by the active motion.

We first consider a passive colloid (with the same geometry
described above, and in Fig. 1) immersed in the MPCD fluid,
that is, we carried out equilibrium simulations without activity.
The equipartition theorem applied to the passive colloid for the
translational motion predicts that the average of each velocity
component squared is hUa

2i = kBT/M, where M is the colloid’s
mass, kB is the Boltzmann constant, and a = x, y, z. For
our system, we find a theoretical value of the translational
motion hUtheory

2i = 2.7 " 10!4kBT/m and the simulations give
hUx

2i = hUy
2i = hUz

2i = 2.3 " 10!4kBT/m. In case of the rotational
motion, the equipartition theorem predicts for the angular
velocity h(Ob

a)2i = kBT/Ima, where Ima is the moment of inertia
tensor. Considering our swimmer, whose long axis is aligned
with the z axis of a Cartesian reference frame, the theoretical
prediction for the angular motion in x and y direction yields
h(Ob

x,y)2i = 1.3 " 10!3kBT/ma2 while the simulations yield
h(Ob

x)2i = h(Ob
y )2i = 1.1 " 10!3kBT/ma2. In the z direction, the

theory predicts h(Ob
z )2i = 1.4 " 10!3kBT/ma2 and the simulations

give h(Ob
z )2i = 1.2 " 10!3kBT/ma2.

We now consider the active motion at R{ 1. Hydrodynamics
at low Reynolds numbers (relevant for micron-sized objects)
allow a great simplification of the Navier–Stokes equations: the
nonlinear, inertial effects can be neglected, and the governing
equations are the Stokes equations

Zr2u = rp ! f ext, r#u = 0, (1)

where u(r) is the fluid velocity, p(r) the pressure, f ext(r) is a body
force acting on the fluid at position r, and Z is the viscosity of
the fluid. Solving the Stokes equations means obtaining expres-
sions for u and p that satisfy eqn (1) and the boundary
conditions. From this knowledge, the stress tensor r can be
calculated. For a Newtonian fluid, r depends linearly on the
instantaneous values of the velocity gradient, so that one can
write r = !pI + Z[r # u + (r # u)T], where # indicates the

tensor product, and I the identity tensor. Because the Stokes
equations are linear, their solution can be formally written
in terms of the convolution of a Green’s function with the
inhomogeneous term f ext 53,54

uðr; tÞ ¼
ð
Oðr! r0Þ # f extðr0; tÞdr0: (2)

In free, three-dimensional space, the Green’s function is
found by considering a point force f ext = fed(r) acting on an
infinite, quiescent fluid, where e is the unit vector representing
the direction of the force, and d(r) is the Dirac distribution.

A straightforward calculation55 gives the Oseen tensor OðrÞ '

1

8pZr
ðIþ r̂) r̂Þ where r̂ ' r/r, r = |r|, and the resulting flow field

uðrÞ ¼ f

8pZr
½eþ ðr̂ # eÞr̂+, which is termed a ‘Stokeslet’ and decays

with distance as r!1.
A theoretical prediction for the puller flow field is constructed

from three Stokeslets, and for the pusher we use two Stokeslets.
The Stokeslets positions are placed at the midpoints of the
respective force regions in the swimmer model (see Fig. 1).

We now consider the flow field generated by the active
motion of our model microswimmer. We switch on the active
motion with a force f0 = 50kBT/a and carry out the full dynamics
as described in Section II (see also Appendix A for a full
definition of f0). Fig. 2 shows the flow fields of a pusher and
a puller in the lab frame. As expected, the flow field of the puller
is contractile, as fluid is drawn in from the front and the back,
while fluid is pushed away normal to the swimming direction
[Fig. 2(a)]. The situation is reversed in the pusher case [Fig. 2(c)]
where fluid is pushed out at the front and back of the swimmer.
The theoretical predictions for both the puller [Fig. 2(b)] and
the pusher [Fig. 2(d)] show a good quantitative agreement with
the simulated flow fields. For the Stokesian algebraic decay of
u(r), the reader is referred to Section I in the ESI.†

The effective velocity veff ' |he#Ui| of an isolated swimmer in
the steady state depends linearly on the active force f0.1 Here, e
is the swimmer’s orientation and U is the swimmer’s velocity.
From our simulations, we calculate veff for a pusher [see Fig. 3].

Fig. 2 Time-averaged flow field generated by (a) our model puller, (b) theoretical puller, (c) our model pusher, and (d) theoretical pusher. We show
cross-sections on the x–y plane at z = 0. The force strength is f0 = 50kBT/a. The large central white regions show the hard cores of the active swimmers.
The thin lines with arrows mark the streamlines, while the color code shows the magnitude of the flow velocity normalized to the thermal velocity. The
large black arrows indicate the direction of motion.
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The linear fit has a slope of a ¼ 1:45, 5" 10!2
" #

" 10!3

ffiffiffiffiffiffiffiffiffi
ma2

kBT

s

.

The analogous results for pullers are also shown in Fig. 3, where

the slope of the linear fit is a ¼ 4:4, 7" 10!2
" #

" 10!3

ffiffiffiffiffiffiffiffiffi
ma2

kBT

s

.

The linear dependence of veff on f0 shows that our simulations
correspond to the Stokes flow regime.

Further simulations on the two particle interaction statistics
and two particle flow fields can be found in Section I (ESI†).

IV. Density heterogeneities
In the following we will study the nonequilibrium phase
behavior of our active swimmer model. The filling fraction we
employ here is computed using the volume of the swimmer’s
body VB, as well as the volume that is spanned by the flagella
sphere VF, while taking into account their overlap volume VOl

f ¼ VB þ VF ! VOlð ÞN
V

; (3)

where V is the volume of the simulated system. Note, that in an
experiment only the body of the cell would be taken into
account, thus the filling fraction should then be rescaled by
VB/(VB + VF ! VOl) = 7.5 " 10!2. Furthermore, we vary the
strength of the active force f0, which changes the propulsion
speed veff as well as the strength of the hydrodynamic inter-
actions between the swimmers. The Péclet number captures the
ratio of advection to diffusion, and can be computed using

P ¼ veffs
D

; (4)

where we used the linear relation (fitted slope) between active
velocity and force dipole strength from Section III. Further-
more, s = 5a is the typical length of the swimmer and for the

diffusion constant we assume D ¼ kBT

6pZs
.

We analyze the system’s density using a Voronoi
tessellation56 and compute the local volume for each swimmer.

A global measure for the heterogeneity of a configuration of
swimmers is given by the standard deviation of the distribution
of local Voronoi volumes sloc. In order to remove trivial scaling
factors, we compare sloc to the standard deviation srnd of local
Voronoi volumes for random homogeneous configurations of
nonoverlapping, passive dumbbells (as in Fig. 1) with the same
filling fraction. Fig. 4 shows the resulting phase diagram, with
the dependence of sloc/srnd on Péclet number and filling
fraction. Here, positive values of P correspond to pusher-type
swimmers, whereas negative values are puller-type swimmers.

The phase diagram shows that for both pullers and pushers,
initially sloc/srnd grows with P and filling fraction, then it
reaches a maximum and drops to lower values. The initial
increase is related to an instability that is mediated by the
hydrodynamic interactions of the microswimmers which has
also been found in ref. 1, 2 and 48–50. Intuitively this can
be understood in the following way: the hydrodynamic flow
field from the swimmers creates heterogeneities in the fluid’s
velocity, which couple back to the swimmers and produce
heterogeneities in the density. It should be noted that the
Péclet number of the system has to be rather large, such that
the hydrodynamic interaction between the swimmers is strong
enough to produce heterogeneous structures. As the filling
fraction increases, steric interactions grow in importance and
compete with the hydrodynamic instability. Thus, we ascribe
the presence of the maximum in sloc/srnd to a tapering effect of
the steric interactions on the hydrodynamic instability. This
tapering effect becomes visible only when steric interactions
are fully accounted for.

To test the hypothesis that steric interactions stabilize the
hydrodynamic instability, we carry out two more types of
simulations: first, we exclude the steric effects by setting the
hard-core repulsion [eqn (A6)] to zero, thus only hydrodynamic
effects are included. Second, we carry out Brownian dynamics
simulations, which completely neglect hydrodynamic interac-
tions. More details about the Brownian dynamics simulations
are given in Section III of the ESI.†

In Fig. 5 we show our original simulations that fully account
for hydrodynamic and steric interactions, the simulations

Fig. 3 Dependence of the pusher and puller velocity veff on the active
force f0. Lines are linear fits to the simulated data. The observed linear
dependence is evidence of the Stokes flow regime.

Fig. 4 Standard deviation of local Voronoi volume sloc compared to standard
deviation srnd of a homogeneous configuration. The Péclet number P as well
as the global filling fraction f are varied. Positive Péclet numbers correspond to
pusher-type and negative to puller-type swimmers.
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without steric interactions, and the active Brownian simulations.
The simulations with hydrodynamics alone give rise to a strong
increase of sloc/srnd, but no maximum occurs, while the active
Brownian simulations show a monotonic increase of sloc/srnd,
which is much less pronounced. Our original simulations (with
both hydrodynamics and steric effects) exhibit intermediate values
of sloc/srnd. Thus, we conclude that the maximum which we see is
mediated by an interplay of the hydrodynamic interactions and the
steric interactions, confirming our hypothesis.

V. Theoretical analysis
To bolster our numerical results, we develop an analytical theory of
microswimmers that explicitly includes hydrodynamic and steric
interactions. As in our numerical model (see Section II), we
consider the dynamics of an asymmetric dumbbell, which is
described by the following effective Langevin equations

drLi
dt
¼ u rLið Þ; (5)

drSi
dt
¼ u rSið Þ; (6)

where rLi is the position of the front sphere of the swimmer i with
radius aL and rSi the position of the respective back sphere with
radius aS. The front and back spheres of each swimmer are
connected by an infinitely thin rigid rod of length l. The swimmer
is coupled to the fluid velocity u, which is determined by the Stokes
equation including a stochastic and an active force term

Zr2u = rp ! f active + f noise. (7)

Here, the active force is given by a force dipole

f active ¼
X

i

f ei d r! rLið Þ ! d r! rSið Þ½ +; (8)

which points along the orientation of the swimmer ei and has a
force strength f. The orientation is defined as ei = (rLi ! rSi)/l,
i.e., the unit vector connecting the back to the front sphere.

Furthermore, fluctuations in the swimmers motion are added
to the fluid via

f noise ¼
X

i

nLi ðtÞd r! rLið Þ ! nSi ðtÞd r! rSið Þ; (9)

where nL,S
i (t) are noise terms with hnL,S

i (t)nL,S
j (t0)i = 2GL,SIkBTdijd(t! t0),

and GL,S = 6pZaL,S are the friction coefficients of the front and back
sphere. Considering only the active term eqn (7) can be solved

u ¼ f
X

i

O r! rLið Þ !O r! rSið Þ½ + # ei; (10)

with the Oseen tensor OðrÞ ' 1

8pZr
ðIþ r̂) r̂Þ, which is regularized

by using O(|r| r aL,S) ' I/GL,S. Given the solution (10), the flow
velocity can be eliminated from eqn (5) and (6). Using the hydro-

dynamic center rC ¼ GLrL þ GSrS
GL þ GS

, we can simplify eqn (5) and (6) to

drCi
dt
¼ v0ei þ

1

zhy

X

iaj

F ij þ ni; (11)

dei
dt
¼ 1

l2zhy

X

iaj

sij þ nRi

" #

" ei; (12)

where v0 is the propulsion speed and zhy = 3pZ(aS + al) is the
hydrodynamic friction coefficient. The leading order of the multipole
expansion of the hydrodynamic force Fij and torque sij between
swimmers i and j are given in Section IV (ESI†). The random forces
ni and nR

i are Gaussian white noises with

hxi,a(t)x j,b(t0)i = 2Ddijdabd(t ! t0), (13)

hxR
i,a(t)xR

j,b(t0)i = 2DRdijdabd(t ! t0), (14)

where D is the translational and DR the rotational diffusion
coefficient.

Following,1 we derive the one-body Smoluchowski equation
from eqn (11) and (12). As we have seen in Section IV steric inter-
actions among swimmers may play a crucial role in their dynamics.

Fig. 5 Dependence on the filling fraction of the standard deviation of local Voronoi volumes sloc compared to the standard deviation srnd of a
homogeneous configuration for pushers (a), and pullers (b). The Péclet number is fixed to P = 2.6 " 103 for pushers and P = 2.4 " 103 for pullers. The
circles are the results for simulations with both hydrodynamic and steric interactions; the squares are the results for simulations including only
hydrodynamic interactions; and the triangles are simulations including only steric interactions.
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Thus, we explicitly include the effect of steric interactions by
means of the Ansatz57,58

v(c) = v0 ! cz. (15)

Here, c is the concentration and the constant z quantifies how much
the swimmers are slowed down by the steric interactions (for more
details see ref. 57 and 58). The Smoluchowski equation then reads

@tp ¼ !r # ½vðcÞep+ !
1

zhy
r # Fhyp
" #

! 1

zhyl2
e" @

@e

% &
# shyp

þDDpþDR e" @

@e

% &2

p;

(16)

where p(r,e,t) is the one-particle probability distribution function
of finding a swimmer at position r, with orientation e at time t.
The first term on the right hand side of eqn (16) takes into
account the active motion with a density dependent velocity, due
to steric interactions; the second term accounts for the hydro-
dynamic forces and the third term for the hydrodynamic torques;
the last two terms are responsible for translational and rotational
diffusivity respectively. Here, Fhy are the hydrodynamic two-body
forces, and shy is the hydrodynamic torque between two particles
(see also ESI,† Section V). To make progress with this equation,
we follow the standard path: we consider a multipole expansion
and compute moment equations for the concentration c, the
polarization P and the nematic order tensor Q

cðr; tÞ ¼
ð
depðr; e; tÞ; (17)

Pðr; tÞ ¼ 1

cðr; tÞ

ð
deepðr; e; tÞ; (18)

Qðr; tÞ ¼ 1

cðr; tÞ

ð
de e) e! 1

3
I

% &
pðr; e; tÞ: (19)

The full equations for c, P and Q are given in Section V (ESI†). We
linearize these moment equations around the isotropic state,
described by c = c0 + dc, P = dP and Q = dQ and turn to Fourier
space, with wave vector k, where the fields are denoted by dc̃(k),
dP̃(k), and dQ̃(k). To first order in the fluctuations the equations
governing the temporal evolution read

@td~c ¼ ! iki v0c0 ! zc02 þ c0
2 Dal

2f

30Z!a

% &
d ~Pi þDkikid~c

' (
; (20)

@td ~Pi ¼! ikj v0 ! zc0ð Þd ~Qij þ iki
1

3

v0
c0
! 2z

% &
d~c

'

þ Dkjkj þDR

" #
d ~Pi

(
;

(21)

@td ~Qij ¼! i
2

5
v0 ! zc0ð Þ kid ~Pj

) *STþ 3lf

8pZ
c0Mij d ~Qij

" #'

þ 4DR þ knknDð Þd ~Qij

(
;

(22)

where k = |k| is the absolute value of the wavevector,

Mij

" #
¼ 4

5
p

! 2

3
d ~Q2;2 þ d ~Q3;3

" #

2

3
d ~Q2;1

!d ~Q3;1

2

3
d ~Q2;1 !d ~Q3;1

2

3
d ~Q2;2 !d ~Q3;2

!d ~Q3;2
2

3
d ~Q3;3

0

BBBBBBBB@

1

CCCCCCCCA

; (23)

[Aij]
ST is the symmetric traceless form of the tensor Aij, and we now

denote i, j = x, y, z. The terms involving the force dipole strength f
stem from the hydrodynamic interactions and can cause instabilities
in the system. To analyze the stability of the system we will first
consider pullers ( f o 0) and in the second step pushers ( f 4 0),
where we systematically keep terms up to order k2.

For pullers ( f o 0) the concentration fluctuations dc̃ are
dominant. To analyze the fluctuations in the concentration we
use a large length-scale and long time-scale (DRt c 1) approxi-
mation for the longitudinal polarization dP̃8 = k̂idP̃i, k̂i ' ki/k,
which reads

d ~Pk - !
ik

3DR

v0
c0
! 2z

% &
d~c; (24)

whereas the fluctuations dQ̃ij are of higher order in k, when
terms of order k2 in eqn (20) are kept. Inserting the quasi-
stationary solution eqn (24) into the eqn (20) yields

@td~c ¼! k2

3DR
3DDR þ v0

2 þ c0 !3v0zþ
dal2v0f
30Z!a

% &'

þ c0
22z z! dal2f

30Z!a

% &(
d~c:

(25)

For pullers the term c0 !3v0zþ
dal2v0f
30Z!a

% &
introduces an instabil-

ity at low concentrations c0, which are counteracted by the term

c022z z! dal2f
30Z!a

% &
, that stabilizes the system at higher concentra-

tions. Since the first term is dominated by the hydrodynamic
interactions and the second term by the steric interactions, we
can draw the same conclusion as from the simulations: the
hydrodynamic interactions cause heterogeneities in the system
which are suppressed by the steric effects at larger c0. Moreover,
inspection of the fastest-growing eigenvalue reveals a maximum
of instability as a function of c0 and, hence, a maximum degree
of heterogeneity. The position of the maximum of the filling
fraction can be estimated from microscopic information
extracted from scattering events between two swimmers; we find
fmax = 0.12, which is consistent with the simulation in Fig. 5(b)
(for details see Appendix B).

We also find an instability in the splay fluctuations of the
nematic tensor dQ̃88 = k̂#Q̃#k̂. Here, the approximation of the
polarization fluctuations [eqn (21)] is different, since we need to
consider eqn (22) for the counting of powers of k. In the large
length and time scale limit we arrive at

d~P i ¼ !ikn
1

DR
v0 ! zc0ð Þd ~Qin: (26)
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Inserting eqn (26) into eqn (22) and projecting on the splay
part yields

kid ~Pj

) *ST kikj
k2
¼ !ik2 1

2DR
v0 ! zc0ð Þd ~Qkk: (27)

Combing eqn (27) with eqn (22) gives

@td ~Qkk ¼! k2 Dþ 4v02

15DR

% &
þ 4DR ! c0

8zv0k2

15DR
þ 2lf

25Z

% &'

þ c0
24k

2z2

15DR

(
d ~Qkk: (28)

From this term we also find a maximum instability, but the
resulting instability is sub-dominant compared to the instability
in the concentration fluctuations.

For pushers ( f 4 0) the bend component of the nematic tensor
fluctuations dQ̃8> = k̂#dQ̃#(I ! k̂ # k̂) become unstable, since here
kiMij(djl! kjkl) o 0, 8l = x, y, z. For the polarization we use the large
length and time scale limit in eqn (26). Inserting eqn (26) into the
term [kidP̃j]

ST of eqn (22), and projecting onto the bend part gives

kid ~Pj

) *ST ki
k

djl ! kjkl
+
k2

" #
¼ !ik2 1

2DR
v0 ! zc0ð Þd ~Qk? ;l : (29)

Therefore, we have a single equation for the bend nematic fluctua-
tions dQ̃8>, which is given by

@td ~Qk? ¼! k2 Dþ v0
2

5DR

% &
þ 4DR

'

! c0
2zv0k2

5DR
þ 3lf

25Z

% &
þ c0

2k
2z2

5DR

(
d ~Qk? :

(30)

Here, the term !c0
2zv0k2

5DR
þ 3lf

25Z

% &
destabilizes the system at low

concentrations c0 through nematic fluctuations, which are counter-

acted by the term c02
k2z2

5DR
, that stabilizes the system for higher

concentrations. Again, the first term, which destabilizes the system,
is dominated by the hydrodynamic interactions, whereas the
second, stabilizing term comes from the steric interactions. Addi-
tionally from microscopic information extracted from scattering
events between two swimmers we can estimate the filling fraction
of the maximum heterogeneities, with the result fmax = 0.23,
which is in accordance with the simulation from Fig. 5(a) (for
details see Appendix B).

VI. Conclusions
We have presented a new model for biological microswimmers
that is based on Stokeslets and the stroke averaged motion of
their flagella. The Stokeslets were distributed to model the flow
fields of C. reinhardtii or E. coli cells. Furthermore, our model
takes into account the anisotropic shape of a microswimmer.
Typical for this is the shape of a C. reinhardtii cell, which is well
modeled by an asymmetric dumbbell.10 Self-propulsion is
generated through a symmetry breaking due to the asymmetric
shape and force-free motion. The fluid and the hydrodynamic
interactions are explicitly included with MPCD.

We show that the flow fields produced in our simulations
can be predicted using simple formulae from the literature.
These formulae also correspond to the experimentally mea-
sured flow fields.44,45 Additionally, we test the effective velocity
of the microswimmer model, and find that it depends linearly
on the applied force, in agreement with the Stokes flow regime.

We study the phase diagram in terms of filling fraction and
Péclet number. We find that both pullers and pushers exhibit
density heterogeneities. The density heterogeneities show a
maximum at intermediate filling fractions and high Péclet
number. To determine the mechanism underpinning this
phenomenon, we perform additional simulations, in which
either the steric interactions or the hydrodynamic interactions
were switched off. Simulations with active Brownian particles
showed a small linear increase in the density heterogeneities,
while simulations without the steric interactions show strong
density heterogeneities. This is an instability caused only by the
hydrodynamic interactions, which is known from the
literature.1,2,48–50 However, no maximum arises in the simula-
tions with only hydrodynamic or only steric interactions, which
shows that the maximum in the density heterogeneities is
mediated by an interplay of the hydrodynamic and the steric
interactions. The hydrodynamic interactions destabilize the
system, whereas the steric interactions stabilize the system as
the filling fraction grows and thus a maximum in density
heterogeneity arises.

We have also developed an analytical theory based on a
Smoluchowski equation which includes steric as well as hydro-
dynamic interactions. We computed the hydrodynamic moments
of this equation and performed a linear stability analysis of the
moment equations around the homogeneous state. For both puller
and pusher-type swimmers, we found that at low concentration the
system is destabilized by hydrodynamic interactions. At higher
concentrations, however, the instabilities are counteracted by the
steric interaction. This interplay gives rise to a maximum in the
instability of the homogeneous state, and thus a maximum hetero-
geneity in the concentration of swimmers. The position of the
maxima calculated from the analytics is in accordance with the
simulations. Our continuum theory does not explicitly account for
steric effects at the microscopic level, which induce short range
correlations, and lubrication forces, and influence the short
range hydrodynamics. These effects, however, are captured by the
numerical simulations. The agreement between our theory and
simulations gives us confidence that our assumptions effectively
includes the dominant physical effects.

The physical pictures from both simulations and analytical
theory fit together: both show that the homogeneous state is
not stable and there is a maximum of instability. Also, both
analyses show that the instability arises from hydrodynamic
interactions and is suppressed by the steric interactions.

The maximum in the density heterogeneities might have
important biological implications: it points to a possible,
optimal filling fraction and Péclet number for the formation
of heterogeneous distributions of motile microorganisms.
Bacteria or microalgae exhibiting these optimal parameters
are more likely to form colonies or biofilms.
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Appendix A: model details
The microswimmer is characterized by its mass M, center of mass
position R and orientation q. In the following we describe the
equations governing the motion of the microswimmer, the fluid
dynamics implemented through the MPCD, and their coupling.

1. Rigid body dynamics of swimmers

As we do not consider shape deformable swimmers, we are only
concerned with rigid-body dynamics. The most general motion
of a rigid body is the combination of a translation along an axis
(the Mozzi axis) and a rotation around the same axis, as per the
Mozzi–Chasles theorem.59 Any orientation in space can be
described using three numbers, that are commonly represented
with the Euler angles, which correspond to three elementary
rotations. However, there are a number of issues with the
choice of the Euler angles. For instance, the composition of
rotations with Euler angles or rotation matrices is rather
complex, and involves trigonometric functions which lead to
an accumulation of rounding-off errors. Eventually the
matrices representing the rotations may become not ortho-
gonal. Importantly, for some values of the Euler angles there
are discontinuous jumps in the representation. More funda-
mentally, the Euler angles do not generate a covering map of
the rotation group SO(3), that is, the map from Euler angles to
SO(3) is not always a local homeomorphism. Fortunately, the
topology of SO(3) is diffeomorphic to the real projective space
P3(R) which admits a universal cover represented by the group
of unit quaternions q = (q0,q1,q2,q3)T, where the superscript T
indicates the matrix transposition.

The equations of motion for the rigid body dynamics in
three dimensions and in terms of quaternions read60

m€R ¼ F; (A1)

€q ¼ 1

2
Wð _q Þ

0

Xb

 !
þWðq Þ

0

_Xb

 !" #
; (A2)

_q ¼ 1

2
Wðq Þ

0

Xb

 !
; (A3)

_Ob
a ¼ Ibm

" #
a
!1 Tb

a þ Ibm
" #

b! Ibm
" #

g

, -
Ob

bO
b
g

, -
; (A4)

where Xb is the angular velocity of the swimmer, Ib
m the

moment of inertia tensor of the swimmer in the body frame,
and the indices (a,b,g) take on as values the cyclic permutations
of (x,y,z). In eqn (A1), F = !rF and T = RF " F are the force and
torque, respectively, acting on the swimmer due to steric
interactions with the neighbor, where RF is the vector connecting
the center of mass of the swimmer to the point of contact with
the neighbor, and the matrix W is (see also ref. 61)

Wðq Þ ¼

q0 !q1 !q2 !q3

q1 q0 !q3 q2

q2 q3 q0 !q1

q3 !q2 q1 q0

0

BBBBBB@

1

CCCCCCA
: (A5)

The repulsive, steric interactions among swimmers are mod-
eled using a Weeks–Chandler–Andersen potential62

F rij;ab
" #

¼ 4e
sab
rij;ab

% &12

! sab
rij;ab

% &6
" #

þ e (A6)

if rij,ab o 21/6sab, and F(rij,ab) = 0 otherwise, where rij,ab '
|ria ! rjb| is the distance between sphere a of swimmer i and
sphere b of swimmer j, e is the energy scale and sab is the sum
of the radii of sphere a and sphere b. For the numerical
integration we use the Verlet algorithm proposed in ref. 60,
which was also used and discussed in detail in ref. 25.

Given a vector in the laboratory frame f the transformation
to the body frame vector f b is given by

f b = Df, (A7)

where the matrix D(q) is constructed from the quaternions.
Quaternions are represented as q = q0 + q1i + q2 j + q3k, with

q0,. . .,q3 A R, and i2 = j2 = k2 = ijk = !1.
The unitary matrix D that transforms vectors from the lab to

the body frame is (see also ref. 61)

D¼

q02þq12!q22!q32 2 q1q2þq0q3ð Þ 2 q1q2!q0q2ð Þ

2 q2q1!q0q3ð Þ q02!q12þq22!q32 2 q2q3þq0q1ð Þ

2 2q3q1þq0q2ð Þ 2 q3q2!q0q1ð Þ q02!q12!q22þq32

0

BBB@

1

CCCA:

(A8)

Thus, the orientation of the swimmer at any given time is
found from D!1(q(t))(0,0,1)T.

Note that all quantities that do not carry an index b are
calculated in the laboratory frame.

2. Center of mass and moment of inertia

Fig. 6 shows the detailed geometry and dimensions of our
model microswimmers (both pullers and pushers). In the body
frame, the swimmer is aligned with the z direction and the
coordinates of the centers of the B and F spheres are z1 and z2,
respectively. Given a homogeneous mass distribution the center
of mass of the swimmer is given by

zCoM ¼ V1z1 þ V2z2 ! VSc1 z1 þ
3

4

df ! h 1ð Þ2

3df=2! h 1

" #(

!VSc2 z2 þ
3

4

db ! h 2ð Þ2

3db=2! h 2

" #)

V1 þ V2 ! VSc1 ! VSc2

" #!1
;

(A9)

where Vi are the volumes of the spheres and VSci
are the volumes

of their spherical caps, which are cut by the other sphere63

VSci ¼
1

3
ph i2 3di=2! h ið Þ; (A10)
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and hi are the heights of the spherical caps

h 1 ¼
db=2! df=2þ lð Þ db=2þ df=2! lð Þ

2l
;

h 2 ¼
df=2! db=2þ lð Þ df=2þ db=2! lð Þ

2l
:

(A11)

The moment of inertia for a spherical cap about the x- as well as
y-direction is

ISci ;ðx;yÞ ¼ r
ð

V
x2 þ z2
" #

dV

¼ r
ð2p

0
dj
ða cos di=2!h i

di=2

, -

0
dy sin y

"
ðdi=2
di=2!h i
cos y

drr2 ðcosj sin yrÞ2 þ ðcos yrÞ2
) *

¼ rp
1

60
h i
2 !9h i3 þ 45h i

2di=2! 80h i di=2ð Þ2þ60 di=2ð Þ3
, -

;

(A12)

and about the z-direction is

ISci ;z ¼ r
ð

V
x2 þ y2
" #

dV

¼ r
ð2p

0
dj
ða cos di=2!h i

di=2

, -

0
dy sin y

"
ðdi=2
di=2!h i
cos y

drr2 ðcosj sin yrÞ2 þ ðsinj sin yrÞ2
) *

¼ rp
1

30
h i
3 3h i

2 ! 15h idi=2þ 20 di=2ð Þ2
, -

:

(A13)

By using the moment of inertia of a sphere ISpi ¼
8

15
rp di=2ð Þ5

and with the use of the parallel axis theorem, we compute the
moments of inertia of the swimmer as

I(x,y) = ISp1,(x,y) ! ISc1,(x,y) + r(V1 ! VSc1
)x1

2, (A14)

Iz = ISp1,z + ISp2,z ! ISc1,z ! ISc2,z. (A15)

3. Multiparticle collision dynamics

To simulate a fluid at fixed density r and temperature T
surrounding the swimmers, we use the MPCD algorithm, which
is a mesoscopic, particle based method46 to simulate a fluid at
the Navier–Stokes level of description. We include the Andersen
thermostat and the conservation of angular momentum into
the MPCD dynamics; the resulting algorithm is usually denoted
as MPC-AT+a.47,64,65 The fluid is modeled using Nfl point-like
particles of mass m, whose dynamics are executed through two
steps: the streaming step and the collision step. In the stream-
ing step the fluid particles’ positions ri, i A [1,Nfl] are updated
according to

ri(t + dt) = ri(t) + vi(t)dt, (A16)

where vi(t) is their velocity and dt is the MPCD timestep.
The collision step mediates the interactions between the

particles. Here, the system is divided into Nc collision cells with
a regular grid of lattice constant a. The center of mass velocity
in each cell CðiÞ is calculated and remains constant during the
collision step, whereas the fluctuating part of the velocity of
every fluid particle i is randomized, which mimics the collision
between particles. Hence, the velocity of particle i is updated as
follows64

vi
0 ¼ 1

NCðiÞ

X

j2CðiÞ
vj þ vrani !

1

NCðiÞ

X

j2CðiÞ
vranj

þm P!1
X

j2CðiÞ
rj;c " vi ! vrani

" #) *
8
<

:

9
=

; " ri;c;

(A17)

where the random velocity vran
i has components sampled from

a Gaussian distribution with zero mean and variance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
,

NCðiÞ is the number of fluid and ghost particles (see Section A4)
in cell CðiÞ. The vector rj,c is the position of the neighboring
particle j relative to the center of mass of the cell CðiÞ. In
eqn (A17), P!1 is the inverse of the moment of inertia tensor
P '

P
j2CðiÞ

m rj # rj
" #

I! rj ) rj
) *

for the fluid particles in cell CðiÞ.

Note that P!1 is a dynamical quantity that has to be updated at
every timestep, and it also includes the ghost particles within
the swimmer (see Section A4).

To ensure Galilean invariance and avoid the build-up of
spurious correlations in the velocities,66 the usual grid shift is
performed at each timestep, that is, the grid is shifted by a
random vector, whose components are uniformly distributed in
the interval [!a/2,a/2].

Fig. 6 Details on the geometry of our model puller-type swimmer (a) and
pusher-type swimmer (b). Regions B (green) and F (empty circle) are the body with
diameter db, and stroke-averaged flagella with diameter df, respectively, and they
are separated by a distance l. The red arrow denotes the swimmers orientation
and C is the center of mass. Black circles are the force poles acting on the fluid. For
pullers (a) the region Rpl,1 has the diameter dpl,1 and the regions Rpl,2, Rpl,20 have
the diameter dpl,2. For pushers (b) the regions Rps,1 and Rps,2 have the diameter dps.
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4. Coupling of the swimmer’s and fluid’s dynamics

No velocity field is prescribed in our model of microswimmers.
Locomotion is achieved by obeying the conservation of momentum
in the collisions between the fluid particles and the swimmers; the
shape asymmetry then induces self-propulsion. Two physical
effects need to be included: we impose no-slip boundary conditions
on the model swimmer’s surface, and the force poles are explicitly
included (see Fig. 1). Both effects induce modifications of the
streaming and collision steps of the MPCD algorithm that we
explain in the following.

a. Streaming step. To ensure the no-slip boundary condi-
tion the bounce-back rule67 is applied to the MPCD particles
that hit the spheres during the streaming step. The velocity of
the fluid particle is reversed and the change in momentum is
given by

Ji = 2m[vi ! U ! X " (r̃i ! R)], (A18)

where R is the center-of-mass position of the swimmer colliding
with the fluid particle, U and X are the linear and angular velocity
of the swimmer, r̃i is the position of the fluid particle upon collision
with the sphere. The updated fluid particle velocity reads

vi
0 = vi ! Ji/m. (A19)

In addition, the fluid particles are reflected back along the
direction of their initial velocity. For this, we use an exact ray
tracing method to detect the collision of the MPCD particle
onto the swimmer’s surface. If a collision is detected the MPCD
particle is propagated back onto the swimmer’s surface and
then the bounce-back rule is applied. If the particle travels a
fraction l, 0 o lo 1 of the timestep towards the swimmer,
then after the collision with the swimmer, it will travel for the
time (1 ! l)dt away from the swimmer’s surface. Furthermore,
we allow for multiple collisions within the same timestep; this
has been shown to prevent spurious depletion forces among
colloids.68 The new linear and angular velocities of the swimmer
after the collision with the fluid particles read

U 0 ¼ U þ
X

i

Ji=M; (A20)

X0 ¼ Xþ Im
!1
X

i

ri ! Rð Þ " Ji: (A21)

The force poles are added as external force regions69 in the
streaming step for each swimmer. This is done by modifying
the streaming step inside the force regions to

riðtþ dtÞ ¼ riðtÞ þ viðtÞdtþ f labac

dt2

2
; (A22)

vi(t + dt) = vi(t) + f lab
ac dt, (A23)

where the force in the lab frame reads

f lab
ac ' fac ! [U + X " (ri ! R)]/dt, (A24)

and fac is the active force discussed in the following. The flow
fields are modeled by force poles. While mathematically such
force poles are point forces, any numerical implementation
must mollify this requirement.

Pullers. The flow field is modeled by three Stokeslets, and the
active force f lab

ac is applied to Rpl,1, Rpl,2 and Rpl,20 [see Fig. 6(a)]. The
region Rpl,1 with diameter dpl,1 is located at the rear of the swimmer
and its force points into the direction of the swimmer’s orientation.
The other two regions Rpl,2 and Rpl,20 are placed on the side of the
swimmer and have the opposite orientation. The angle apl between
the orientation of the puller and the line connecting the center of
mass C and the midpoint of the region Rpl,2 (or Rpl,20) defines their
position on the boundary of the swimmer. The diameter of both Rpl,2

and Rpl,20 is dpl,2 = dpl,1/(2)1/3, such that they have half the volume of
Rpl,1, making the fluid force free. The total force in the region Rpl,1 is

f ¼ f0
1

6
pdpl;13r and in the regions Rpl,2, Rpl,20 is f ¼ f0

1

6
pdpl;23r.

Pushers. The flow field is modeled by a force dipole. We
apply the force f lab

ac to all fluid particles located within spherical
regions [see Fig. 6(b)]. The regions Rps,1 and Rps,2 where f lab

ac is
applied are equally sized spheres with diameter dps and the two
forces fac are equal and opposite, to ensure that the fluid is
overall force free. To generate a smooth flow on the boundary of
the swimmer the direction of the applied force in regions Rps,1

and Rps,2 is modeled as follows. For fluid particles ri A Rps,1 or
Rps,2 we apply the force

f bac ¼

0

0

1

0

BBB@

1

CCCAf0; if sbz 4 dps
+
2;

2sbz
dps

sbx
+
sb
.. ..

2sbz
dps

sby

.
sb
.. ..

2sbz
dps
! 1

% &
sbz
+
sb
.. ..

0

BBBBBBBBBB@

1

CCCCCCCCCCA

f0; if sbz o dps
+
2:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

(A25)

Here, sb = (sb
x,sb

y ,sb
z )T is the distance between the MPCD particle

and the center of the region Rps,1 or Rps,2. The small, black
arrows in Fig. 6(b) give a schematic representation of the flow
field arising from eqn (A25). As before the superscript b denotes
the body frame, in which the swimmer’s orientation is aligned
with the z axis. The constant f0 gives the strength of the force
that is applied. The total force in one of the two regions can be

estimated by integrating eqn (A25), which yields f ¼ f0
5

48
pdps3r.

This takes into account the redirection of the force on the
boundary of the swimmer and the density r of the fluid.

b. Collision step. To guarantee the no-slip boundary con-
ditions on the surface of the swimmers, it is necessary to fill
each swimmer with ghost particles, such that the collision step
can be properly executed.65 The positions of the ghost particles
r g

i are uniformly distributed within the swimmer,‡ and
are advected with the swimmer in each timestep. The ghost

‡ We recommend to fill the swimmer with multiple ghost particles, rather than
using a single ghost particle of large mass, as this would result in a wrong value of
the torque.
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particles density is matched to the fluid’s density so as to make
the swimmer neutrally buoyant. Before every collision step the
ghost velocities vg

i are updated according to

vg
i = U + X " (rg

i ! R) + vran
i , (A26)

where the components of vran
i are sampled from a Gaussian

distribution. The ghost particles then (together with the fluid
particles) take part in the collision step [see eqn (A17)], and their
velocities are updated to vgi

0
. The resulting change in linear

momentum due to the ghost particles is Jg
i ¼ m vgi

0 ! vgi
" #

and
the change in angular momentum is Lg

i = (r g
i ! R) " J g

i . These
changes are then transferred to the swimmer17

U 0 ¼ U þ
X

i

Jg
i

+
M; (A27)

X0 ¼ Xþ Im
!1
X

i

Lg
i : (A28)

5. Algorithm implementation

In this section we explain how the present algorithm is imple-
mented. First, note that the MPCD algorithm scales as O(N),
and thus is particularly prone to an efficient implementation
with parallel programming. We therefore implemented the
entire dynamics (both swimmer and MPCD) on graphics pro-
cessing unit (GPU) cards using the Nvidia CUDA language.
Parallelization of the MPCD algorithm is rather straight-
forward. The streaming step is performed for each fluid particle
independently in a separate CUDA kernel, whereas ghost
particles are simply translated together with the corresponding
swimmer. Then, a kernel for each particle is started to carry out
the bounce-back rule and afterwards a kernel for each particle
is started to apply the periodic boundary conditions. The
collision step eqn (A17) is implemented with the following
kernels:

1. the cell of each particle is found and the center of mass for
each cell is found by starting a kernel for each particle;

2. the two sums over the velocities in eqn (A17) are com-
puted, where a kernel for each velocity component of each
particle is started;

3. a kernel for each particle is started to compute the
number of particles in each cell;

4. a kernel for each cell is started to normalize the velocities
and compute the center of mass;

5. a kernel for each particle is started to compute its position
with respect to the center of mass;

6. a kernel for each particle is started to compute the cross
product in eqn (A17) and the contributions in each cell are
summed;

7. six kernels for each particle are started to compute the
contribution to the six components of the inertia tensor in the
corresponding cell;

8. a kernel for each cell is started to compute the inverse of
the respective inertia tensors;

9. for each cell a kernel is started to compute the curly
bracket in eqn (A17);

10. a kernel for each particle is started to add all contribu-
tions of eqn (A17) and finish the collision step, while consider-
ing the rule for ghost particles eqn (A26);

11. a kernel for each ghost particle is started, which com-
putes the momentum and angular momentum transfer
[eqn (A27) and (A28)] to the swimmers.

Some of these computations could be combined into
single kernels, but it is computationally more efficient to
start many kernels with small computations, which we have
opted for in this algorithm. After the MPCD steps the rigid
body dynamics part (see also Section A1) of the code is
executed. It consists of the following kernels, one for each
swimmer:

1. the velocity and angular velocity stemming from the fluid
interaction are added to the swimmers;

2. the positions and quaternions are updated;
3. periodic boundary conditions are applied;
4. the neighbor list between swimmers is updated (here we

use a linked list);
5. the steric forces and torques are computed;
6. the velocities and angular velocities are updated.
This concludes the algorithm, which now goes back to the

streaming step of the MPCD part.

6. Computational details

We carried out three-dimensional simulations with an average
of hNCi = 20 fluid particles per cell. The timestep of the MPCD

algorithm is fixed to dt ¼ 10!2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2= kBTð Þ

p
, whereas the MD

timestep is dtMD ¼ 5" 10!4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2= kBTð Þ

p
. The resulting kine-

matic viscosity n = Z/r of the fluid for the MPC-AT+a algorithm
(including both kinetic and collisional contribution) can be

calculated exactly as n ¼ 3:88a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
.47,65,70 Simulations

using a forced flow (for details see ref. 69) produced a viscosity

of n ¼ 3:69a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
.

The large sphere F associated to the stroke-averaged flagella
of the swimmer has a diameter of df = 7a, while the small
sphere B associated to the body of the swimmer has db = 3a, and
the distance between the spheres centers is l = 7a. The choice of
the geometrical parameters is dictated by a combination of
factors. First, it is computationally convenient to make the
swimmers’ linear size a few times the grid spacing a. Second,
inspired by the geometric properties of C. reinhardtii a ratio
df/db \ 2 is advisable.10 For the sake of clarity in the comparison
of our results, we maintain the same geometry also for pushers.
The energy scale of the steric interactions is set to e = 10kBT. For
pushers we fix the diameter of the force dipole regions Rps,1 and
Rps,2 to dps = 3a. The region Rpl,1 of the pullers has the same
diameter dpl,1 = 3a and accordingly the regions Rpl,2 and Rpl,20 have
the diameter dpl,2 = 3a/(2)1/3. The angle between the swimmers
orientation and the line connecting the center of mass of
the pullers C to the midpoint of the regions Rpl,2 and Rpl,20 is
apl = 1071.

To initialize the simulations, we distribute the swimmers
homogeneously (and without overlaps) across a cubic box with
periodic boundary conditions.
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Appendix B: estimate of maximum
from theoretical prediction
To estimate the maximum predicted from the analytical treat-
ment, we computed the maximum of the eigenvalues in eqn (30)
for pushers and eqn (25) for pullers. As a first step, we have to
find estimates for both the wavenumber k and the constant
quantifying the steric interactions z. Since we expect the hydro-
dynamic interactions to be relevant on the size of the swimmer,
we chose the distance between the force poles l to determine the
characteristic wavenumber k = 2p/l. The constant z quantifying
the steric interactions can be estimated from ref. 58

z = v0
2sstc (A29)

where v0 is the propulsion speed, ss the geometrical cross
section, and tc is the collision time. The collision time can be
estimated from the center-of-mass distance of two colliding
swimmers, where we considered collisions as shown in Fig. S5
and S6 (ESI†). The resulting collision time for pullers is

tc ¼ 9:5a
+ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

and for pushers tc ¼ 18:0a
+ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

. The
propulsion speed is extracted from Fig. 3 and the geometrical
cross section is ss = 4ps2. Here, s = l/2 = 7.5a is the effective
steric radius of the swimmer also estimated from the distance
of the force poles. To finally obtain a filling fraction we use
f = c0(VB + VF ! VOl) [see eqn (3)].
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I. CHARACTERIZATION OF THE ACTIVE HYDRODYNAMICS

In the following we further characterize the fluid dynamics and the interactions mediated by the hydrodynamics in
our microswimmer model.

A. Flow field scaling

In unbounded space, the fundamental solutions of the Stokes equation under point-like forcing has generally an
algebraic decay with distance. It is therefore important to verify that our model reproduces such algebraic decay of
the velocity over some interval of distances. Figure S1 shows the scaling behavior of the flow field behind both puller
and pusher-type swimmers. In addition to the simulated data the theoretical prediction for a pusher (force dipole)
and puller (three stokeslets), as well as the respective scalings are displayed. We find a good agreement with the
theoretical prediction and the respective scaling laws.

4 10 40
y/a

10�3

10�2

10�1

100

101

|U
y
|/

�
k B

T
/m

(a)

force dipole

1/r2

simulation

4 10 40
y/a

(b) three stokeslets

1/r3

simulation

FIG. S1. Scaling behavior of the flow field behind (a) a pusher and (b) puller microswimmer. Blue circles show the numerical
calculations, yellow continuous lines show the theoretical prediction of (a) a force dipole and (b) three Stokeslets, and green
dashed lines show the expected power-law scaling for (a) 1/r2 and (b) 1/r3.

B. Two particle interactions

To characterize the two-particle interactions of our model, we first simulate two swimmers starting in a parallel
configuration e1 · e2 = 1, for initial center-of-mass (CoM) to center-of-mass distances dCoM = 7a and dCoM = 12a.
Second, we simulate two swimmers starting with a relative angle of fi/4 and fi/2, where the initial distance is
dCoM = 12a.

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2018
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In the following, we will show the time evolution of dCoM as well as the orientational correlation function
Ècos ◊Í = Èe1 · e2Í for both pusher and puller type swimmers. Additionally, we provide videos of each simula-
tion to help understand the dynamics of the collisions.

a. Parallel configuration with dCoM = 7a. Figure S2(a) shows a scattering event between two pusher-type swim-
mers. The swimmers attract each other and stay in a parallel configuration until the steric interactions reorient
them and they then start diverging from each other. Puller-type swimmers [Fig. S2(b)] immediately turn away from
each other and perform a reorientation of an angle of fi such that they are parallel again. Immediately after this, a
secondary collision causes them to turn away from each other and start swimming into di�erent directions. See also
video 2_pusher_d7a.avi for pushers, and video 2_puller_d7a.avi for pullers.
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FIG. S2. Scattering event between two swimmers starting in a parallel configuration, with dCoM = 7a. Solid lines show puller
and dashed lines pusher-type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.

b. Parallel configuration with dCoM = 12a. Figure S3(a) shows a scattering event between two pusher-type
swimmers. The pushers attract each other and stay in a parallel configuration until the steric interactions reorient
them and they then start diverging from each other. Puller-type swimmers [Fig. S3(b)] quickly reorient away from
each other and become parallel again, assuming a configuration in which one swimmer is behind the other.

For the same initial configuration we also computed the flow field, which can be seen in Fig. S4. The pusher-
type swimmers have almost a stagnation point between them, which gives a relative attraction and corresponding
flow lines favor a parallel configuration. This is in accordance with the behavior seen in Fig. S3(a) and the video
2_pusher_d12a.avi. Puller-type swimmers exhibit a region with very high velocity between them, favoring a reori-
entation as seen by the orientational correlation function in Fig. S3. The configuration in which the swimmers are
behind each other is assumed because of the very low flow velocity at the point x = 0a, y = ≠10a. See also video
2_pusher_d12a.avi for pushers, and video 2_puller_d12a.avi for pullers.

c. Relative angle fi/4 with dCoM = 12a. Figure S5(a) shows a scattering event between two pusher-type swim-
mers. The pushers collide and turn away from each other because of a complex interplay of hydrodynamic and
steric interactions. Puller-type swimmers [Fig. S5(b)] collide, immediately turn away from each other and swim into
di�erent directions. See also video 2_pusher_d12a_45deg.avi for pushers and video 2_puller_d12a_45deg.avi for
pullers.

d. Relative angle fi/2 with dCoM = 12a. Figure S6(a) shows a scattering event between two pusher-type swim-
mers. The pushers collide and turn away from each other because of a complex interplay of hydrodynamic and
steric interactions. Puller-type swimmers [Fig. S6(b)] collide, immediately turn away from each other and swim into
di�erent directions. See also video 2_pusher_d12a_90deg.avi for pushers and video 2_puller_d12a_90deg.avi for
pullers.

In summary, the behavior of pusher-type swimmers due to hydrodynamic interactions can be summarized by saying
that they attract each other and align with each other. This behavior is expected, as it is shown experimentally by
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FIG. S3. Scattering event between two swimmers starting in parallel configuration, with dCoM = 12a. Solid lines show puller
and dashed lines pusher-type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.
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FIG. S4. Time-averaged flow field generated by (a) two model pushers (b) two model pullers. The swimmers are kept in a
parallel configuration with dCoM = 12a. We show cross-sections on the x-y plane at z = 0. The force strength is f0 = 50kBT/a.
The large central white regions mark the hard cores of the active swimmers. The thin lines with arrows mark the streamlines,
while the color code indicates the magnitude of the flow velocity normalized to the thermal velocity.

[1] and suggested by theoretical studies [2].
The behavior of puller-type swimmers due to their flow field can be summarized as generally dealigning. This

behavior is also suggested by theoretical studies [2]. Interestingly, for an initially close-to-parallel alignment we observe
a chain-like swimming behavior after the scattering event. This chain-like motion is mediated by the three-Stokeslet
flow field.
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FIG. S5. Scattering event between two swimmers starting with a relative angle of fi/4 and dCoM = 12a. Solid lines show puller
and dashed lines pusher-type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.
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FIG. S6. Scattering event between two swimmers starting with a relative angle of fi/2 and dCoM = 12a. Solid lines show puller
and dashed lines pusher type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.
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II. RESULTS AT LOWER REYNOLDS NUMBER

To test the relevance of the Reynolds number on our results, we perform addition simulations with N = 300 ≠ 1560
swimmers. Here, we use a smaller MPCD timestep of ”t = 2 ◊ 10≠3

ma2/(kBT ) and an average of ÈNCÍ = 5 MPCD
particles per cell. We note that the small value of MPCD timestep ensures that the fluid remains incompressible. The
resulting Reynolds number is R = 10≠3, and the Peclet number is P = 220. Figure S7 shows the resulting standard
deviation of local Voronoi volume ‡loc compared to standard deviation ‡rnd of a homogeneous configuration for both
pullers and pusher. For both puller and pusher-type swimmers we find a maximum. Thus, the qualitative behavior
of Fig. 5 in the main text is recovered. We conclude that in the tested regime the Reynolds number has only minor
e�ects.

0.05 0.10 0.15 0.20 0.25 0.30
Filling fraction �

1.00
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2.00

�
lo

c/
�

rn
d
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FIG. S7. Standard deviation of local Voronoi volume ‡loc compared to standard deviation ‡rnd of a homogeneous configuration.
Global filling fraction is varied, the Péclet number is fixed to P = 220 and the Reynolds number is R = 10≠3. Circles are
pusher and squares are puller-type swimmers.

III. BROWNIAN DYNAMICS SIMULATIONS

The Brownian dynamics simulations are carried out with hard spheres, that propel forward with a typical speed v0
along their orientation e [see also [3–6]]. The equation governing the translational motion for the position r reads

dr

dt
= v0e + F /“ + ÷, (S1)

where F is the force between particles and ÷ is a random white noise with zero mean and È÷(t)÷(tÕ)Í = 2DI”(t ≠ t
Õ).

Here, D = kBT/“ is the translational di�usion constant, which is related to the friction coe�cient “. The potential
between the particles is a Weeks–Chandler–Anderson potential [7]

�(rij) = 4‘̃

C3
‡

rij

412
≠

3
‡

rij

46D
+ ‘̃ (S2)

if rij < 21/6
‡, and �(rij) = 0 otherwise. Here rij © |ri ≠ rj | is the distance between swimmer i and swimmer j and

‘̃ = 1000kBT is the energy scale. Furthermore, we include orientational di�usion by using

de

dt
= ’ ◊ e (S3)
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where ’ is a Gaussian white noise with È’(t)’(tÕ)Í = 2DrI”(t ≠ t
Õ). Here, the rotational di�usion coe�cient is related

to the translational di�usion coe�cient by Dr = 3D/‡
2. The Péclet number is defined by P = v0‡/D, equivalently

to the definition in the main text.

IV. MULTIPOLE EXPANSION OF HYDRODYNAMIC FORCES AND TORQUES

The hydrodynamic forces and torques in the analytical theory are approximated with two point forces. In addition,
the correlations between noise and hydrodynamic interactions are neglected. Using these approximations, the velocities
induced by swimmer 2 at the position of the front rL1 and back rS1 sphere of swimmer 1 are found from Eq. (10) in
the main text and read

ui (rL1) = f [Oij (rL1 ≠ rL2) ≠ Oij (rL1 ≠ rS2)] e2,j , (S4)
ui (rS1) = f [Oij (rS1 ≠ rL2) ≠ Oij (rS1 ≠ rS2)] e2,j , (S5)

where Oij is the Oseen tensor and e2,j is the orientation of swimmer 2. We now change coordinates in terms of the
hydrodynamic center of the swimmers

eµ = (rLµ ≠ rSµ) /l, (S6)

rC
µ = aLrL,µ + aSrS,µ

aL + aS
, (S7)

where µ = 1, . . . , N are particle indices. Equation (S4)-(S5) become

ui (rL1) = f

5
Oij

3
rC

12 + aSl

2ā
(e1 ≠ e2)

4
≠ Oij

3
rC

12 + l

2ā
(aSe1 + aLe2)

46
e2,j , (S8)

ui (rS1) = f

5
Oij

3
rC

12 ≠ l

2ā
(aLe1 + aSe2)

4
≠ Oij

3
rC

12 ≠ aLl

2ā
(e1 ≠ e2)

46
e2,j , (S9)

where ā = (aS + aL)/2. Equations (S8) and (S9) are now used to compute forces and torques between the particles

ˆtr
C
µ = aLˆtrLµ + aSˆtrSµ

aL + aS

= aLu(rLµ) + aSu(rSµ)
aL + aS

= 1
’hy

ÿ

µ”=‹

Fµ‹ , (S10)

ˆteµ =
3

eµ ◊ ˆtrLµ + ˆtrSµ

l

4
◊ eµ

=
3

eµ ◊ u(rLµ) + u(rSµ)
l

4
◊ eµ

= 1
’hy

ÿ

µ”=‹

·µ‹ ◊ eµ, (S11)

where the last step in both Eq. (S10) and Eq. (S11) implicitly defines Fµ‹ and ·µ‹ . In the orientational equation
we projected on the perpendicular part of eµ because |eµ|2 = 1. Physically, this is related to the fact that the two
spheres of one swimmer are connected by a sti� rod. The hydrodynamic friction coe�cient is ’hy = 1

6fi÷ā . On account
of the finite extension of our swimmers, we need to consider a multipole expansion of the force and torque defined in
Eq.(S10)-(S11). The multipole expansion of the Oseen tensor is given by [8]

Oij(r + x) =
Œÿ

n=0

1
n! (x · Ò)n

Oij(r). (S12)
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We expand Eq.(S10)-(S11) up to n = 2, which correspond to neglecting terms of order O( 1
r4 ). Therefore, we need the

first two derivatives of the Oseen tensor, which are given by

ˆkOij = 1
8fi÷

5
1
r3 (≠”ijrk + ”jkri + ”ikrj) ≠ 3

r5 rirjrk

6
, (S13)

ˆmˆkOij = 1
8fi÷

5
1
r3 (≠”ij”km + ”jk”im + ”ik”jm)

≠ 3
r5 (≠”ijrmrk + ”jkrmri + ”ikrmrj + ”mirjrk + ”jmrirk + ”mkrirj) +15

r7 rirjrkrm

6
, (S14)

where ˆi © ˆ
ˆri

. Collecting all terms from the multipole expansion up to O( 1
r4 ), we arrive at the following two-body

expressions for force and torque

F12 =9
4fāl

r̂12
r2

12
Sij(r̂12)e2ie2j ≠ 9

16fl
2�a

1
r3

12
[r̂12Sijk(r̂12)e2ie2je2k ≠ e2Sij(r̂12)e2ie2j ] , (S15)

·12 = ≠ 9
4fāl

3 (e1 ◊ r̂12) 1
r3

12
Sijk(r̂12)e2ie2je2k , (S16)

where we used the symmetric traceless tensors

Sij(r̂) =
5
r̂ir̂j ≠ 1

3”ij

6
, (S17)

Sijk(r̂) = 5r̂ir̂j r̂k ≠ (”ikr̂i + ”ikr̂j + ”ij r̂k) , (S18)
and summation over repeated indices is employed.

V. LINEAR STABILITY ANALYSIS

The Smoluchowski equation of our analytical model reads

ˆtp = ≠ Ò · [v(c)ep] ≠ 1
’hy

Ò · (Fhyp) ≠ 1
’hyl2

3
e ◊ ˆ

ˆe

4
· ·hyp + D�p + DR

3
e ◊ ˆ

ˆe

42
p , (S19)

where p © p(r, e, t), and the force and torque terms are computed using a mean field Ansatz

ÈX12Í =
⁄

dr2

⁄
de2X12p(r2, e2, t) . (S20)

Using the definitions of the moments for, respectively, the concentration, polarization, and nematicity

c (r, t) =
⁄

de p(r, e, t) , (S21)

P (r, t) = 1
c (r, t)

⁄
de e p(r, e, t) , (S22)

Q (r, t) = 1
c (r, t)

⁄
de

3
e ¢ e ≠ 1

3I
4

p(r, e, t) , (S23)

we can find the following expressions for the hydrodynamic force and torque terms

Fhy,i =9
4fālK

F1
i + 9

16fl
2�aK

F2
i , (S24)

·hy,i = ≠ 9
4fāl

3
Áimne1me1jK

·
nj , (S25)

with

K
F1
i =

⁄
dr2

r̂12i

r2
12

Sij(r̂12)c(r2, t)Qij(r2, t) , (S26)

K
F2
i =

⁄
dr2

1
r3

12
Sij(r̂12)c(r2, t)Pj(r2, t) , (S27)

K
·
nj =

⁄
dr2

r̂12n

r3
12

Sljk(r̂12)c(r2, t)Qlk(r2, t) . (S28)
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We now compute moment equations using Eq. (S21)-(S23) for the Smoluchowski Eq. (S19)

ˆtc = ≠ ˆi (v(c)cPi) + D�c ≠ 9fāl

4’hy
K

F1
i c + 9fl

2�a

16’hy
K

F2
i c, (S29)

ˆtcPi = ≠ ˆj (v(c)cQij) ≠ 1
3ˆi (v(c)c) + D�cPi ≠ DRcPi ≠ 3lf

40fi÷

!
4K

·1
ij (r, t) ≠ K

·1
ji (r, t) ≠ ”ijK

·1
mm(r, t)

"
cPj (S30)

ˆtcQij = ≠ 2
5 (ˆiv(c)cPj)ST + D�cQij ≠ 4DRcQij ≠ 3lf

8fi÷

#
K

·
ij

$ST
c, (S31)

where we use the symmetric traceless part [Yij ]ST = 1
2 (Yij + Yji) ≠ 1

3 ”ijYkk. Note that here we neglected terms of
order O(Q2). We will now linearize these moment equations around the isotropic state

c = c0 + ”c ,

P = ”P ,

Q = ”Q , (S32)

and turn to Fourier space, where the fields are denoted by ”c̃, ”P̃ , and ”Q̃. First, note that all terms of order O(P 2),
O(QP ), and O(Q2) will vanish at our level of approximation. Therefore, there is no contribution from hydrodynamic
forces or torques in the polarization Eq. (S30). Second, the three terms proportional to K

F1
i c and K

F2
i c, stemming

from the concentration Eq. (S29), and the term proportional to
#
K

·
ij

$ST
c from the nematic stress tensor Eq. (S31)

require special care in their evaluation. We will treat each of these three terms separately in the following.

A. KF1
i c term

The linearized form of the K
F1
i c term is

ˆic
2
0

⁄
dr2

r̂12i

r2
12

Sij(r̂12)”Qij(r2, t) (S33)

and turning to Fourier space yields

ic
2
0ki”Q̃jkF

5
r̂i

r2

3
r̂j r̂k ≠ 1

3”jk

46
(k), (S34)

where we used the convolution theorem, and F [h(r)](k) =
s

drh(r)e≠ik·r denotes the Fourier transform of the
function h(r). Without loss of generality we can set k = kez, and using spherical coordinates gives

ic
2
0”Q̃jk

⁄ Œ

0
dfl

⁄ 2fi

0
dÏ

⁄ fi

0
d◊k sin ◊ cos ◊

3
r̂j r̂k ≠ 1

3”jk

4
e

≠ikfl cos ◊ = 0 . (S35)

B. KF2
i c term

The linearized form of the K
F2
i c term is

ˆic
2
0

⁄
dr2

1
r3

12
Sij(r̂12)”Pj(r2, t) (S36)

turning to Fourier space and using the convolution theorem yields

ic
2
0ki”P̃jF

5
1

r3
12

3
r̂ir̂j ≠ 1

3”ij

46
(k). (S37)

We can again set k = kez, and by using spherical coordinates we find

ic
2
0”P̃j

⁄ Œ

0
dfl

⁄ 2fi

0
dÏ

⁄ fi

0
d◊

k

fl
sin ◊

3
r̂j cos ◊ ≠ 1

3”j3

4
e

≠ikfl cos ◊ = ≠8
9fic

2
0kP3. (S38)

The integrals were solved using Mathematica (see also the supplementary file Integrals_hydroTerms.pdf).
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C.
#
K·

ij

$ST
c term

The term
#
K

·
ij

$ST
c in its linearized form reads

c
2
0

5⁄
dr2

r̂12i

r3
12

Snjm(r̂12)”Qnm(r2, t)
6ST

. (S39)

Turning to Fourier space and using the convolution theorem gives

c
2
0”Q̃nmF

5
r̂i

r3 Snjm

6
(k). (S40)

This can be evaluated when we use k = kez and spherical coordinates

c
2
0”Q̃nm

⁄ Œ

0
dfl

⁄ 2fi

0
dÏ

⁄ fi

0
d◊

1
fl

sin ◊r̂iSnjm = c
2
0Mij(”Q̃ij), (S41)

where the matrix Mij(”Q̃ij) was evaluated using Mathematica (see also the supplementary file Integrals_hydroTerms.pdf)
to be

(Mij) = 4
5fi

Q

a
≠ 2

3
!
”Q̃2,2 + ”Q̃3,3

" 2
3 ”Q̃2,1 ≠”Q̃3,1

2
3 ”Q̃2,1

2
3 ”Q̃2,2 ≠”Q̃3,2

≠”Q̃3,1 ≠”Q̃3,2
2
3 ”Q̃3,3

R

b . (S42)

The linearized equations are then given by

ˆt”c̃ = ≠
C

iki

3
v0c0 ≠ ’c

2
0 + c

2
0

�al
2
f

30÷ā

4
”P̃i + Dkiki”c̃

D
, (S43)

ˆt”P̃i = ≠
C

ikj (v0 ≠ ’c0) ”Q̃ij + iki
1
3

3
v0
c0

≠ 2’

4
”c̃ + (Dkjkj + DR) ”P̃i

D
, (S44)

ˆt”Q̃ij = ≠
C

i
2
5 (v0 ≠ ’c0)

#
ki”P̃j

$ST + 3lf

8fi÷
c0Mij(”Q̃ij) + (4DR + knknD) ”Q̃ij

D
. (S45)
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Chapter 6

Swimming strategies of
microorganisms

Bacteria and microalgae follow gradients of nutrient, chemicals, or light. Chlamy-

domonas reinhardtii for example are phototactic, i.e., they follow light gradients [154],
while Escherichia coli are chemotactic, as they follow gradients of nutrients [15]. To
follow nutrient gradients or simply find nutrients, microorganisms have evolved many
different swimming strategies, that are suited to their morphology and their environ-
ment.

In this chapter we will first introduce one of the most studied motility modes:
run and tumble. This swimming mechanism has received so much attention because
it is associated with one of the most important model organisms in microbiology:
Escherichia coli. We will then focus on a second swimming strategy: run-reverse-flick.
We will show how run-reverse-flick can be investigated numerically and analytically,
while including interactions between microswimmers. Finally we will present results
concerning the collective behavior of run-reverse-flick swimmers.

6.1 Run and tumble strategy

Escherichia coli execute the run and tumble swimming strategy [15]. It consists of
two motility states, the run and the tumble state. In the run state the flagella of the
Escherichia coli all rotate counterclockwise (as observed from the body) and because
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Figure 6.1: Run and tumble trajectory of an Escherichia coli bac-

terium. Reprinted by permission from Springer Nature, Springer

eBook, [15], Copyright Springer-Verlag New York, Inc. 2004.

of mechanical and hydrodynamic interactions the flagella come together and form
a bundle, that rotates coherently. The Escherichia coli then is able to swim on a
straight path. If the cell now decides to change direction, it will change the direction
of rotation of a number (not all) of its flagella. Thereby, the flagella bundle dissolves,
the Escherichia coli cell starts tumbling and thus reorient. A typical trajectory can
be seen in Fig. 6.1.

Chlamydomonas reinhardtii also follows a eukaryotic equivalent of run and tumble
motion [51]. In its run mode, the two flagella beat in a breaststroke-like manner
and the cell swims on a straight path. As it decides to change direction, the flagella
desynchronize, the cell starts tumbling and changes its direction.

Statistically, the MSD of a run and tumble particle can be computed by using a
continuous time random walk approach [53, 155]. A simple calculation gives

h(r(t) � r(0))2irt = 2v
2
0 ⌧̃

2
⇣
e
�t/⌧̃ + t/⌧̃ � 1

⌘
, (6.1)

where v0 is the particle’s self-propulsion velocity and ⌧̃ = ⌧run
1�cos'0

is the effective time
scale. Here, ⌧run is the mean time during which the particle is in the run state and
'0 is the mean reorientation angle. Here, the tumble of the particle is assumed to
be instantaneous, which is valid both for Chlamydomonas reinhardtii and Escherichia

coli. The MSD in Eq. (6.1) has two characteristic regimes: on short time scales it shows
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Figure 6.2: Experimental observation of the run-reverse-flick trajec-

tory of a Vibrio alginolyticus bacterium. Green lines mark the for-

ward running state, red lines mark the backward running state, and

the black circles show a flick event. Reprinted from [16].

a ballistic behavior, resembling the run mode, and on large time scales it is diffusive
with diffusion coefficient Drt = v

2
0 ⌧̃/3, which stems from the random reorientations in

the tumble phase. Considering the MSD of the active Brownian particle in Eq. (2.37),
the MSD of the run-and-tumble particle in Eq. (6.1) is recovered for DR = 1/(2⌧)

and DT = 0. In fact, for most situations the active Brownian particle and a run-and-
tumble particle can be used equivalently (see also [156]).

6.2 Run-reverse-flick strategy

The bacterium Vibrio alginolyticus has only a single flagellum attached to its rear to
propel itself forward. Therefore, it is unable to reorient itself using the run and tumble
mechanism discussed in the last section. In fact, it was found that Vibrio alginolyticus

has three motility phases: run, reverse and flick [16]. Starting in the run phase the
bacterium propels forward by rotating its flagellum counterclock wise, it then switches
the direction of rotation to clockwise. The bacterium then swims backwards, which is
the reverse phase. This is followed by the flick, a sharp reorientation of the bacterium’s
swimming direction due to a buckling instability in the flagellum [49]. A typical
trajectory of this process can be seen in Fig. 6.2.
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Theoretically, the MSD of the run-reverse-flick strategy can be computed using a
continuous time random walk approach and is given by [53]

h(r(t) � r(0))2irrf = v
2
0⌧ t

⇣
1 � e

�t/⌧
⌘

, (6.2)

where the mean forward and backward run times are both taken equal to ⌧ and the
flick is assumed to be instantaneous. The MSD in Eq. (6.2) shows a ballistic regime
at small time scales, which appears due to the run and reverse phases. Because of the
flick the MSD in Eq. (6.2) has a diffusive regime at large time scales. Note that this
diffusion process cannot be easily related to the active Brownian particle, as it was
the case for the run-and-tumble motion.

In the following we will study the collective effects of the run-reverse-flick strategy.
We will first introduce a scheme for the numerical implementation of run-reverse-flick
which includes interactions between multiple particles, and then present an analytical
approach based on probabilistic equations, which can also capture collective effects.
Finally, we present an interesting result: run-reverse-flick particles have an optimum
in their collective diffusion.

6.3 Numerical implementation of run-reverse-flick

Given the orientation ei of a run-reverse-flick particle, the swimming strategy is imple-
mented as follows: We start with the forward running phase, and select a forward-run
time tf by drawing a random number from an exponential distribution e

�t/⌧f , where
⌧f is the mean forward-run time. The particle will then stay in the forward running
state with constant ei for the time tf . Next, we have the reverse state: Here, the
direction is reversed to ei ! �ei. Furthermore, a backward-run time tb is drawn
from another exponential distribution e

�t/⌧b , where ⌧b is the backward-run time. At
the end of the backward run phase the particle will perform the flick. Here, a new
orientation e0i is assigned, which is characterized by ei · e0i = ↵i, where ↵i is drawn
from a Gaussian distribution with mean µ↵ = 0 and standard deviation �↵ = 0.1.
Afterwards the particle will instantaneously go back to the forward state. In the fol-
lowing we will use an overdamped Langevin model and also our implementation of
the squirmer model.

Overdamped Langevin run-reverse-flick

The first model we use for the run-reverse-flick particles only includes steric interac-
tions. We model the run-reverse-flick particles using overdamped Langevin equations
[11, 28, 31, 157] (see also Sec. 2.2.3)

dri
dt

= v0ei + fs(ri, rj), (6.3)
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where v0 is the propulsion speed of particle i and ei is its orientation. The steric
interactions fs(ri, rj) = �r�(rij) are modeled using a Weeks-Chandler-Anderson
(WCA) potential [158], which reads

�(rij) = 4✏̃

"✓
�

rij

◆12

�
✓

�

rij

◆6
#

+ ✏̃, (6.4)

if rij < 21/6�, and �(rij) = 0 otherwise. Here rij ⌘ |ri � rj | is the distance between
swimmer i and swimmer j and ✏̃ = 10kBT is the energy scale. For the numerical
implementation we used the algorithm for Brownian dynamics simulations presented
in Sec. 3.1.2.

Squirmer run-reverse-flick

We also consider a model that, in addition to steric effects, explicitly includes hydro-
dynamic interactions between the particles. Here, the swimmer’s equations of motion
are given by Eq. (3.8)-(3.11), where we use a WCA potential [Eq.(2.42)] to compute
the steric forces between the spherical particles. Hydrodynamic interactions are im-
plemented by using the MPCD technique presented in Sec. 3.2.1, and the swimmers
by mean of the method of Sec. 3.2.4. As we are modeling microswimmers, the self-
propulsion and flow field need to be included into our simulation. In the present
context, it is easier to implement a squirmer model than the asymmetric dumbbell
model for computational reasons. The squirmer model imposes the following velocity
on the surface of the swimmer

vs =
3

2
v0 (1 + �e · r̂s) [(e · r̂s)r̂s � e] , (6.5)

where e is the squirmer’s orientation, r̂s the unit vector pointing from the center of the
squirmer to the surface, v0 the self-propulsion velocity and � is a tunable parameter
used to switch between a neutral, pusher, or puller type squirmer (see also Sec. 5). In
the forward state the swimmer is considered to be a pusher, that is � < 0, and in the
backward running state the flow field corresponds to a puller, such that � > 0.

6.3.1 Single particle statistics

In this section, the numerical implementation of the run-reverse-flick swimming strat-
egy is tested using simulations of a single particle with the Langevin model [Sec. 6.3],
meaning that fs(ri, rj) = 0 [see Eq. (6.3)].

First, we simulate the case where the forward and backward runtime are equal
⌧f = ⌧b. Figure 6.3(a) shows the MSD of our simulated data, as well as the theoreti-
cal prediction, Eq. (6.2). Furthermore, Fig. 6.3(b) shows the relative error between the
simulation and analytics. The agreement between the simulated data and the theoret-
ical prediction is good, as the relative error is between 10�2 to 10�5 for times larger
than 10�2

�/v0. Secondly, we compute the diffusion coefficient for varying runtime
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Figure 6.3: (a) Comparison of MSD from simulations (orange circles)

to analytical prediction (blue line) [Eq. (6.2)]. (b) Relative error of

simulation to theoretical prediction.

ratios ⌧f/⌧b. The theoretical prediction is given by [53](Supplementary Information)

D0 =
v
2
0

d

⌧
3
b + ⌧

3
f

(⌧b + ⌧f )
2 , (6.6)

where d is the number of spacial dimensions. Figure 6.4 shows the comparison of the
diffusion coefficient from our simulations to Eq. (6.6). It can be seen that both for
two and three dimensions the agreement is excellent.

Thus, we can conclude that the present implementation of the run-reverse-flick
strategy reproduces the behavior of the MSD and diffusion coefficient, as predicted
by [53].

6.4 Analytical treatment of run-reverse-flick

To treat the run-reverse-flick swimmers analytically, we use an approach based on a
master equation, where we consider one equation for the forward running state and
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Figure 6.4: Comparison of the diffusion coefficient from simulations

(squares for 2d, circles for 3d) to analytical prediction (line for 2d,

dotted line for 3d) Eq. (6.6).

one for the backward running state. Note that Taktikos et al. [53] use a different
approach based on continuous time random walks, which is not suitable for our case
since it cannot capture interactions among particles. The equations we propose are
for the probability of a particle to be in the forward running state Pf (r, ✓) or in the
backward running state Pb(r, ✓), and read

@tPf (r, ✓) = �e(✓) · rv(⇢)Pf (r, ✓) � 1

⌧f
Pf (r, ✓) +

1

2⌧b

h
Pb(r, ✓ +

⇡

2
) + Pb(r, ✓ � ⇡

2
)
i
,

(6.7)

@tPb(r, ✓) = �e(✓) · rv(⇢)Pb(r, ✓) � 1

⌧b
Pb(r, ✓) +

1

⌧f
Pf (r, ✓ + ⇡). (6.8)

where r is the particle’s position, and eT = (cos✓, sin✓) (T denotes the matrix trans-
pose) is the particle’s orientation, which is parametrized by the angle ✓. The function
v(⇢) is the propulsion speed, which also takes into account the interactions between
particles by having a dependence on the density ⇢ [30, 157] (see also Sec.2.2.3). Phys-
ically, the terms in Eq. (6.7)-(6.8) have the following meaning. The term � 1

⌧f
Pf (r, ✓)

in Eq. (6.7) gives the loss of probability from the forward to the backward state, with
rate 1

⌧f
. The corresponding gain in the backward state Eq. (6.8) is then given by

1
⌧f

Pf (r, ✓ + ⇡), where the change ⇡ in the angle accounts for the reverse. Further-
more, the term � 1

⌧b
Pb(r, ✓) in Eq. (6.8) for the backward state is a loss in probability

to the forward state with rate 1
⌧b

. The subsequent gain in the forward probability is
given by 1

2⌧b
(Pb(r, ✓ + ⇡

2 ) + Pb(r, ✓ � ⇡
2 )), where the factor ±⇡/2 takes into account

the reorientation that is inherent to the flicking event. The probability of finding a
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particle P (r, ✓), no matter if it is in the forward or backward state, is given by

P (r, ✓) = Pf (r, ✓) + Pb(r, ✓). (6.9)

Note that with this definition the total probability is conserved.

6.4.1 Moment expansion

To make progress with Eq.(6.7) and Eq.(6.8), we compute the moment equations for
the forward and backward densities ⇢f,b(r) and the respective polarizations pf,b(r) by
using

⇢f,b ⌘
Z 2⇡

0
Pf,bd✓, (6.10)

pf,b ⌘
Z 2⇡

0
ePf,bd✓. (6.11)

Neglecting all higher moments, we obtain the equations

@t⇢f = �r · v(⇢)pf � 1

⌧f
⇢f +

1

⌧b
⇢b, (6.12)

@t⇢b = �r · v(⇢)pb � 1

⌧b
⇢b +

1

⌧f
⇢f , (6.13)

@tpf = �1

2
rv(⇢)⇢f � 1

⌧f
pf , (6.14)

@tpb = �1

2
rv(⇢)⇢b � 1

⌧b
pb � 1

⌧f
pf . (6.15)

It is convenient to use the fields for the overall density ⇢ and the density difference
⇢� defined as

⇢ ⌘ ⇢f + ⇢b (6.16)

⇢� ⌘ ⇢f � ⇢b (6.17)

such that Eq.(6.12) and Eq.(6.13) become

@t⇢ = � r · (v(⇢)pf + v(⇢)pb), (6.18)

@t⇢� = � r · (v(⇢)pf � v(⇢)pb) � 1

⌧f
(⇢ + ⇢�) +

1

⌧b
(⇢ � ⇢�) . (6.19)

We now linearize the Eqs.(6.14),(6.15),(6.18) and (6.19) around the homogeneous
state represented by ⇢ = ⇢0 + �⇢, ⇢� = �⇢�, pf = �pf and pb = �pb. In addition, we
transform the space components to Fourier space with wave vector k, and the time
component to Laplace space with frequency s. Furthermore, we effectively include the
interactions by using v(⇢) = v0(1 � ⇣⇢), where v0 is the self-propulsion speed and ⇣

quantifies how much the particles are slowed down by interactions (see also Sec. 2.2.3).
The fields are then denoted by �⇢̃, �⇢̃�, �p̃f , �p̃b, and the resulting linearized equations
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are

s�⇢̃ = �iv0 (1 � ⇣⇢0)k · (�p̃f + �p̃b) + ⇢0, (6.20)

s�⇢̃� = �iv0 (1 � ⇣⇢0)k · (�p̃f � �p̃b) � 1

⌧f
(⇢0 + �⇢̃ + �⇢̃�) +

1

⌧b
(⇢0 + �⇢̃ � �⇢̃�) ,

(6.21)

s�p̃f = �i
1

4
v0k(�⇢̃ (1 � 2⇣⇢0) + �⇢̃�(1 � ⇣⇢0)) � 1

⌧f
�p̃f , (6.22)

s�p̃b = �i
1

4
v0k(�⇢̃ (1 � 2⇣⇢0) � �⇢̃�(1 � ⇣⇢0)) � 1

⌧b
�p̃b � 1

⌧f
�p̃f , (6.23)

where we assumed that ⇢(t = 0) = ⇢0 and all other fields vanish at t = 0. This system
of linear equations can be solved using a computer algebra system. From the resulting
density fluctuations �⇢̃, the MSD can be calculated using

h[r(t) � r(0)]2i = L
�1

⇢
1

2⇡

Z �
r2

k�⇢̃(k, s)
�
�(k)dk

�
(t), (6.24)

where L
�1 is the inverse Laplace transformation and r2

k is the Laplace operator with
respect to k. For the case ⌧f = ⌧b and in the limit ⌧c ! 0, the MSD Eq. (6.2) is
recovered. The diffusion constant can be calculated by

D = lim
t!1

h[r(t) � r(0)]2i
4t

=
v
2
0 (⇢0⇣ � 1)

4 (⌧b + ⌧f )

⇥
2 (⇢0⇣ � 1) ⌧

2
b + (2 � ⇢0⇣) ⌧b⌧f + (�2 + 3⇢0⇣) ⌧

2
f

⇤
, (6.25)

which in the limit of ⇣ ! 0 gives Eq.(6.6).

6.5 Maximum in collective diffusion of run-reverse-flick

particles

To study the influence of the run-reverse-flick pattern on the collective behavior we
use the diffusion coefficient D. However, as we vary the run time ratio ⌧f/⌧b the bare
diffusion coefficient D0 of a single particle changes. Therefore, we normalize D/D0,
to only observe the collective effects. In addition to the run-time ratio, we vary the
filling fraction � of the system.

The resulting nonequilibrium phase diagram for the two-dimensional simulations
with only steric interactions and N = 2 ⇥ 105 particles can be seen in Fig. 6.5. For
a fixed filling fraction, the data consistently show a maximum at the runtime ratio of
⇠ 1.2. From the theory (Sec. 6.4.1) we can expand the normalized diffusion constant
to first order in ⇢0⇣ and obtain

D/D0 = 1 + ⇢0⇣
�⌧

2
b + 3⌧b⌧f � 5⌧

2
f

2
⇣
⌧2
b � ⌧b⌧f + ⌧2

f

⌘ + O(⇢20⇣
2), (6.26)
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Figure 6.5: Nonequilibrium phase diagram for two dimensional in-

teracting run-reverse-flick particles. The normalized diffusion constant

D/D0 is shown for different runtime ratios ⌧f/⌧b and filling fractions

� (color code). For fixed filling fraction a maximum at ⌧f/⌧b ⇠ 1.2 is

found. The black line shows the theoretical prediction of the maximum

from Eq. (6.26).

which has a maximum at the runtime ratio ⌧f/⌧b =
�
1 +

p
3
�
/2 ⇡ 1.37. This maxi-

mum approximately coincides with the maxima found in the simulations and is marked
with a black line in Fig.6.5.

The maximum in diffusion found in Fig. 6.5 and Eq. (6.26) constitutes an optimum
in the collective swimming behavior, that can be utilized by microorganisms using
the run-reverse-flick swimming strategy. In fact, it was measured by [16] that Vibrio

alginolyticus have a runtime ratio of ⌧f/⌧b ⇠ 1.3. This brings us to the hypothesis that
Vibrio alginolyticus bacteria optimized their run times to obtain a maximal collective
diffusion coefficient. However, to demonstrate this hypothesis more experiments with
different microorganisms that use the run-reverse-flick strategy would be needed.
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Chapter 7

Motility states of active particles

In this chapter we will present a theoretical model to study the statistical mechanics
of active particles exhibiting two motility states, which can be seen as a toy model
for the adhesion of bacteria to solid interfaces. The experimental system we have in
mind is a microswimmer in a quasi two dimensional confinement, that is initially in
a highly motile state, and then after a characteristic time ⌧ad it adheres to one of
the confining surfaces and transitions to a low motility state. A realistic example for
this is a Chlamydomonas reinhardtii cell, whose adhesion can be triggered by light
[159]. Figure 7.1(a) shows a cell in the motile state performing its breaststroke motion;
when the light is turned on, the cell adheres to a surface and it goes on to perform
a gliding motion on one of the surfaces [Fig.7.1(b)]. In the following we assume that
the transition to the gliding state is irreversible, that is, no transitions back to the
high motility state is possible.

We will now first present the analytical treatment of this problem including an
exact solution for the ISF, which we will support using active Brownian simulations
and we will discuss the non-ergodic effects. Additionally, we will show the MSD of
such a process, which shows an interesting subdiffusive regime.
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Figure 7.1: Schematic representation of a Chlamydomonas rein-
hardtii cell in a quasi two dimensional confinement with different motil-

ity stages: (a) performing the highly motile breaststroke motion; (b)

the less motile gliding motion on the surface of a substrate.

7.1 Intermediate scattering function of two active motility

states

To treat the problem of two active motility states we propose the following equations
for the probability to be in the highly active state Ph(r, eh) with position r and
orientation eh('h) and the low active state with probability Pl(r, el) with orientation
el('l), which are given by

@Ph(r, 'h, t)

@t
= � vhe('h) · rPh(r, 'h, t)

+ DR,h
@
2
Ph(r, 'h, t)

@'2
h

+ DT,hr2
Ph(r, 'h, t) � 1

⌧
Ph(r, 'h, t), (7.1)

@Pl(r, 'l, t)

@t
= � vle('l) · rPl(r, 'l, t)

+ DR,l
@
2
Pl(r, 'l, t)

@'2
l

+ DT,lr2
Pl(r, 'l, t) +

1

⌧
Ph(r, 'h, t). (7.2)

For the sake of simplicity, we will consider here dynamics in 2d, strictly. Here, vh

and vl are the self-propulsion velocities, DT,h and DT,l are the translational diffusion
coefficients, DR,h and DR,l are the rotational diffusion coefficients associated to the
high and low motility state respectively, and ⌧ is the characteristic switching time
after which the particle switches from the high to the low motility state. The total
probability of finding a particle at position r at time t is then given by

P (r, t) =

Z 2⇡

0
Ph(r, 'h, t)d'h +

Z 2⇡

0
Pl(r, 'l, t)d'l. (7.3)

The Fourier transform of the total probability [Eq.(7.3)] is related to the ISF which
measures the density-density correlations in Fourier space and is given by

F (k, t) =
1

N
h⇢k(t)⇢�k(0)i, (7.4)

where N is the number of particles in the system, k is the wave vector in Fourier space
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and ⇢k is the density in Fourier space. Using Eq.(7.3) and the definition in Eq.(7.4)
the ISF can be written as

F (k, t) =

Z 2⇡

0
P̃h(r, 'h, t)d'h

Z 2⇡

0
P̃h(r, 'h, 0)d'h

+

Z 2⇡

0
P̃l(r, 'l, t)d'l

Z 2⇡

0
P̃l(r, 'l, 0)d'l, (7.5)

where f̃(k) is the two-dimensional Fourier transform of the function f with wave
vector k.

To find an explicit expression for the ISF [Eq. (7.5)] we transform Eq. (7.1)-(7.2)
into Fourier space; the equations then read

@P̃h(k, 'h, t)

@t
= � ivhe('h) · kP̃h(k, 'h, t)

+ DR,h
@
2
P̃h(k, 'h, t)

@'2
h

� DT,hk
2
P̃h(k, 'h, t) � 1

⌧
P̃h(k, 'h, t), (7.6)

@P̃l(k, 'l, t)

@t
= � ivle('l) · kP̃l(k, 'l, t)

+ DR,l
@
2
P̃l(k, 'l, t)

@'2
l

� DT,lk
2
P̃l(k, 'l, t) +

1

⌧
P̃h(k, 'h, t). (7.7)

We will now first treat Eq. (7.6) as it can be solved alone, and then use the result to
compute the solution of Eq. (7.7). Without loss of generality we can write the wave
vector as

k = k

 
cos ✓k

sin ✓k

!
, (7.8)

then the scalar product of the orientation and the wave vector in Eq.(7.6) is

e · k = k

 
cos 'h

sin 'h

!
·
 

cos ✓k

sin ✓k

!
= k cos('h � ✓k). (7.9)

Plugging Eq. (7.9) back into Eq. (7.6) gives

@P̃h(k, 'h, t)

@t
= � ivhk cos('h � ✓k)P̃h(k, 'h, t)

+ DR,h
@
2
P̃h(k, 'h, t)

@'2
h

� DT,hk
2
P̃h(k, 'h, t) � 1

⌧
P̃h(k, 'h, t), (7.10)

where i =
p

�1 is the imaginary unit. To make further progress we use a separation
of variables Ansatz (neglecting k as it can now be considered a parameter) given by

P̃h(k, 'h, t) = A(t)�('h), (7.11)
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which gives the two ordinary differential equations

@A(t)

@t
=


�DT,hk

2 � 1

⌧
�

DR,hah

4

�
A(t), (7.12)

@
2
�('h)

@'2
h

=


�i

vhk

DR,h
cos('h � ✓k) +

ah

4

�
�('h), (7.13)

with separation constant ah. Equation (7.12) is solved by a simple exponential, which
is

A(t) = e

h
�DT,hk2� 1

⌧ �
DR,hah

4

i
t
, (7.14)

whereas Eq.(7.13) can be transformed into the Mathieu equation, that is

@
2
�(')

@'2
= [�2is cos(2') + ah] �('), (7.15)

where we used the variable transformation ' = ('h�✓k)/2 and replaced s = 2vhk/DR,h.
The solution to the Mathieu equations [Eq. (7.15)] is given by the periodic Mathieu
functions ce2m(', is) which can be expressed as a Fourier series [160]

ce2m(', is) =
1X

r=0

A
(2m)
h,2r cos(2r'), (7.16)

where the Fourier coefficients are determined by the following eigenvalue problem [160]

0

BBBBBBBBBBBB@

0
p

2isp
2is 4 is

is 16 is

is 36 is

. . . . . . . . .
is 4r

2
is

. . .

1

CCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

p
2A

(2m)
h,0

A
(2m)
h,2

A
(2m)
h,4

A
(2m)
h,6
...

A
(2m)
h,2r
...

1

CCCCCCCCCCCCCA

= ah,2m

0

BBBBBBBBBBBBB@

p
2A

(2m)
0

A
(2m)
h,2

A
(2m)
h,4

A
(2m)
h,6
...

A
(2m)
h,2r
...

1

CCCCCCCCCCCCCA

. (7.17)

Here, the constant ah that arises from the separation of variables takes on the eigen-
values ah,2m. The solution of P̃h(k, 'h, t) then reads

P̃h(k, 'h, t) = e
[�DT,hk2� 1

⌧ ]t
1X

m=0

e
�

DR,hah,2m
4 tce2m(('h � ✓k)/2, i2vhk/DR,h), (7.18)

and the orientation average is

Z 2⇡

0
P̃h(r, 'h, t)d'h = e

[�DT,hk2� 1
⌧ ]t

1X

m=0

e
�

DR,hah,2m
4 t

A
2m
h,0, (7.19)

which in the limit ⌧ ! 1 was also reported in [102].
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Furthermore, the limit ⌧ ! 1 of Eq.(7.19) is also the homogeneous solution of
Eq.(7.7) (with appropriate constants DT,l, DR,l, vl) and the full solution of Eq.(7.7)
can be found using the method of variation of parameters. It is important to note
that we can only solve Eq.(7.7) because we assumed that the orientation variables eh
and el in high and low activity state [Eq.(7.1)-(7.2)] are different. The orientation
average of the full solution of the low activity state [Eq.(7.7)] is given by

Z 2⇡

0
P̃l(r, 'l, t)d'l =

1X

n=0

e
�!n

l A
2n
l,0

 
1

⌧

1X

m=0

1

!m
h � !n

l

A
2m
h,oe

�(!m
h �!n

l )t + Cl

!
, (7.20)

where we used !
m
h = k

2
DT,h + 1/⌧ + DR,hah,2m/4 and !

n
l = k

2
DT,l + DR,lal,2n/4,

and where A
2n
l,0 and al,2n are determined with Eq.(7.17) and the appropriate constants

DT,l, DR,l and vl.
Summing Eq.(7.19) and Eq.(7.20) gives the ISF of the full system [Eq.(7.5)], which

will be further discussed in Sec.7.4.

7.2 Simulation of two active motility states

To simulate a system with two active motility states we use the following equations
in the highly motile state

dr(t)

dt
= �vheh � �h(t), (7.21)

deh(t)

dt
= ⌘h(t) ⇥ eh(t), (7.22)

where r is the position, eh the orientation, vh is the self-propulsion velocity and �h

and ⌘h are fluctuating terms with correlation functions

h�h(t)i = 0, (7.23)

h�h(t) ⌦ �h(t + �t)i = 2DT,h�(�t)I, (7.24)

h⌘h(t)i = 0, (7.25)

h⌘h(t) ⌦ ⌘h(t + �t)i = 2DR,h�(�t)I, (7.26)

where DT,h is the translational and DR,h the rotational diffusion coefficient in the
high motility state. After a time tswitch which is a random number drawn from the
exponential distribution e

� tswitch
⌧ with characteristic switching time ⌧ , the system goes

to the low motility state. The equations of motion in the low motility state are

dr(t)

dt
= �vlel � �l(t), (7.27)

del(t)

dt
= ⌘l(t) ⇥ el(t), (7.28)

where the position r from Eq. (7.21) is kept, but the particle obtains a new ran-
dom orientation el. Also, the fluctuating terms change to �l and ⌘l with correlation
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functions

h�l(t)i = 0 (7.29)

h�l(t) ⌦ �l(t + �t)i = 2DT,l�(�t)I (7.30)

h⌘l(t)⌦i = 0 (7.31)

h⌘l(t)⌘l(t + �t)i = 2DR,l�(�t)I (7.32)

where DT,l and DR,l are the translational and rotational diffusion coefficients in the
low motility state. To integrate Eq. (7.21)-(7.22) and Eq. (7.27)-(7.28) numerically
we use the algorithm show in Sec. 3.1.2.

7.3 Mean square displacement of two active motility states

The MSD can be found using the ISF by means of the relation

h(r(t) � r(0))2i = �6
@

@(k2)
F (k, t)|k2=0. (7.33)

Using the result for the ISF from Sec.7.1 we find the following expression for the MSD

h(r(t) � r(0))2i = 2

(
v
2
h⌧
⇥
1 � e

�t/⌧
⇤

DR,h
�

v
2
h⌧

⇣
1 � e

�t(DR,h+1/⌧)
⌘

DR,h (1 + DR,h⌧)

+ 2DT,l

h
t + ⌧

⇣
e
�t/⌧ � 1

⌘i
+

e
�t(DR,l+1/⌧)

D2
R,l (DR,l⌧ � 1)

⇥
"

� v
2
l e

t/⌧ + e
t(DR,l+1/⌧) (DR,l⌧ � 1)

�
2D

2
R,lDT,h⌧ + v

2
l (DR,lt � 1 � DR,l⌧)

�

� D
2
R,l⌧e

DR,lt
�
�v

2
l ⌧ + 2DT,h (DR,l⌧ � 1)

�
#)

. (7.34)

In Fig. 7.2 we show the MSD from Eq. (7.34) as well as simulated MSDs [Eq. (7.21)-
(7.22) and Eq. (7.27)-(7.28)] for different adhesion times ⌧ . The parameters we used
are summed up in Tab. 7.1.

DT,h 0.02vh�

DR,h 3DT,h/�
2

vl 0.1vh

DT,l 0.002vh�

DR,l 3DT,l/�
2

Table 7.1: Parameter values used for the MSD in Fig. 7.2 and the

ISF in Fig. 7.3, where � is the particle radius and vh is the particle

velocity in the high motility state.
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Figure 7.2: MSD of an active particle with two motility states.

Data points show the simulations and lines show the analytical results

Eq. (7.34). Different colors show the MSD with different switching

times ⌧ , the dotted line shows a linear and the dashed-dotted shows

a quadratic scaling. The inset shows a zoom of the data, where a

plateau of the MSD can be seen. This is related to the switching of

the motility state.

The MSD in Fig. 7.2 shows up to five characteristic regimes: (i) for very small
times the behavior is diffusive, due to simple translational diffusion; (ii) the second
scaling is ballistic which is induced by the activity; (iii) next, there is another diffusive
scaling which comes from the rotational diffusion; (iv) the following regime shows a
plateau, which is related to the switching to a lower motility state; and (v) finally
shows a diffusive regime.

Interestingly, the system has a non-ergodic behavior, as the MSD shows a lev-
eling off, which is induced by the switching of motility states. This behavior has
an important consequence for the statistical analysis of the MSD of active particles
or microswimmers. Imagine an experimental situation where the data acquired stop
somewhere during the plateau regime. The experimentalist might conclude that a
subdiffusive regime is reached. Our results however show that this is only a transient
state, and a true diffusive regime will be reached at much later times. Again, this is
a consequence of the switching of motility states. While this is not so common for
artificial swimmers, it is a regularly encountered situation in biological swimmers.

7.4 Intermediate scattering function of two motility states

The ISF measures the density-density correlations in Fourier space and thus holds the
full information of a dynamical system. In general it is given by

F (k, t) =
1

N
h⇢k(t)⇢�k(0)i, (7.35)

where N is the number of particles in the system, k is the wavevector in Fourier
space, and ⇢k is the Fourier transform of the density. In Sec. 7.1 we derived the
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ISF analytically and from particle based simulations it is easily computed using the
definition of the Fourier transform.

In Fig. 7.3 the ISF of an active Brownian particle with two different motility states
can be seen. We show different switching times, and a range of wavevectors for each
switching time. The parameters we used are the same as in Sec. 7.3 and are displayed
in Tab. 7.1.

It can be seen that the analytical calculation and the numerical results agree
extremely well for several orders of magnitude in time, for all switching times and wave
vectors. In the behavior of the ISF several regimes can be seen: for large wave vectors
(Fig. 7.3 red and orange data) and small times the ISF oscillates, which corresponds
to particles running on straight path, i.e. ballistic motion. On intermediate time
scales and small wave vectors (Fig. 7.3 blue and purple data), the ISF first decays,
corresponding to a diffusive motion and then becomes constant, which is induced by
the switching to a lower motility state. Finally, the ISF decays to zero due to the
diffusive motion in the lower motility state. Interestingly this resembles the behavior
of a supercooled liquid, as it is known from glass physics [161]. In case of a supercooled
liquid the ISF levels off due to a caging effect: the particles are very closely packed
such that they can barely move. However, the caging effect can be seen as a lower
motility state, since it effectively reduces the diffusion coefficient. This is very similar
to our two motility stage model as the activity is reduced here, which effectively results
in a lower diffusion coefficient.

Our calculations (both analytical and simulational) were restricted to 2d. It is
interesting to extend these calculations to 3d, and verify which conclusions still hold.
We leave this task to future work.
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Figure 7.3: Intermediate scattering function (ISF) for different

switching times ⌧ . For each switching time a range of wavevectors

k
⇤ = kvh/⌧ is shown (color code). The data points show simulations

and the lines show the analytical calculation from Sec. 7.1. The level-

ing off in the ISF is induced by the switching of motility states.
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Chapter 8

Conclusions and outlook

8.1 Conclusions

In this thesis we have studied the collective effects of microswimmers in complex en-
vironments. We investigated the effects of confinement on the alga Chlamydomonas

reinhardtii, the influence of hydrodynamic interactions between microswimmers, the
implications on collective motion of the run-reverse-flick swimming strategy and sta-
tistical effects of an active Brownian particle with two motility stages.

In Chapter 4 we studied the swimming behavior of a single Chlamydomonas rein-

hardtii cell in a quasi two-dimensional circular and elliptical confinement. We showed
that the Chlamydomonas reinhardtii cell has an increased probability to swim close
to a wall, and discovered that the probability of being close to the wall scales with
the wall curvature. In fact, we found that this curvature guidance is a direct conse-
quence of the shape anisotropy of the cell and its flagella. From a theoretical point
of view, the key ingredient in our model is the torque that is associated with the
shape anisotropy. However, it is noteworthy that we did not need to include any
hydrodynamic interactions into the model to explain the swimming behavior.

Chapter 5 deals with the consequences of hydrodynamics on microswimmers. Here,
we first presented a new model that has an anisotropic swimmer shape similar to the
Chlamydomonas reinhardtii model in Chapter 4, but also takes into account the hy-
drodynamic flow fields that were experimentally measured for puller- and pusher-type
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swimmers. To capture the entire hydrodynamic interactions we employed the mul-
tiparticle collision dynamics technique that was presented in Sec. 3.2. We studied
the nonequilibrium phase diagram of a collection of swimmers and found that they
exhibit density heterogeneities. In fact, we discovered a maximum in the density
heterogeneities at an intermediate filling fraction, which represents an optimum for
a self-concentration of the microswimmers. Importantly, this effect is induced by a
competition between hydrodynamic and steric interactions between the microswim-
mers. Here, the hydrodynamic interactions destabilize the system leading in principle,
to divergent density fluctuations. This instability however is tempered by the steric
interactions between the swimmers. This competition of hydrodynamic and steric
forces is recovered by the analytical theory that we present. It is worth pointing out
that the density heterogeneities that we found have nothing to do with the so-called
motility induced phase separation. This latter is a clustering effect that appears only
due to a very slow reorientation dynamics (i.e. very low rotational diffusivity) of the
particles. To date, no experiment has observed the dramatic condensation of active
particles predicted by motility induced phase separation. Additionally, the maximum
in density heterogeneities described in this thesis appears at a much lower filling frac-
tion than motility induced phase separation, which makes it relevant for biological
microswimmers.

The effect of the run-reverse-flick swimming strategy on the collective behavior
of microswimmers was studied in Chapter 6. Here, we first presented methods for
how to include the run-reverse-flick swimming strategy into Brownian dynamics and
squirmer simulations. We also show an approach to include steric interactions into
an analytical theory that includes the run-reverse-flick swimming strategy. Using
these computational and analytical methods, we studied the behavior of collective
diffusion of run-reverse-flick microswimmers. We find a maximum in the dependence
of the collective diffusion coefficient on the forward to backward runtime ratio for a
rather broad range of filling fractions. This maximum consistently occurs at a runtime
ratio of 1.2. Physically, this maximum represents an optimum in the diffusivity of
large numbers of microswimmers. Intriguingly, this is the same ratio that was found
experimentally for the bacterium Vibrio alginolyticus [16], which brings us to the
hypothesis that the organism tuned its runtime ratio to match the optimal collective
diffusion. If these results were to be confirmed for multiple organisms, they would
point to the tantalizing conclusion that specific physical forces applied an evolutionary
pressure that shaped a very delicate balance of biomolecular processes internal to the
cell. This is, of course, an ambitious research project left for the future.

Chapter 7 deals with the statistical effects of microswimmers with two motility
stages. We present a toy model, which has two motility stages and find an exact
analytical expression for the ISF of the system. We study the MSD of the system
and find a subdiffusive regime, which is induced by the switching of motility states.
Furthermore, we investigate the ISF and find a non-ergodic behavior for which we
draw a comparison to a supercooled liquid.
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Figure 8.1: Probability flux of a Chlamydomonas reinhardtii cell in-

side a quasi two dimensional elliptical confinement. Top panel shows

the experimental data and bottom panel the simulations (see also

Chapter 4). The apparent loops in the probability flux are a hall-

mark of nonequilibrium behavior. The figure was kindly provided by

Jan Cammann.

8.2 Outlook

The topic of this thesis “collective effects of microswimmers in complex environments”
is rather general, hence there is a plethora of future work. We will present possibilities
and some preliminary results for each chapter from 4 to 7 in the following.

In Chapter 4 we showed that the motility of a Chlamydomonas reinhardtii is guided
by the confining walls. However, the confining geometries we studied were limited
to a number of circular and elliptical confining chambers. Since Chlamydomonas

reinhardtii is a soil-dwelling alga, it frequently encounters more complex confinements.
Therefore, we aim to analyze the behavior inside different elliptical chambers in more
detail. In Fig. 8.1 we show the probability flux inside an ellipse, where one can
identify loops in the probability flux. As pointed out by [162] this is a hallmark of the
nonequilibrium character of the system, which we will try to characterize further in
the future. We hope that this will enable us to also understand the dynamics inside
more complex geometries, which can also include convex curvatures that are more
common in natural environments.
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The density heterogeneities due to the hydrodynamic interactions between mi-
croswimmers that we find in Chapter 5, are rather loose, dynamic structures. Fur-
ther analysis of these structures including a comparison to experiments would help
to elucidate how relevant the hydrodynamic interactions are for collective motion of
microswimmers. Another interesting question is whether the system shows bacterial
turbulence of the type depicted in Fig. 1.1(b). Our simulations could give a more
detailed insight into the nature of this phenomenon as we have direct access to the
hydrodynamic flows and the microswimmer flows. However, studying the influence
of confining walls on the collective behavior is another interesting question. So far,
the effect of flat, planar walls has been studied, but in the natural environment the
confining surfaces of, for example, a Chlamydomonas reinhardtii cell in soil are very
rough. We think that a roughness of the confining walls will tremendously effect the
corresponding fluid flows, as well as the microswimmer surface interaction and hence
the collective behavior.

Concerning the run-reverse-flick strategy an interesting question is to see if a sim-
ilar effect as motility induced phase separation can be found. A preliminary nonequi-
librium phase diagram on this matter can be seen in Fig. 8.2. Here, we do not find
any large scale clusters, as for the motility induced phase separation, but we rather
find small dynamic clusters. Also, these dynamic clusters are in a very different region
in phase space as compared to motility induced phase separation, hence we conclude
that the origin is different. However, further analysis including a comparison with
our analytical theory (Sec. 6.4) is needed here. Nonetheless, motility induced phase
separation seems to be suppressed because of the backward run phase, which prevents
the particles from blocking each other.

Another interesting question concerns the adhesion of particles to surfaces in com-
bination with the influence of collective effects. In Chapter 7 we presented a toy model
to study the effect of different motility stages. It would be interesting to further de-
velop this model in three dimensions and introduce a probabilistic mechanism for ad-
hesion. Collective effects will then certainly play a more important role, since particles
should be able to adhere to one another. Importantly, electrostatic interactions are
often considered to play a crucial role in the bacterial adhesion process. Therefore, we
would suggest to include into our simulations a DLVO-type (Derjaguin, Landau, Ver-
wey, Overbeek) potential (between particles and with the confining surfaces), which
describes the electrostatic interactions between charged surfaces immersed in a liquid
medium.
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Figure 8.2: Phase diagram of run-reverse-flick model of active parti-

cles in two dimensions. The abscissa shows the runtime ratio and the

ordinate shows the packing fraction. Blue symbols indicate a homoge-

neous particle configuration, red symbols show dynamic clusters. No

large scale clusters as in motility induced phase separation are found.

The figure was kindly provided by Arghadwip Paul.
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Appendix

The hybrid MD-MPCD code that was used in Sec. 5.1 was developed by us. No
simulation package was used. Since the implementation of the force poles is the
computationally novel part of the simulation, we give the corresponding CUDA kernels
here. MPCD simulation of Sec. 5.1. The code snippet for our puller-type swimmers
is:

__global__ void SRD_add_force_swimmers_GPU(
int *gost_list ,
FLOATTYPE *molecule_x ,FLOATTYPE *molecule_y , FLOATTYPE *molecule_z ,
FLOATTYPE *molecule_velocity_x ,
FLOATTYPE *molecule_velocity_y ,
FLOATTYPE *molecule_velocity_z ,
FLOATTYPE *molecule_q0 ,
FLOATTYPE *molecule_q1 ,
FLOATTYPE *molecule_q2 ,
FLOATTYPE *molecule_q3 ,
FLOATTYPE *molecule_O_x ,
FLOATTYPE *molecule_O_y ,
FLOATTYPE *molecule_O_z ,
FLOATTYPE *molecule_e_x ,
FLOATTYPE *molecule_e_y ,
FLOATTYPE *molecule_e_z ,
FLOATTYPE *molecule_force_direction_front_1_x ,
FLOATTYPE *molecule_force_direction_front_1_y ,
FLOATTYPE *molecule_force_direction_front_1_z ,
FLOATTYPE *molecule_force_direction_front_2_x ,
FLOATTYPE *molecule_force_direction_front_2_y ,
FLOATTYPE *molecule_force_direction_front_2_z ,
FLOATTYPE *molecule_force_direction_back_x ,
FLOATTYPE *molecule_force_direction_back_y ,
FLOATTYPE *molecule_force_direction_back_z ,
FLOATTYPE *molecule_ux ,FLOATTYPE *molecule_uy , FLOATTYPE *molecule_uz ,
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FLOATTYPE *molecule_umass ,
FLOATTYPE *SRD_ptls_x ,FLOATTYPE *SRD_ptls_y ,FLOATTYPE *SRD_ptls_z ,
FLOATTYPE *SRD_ptls_vx ,FLOATTYPE *SRD_ptls_vy ,FLOATTYPE *SRD_ptls_vz ,
int *molecule_flick_key ,
FLOATTYPE *Upx , FLOATTYPE *Upy , FLOATTYPE *Upz ,
FLOATTYPE *Mxyz ,
FLOATTYPE X0 ,FLOATTYPE Y0,FLOATTYPE Z0,
int *Unorm , int *Ulist ,
int *lockSRD ,int *lockMD)

{

int n;
int l_srd_work_particle;

FLOATTYPE v_add_x=0,v_add_y=0,v_add_z =0;

FLOATTYPE l_dx , l_dy , l_dz;
FLOATTYPE l_dx_2 , l_dy_2 , l_dz_2;
FLOATTYPE l_dist;
FLOATTYPE l_dist_1;
FLOATTYPE l_dist_2;
FLOATTYPE s_x ,s_y ,s_z;
FLOATTYPE s_x1 ,s_y1 ,s_z1;
FLOATTYPE s_x2 ,s_y2 ,s_z2;
FLOATTYPE ix ,iy,iz;

int is_sphere =0;

int molecule_SRD_x ,molecule_SRD_y ,molecule_SRD_z;
FLOATTYPE l_SRD_ptls_x ,l_SRD_ptls_y ,l_SRD_ptls_z;

int l_swimmer_cells = (int )(( FLOATTYPE)Nx*O_SIDEX) + EXTRABOX_FD /2;
FLOATTYPE l_molecule_x ,l_molecule_y ,l_molecule_z;

int i1 = blockIdx.x*blockDim.x + threadIdx.x;
int i2 = i1 % ( (int )((Nx*2* O_SIDEX+EXTRABOX_FD )*

(Ny*2* O_SIDEY+EXTRABOX_FD )*(Nz*2* O_SIDEZ+EXTRABOX_FD )));
int i= (i1-i2)/( (int )((Nx*2* O_SIDEX+EXTRABOX_FD )*

(Ny*2* O_SIDEY+EXTRABOX_FD )*(Nz*2* O_SIDEZ+EXTRABOX_FD )));

if(i1 <( N_PARTICLE* (int )((Nx*2* O_SIDEX+EXTRABOX_FD )*
(Ny*2* O_SIDEY+EXTRABOX_FD )*(Nz*2* O_SIDEZ+EXTRABOX_FD )) )

&& i < N_PARTICLE && i >=0)
{

int index;

l_molecule_x =molecule_x[i];
l_molecule_y =molecule_y[i];
l_molecule_z =molecule_z[i];

SRD_find_index(l_molecule_x ,l_molecule_y ,l_molecule_z ,&index ,
&molecule_SRD_x ,& molecule_SRD_y ,& molecule_SRD_z ,

0.0, 0.0, 0.0);

int k1 = i2 % ( (int )((Ny*2* O_SIDEY+EXTRABOX_FD)
*(Nz*2* O_SIDEZ+EXTRABOX_FD ))) ;

int k= molecule_SRD_x - l_swimmer_cells
+ (i2 -k1) / ( (int )((Ny*2* O_SIDEY+EXTRABOX_FD )*
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(Nz*2* O_SIDEZ+EXTRABOX_FD )));

int m = k1 % ((int)((Nz*2* O_SIDEZ+EXTRABOX_FD ))) ;
int l= molecule_SRD_y - l_swimmer_cells

+ (k1 - m) / ( (int)((Nz*2* O_SIDEZ+EXTRABOX_FD )));

m= molecule_SRD_z - l_swimmer_cells + m;

if(k>=Nx) k -= Nx;
if(k<0) k+=Nx;
if(l>=Ny) l -= Ny;
if(l<0) l+=Ny;
if(m>=Nz) m -= Nz;
if(m<0) m+=Nz;

//two forces on front sphere:
FLOATTYPE lab_direction_force_1_x=DIRECTION_FORCE_1_X;
FLOATTYPE lab_direction_force_1_y=DIRECTION_FORCE_1_Y;
FLOATTYPE lab_direction_force_1_z=DIRECTION_FORCE_1_Z;

FLOATTYPE lab_direction_force_2_x=DIRECTION_FORCE_2_X;
FLOATTYPE lab_direction_force_2_y=DIRECTION_FORCE_2_Y;
FLOATTYPE lab_direction_force_2_z=DIRECTION_FORCE_2_Z;

rotate_frame (& lab_direction_force_1_x ,
&lab_direction_force_1_y ,
&lab_direction_force_1_z ,
molecule_q0[i],molecule_q1[i],
molecule_q2[i],molecule_q3[i],1);

rotate_frame (& lab_direction_force_2_x ,
&lab_direction_force_2_y ,
&lab_direction_force_2_z ,
molecule_q0[i],molecule_q1[i],
molecule_q2[i],molecule_q3[i],1);

molecule_shift (&s_x , &s_y ,&s_z ,
l_molecule_x ,l_molecule_y ,l_molecule_z ,
lab_direction_force_1_x ,
lab_direction_force_1_y ,
lab_direction_force_1_z ,F_DIST_FRONT_1 );

molecule_shift (&s_x1 , &s_y1 ,&s_z1 ,
l_molecule_x ,l_molecule_y ,l_molecule_z ,
lab_direction_force_2_x ,
lab_direction_force_2_y ,
lab_direction_force_2_z ,F_DIST_FRONT_2 );

index_to_position (&ix ,&iy ,&iz, k, l, m , 0.0, 0.0, 0.0);

distanceSRD( s_x ,s_y ,s_z ,ix ,iy,iz ,&l_dx ,&l_dy ,&l_dz ,& l_dist );
distanceSRD( s_x1 ,s_y1 ,s_z1 ,ix,iy,iz ,&l_dx ,&l_dy ,&l_dz ,& l_dist_1 );

molecule_shift (&s_x2 , &s_y2 ,&s_z2 ,
l_molecule_x ,l_molecule_y ,l_molecule_z ,
molecule_e_x[i], molecule_e_y[i], molecule_e_z[i],
-F_DIST_BACK );

distanceSRD( s_x2 ,s_y2 ,s_z2 ,ix,iy,iz ,&l_dx ,&l_dy ,&l_dz ,& l_dist_2 );
if( l_dist < FORCE_SHELL_F )
{
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is_sphere =0;
}
if( l_dist_1 < FORCE_SHELL_F )
{

is_sphere =1;
}
if( l_dist_2 < FORCE_SHELL_B )
{

is_sphere =2;
}

if(is_sphere ==0 || is_sphere ==1 || is_sphere ==2 )
{

for(n=0; n<Unorm[k + N0*l+ N1*m];n++)
{

l_srd_work_particle= Ulist[ (k + N0*l+ N1*m )* N3 + n];

if(gost_list[l_srd_work_particle] ==-1
|| gost_list[l_srd_work_particle] ==-2 )

{

l_SRD_ptls_x= SRD_ptls_x[l_srd_work_particle] ;
l_SRD_ptls_y= SRD_ptls_y[l_srd_work_particle] ;
l_SRD_ptls_z= SRD_ptls_z[l_srd_work_particle] ;

FLOATTYPE f_dir_x;
FLOATTYPE f_dir_y;
FLOATTYPE f_dir_z;

if( is_sphere ==0 )
{

distanceSRD(l_SRD_ptls_x ,
l_SRD_ptls_y ,
l_SRD_ptls_z ,
s_x ,s_y ,s_z ,
&l_dx ,&l_dy ,&l_dz ,& l_dist );

f_dir_x=molecule_force_direction_front_1_x[i];
f_dir_y=molecule_force_direction_front_1_y[i];
f_dir_z=molecule_force_direction_front_1_z[i];

}

if( is_sphere ==1 )
{

distanceSRD(l_SRD_ptls_x ,
l_SRD_ptls_y ,
l_SRD_ptls_z ,
s_x1 ,s_y1 ,s_z1 ,
&l_dx ,&l_dy ,&l_dz ,& l_dist );

f_dir_x=molecule_force_direction_front_2_x[i];
f_dir_y=molecule_force_direction_front_2_y[i];
f_dir_z=molecule_force_direction_front_2_z[i];

}
else if( is_sphere ==2 )
{

distanceSRD(l_SRD_ptls_x ,
l_SRD_ptls_y ,
l_SRD_ptls_z ,
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s_x2 ,s_y2 ,s_z2 ,
&l_dx ,&l_dy ,&l_dz ,& l_dist );

f_dir_x=molecule_force_direction_back_x[i];
f_dir_y=molecule_force_direction_back_y[i];
f_dir_z=molecule_force_direction_back_z[i];

}

if( (l_dist < FORCE_RADIUS_F_SQ && is_sphere ==0 )
|| (l_dist < FORCE_RADIUS_F_SQ && is_sphere ==1 )
|| (l_dist < FORCE_RADIUS_B_SQ && is_sphere ==2 ) )

{
distanceSRD(l_SRD_ptls_x ,

l_SRD_ptls_y ,
l_SRD_ptls_z ,
l_molecule_x ,l_molecule_y ,l_molecule_z ,
&l_dx_2 ,&l_dy_2 ,&l_dz_2 ,& l_dist_2 );

v_add_x = MDforce * f_dir_x -molecule_velocity_x[i]
- molecule_O_y[i]* l_dz_2
+ molecule_O_z[i]* l_dy_2;

v_add_y = MDforce * f_dir_y -molecule_velocity_y[i]
- molecule_O_z[i]* l_dx_2
+ molecule_O_x[i]* l_dz_2;

v_add_z = MDforce * f_dir_z -molecule_velocity_z[i]
- molecule_O_x[i]* l_dy_2
+ molecule_O_y[i]* l_dx_2;

SRD_ptls_vx[l_srd_work_particle ]+= v_add_x;
SRD_ptls_vy[l_srd_work_particle ]+= v_add_y;
SRD_ptls_vz[l_srd_work_particle ]+= v_add_z;

SRD_ptls_x[l_srd_work_particle ]+=
v_add_x*O_SIDEX*DTSRD *0.5;

SRD_ptls_y[l_srd_work_particle ]+=
v_add_y*O_SIDEY*DTSRD *0.5;

SRD_ptls_z[l_srd_work_particle ]+=
v_add_z*O_SIDEZ*DTSRD *0.5;

}
}

}
}

}
}

For the pusher-type swimmers the code snippet is:
__global__ void SRD_add_force_swimmers_GPU(

int *gost_list ,
FLOATTYPE *molecule_x ,FLOATTYPE *molecule_y , FLOATTYPE *molecule_z ,
FLOATTYPE *molecule_velocity_x ,
FLOATTYPE *molecule_velocity_y ,
FLOATTYPE *molecule_velocity_z ,
FLOATTYPE *molecule_O_x ,
FLOATTYPE *molecule_O_y ,
FLOATTYPE *molecule_O_z ,
FLOATTYPE *molecule_e_x ,
FLOATTYPE *molecule_e_y ,
FLOATTYPE *molecule_e_z ,
FLOATTYPE *molecule_ux ,FLOATTYPE *molecule_uy ,
FLOATTYPE *molecule_uz ,FLOATTYPE *molecule_umass ,
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FLOATTYPE *SRD_ptls_x ,FLOATTYPE *SRD_ptls_y ,FLOATTYPE *SRD_ptls_z ,
FLOATTYPE *SRD_ptls_vx ,FLOATTYPE *SRD_ptls_vy ,FLOATTYPE *SRD_ptls_vz ,
FLOATTYPE *molecule_q0 ,FLOATTYPE *molecule_q1 ,
FLOATTYPE *molecule_q2 ,FLOATTYPE *molecule_q3 ,
int *molecule_flick_key ,
FLOATTYPE *Upx , FLOATTYPE *Upy , FLOATTYPE *Upz ,
FLOATTYPE *Mxyz ,
FLOATTYPE X0 ,FLOATTYPE Y0,FLOATTYPE Z0,
int *Unorm , int *Ulist ,
int *lockSRD ,int *lockMD)

{

int n;
int l_srd_work_particle;

FLOATTYPE v_add_x=0,v_add_y=0,v_add_z =0;

FLOATTYPE l_dx , l_dy , l_dz;
FLOATTYPE l_dx_2 , l_dy_2 , l_dz_2;
FLOATTYPE l_dist;
FLOATTYPE l_dist_2;
FLOATTYPE s_x ,s_y ,s_z;
FLOATTYPE s_x2 ,s_y2 ,s_z2;
FLOATTYPE ix ,iy,iz;

int is_sphere =0;

int molecule_SRD_x ,molecule_SRD_y ,molecule_SRD_z;
FLOATTYPE l_SRD_ptls_x ,l_SRD_ptls_y ,l_SRD_ptls_z;

int l_swimmer_cells = (int )(( FLOATTYPE)Nx*O_SIDEX) + EXTRABOX_FD /2;
FLOATTYPE l_molecule_x ,l_molecule_y ,l_molecule_z;

int i1 = blockIdx.x*blockDim.x + threadIdx.x;
int i2 = i1 % ( (int )((Nx*2* O_SIDEX+EXTRABOX_FD )*

(Ny*2* O_SIDEY+EXTRABOX_FD )*(Nz*2* O_SIDEZ+EXTRABOX_FD )));
int i= (i1-i2)/( (int )((Nx*2* O_SIDEX+EXTRABOX_FD )*

(Ny*2* O_SIDEY+EXTRABOX_FD )*(Nz*2* O_SIDEZ+EXTRABOX_FD )));

if(i1 <( N_PARTICLE* (int )((Nx*2* O_SIDEX+EXTRABOX_FD )*
(Ny*2* O_SIDEY+EXTRABOX_FD )*(Nz*2* O_SIDEZ+EXTRABOX_FD )) )

&& i < N_PARTICLE && i >=0)
{

int index;

l_molecule_x =molecule_x[i];
l_molecule_y =molecule_y[i];
l_molecule_z =molecule_z[i];

SRD_find_index(l_molecule_x ,l_molecule_y ,l_molecule_z ,&index ,
&molecule_SRD_x ,& molecule_SRD_y ,& molecule_SRD_z ,

0.0, 0.0, 0.0);

int k1 = i2 % ( (int )((Ny*2* O_SIDEY+EXTRABOX_FD)
*(Nz*2* O_SIDEZ+EXTRABOX_FD ))) ;

int k= molecule_SRD_x - l_swimmer_cells
+ (i2 -k1) / ( (int )((Ny*2* O_SIDEY+EXTRABOX_FD)

*(Nz*2* O_SIDEZ+EXTRABOX_FD )));
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int m = k1 % ((int)((Nz*2* O_SIDEZ+EXTRABOX_FD ))) ;
int l= molecule_SRD_y - l_swimmer_cells

+ (k1 - m) / ( (int)((Nz*2* O_SIDEZ+EXTRABOX_FD )));

m= molecule_SRD_z - l_swimmer_cells + m;

if(k>=Nx) k -= Nx;
if(k<0) k+=Nx;
if(l>=Ny) l -= Ny;
if(l<0) l+=Ny;
if(m>=Nz) m -= Nz;
if(m<0) m+=Nz;

molecule_shift (&s_x , &s_y ,&s_z ,
l_molecule_x ,l_molecule_y ,l_molecule_z ,
molecule_e_x[i], molecule_e_y[i], molecule_e_z[i],

F_DIST_FRONT );

index_to_position (&ix ,&iy ,&iz, k, l, m , 0.0, 0.0, 0.0);

distanceSRD( s_x ,s_y ,s_z ,ix ,iy,iz ,&l_dx ,&l_dy ,&l_dz ,& l_dist );

molecule_shift (&s_x2 , &s_y2 ,&s_z2 ,
l_molecule_x ,l_molecule_y ,l_molecule_z ,
molecule_e_x[i], molecule_e_y[i], molecule_e_z[i],

-F_DIST_BACK );

distanceSRD( s_x2 ,s_y2 ,s_z2 ,ix,iy,iz ,&l_dx ,&l_dy ,&l_dz ,& l_dist_2 );
if( l_dist < FORCE_SHELL_F )
{

is_sphere =1;
}

if( l_dist_2 < FORCE_SHELL_B )
{

is_sphere =2;
}

if(is_sphere ==1 || is_sphere ==2 )
{

for(n=0; n<Unorm[k + N0*l+ N1*m];n++)
{

l_srd_work_particle= Ulist[ (k + N0*l+ N1*m )* N3 + n];

if(gost_list[l_srd_work_particle] ==-1 ||
gost_list[l_srd_work_particle] ==-2 )

{

l_SRD_ptls_x= SRD_ptls_x[l_srd_work_particle] ;
l_SRD_ptls_y= SRD_ptls_y[l_srd_work_particle] ;
l_SRD_ptls_z= SRD_ptls_z[l_srd_work_particle] ;

FLOATTYPE fdx=0.0,fdy=0.0,fdz =0.0;
FLOATTYPE rx ,ry,rz;

if( is_sphere ==1 )
{
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distanceSRD(
l_SRD_ptls_x ,

l_SRD_ptls_y ,
l_SRD_ptls_z ,s_x ,s_y ,s_z ,
&l_dx ,&l_dy ,&l_dz ,& l_dist );

rx = l_dx;
ry = l_dy;
rz = l_dz;
rotate_frame (&rx ,&ry ,&rz,

molecule_q0[i],molecule_q1[i],
molecule_q2[i],molecule_q3[i],0);

if(rz <0 && rz > -FORCE_RADIUS_F)
{

FLOATTYPE l_one_over_r_length=
1.0/ sqrtf(l_dist) ;

FLOATTYPE p_of_z= 1.0 +rz/FORCE_RADIUS_F;
fdx=-(1.0- p_of_z )*

MDforce* rx*l_one_over_r_length;
fdy=-(1.0- p_of_z )*

MDforce* ry*l_one_over_r_length;
fdz=-p_of_z

*MDforce* rz*l_one_over_r_length;
rotate_frame (&fdx ,&fdy ,&fdz ,

molecule_q0[i],molecule_q1[i]
,molecule_q2[i],molecule_q3[i],1);

}
else
{

fdx=MDforce* molecule_e_x[i];
fdy=MDforce* molecule_e_y[i];
fdz=MDforce* molecule_e_z[i];

}
}
else if( is_sphere ==2 )
{

distanceSRD(
l_SRD_ptls_x ,

l_SRD_ptls_y ,
l_SRD_ptls_z ,s_x2 ,s_y2 ,s_z2 ,

&l_dx ,&l_dy ,&l_dz ,& l_dist );

rx = l_dx;
ry = l_dy;
rz = l_dz;
rotate_frame (&rx ,&ry ,&rz,

molecule_q0[i],molecule_q1[i],
molecule_q2[i],molecule_q3[i],0);

if(rz >0 && rz< FORCE_RADIUS_B)
{

FLOATTYPE l_one_over_r_length=
1.0/ sqrtf(l_dist );

FLOATTYPE p_of_z= 1.0 - rz/FORCE_RADIUS_F;
fdx=-(1.0- p_of_z)

*MDforce* rx*l_one_over_r_length;
fdy=-(1.0- p_of_z)

*MDforce* ry*l_one_over_r_length;
fdz=-p_of_z

*MDforce* rz*l_one_over_r_length;
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rotate_frame (&fdx ,&fdy ,&fdz ,
molecule_q0[i],molecule_q1[i],
molecule_q2[i],molecule_q3[i],1);

}
else
{

fdx=-MDforce* molecule_e_x[i];
fdy=-MDforce* molecule_e_y[i];
fdz=-MDforce* molecule_e_z[i];

}
}

if( (l_dist < FORCE_RADIUS_F_SQ && is_sphere ==1 ) ||
(l_dist < FORCE_RADIUS_B_SQ && is_sphere ==2 ) )

{
distanceSRD(l_SRD_ptls_x ,

l_SRD_ptls_y ,
l_SRD_ptls_z ,
l_molecule_x ,l_molecule_y ,l_molecule_z ,
&l_dx_2 ,&l_dy_2 ,&l_dz_2 ,& l_dist_2 );

v_add_x = fdx -molecule_velocity_x[i]
- molecule_O_y[i]* l_dz_2
+ molecule_O_z[i]* l_dy_2;

v_add_y = fdy -molecule_velocity_y[i]
- molecule_O_z[i]* l_dx_2
+ molecule_O_x[i]* l_dz_2;

v_add_z = fdz -molecule_velocity_z[i]
- molecule_O_x[i]* l_dy_2
+ molecule_O_y[i]* l_dx_2;

SRD_ptls_vx[l_srd_work_particle ]+= v_add_x;
SRD_ptls_vy[l_srd_work_particle ]+= v_add_y;
SRD_ptls_vz[l_srd_work_particle ]+= v_add_z;

SRD_ptls_x[l_srd_work_particle ]+=
v_add_x*O_SIDEX*DTSRD *0.5;

SRD_ptls_y[l_srd_work_particle ]+=
v_add_y*O_SIDEY*DTSRD *0.5;

SRD_ptls_z[l_srd_work_particle ]+=
v_add_z*O_SIDEZ*DTSRD *0.5;

}
}

}
}

}
}
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