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Abstract

This thesis demonstrates the time-resolution of the electrical conduction in 2 to 100
nm thin iron films to the point where the 7 to 30 fs short lag between applied electric
field and resulting current is measured with ca. 1 fs accuracy. I achieve this time-
resolution by improving the method of substrate referenced transmission terahertz time
domain spectroscopy by correcting for the thickness difference between the substrate
supporting the metal film and the reference substrate. The achieved time-resolution
allows measuring how the lag depends on the thickness of the metal film. The significant
difference between this thickness scaling of the lag and the thickness scaling of the
direct current conductivity disproves Drude’s assumption of a universal relaxation time,
which would imply the same scaling of both quantities. Therefore, I derive a description
of the conduction dynamics in the framework of the semi-classical Bloch-Boltzmann
formalism, resulting in the picture of a distribution of microscopic relaxation times.
This picture of a relaxation time distribution allows interpreting the observed lag in
terms of the average and the variation of the microscopic relaxation times.
The accurate determination of the lag between applied field and resulting current in a
metal, adds a second macroscopic observable to electronic transport and the relaxation
time distribution picture relates this observable to microscopic relaxation processes
in the metal. Thereby the improved substrate referenced transmission terahertz time
domain spectroscopy can test microscopic theories of conduction more conclusively and
will advance our understanding of transport processes in metals in general and in thin
films in particular.
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Kurzfassung

Diese Dissertation demonstriert die Zeitauflösung der elektrischen Leitfähigkeit in 2 bis
100 nm dünnen Eisenfilmen. Die erreichte Auflösung erlaubt den 7 bis 30 fs kurzen
Zeitversatz zwischen dem angelegtem elektrischem Feld und dem resultierendem Strom
mit etwa 1 fs Genauigkeit zu messen. Ich erziele diese Zeitauflösung, indem ich die
Methode der substratreferenzierten Transmissionsterahertzspektroskopie verbessere.
Dafür wird der Dickenunterschied zwischen dem Referenzsubstrat und dem Substrat,
das den Film trägt, vermessen und der gemessene Zeitversatz um die Auswirkung
des Dickenunterschieds korrigiert. Die erreichte Zeitauflösung erlaubt mir, die Ab-
hängigkeit des Zeitversatzes von der Dicke des Metallfilms zu messen. Der signifikante
Unterschied zwischen den Dickenabhängigkeiten des Zeitversatzes und der der Gle-
ichstromleitfähigkeit wiederspricht Drudes Annahme einer universellen Stoßzeit, die
Leitfähigkeit und Zeitversatz gleichermaßen bestimmt. Daher leite ich eine Beschreibung
der elektrischen Transportdynamik im Rahmen des semi-klassischen Bloch-Boltzmann-
Formalismus her. Daraus resultiert das Modell einer Verteilung von mikroskopis-
chen Stoßzeiten. Dieses Modell einer Stoßzeitverteilung erlaubt es, den beobachteten
Zeitversatz durch den Mittelwert und die Variation der mikroskopischen Stoßzeiten
zu beschreiben. Die genaue Messung des Zeitversatzes zwischen angelegtem Feld und
resultierendem Strom in einem Metall fügt eine zweite makroskopische Messgröße
für elektrische Transportphänomene hinzu. Das Stoßzeitverteilungsmodell verknüpft
diese Messgröße mit den mikroskopischen Stoßprozessen im Metall. Dadurch kann die
verbesserte substratreferenzierte Transmissionsterahertzspektroskopie mikroskopische
Theorien der elektrischen Leitung aussagekräftiger testen und das Verständnis der
Transportprozesse in Metallen im Allgemeinen und in dünnen Filmen im Speziellen
verbessern.
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My contribution to the subject

The experiments presented in this thesis are the results of a collaboration. It is a
recommended practise to describe one’s contribution to the subject matter of a thesis
in a brief section. I will slightly deviate, and mostly name those parts I did not do
on my own. The most prominent is the fabrication and characterisation of the iron
films discussed in section 5.1, which was done by Eric Beaurepaire, Jacek Arabski
and Guy Schmerber at the IPCM Strasbourg. The second is the measurements in
series three, which were performed by Wentao Zhang. The set-up used for all terahertz
measurements was designed by Zoltan Mics and built by Ivan Ivanov; therefore the
description of the set-up is kept to a minimum. The basic automation giving the
crucial ability to alternate reference and sample measurements was done by Zoltan
Mics and improved upon by Eduard Unger and Wentao Zhang. The theoretical basics
of conduction in metals were obviously not invented by me, but comparably little
and only very piecewise theoretical descriptions of the dynamics of conduction existed.
Compiling this information and filling some small gaps is my contribution. This allows
me to highlight underlying assumptions and derive the function which defines the
conduction dynamics: the distribution of microscopic relaxation times. Experimentally,
the key to resolving the dynamics lay in developing a data treatment method that
extracted the thickness difference between the substrate of the sample film and the bare
reference substrate used. This method allowed correcting for this systematic error and
achieving the time resolution necessary to time-resolve conduction in a metal. This,
and all other analyses of terahertz data was done by me.
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1 The concept of time-resolving
conduction

1.1 Goal: Time-resolving the conduction process

The goal of this thesis is to show how conduction in metals can be time-resolved and to
show what one can learn from such a measurement. To illustrate what time-resolving
means, consider the following electrical circuit: a voltage source, a switch and a lamp
(see fig. 1.1). Obviously, the lamp will shine some time after we close the switch. The
question I am investigating here is: how long after we close will the lamp start to shine?
In more physical terms: how big is the lag between an applied voltage and the resulting
current? From our daily experience, we do not even notice any lag between flipping
the switch and the light going on. But basic physical considerations demand a lag.

1. The charges carrying the current have mass and therefore inertia. They cannot
accelerate instantaneously.

2. As long as Ohm’s law applies, the electric field acting on the mobile charges must
be in equilibrium with a friction force. The time it takes to establish such an
equilibrium depends on the rate(s) of friction of the charges.

This second consideration means that time-resolving the conduction process will give
unique insights into the dissipation processes in the material. The key difficulty is that
the lag is small, on the order of 10 fs for a metal at room temperature. Developing a
method to resolve such a short time difference is the first result of this thesis. To give
an understanding of what exactly I try to resolve, I will introduce a formal description
of time-dependent macroscopic conductivity.

11



1 The concept of time-resolving conduction

- +

a) 𝑡0 − 𝑑𝑡 b) 𝑡0 + 𝑑𝑡 c) 𝑡0 + 𝜏𝑙

- + - +

Figure 1.1: Idealised electrical circuit with a lamp responding to the closure of the
switch at time t0. a) The circuit immediately before closing of the switch.
b) The circuit immediately after closing the switch. The voltage is now
applied. The charges did not yet have time to accelerate. No current is
flowing. The lamp stays off. c) After a time τl, the charges acquired enough
momentum to constitute a sizeable current. The lamp glows. The goal of
this thesis is to resolve this lag τl.

1.2 Description of time-dependent conductivity

1.2.1 Conduction response kernel

Conduction is not instantaneous. The current will only flow after the field is applied
and will continue flowing for a short time after the field is gone. This means the
conduction process has a memory. The current at a certain time t0 will depend on
all values of the electrical fields at all times before t0. Mathematically the current
density j is a convolution of the electrical field E and the conduction response function
Ξ describing the system (eq. (1.1)).

j(t0) = ∫
t0

−∞
Ξ (t0 − t)E(t)dt (1.1)

Within the scope of this thesis, I will only consider the case of the current responding
linearly to the applied field; that means a response function Ξ, which does not depend
on the electrical field E. Despite this, the convolution means that Ohm’s law will
only hold for the time averages of current and field in the time-domain. Further, the
mathematical description of the time evolution with this convolution integral is quite
complicated. Using a Fourier transformation to describe the conduction process in
the frequency-domain transforms the convolution into a simple multiplication, thereby
recovering Ohm’s law.

12



1.2 Description of time-dependent conductivity

1.2.2 Fourier transforming into the frequency-domain

We define the spectral density S̃(ω) 1 by an integral over the time domain function
S(t). Another integral allows the inverse transformation from spectral density S̃(ω)
back into the time domain. This is the Fourier transformation pair:

S̃(ω) =

¿
Á
ÁÀ ∣b∣

(2π)1−a ∫

∞

−∞
S(t)eibωtdt (1.2)

S(t) =

¿
Á
ÁÀ ∣b∣

(2π)1+a ∫

∞

−∞
S̃(ω)e−ibωtdt (1.3)

Here ω = 2πf is the angular frequency, a and b are coefficients depending on convention.
I use the convention a = 0 and b = 1, referred to as “modern physics convention” by
Wolfram [1]. This convention is the most common in contemporary physics. Critically,
since b > 0, a time delay results in an increase in complex phase in the frequency-domain.
This is contrary to the conventions used in electrical engineering, mathematics, and
mathematical optics. The frequency-domain descriptions in sources from these fields
are complex conjugates of my notation. Applying this transformation to the conduction
response kernel eq. (1.1) results in the frequency-domain version of Ohm’s law2.

j̃(f) = σ̃(f)Ẽ(f) (1.4)

j̃ and Ẽ are the spectral densities of the current density and the electrical field. σ̃ is
the complex conductivity describing the system as a function of oscillatory frequency
f = ω/(2π). This complex conductivity is the best quantity to describe the time
evolution of conduction in a material.

1.2.3 Complex conductivity

The frequency-dependent complex conductivity σ̃(f) is conventionally displayed in
terms of its real and imaginary part. This has the advantage that both dimensions
of the complex quantity fit on the same graph with the same scale. However, the
physical interpretation of real and imaginary part is more complicated. Expressing
the conductivity σ̃(f) in terms of amplitude ∣σ̃(f)∣ = σ(f) and phase φ(f) is more
intuitive. The amplitude σ(f) answers the question: “How much current flows per unit
of applied field?” and the phase φ(σ̃(f)) tells us how the phase of this current lies
with respect to the electric field Ẽ(f). Dividing the phase by the angular frequency ω
gives us the time lag τl between an applied field of that frequency f and the resulting
current. This is what I aim to measure, hence this is my favourite way of displaying
complex conductivity data.

1I use the˜to indicate complex frequency-domain quantities. It also serves to distinguish between
time domain functions and their respective spectral densities, which are not the same physical
quantities despite often being called the same name.

2in the presumed linear response regime
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1 The concept of time-resolving conduction
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Figure 1.2: Time-dependence of a sinusoidal electric field with frequency f and resulting
current density, each normalised to the amplitude E0 of the electric field.
The amplitude of the conductivity σ(f) gives the ratio between current
density and field amplitudes. The lag τl is the time difference between
applied field and resulting current.

From this simple consideration, note that we do not have to apply a frequency similar
to the inverse lag 1

τl
in order to resolve it. We do need to measure the phase of the

current relative to the field with sufficient accuracy. This phase will increase when
the frequency increases towards 1

τl
. Therefore measuring at a higher frequency will

make resolving the lag τl easier. To gain insight into direct current transport at room
temperature, however, the energy of a quantum of electrical excitation h ⋅ f should
not exceed the energy of typical excitations at room temperature of ≈ kB ∗ 293K, as
I will explain in the next chapter (page 36). h and kB are Planck’s and Boltzmann’s
constants respectively. This limits the frequency to the range below ca. 6 THz.

1.2.3.1 Electrical conductivity of metals

The magnitude of electrical conductivity can be used to empirically classify what a metal
is. To gain a general feeling for the magnitudes of conductivity we are dealing with in
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1.3 Using an optical technique to measure electrical currents

metals, here is a basic overview of room temperature steady-state conductivities σDC
(under ambient pressure): Silver is the most conductive material with 6.3 ⋅ 107 S/m [2],
iron is the 22nd most conductive elemental metal at 1.03 ⋅ 107 S/m [3]. Niobium has
one order of magnitude lower conductivity than silver at 6.6 ⋅ 106 S/m, similar to
many alloys such as carbon steel (type 1010), and Manganese, the least conductive
metal, has another order of magnitude less (6.9 ⋅ 105 S/m [4]). This is still about
an order of magnitude more than any non-metallic element at room temperature.
Many models [5–7] of conduction in metals only predict conductivities and especially
variations between conductivities of metals “within an order of magnitude”. This is not
accurate enough to be useful, given that the ambient conductivities of all elemental
metals and most alloys lie within an order of magnitude of Niobium.

1.3 Using an optical technique to measure electrical
currents

1.3.1 Equivalence between optics and electronics

Electrical field pulses can be applied as voltages over a wire or as free space propagating
electromagnetic waves. The optical and electrical descriptions are equivalent; wires can
be viewed as wave-guides and air gaps as capacitative elements. In general, the higher
the frequency, the more convenient the optical description becomes. To investigate
the small lag between current and field, I will use optical terahertz time domain
spectroscopy in this thesis. The propagation of a wave through a medium is described
by the refractive index of that medium. This index is connected to the complex
conductivity.

1.3.2 Refractive index, dielectric function

The current density is merely the time derivative of the electrical polarisation. The
(total) complex conductivity can thus be transformed into the dielectric function ε̃.3

ε̃(f) = 1 +
iσ̃(f)

2πfε0
(1.5)

ε0 is the permittivity of vacuum. The complex refractive index ñ depends on the
relative dielectric function and on the relative magnetic permeability µ. At terahertz
frequencies, µ is considered 1 even in magnetic metals [8, 9], though data to confirm
this is scarce. Hence:

ñ(f)2
= ε̃ = 1 +

iσ̃(f)

2πfε0
(1.6)

3Many works separate “bound” and “free” charges, using a “background” dielectric constant for one
and a conductivity for the other. I refrain from making this distinction to avoid unnecessary
confusion and because the free carrier response dominates for metals in the terahertz range almost
by definition.
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1 The concept of time-resolving conduction

The propagation pj of an electromagnetic field Ẽ through a medium over a distance x
is described by the refractive index ñj of the medium j as:

Ẽ(ω,x) = eikñjxẼ(ω,0) = pj(x)Ẽ(ω,0) (1.7)

Here k = ω
c0

is the magnitude of the free space wave vector, with c0 the speed of light
in vacuum. The meaning of the real and imaginary parts of the complex index ñ are
quite straight forward: R(ñ) shows how much more the phase of the field changes per
distance travelled compared to vacuum. I(ñ) describes the change in the amplitude
of the field. A material absorbing light of the frequency f has a positive I(ñ)(f). If
the current was instantaneous, the real and imaginary parts would be almost identical.
Any lag between field and current will increase the imaginary and decrease the real
part of the refractive index. Figure 1.3 illustrates this by comparing the refractive
index of two materials with 10.3 ⋅ 106 S/m conductivity. One conducts instantaneously
(τl(f) = 0), the other has a constant lag of τl(f)=30 fs at all frequencies.

0 1 2 30
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
 τ l =0
 τ l =30 f s

 R e a l
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f r e q u e n c y  f  [ T H z ]
Figure 1.3: Real (-) and imaginary (|) parts of the refractive index for a 10.3 ⋅ 106 S/m

conductive material without lag (τl=0, red) compared to τl(f)=30 fs of lag
(blue). Without lag, real and imaginary part are virtually identical. With
lag, the real part of the index decreases, the imaginary increases, while the
magnitude of the index stays almost constant.
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1.3 Using an optical technique to measure electrical currents

Under the unrealistic assumption of no lag between electric field and current, figure
1.4 depicts the refractive indices of iron and the most (silver) and least (manganese)
conductive metals. The typical refractive index values for metals in the low THz range
are on the order of 100 to 1000. This means the optical lengths ñx are roughly a factor
1000 larger than the physical dimensions x of the metal. This leads to the important
observation that a metal film of 40 nm is no longer optically thin for a THz wave with
300 µm wavelength.
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Figure 1.4: Terahertz spectra of the real part of the refractive index for three different
conductivities, under the assumption of instantaneous conduction. The
black curve corresponds to 63⋅106 S/m conductivity (bulk DC value of single-
crystalline silver, the most conductive metal). Blue is for 10.3 ⋅ 106 S/m,
which is the DC-conductivity of optimally annealed iron. Red corresponds
to 6.9 ⋅ 105 S/m, the DC-conductivity of manganese, the least conductive
metal. These refractive indices of metals are on the order of several 100
and increase with increasing wavelength. Therefore only few nanometre
thin films can ever be “optically thin”.
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2 Theory of electrical conduction in
metals

2.1 Drude model

Only 3 years after J.J. Thompson [10] had discovered the electron, Paul Drude [11, 12]
used the concept of an electron gas to describe the electrical conductivity of metals.
The reasoning is quite simple: Consider a gas of n identical particles (per volume) of
charge −e and mass m. Drude reasoned that all valence electrons of a metal can be
described this way. The particles can move anywhere in the metal like particles in a gas,
but they will randomly scatter on certain obstacles in the material. Drude considered
the ionic cores of metal atoms to be those obstacles. The random scattering on the
obstacles causes each electron to loose velocity v at the same expected rate 1

τu
. This

friction force by scattering must be in equilibrium with the applied electric field. We
can easily write down an equation of motion for such a system in an electric field E:

Fel(t) = nma(t) +
nm

τu
v(t) (2.1)

Here a = dv
dt is the average acceleration of the particles. The electrical force Fel is given

by −neE. Using these relations and Fourier transforming eq. (2.1), we obtain:

− enẼ(f) = −iωnmṽ(f) +
nm

τu
ṽ(f) (2.2)

The spectral current density j̃ is given by −enṽ. We solve eq. (2.2) for the conductivity
σ̃D =

j̃

Ẽ
and obtain the frequency dependent version of Drude’s result:

σ̃D =
ne2

m

τu
1 − iωτu

. (2.3)
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2 Theory of electrical conduction in metals

Figure 2.1: Spectrum of the amplitude σ (black, left axis) and lag τl (red, right axis)
of the complex conductivity of the Drude model eq. (2.3). Both lag and
amplitude stay constant for frequencies much lower than inverse of the
universal relaxation time τu. The intercept values are the DC-conductivity
σDC and the universal relaxation time τu respectively. As the (angular)
frequency ω increases towards 1/τu, both amplitude and lag start decreasing;
for frequencies much larger than 1/τu they will both go to 0.

Spectra of the lag and amplitude are plotted in fig. 2.1. Drude’s model gives a full
description of the dynamics of conduction. Further it connects the macroscopic lag
with the microscopic relaxation time of the charge carriers. Such a description and
connection is what I aim for in this thesis. Looking at the dynamics in the time domain,
the current response ΞD at time t to a field that acts at t0 is in Drude’s case is merely
a single exponential decay

ΞD (t0 − t) =
ne2

m
Θ(t − t0)e

t−t0
τu (2.4)

The Heaviside function Θ enforces causality, i.e. the current only flows after the time
of excitation t0.
However, Drude’s model is outdated, because most of his assumptions have been by now
proven wrong, for metals at least. Drude obviously had no way of knowing that electrons
are fermions. Sommerfeld [13] did show that one obtains the same formula (though
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2.1 Drude model

with potentially different parameters) when considering the electrons to follow the
Fermi-Dirac distribution rather than the Maxwell-Boltzmann distribution of classical
particles in a gas, as long as all particles relax momentum identically. With the Braggs’s
discovery that metals are crystals and Bloch’s description of quantum states in a crystal,
mass and number density had to be replaced by a combination of density of states
and group velocity. The spectral shape stayed identical, as long as all electrons were
considered to relax equally. Bloch also showed that the electrons would not scatter
in a perfect crystal. Electrons only scatter when they encounter some deformation
of the crystal potential in form of a defect or a phonon. As long as these scattering
events still scatter every electron equally and randomly, the dynamics stay the same.
A crystal is not isotropic, so the group velocity will usually depend on direction. For
bulk conductivity, the average velocity can be used and the time dependence will stay
the same as Drude’s as long as all electrons have the same relaxation time. Therefore,
Drude’s description of electron dynamics is still very often used, both for the optical
conductivity of metals [14,15] and the terahertz (photo-)conductivity in long relaxation
time materials such as semiconductors [16] and graphene [17]. The empirical observation
of Drude-type dynamics is not surprising, since a single exponential decay eq. (2.4)
describes or at least approximates many, if not most, relaxation processes in nature.

The problem with Drude’s assumption that all electrons relax the same way is: electrons
are fermions. Every fermion in a system differs by at least one quantum number from
every other. In a metal, we have typically 1 itinerant electron per atom. The electrons
must, therefore, differ a lot among the very large population. The assumption that these
differences between the electrons have no effect on their relaxation is not justified and
has been disproven for several cases [5,18–22]. But how do the dynamics look like when
different electrons have different relaxation times? To illustrate, let us consider the
next simplest case to all electrons having one universal relaxation time: two relaxation
times. We assume a system comprised of two species of electron, each with their own
relaxation time. One species is named “dash”; the other “dot”. The conductivity of
each species is given by the classical Drude model eq. (2.3). Species “dot” has twice
as many electrons as “dash”, but only a quarter of the relaxation time. Both have the
same mass. The combined conductivity is the sum of both conductivities σ̃dash and
σ̃dot. It is plotted in fig. 2.2.

We can see that the amplitude of the total conductivity is merely the sum of the
dash and dot conductivities. The lag, however, is neither the sum nor the mean of
both lags τdash and τdot. At low frequencies, an effective single Drude model can
approximate the total conductivity. Its DC-conductivity is obviously the sum of the
two constituent DC-parameters. The response time in this effective Drude model is
more complicated. I refer to this effective Drude parameter as current response time τC .
The current response time is an average of the relaxation times of the species weighted
by their respective conductivities. This weighted average will always be larger than
the “normal” average, and the distance to the normal average will grow with increasing
difference between the two relaxation times. We will see in the following chapter that
the low-frequency limit in the more accurate Bloch-Boltzmann formalism can still be
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Figure 2.2: Spectrum of the amplitude σ (black, left axis) and lag τl (red, right axis)
of the combined complex conductivity of two electron species “dash” and
“dot”. The spectrum of the combined ensemble is shown as full lines, the
two individual components as dashed and dotted lines, respectively. As in
the single Drude picture in fig. 2.1, both lag and amplitude are constant for
low frequencies ω. The y-intercepts are named DC-conductivity σDC and in
this case current response time τC , as a universal relaxation time no longer
exists. When approaching frequencies around 1/τC , the combined spectrum
differs from the single Drude version, while still decreasing towards 0. Note
that the DC-conductivity is merely the sum of the DC-conductivities of the
components, while the current response time is an average of the response
times of the components weighted by their contribution to conductivity.

described by a Drude spectrum and the current response time of this spectrum will
still be a weighted average in the general case of an unknown distribution of relaxation
times. In the case of a general distribution, the standard deviation of that distribution
will be the measure that determines how different the relaxation times are and how
much the weighted average of the relaxation times τC surpasses the “normal” average
relaxation time.

2.2 Semiclassical Bloch-Boltzmann theory

The current theoretical framework describing conduction by electrons in metals is
often referred to as Bloch-Boltzmann theory. The quantum mechanical description of

22



2.2 Semiclassical Bloch-Boltzmann theory

the electronic states as Bloch waves yields their dispersion relation. The dispersion
relation describes the combinations of momentum and energy an electron can have.
The Fermi-Dirac distribution then allows assessing how likely those states are occupied
based on their energy. The occupied states can be represented as a phase space density
function. From this point on, the electron system is treated as if the electrons were
particles in a classical gas. The non-equilibrium behaviour of such a gas is described
by the Boltzmann transport equation of the phase space density. The key ingredient
of this equation is called collision integral, which accounts for the relaxation of the
gas by scattering processes. Within the assumptions of identical particles, isotropy,
small deviations from equilibrium, and elastic scattering, the collision term simplifies
to a single time constant. This time constant is referred to as collision time, scattering
time, mean free time or relaxation time of the ensemble. This time constant is both
the expectation value of the microscopic time within which a single particle loses
its momentum as well as the time it takes the entire ensemble to settle from one
steady-state into another. Further the external force needed to drive the system out of
equilibrium is directly anti-proportional to this time constant.

However, in metals there is more than one type of electron or electronic states with
different momenta or spins relaxing at different speeds, therefore the relation between
the macroscopic responses and the now various microscopic relaxation times becomes
more complicated. It is not even directly obvious that a single macroscopic response
time exists. My contribution to the solution to this problem is demonstrating that a
single time constant defines the dynamics for low-frequency excitations and showing how
this macroscopic time constant and the conductivity are connected to the distribution
of microscopic scattering times. Therefore, I will proceed in the following order:

I will give a qualitative overview of the dispersion relation of Bloch waves, also known
as band structure. Here I loosely follow the book of Abrikosov [7] and the overview by
Pippard [23]. From there, I will show how to quantitatively connect the microscopic
electronic structure and scattering with the macroscopic current and its dynamics via
the Boltzmann transport equation. Then I will motivate that any more complicated
collision term depending on properties of the electrons (such as spin, angular momentum,
momentum or position or a combination thereof) can be approximated by relaxation
times depending on these properties. Hence we can describe the conduction process as
superposition of conduction channels of different relaxation times. I will show that the
macroscopic conductivity dynamics of such a system with a distribution of microscopic
relaxation times can be described by a single macroscopic current response time for
slowly varying excitations. This current response time depends on the average and
the standard deviation of the microscopic relaxation times, whereas the macroscopic
DC-conductivity only depends on the average. The ratio of response time and DC-
conductivity will depend on the standard deviation relative to the average. Therefore I
can use this ratio to track the evolution of the variation when the scattering changes,
which I will use to analyse the experimental results in the chapter "conduction dynamics
in thin iron films". I will wrap up by discussing a few key assumptions of my relaxation-
time-distribution model, some of the previous experiments showing the distribution of
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2 Theory of electrical conduction in metals

microscopic relaxation times and previous frame works they were described in.

2.3 Bloch waves: electronic band structure in a crystal

2.3.1 Reciprocal lattice of a crystal

A crystal is a system whose microscopic constituencies are periodically ordered. There-
fore the crystal can be described as a lattice of identical cells; the smallest of such cells
are called unit cells. Each point in the lattice can be described by the position in a unit
cell and a discrete number of translations of that unit cell. This is also called discrete
translational symmetry. We can define such a unit cell by one vector per dimension, i.e.
a⃗1, a⃗2, a⃗3 in 3D. All physical properties of the crystal have the same periodicity as the
crystal. A Fourier transformation simplifies the mathematical description of periodicity
by transforming from real into reciprocal/Fourier space. The Fourier transformation
allows even the longest range phenomena to be mapped into the unit cell of the lattice
in reciprocal space. The vectors defining the reciprocal lattice in the 3D case are
K⃗ = K⃗1, K⃗2, K⃗3. They can be derived from the real space lattice vectors. There is some
choice in the shape of the unit cell. For the following, I consider the cell constructed
by Voronoi partition, which is called Wigner-Seitz cell in the real lattice and Brillouin
zone for the reciprocal lattice. A few general remarks about the symmetry properties
of the crystal are that it by definition has discrete translational symmetry and may
have discrete rotational symmetry, i.e. between directions b⃗1, b⃗2. It can never have
continuous rotational symmetry (also known as radial symmetry). In terms of unit
cells, this can be understood, as these cells must be polygons, not spheres. That means
the crystal lattice is by definition anisotropic. I point this out as the assumption of
isotropy is often used in the (basic) theoretical description of conduction in crystalline
solids. This assumption is usually rather motivated by the desire for simplicity than by
physical reality.

2.3.2 Free electron gas

The Schroedinger equation (or even Dirac equation) can be written down for a single
electron a system with N other charged particles.

p̂2

2m
ψ +

N

∑
i=1

V (r − ri)ψ = Eψ (2.5)

Here p̂ is the momentum operator, ψ the wave function of the electron, m the electron
mass, E its energy, V the potential and r the position of the electron. The challenge
in solving this equation is that the potential for a charged particle will depend on the
positions ri of all other charged particles, as the Coulomb interaction is long range.
This interaction couples the solutions of each particle, such that one cannot easily find
the solution for a single particle without solving for all particles, which is generally too
complicated.
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2.3 Bloch waves: electronic band structure in a crystal

Figure 2.3: Sketch of the one-dimensional dispersion relation in the nearly free electron
or Sommerfeld model, taken from Pippard [23]. Pippard uses L for the real
space lattice constant. k = p/h̵ is the coordinate in reciprocal space. Where
the dispersion relation curve leaves the first Brillouin zone (which is a unit
cell in reciprocal space), a curve from the neighbouring unit cell must also
enter at the same point. Thereby dispersion in every cell can be mapped
onto a single unit cell, the first Brillouin zone.

However, two theorems help to recover most of the information we need. First is the
use of the symmetry in a crystalline system, which requires the single-particle solutions
to be Bloch waves. Second is Landau’s (proven) hypothesis [24] that a system of
coupled fermions around its Fermi edge will behave like a system of uncoupled fermions
(with potentially different group velocities) for a suitably chosen Fermi level of the
uncoupled system. In practise this means the electronic structure can be calculated for
a non-interacting electrons first and the interaction can be taken into account later by
“renormalising” some properties like the group velocity by Landau parameters. So, let
us consider a system of electrons not interacting with each other. Further, I assume
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2 Theory of electrical conduction in metals

no interaction with the lattice of nuclei. This the free electron gas. The dispersion
relation E (p⃗) is given by:

E (p⃗) =
p⃗2

2m
(2.6)

Here p⃗ is the momentum of the electronic states.

2.3.3 The nearly free electron model

The next step is to impose the periodicity of the crystal lattice on the dispersion
relation. The dispersion relation is folded back into the first Brillouin zone. This is
the nearly-free electron model [23]. The momentum p⃗ is now replaced by the quasi
momentum (I still use p⃗ to denote it). The quasi momentum is only defined up to
multiples of the reciprocal lattice vectors. pi = pi + nh̵Ki. This nearly-free electron
model already gives rise to the complication that the band structure cannot be isotropic
any more. The reason is: even when the dispersion relation is isotropic before it reaches
the Brillouin zone boundary, the distance to the boundary is not isotropic since the
Brillouin zone is not a sphere. Therefore the folding points are not isotropic. The
dispersion relation can only ever be isotropic over a limited range of energies.

2.3.4 Band bending/Bragg reflection

When the potential V (p⃗) is different from 0 at the Brillouin zone boundary p⃗ = h̵K⃗
(point A in Pippard’s sketch, shown in fig. 2.3), the electronic states close to the
boundary must be stationary because they would undergo Bragg reflection in the
crystal lattice if they had a finite group velocity. This band bending makes the band
parabolic around the Brillouin zone boundary. The same holds for point B in Pippard’s
sketch fig. 2.3 at p⃗ = 0, where an extremum must lie when the Fourier transformed
potential at V (h̵2K⃗) is non zero.
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2.3 Bloch waves: electronic band structure in a crystal

Figure 2.4: Sketch of the general one dimensional dispersion relation for almost free
electrons in a periodic potential, taken from Pippard [23]. k = p/h̵ is the
coordinate in reciprocal space. The periodic potential causes band bending
at the Brillouin zone boundary and at k = 0. At these points extrema occur,
with parabolic band structure.

2.3.5 General band structure of a metal

The general shape of a band can be locally approximated by the above-mentioned
models, as long as we take the mass in eq. (2.6) as a potentially direction dependent
parameter rather than a constant. Locally, around a certain energy, the dispersion
relation can be approximated by a Taylor series expansion. As long as the energy range
considered is small enough, the dispersion can be classified by the order of the first term
in this expansion. The extrema of a band (usually at K⃗ = 0 and the Brillouin Zone
boundary) do not have a first-order term, so here the energy-momentum relation is
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2 Theory of electrical conduction in metals

quadratic. Away from the extrema, the first-order term will suffice, and the dispersion
is locally linear. This approximation is best for the middle of a band. For almost
all metals, the Fermi energy lies in the middle of at least one band. Therefore the
dispersion in metals is usually linear close to the Fermi edge.

2.3.6 Fermi energy and surfaces

Periodic table of Fermi surfaces

Figure 2.5: Periodic table of the Fermi surface of crystalline metals. The colours indi-
cate different bands. With the potential exception of Potassium, none of the
surfaces appears isotropic, that is spherical. Images taken from the univer-
sity of Florida website [25,26], http://www.phys.ufl.edu/fermisurface/
periodic_table.html.

I have by now mentioned that only the electronic states close to the Fermi energy are
relevant for conduction. The detailed reason why only these states contribute is given
on page 36 in eq. (2.27). Here I will just explain the Fermi-Dirac statistics, and define
the terms chemical potential, Fermi energy and Fermi surface.
Any particle of half-integer spin is a fermion. No two fermions in a system can have
the exact same state; at least one quantum number must be different between any two
fermions. Therefore the fermions cannot all condense into the state of lowest energy
in a system, rather they fill up all states up to a certain energy (at 0 Kelvin). This
energy is called Fermi energy Ef . At finite temperatures, the occupation probability g
of a state of energy E is given by the Fermi distribution:

g(E) =
1

e
E−µ
kBT + 1

(2.7)

kB is Boltzmann’s constant, and µ is the chemical potential. At temperature T = 0,
the chemical potential and the Fermi energy are identical, at higher temperatures they
might differ, but for room temperature in metals, this difference is small.
The electronic structure is usually displayed in terms of the dispersion relation E(p)
along a certain axis, for example in fig. 2.4. Since we know that only the states close
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2.4 Boltzmann equation: The role of scattering in transport

Spin ↑ Spin ↓

Figure 2.6: Fermi surface for iron spin-↑ (left) and spin-↓ (right). Different colours
represent different bands. Iron has one of the most complicated Fermi
surfaces, with 6-8 bands (depending on assignment) at the Fermi surface.
Images taken from the university of Florida website [25, 26].

to the Fermi energy contribute to conduction, the surface of all states at the Fermi
energy in reciprocal space is a key property to consider for a metal. This surface is
called Fermi surface. Fig. 2.5 gives an overview of the Fermi surfaces of most metals.
The spin-split Fermi surface of iron is illustrated in fig. 2.6.

2.4 Boltzmann equation: The role of scattering in
transport

2.4.1 Scattering processes

Bloch waves will not scatter in a perfectly periodic potential. Any distortion of the
lattice however, may scatter them. Two sources of scattering are usually distinguished:
Thermal vibrations of the lattice (phonons) and defects in the structure, comprising
interstitials, vacancies, grain boundaries, dislocations, impurities and possibly more
microscopic sources. I focus on the overall rates of scattering, rather than its microscopic
sources. In principle, all the above sources can be expressed in terms of a scattering
potential or cross section. The probability of a (quasi-)electron scattering on any of those
obstacles will depend on the cross section of an obstacle, but it is also proportional to
the number of unoccupied states to scatter into, also known as the available phase space.
The more unoccupied states, the more scattering. This is the reason metals typically
have an order of magnitude shorter relaxation times than (doped) semiconductors: the
number of unoccupied states close to the Fermi surface is 105 to 1010 times higher in
metals. In the following, all scattering processes will be summed up in the collision
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2 Theory of electrical conduction in metals

term of the Boltzmann equation eq. (2.8).

2.4.2 From Bloch waves to quasi-particle plasma

The Landau hypothesis allows treating the strongly interacting electrons as a gas of
non-interacting quasi-particles. Note: The non-interacting part holds only for the
microscopic interactions and phase relations. When the particles accumulate, we still
have to take into account that they are charged and therefore change the electrical
potential. This allows describing the electronic system in terms of a classical plasma,
albeit with a dispersion relation derived from Bloch’s quantum mechanical picture,
expanded by Landau’s Fermi liquid parameters and obeying Fermi-Dirac statistics.
The dispersion relation gives all possible states in phase space (p3x3). The state of the
plasma is described by its phase space density g(b,s) (p⃗, x⃗). Here b and s indicate the
band and spin of the electrons, as each band and (in magnetic materials) each spin will
have a different dispersion relation. Boltzmann’s kinetic equation describes the plasma
taking into account external forces and dissipation by collisions.

∂g(b,s)

∂t
+
∂g(b,s)

∂x⃗
v⃗(b,s)g (p⃗, x⃗) +

∂g(b,s)

∂p⃗
F⃗ (x⃗, t) = I

(b,s)
C (p⃗, x⃗, g(b,s)) (2.8)

Here t is time, F⃗ is the total force, ∂
∂x⃗ and ∂

∂p⃗ are the gradients with respect to spatial
and momentum coordinates and IC is the collision integral. Since we are interested in
electrical conduction, we consider only the electrical force F⃗ = −eE⃗ on the quasiparticles
of charge e. Since the particles are charged, the electric field E⃗(x) will depend on the
particle density ρ(x), which is the integral ∫Bz g

(b,s) dp3

h3
of the phase space density g

over the entire Brillouin zone (normalised by Planck’s constant h). This makes the
equation extremely complicated to deal with.

2.4.3 From plasma to gas

With a few assumptions we can simplify the description of the plasma to that of a gas.
First, the phase space density can be written as a combination of an equilibrium density
g
(b,s)
0 and a perturbation g(b,s)1 as response to an external force; g(b,s) = g(b,s)0 + g

(b,s)
1 .

Now, when the system is spatially homogeneous, g(b,s)0 and I(b,s)C will not depend on
position x⃗. Further, the perturbation of the density g(b,s)1 is assumed to be small and
locally spatially homogeneous, which can be justified when the external field E⃗ varies
little along the direction it acts. This means we now treat the electron system like
a very compressible gas, because we assume that no compression should occur in a
homogeneous system.1

1The fact that the non-interacting quasi-electrons are still charged and form a plasma rather than a
gas seems to me somewhat ignored in many discussions of transport in metals [7, 27].
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2.4 Boltzmann equation: The role of scattering in transport

2.4.4 Collision integral to relaxation times

With the above assumptions, Boltzmann’s equation simplifies to:

∂g
(b,s)
1

∂t
− e

∂g
(b,s)
0

∂p⃗
E⃗ (x⃗, t) = I

(b,s)
C (p⃗, g

(b,s)
1 , t) (2.9)

To solve Boltzmann’s transport equation (eq. (2.8)) for the response g1 to the external
field E⃗ we need to know the collision integral IC .

2.4.4.1 Relaxation times assumption

A simple form of the collision integral is

I
(b,s)
C = −

g
(b,s)
1 (p⃗, t)

τ (b,s)(p⃗)
. (2.10)

Here τ is the relaxation time. This time can depend on spin, band and momentum.
To distinguish this assumption from the assumption of a single, universal relaxation
time, I refer to it as relaxation times assumption. This “relaxation times form” of the
collision integral is quite often just assumed rather than derived [23] and quite often
motivated by convenience rather than physical considerations 2.
However, there are several different sets of assumptions that justify eq. (2.10). Ashcroft
and Mermin [27] give the following set of assumptions

1. “The distribution of electrons emerging from collisions at any time does not
depend on the structure of the non-equilibrium distribution function just prior
to the collision.” In other words, the collisions are a memory-free process, that
is a Poisson process. Such processes are also assumed for example in Brownian
motion [28].

2. “If the electrons in a region ... have the equilibrium distribution appropriate to
a local temperature, then collisions will not alter the form of the distribution
function.” Basically the collisions will maintain or restore thermal equilibrium.

3. Small electric and magnetic fields.

Point 3 will be fulfilled, I will go into detail what “small” means for a metal on page
43. Point two is also physically reasonable, since the collision integral sums up all
dissipation processes. Point one remains as a critical assumption.
Similarly, eq. (2.10) can be vindicated if the scattering is assumed to be isotropic [7,27].
I strive to put the relaxation times approach on a more general and formal footing,
since this is key to describing the time dependence of conduction.

2“As a result the displacement at any region of the Fermi surface ultimately reaches a steady limit, and
it is not uncommon to assume for convenience that the approach to the limit is exponential“ [23]
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2 Theory of electrical conduction in metals

2.4.4.2 Relaxation times approximation

The problem is that the collision term is the integral IIn over all electrons scattering
from other states p⃗′ into a state p⃗ minus all electrons IOut scattering out of of state p⃗
into any other state p⃗′. Therefore the distributions g(b,s)(p⃗′) of all states p⃗′ influence
the dissipation of g(b,s)(p⃗) at position p⃗. Mathematically, the collisions couple all states
within the entire momentum space. In tune with the red line of the previous derivations,
we search for a way to decouple the system.

I
(b,s)
C = I

(b,s)
In − I

(b,s)
Out (2.11)

I
(b,s)
Out = ∑

b′,s′
∫ (

dp′

h
)

3

g(b,s)(p⃗, t)Vp⃗,b,s,p⃗′,b′,s′(1 − g
(b′,s′)

(p⃗′, t)) (2.12)

I
(b,s)
In = ∑

b′,s′
∫ (

dp′

h
)

3

g(b
′,s′)

(p⃗′, t)Vp⃗′,b′,s′,p⃗,b,s(1 − g
(b,s)

(p⃗, t)) (2.13)

Here Vp⃗,b,s,p⃗′,b′,s′ is the probability for an electron occupying state {p⃗, b, s} to scatter
into an unoccupied state {p⃗′, b′, s′}. I will briefly simplify the notation, using g′(t) for
g(b

′,s′)(p⃗′, t) as well as V ≡ Vp⃗,b,s,p⃗′,b′,s′ ; V ′ ≡ Vp⃗′,b′,s′,p⃗,b,s. Further g(t) is expressed in
terms of g0 and g1. I further will refrain from explicitly stating the sum over all bands
b′ and spins s′.

IOut = ∫ (
dp′

h
)

3

V (g0(1 − g
′
0) + g1(t)(1 − g

′
0) − g0g

′
1(t) − g1(t)g

′
1(t)) (2.14)

IIn = ∫ (
dp′

h
)

3

V ′
(g′0(1 − g0) + g

′
1(t)(1 − g0) − g

′
0g1(t) − g

′
1(t)g1(t)) (2.15)

By the previous assumption of spatial homogeneity, IC(p⃗, g) must be 0 in equilibrium,
that is when g = g0. Further, the density of excited states g1 is considered small
compared to the equilibrium densities g0 and 1 − g0 of occupied and unoccupied states.
Therefore the product g′1g1 can be neglected. Using this when inserting eqs. (2.14)
and (2.15) into eq. (2.11) yields

IC = ∫ (
dp′

h
)

3

V ′
(g′1(t)(1 − g0) − g

′
0g1(t)) − V (g1(t)(1 − g

′
0) + g0g

′
1(t)) (2.16)

IC = −g1(t)∫ (
dp′

h
)

3

(V ′g′0 + V (1 − g′0))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

+∫ (
dp′

h
)

3

g′1(t)(V
′
(1 − g0) + V g0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

(2.17)

The first integral I1 contains change in scattering at p⃗ due to the perturbation g1 at
point p⃗. It has the form of the relaxation time approximation. The second term I2
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2.4 Boltzmann equation: The role of scattering in transport

describes the change in scattering due to the perturbation at all other momenta p⃗′. The
following observations can be made: ∫ (

dp′
h )

3
g′1(t) must be 0 due to the conservation

of phase space density (conservation of particles). g1(p⃗) will be antisymmetric along
an axis defined by the external field. g0 should be symmetric. If V and V ′ are also
symmetric along this axis, the entire integral I2 will cancel. This is basically the Poisson
process case. Otherwise I2 will only partially cancel. This will still make I2 smaller
than I1 ⋅g1(p⃗), except the cases of points p⃗ in phase space where g1 is particularly small.
Since such points contribute little to the overall excitation dynamics, we can disregard
these cases. Since we can assume g1(p⃗

′, t) and g1(p⃗, t) to be linear responses to the
same field. We can write g1(p⃗

′, t) = a(p⃗′, t)g1(p⃗, t). We can express I2 in this notation

I2 = g1(t)∫ (
dp′

h
)

3

a(t)(V ′
(1 − g0) + V g0). (2.18)

When the relaxation dynamics are isotropic, a(p⃗′, t) is time independent and the
integral can be added to I1 to compute the relaxation time. When the system reaches
a non-equilibrium steady state a(p⃗′, t) will reach the steady state value a0(p⃗

′). Unless
the relaxation times are differing extremely, we can express a(t) = a0 + δa(t), where
δa(t) is a small time dependent perturbation. This will work at least in the “almost
steady” case of low frequencies compared to the relaxation rates.

IC = −g1(t)∫ (
dp′

h
)

3

(V ′g′0 + V (1 − g′0))

+ g1(t)∫ (
dp′

h
)

3

a0(V
′
(1 − g0) + V g0)

+ g1(t)∫ (
dp′

h
)

3

δa(t)(V ′
(1 − g0) + V g0)

(2.19)

The first two terms can be combined into a relaxation time because they are independent
of time t. The third term will only be a small correction to the second, and the second
is smaller than the first in all points that matter for conduction, hence discarding the
third term is justified in most cases. The key difference of this motivation for the
relaxation times approximation to derivations like that presented by Ashcroft and
Mermin [27] is that I do not have rather unrealistically assume that the perturbation
g1 only changes IOut but not IIn. I would also like to remind that the relaxation time
τ(p⃗) given by

τ(p⃗) = −
⎛

⎝
∫ (

dp′

h
)

3

(V ′g′0 + V (1 − g′0)) − ∫ (
dp′

h
)

3

a0(V
′
(1 − g0) + V g0)

⎞

⎠

−1

, (2.20)

is the time constant describing the exponential relaxation of the distribution g(p⃗)
towards any steady state. It is not the microscopic mean free time between collisions,
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2 Theory of electrical conduction in metals

since the number of collisions (per electron) needed to establish a steady state depends
on the microscopic scattering mechanism. This relaxation time is a mesoscopic constant
which may sum up any number of microscopic interactions. From now on, I will resume
writing band and spin indices and the sum over them explicitly.
The above treatment arrives at the same definition of the anisotropic relaxation time as
Sorbello [29]. Sorbello showed that this definition of the anisotropic relaxation time is
physically meaningful, rather than merely a parameter in the theory with the dimension
of time. It describes the relaxation dynamics at the start of the transition between a
non-equilibrium steady-state and equilibrium. However, we have to note that as long
as integral I2 contributes, the relaxation time will depend on the type of excitation
shaping a(p⃗′). I present an alternative, less formal derivation of the relaxation times
assumption in section 7.1.

2.4.4.3 Relaxation times for specific excitations

Figure 2.7: Sketch of the influence of the excitation type on the relaxation time. The
Fermi surface is idealised as a black circle. Regions, where the density of
states is increase by the excitation (positive g1) are coloured red, decreased
density depicted in blue. Panels a) and b) show the excitation by an electric
field, c) and d) the excitation of a certain point/orbit on the Fermi surface.
The black arrows in sketch b) and d) illustrate the net transfer of electrons
between a selected point and the rest of the Fermi surface by scattering.
Thicker arrows allude to higher rates. Key here is that due to the different
final densities of states, the transfer rates and therefore the relaxation times
may be different between the normal electrical excitation and the point
excitation.
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2.4 Boltzmann equation: The role of scattering in transport

In the relaxation times approximation eq. (2.20), the relaxation time at each point
depends on the shape a0 of the exited phase space density g1. Therefore a process
exciting different regions of the phase space density may result in different relaxation
times τ(p⃗). Figure 2.7 depicts sketches of the excitation for a DC electric field and a
single point excited by a resonance. Unfortunately, these might not be identical to the
relaxation times relevant for electrical conduction [22].

2.4.5 From relaxation times to conductivity

So far, a classical phase space density g has been constructed from the quantum-
mechanical electron dispersion relation and Fermi-statistics and relaxation times
τ (b,s)(p⃗) have been derived to sum up the effects of microscopic scattering events
on the phase space density g. Now we need to derive the macroscopic conductivity
from the phase space density and the relaxation times.
The electrical current density (in real space) j⃗ is simply:

j⃗(t) = −e∑
b,s
∫ (

dp

h
)

3

g(b,s)(E⃗, p⃗, t)v⃗(b,s)g (p⃗). (2.21)

Since j is 0 in equilibrium, only the perturbation g1 will contribute to the current. We
can solve Boltzmann’s equation eq. (2.9) for g1. We start with

∂g
(b,s)
1 (p⃗, t)

∂t
− e

∂g
(b,s)
0 (p⃗)

∂p⃗
E⃗ (t) = −

g
(b,s)
1 (p⃗, t)

τ (b,s)(p⃗)
(2.22)

The solution for this equation will be an exponential decay of g1. In Fourier domain
the entire equation reads:

− iωg̃
(b,s)
1 (p⃗, ω) − e

∂g
(b,s)
0 (p⃗)

∂E

∂E(p⃗)

∂p⃗
˜⃗E (ω) = −

g̃
(b,s)
1 (p⃗, ω)

τ (b,s)(p⃗)
(2.23)

Here I have used the chain rule to expand ∂g0
∂p⃗ .

∂g
(b,s)
0 (E(p⃗))

∂E is the derivative of the

Fermi-Dirac distribution. ∂E(p⃗)
∂p⃗ is the group velocity v⃗g. Eq. (2.23) merely has to be

rearranged for g̃1(p⃗, ω).

g̃
(b,s)
1 (p⃗, ω) = e

∂g0

∂E
v⃗(b,s)g

˜⃗E (ω)
τ (b,s)(p⃗)

1 − iωτ (b,s)(p⃗)
(2.24)

The spectral current density ˜⃗j follows from eq. (2.21):

˜⃗j(ω) = −e2
∑
b,s
∫ (

dp

h
)

3

v⃗(b,s)g (p⃗) (v⃗(b,s)g
˜⃗E (ω))

∂g0

∂E

τ (b,s)(p⃗)

1 − iωτ (b,s)(p⃗)
. (2.25)

In a general case, the current ˜⃗j does not have to be parallel to the electric field ˜⃗E, and
the magnitude of the current may also depend on the direction of ˜⃗E. In the case of a
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2 Theory of electrical conduction in metals

cubic crystal, the symmetry forces an isotropic conductivity and eq. (2.25) simplifies
to [23,27,30]

˜⃗j(ω) = −
e2 ˜⃗E (ω)

3
∑
b,s
∫ (

dp

h
)

3

v(b,s)g (p⃗)v(b,s)g (p⃗)
∂g0

∂E

τ (b,s)(p⃗)

1 − iωτ (b,s)(p⃗)
. (2.26)

We have arrived at a scalar conductivity (˜⃗j = σ̃ ˜⃗E). One can rewrite the above integration
over phase space in terms of an integration over energy E .

σ̃(ω) = −
e2

3h3

∞

∫

0

dE
∂g0

∂E
∑
b,s
∬

S(b,s)(E)

dS ⋅ v(b,s)g (S⃗,E)
τ (b,s)(S⃗,E)

1 − iωτ (b,s)(S⃗,E)
. (2.27)

Here S(E) is the iso-energy surface of g(p⃗(E)) in momentum space. S⃗ is a point on
the surface, and dS the surface area around that point. As ∂g0

∂E is only non-zero in
a kBT wide region about the chemical potential µ, the integral will only need to be
evaluated around the chemical potential. This reduces the volume of phase space for
which τ (b,s)(p⃗) and v(b,s)g (p⃗). Nevertheless, maps of τ and vg across the surfaces S(E)
are still necessary to compute the conductivity.

2.4.5.1 Frequency limit of the semiclassical theory

The treatment of the electric field is purely classical, hence the discrete energy a photon
transfers to the (quasi-) electron it interacts with is not accounted for. As long as the
thermal broadening kBT of the electron distribution is larger than the photon energy
hf , the quantised energy transfer is indeed negligible. Therefore the thermal broadening
of the Fermi distribution gives a frequency limit of kBT /h ≈ 6 THz for this semiclassical
approach. At higher photon energies, the photo-excited electrons will have a wider
range of energies than the thermally excited electrons contributing to DC-transport
and the distribution of the photo-electrons will no longer resemble the Fermi-Dirac
distribution until they thermalise. Thermalisation times can be assumed to be longer
than the momentum relaxation times; in the case of gold electrons close to the Fermi
surface take more than 1 ps to thermalise [31], while they relax momentum within ca.
20 fs [32]. Therefore any energy dependence of the group velocity or the relaxation
time or the size of the iso-energy surface makes conduction at higher frequencies no
longer strictly comparable to steady-state conduction.

2.4.6 Maps of relaxation times and group velocities

Equation (2.27) permits calculating the conductivity dynamics, provided the iso-energy
surfaces around the Fermi energy are known and detailed maps of the velocity and the
relaxation times across these surfaces exist. Unfortunately, few maps exist, especially
for the relaxation times. There are currently no maps for iron at room temperature,
therefore no quantitative prediction of the dynamics of conduction will be possible.
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2.5 Macroscopic conductivity of a relaxation time distribution

Connecting the observed dynamics with some gross properties of the unknown maps
will hence give some insight into the maps.

2.5 Macroscopic conductivity of a relaxation time
distribution

I want to retrieve information on the microscopic relaxation times from the macroscopic
dynamics of the electrical conduction. It will be impossible to recover the entire maps
τb,s(p⃗), since two different maps may lead to the same macroscopic conductivity. I will
define a function containing all the gross properties of the relaxation time maps relevant
to the conduction dynamics. This function is the relaxation time distribution. The idea
is very similar to the density of states per energy. Basically, we sort all states by their
relaxation time. We then weight the states by their contribution to the conductivity for
a unit relaxation time. The density of the weighted states on the relaxation time axis
gives the relaxation time distribution w(τ). This relaxation time distribution governs
the time evolution. More mathematically, we transform the integral over iso-energy
surfaces S and energy E eq. (2.27) into an integral over relaxation times.

σ̃(ω) = −
e2

3h3

∞

∫

0

dE
∂g0

∂E
∑
b,s
∬

S(b,s)(E)

dS ⋅ v(b,s)g (S⃗,E)
τ (b,s)(S⃗,E)

1 − iωτ (b,s)(S⃗,E)
(2.28)

= −
e2

3h3

∞

∫

0

dτ
τ

1 − iωτ
∑
b,s
∬

ζb,s(τ)

dζJE,S⃗
τ,ζ⃗

∂g0

∂E
(ζ⃗, τ)v(b,s)g (ζ⃗, τ) (2.29)

=

∞

∫

0

dτ
τ

1 − iωτ
w(τ) (2.30)

Here ζ(τ) are iso-relaxation time surfaces in phase space, ζ⃗ the points on those surfaces
and J is the appropriate Jacobian determinant. These quantities were only helpers on
the way to the relaxation time distribution w(τ). Normalising it via

W −1
=

∞

∫

0

dτw(τ), w(τ) =Ww(τ) (2.31)

creates a distribution w(τ) which can be understood as a probability distribution
density; w(τ)dτ gives the probability that a state of unit weight in the conduction
process has a relaxation time between τ and τ + dτ . The total weight of conduction
W −1 only depends on the band structure and hence is a material constant, similar to
Drude’s ne2

m . We can approximate the complex conductivity σ̃(ω) for low frequencies
by expanding eq. (2.30) around ω = 0.

σ̃(ω) =W −1
∞

∑
l=1

(iω)(l−1)

∞

∫

0

w(τ)τ ldτ =W −1
∞

∑
l=1

(iω)(l−1) ⟨τ l⟩ (2.32)
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The ⟨⟩ denote the average over the relaxation time distribution w(τ). Therefore the
line shape of the complex conductivity is expressed in terms of the moments of the
relaxation time distribution w(τ). As any probability distribution is fully characterised
by its moments, in theory an exact measurement of the complex conductivity allows
extracting the entire distribution of relaxation times. The Taylor series eq. (2.32)
converges for angular frequencies ω lower than 1

τ . In practice, that means the higher
moments of the distribution will be hard to recover experimentally.
The first two moments can be disentangled at low frequencies in properly phase-resolved
data, because the second moment ⟨τ2⟩ only affects the imaginary conductivity and
therefore the phase. At low frequencies, the lag τl I am primarily searching for, reads
simply:

τl =
ω→0

⟨τ2⟩

⟨τ⟩
. (2.33)

2.5.1 Introducing the current response time

The lag τl is empirically easy to define (see fig. 1.2), but it steadily decreases with
increasing frequency, ultimately converging towards 0 (see fig. 2.8). I will now introduce
the current response time τC , which will be constant over a larger frequency range and
converge at high frequencies towards a finite value that can be smaller, but similar in
magnitude to the low frequency limit. The current response time is defined in such a
way that it would be constant and equal to Drude’s universal relaxation time, if such a
universal relaxation time existed. This definition facilitates explaining the measurement
of spectra of the shape predicted by Drude’s universal relaxation time approximation,
even though the relaxation times are not universal. Indeed, the spectral shape of the
conductivity can be approximated up to second order in ωτ as an effective Drude
model:

σ̃ =
ω→0

W −1 ⟨τ⟩

1 − iω
⟨τ2⟩
⟨τ⟩

, (2.34)

it has the same functional form as Drude’s original equation (2.3).
We can define the observable current response time τC so that it will coincide with the
time constant describing this effective Drude curve:

τC(ω) =
tan(φ(σ̃))

ω
=

I(σ̃(ω))

ωR(σ̃(ω))
. (2.35)

In the low frequency range where eq. (2.34) applies, τC will be frequency independent
and eq. (2.34) may be expressed as:

σ̃ =
ω→0

σDC

1 − iωτC
, (2.36)

with the steady state limit of the conductivity σDC . This means at low frequencies, the
spectral shape of a distribution of relaxation times is the same as the one predicted by
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Figure 2.8: A comparison between the lags τ shown in fig. 2.2 and the corresponding
response times τC , shown as a function of frequency. The times and
frequency are expressed relative to the response time of the combined system
at 0 frequency τC(0). The lines denote three different systems. The dotted
line represents an ensemble of electron which all have the same momentum
relaxation time τdot. The “dash” electrons also have a universal relaxation
time τdash, which is four times larger than τdot. The solid line denotes a
system comprised of 2/3 “dot” and 1/3 “dash” electrons; in distribution
terms w(τ) = 2/3 ⋅ δ(τ − τdot)+1/3 ⋅ δ(τ −4τdot). This system has a variation
of C ≈ 0.7. Red lines denote the observable lag of each system, blue lines
denote the observed current response times. At low frequencies, lags and
current response times are identical. The current response time stays
constant over a wider frequency range; for the two homogeneous systems for
all frequencies. For the mixed system, the response time decreases around
ωτC(0) = 1 and then converges to the optical response time τO defined in
eq. (2.42).

Drude (see eq. (2.3)). This effective Drude shape at low frequencies was also derived
in a bit less detail by Kamal et al. [33] considering various relaxation rates in a metal
oxide.

I will use the response time τC to replace the lag τl to describe the time evolution
of conduction. In the low frequency regime both quantities are almost identical and
their qualitative meaning is very similar, but on the background of the relaxation
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2 Theory of electrical conduction in metals

time distribution picture, the response time τC has some advantages. While the lag
has a more straight forward empirical meaning (see fig. 1.2), the response time τC is
more closely connected to the microscopic relaxation times. Figure 2.8 shows that the
response time will be constant over a larger range of frequencies. This allows a simpler
description of the conduction dynamics.

Figure 2.9: Two example distributions w(τ) of the relaxation times. The red area
indicates a distribution of medium variation (C=0.6), the blue area a
distribution close to no variation (C=0.01), which approximates a universal
relaxation time. The solid lines indicate the relative contribution to the total
current as a function of the relaxation time. For a universal relaxation time,
the current distribution is identical to the relaxation time distribution. For
the wider distribution, the electrons with larger relaxation time contribute
more to the total current. The current distribution shifts to larger relaxation
times. The mean of the current distribution is indicated by a dotted vertical
line. This is the current relaxation time τC .

The expressions eqs. (2.32) to (2.34) and (2.36) connect the macroscopic measurement
of the conductivity and the lag with the mesoscopic distribution of relaxation times.
The most important moments are the first moment ⟨τ⟩ also known as mean relaxation

40



2.5 Macroscopic conductivity of a relaxation time distribution

time and the second centralised moment ⟨(τ − ⟨τ⟩)2⟩ = ⟨τ2⟩ − ⟨τ⟩2
=V also known as

variance. The mean ⟨τ⟩ gives the general magnitude of the relaxation times and is the
relevant quantity for direct current (DC) conduction. The standard deviation s =

√
V

is a measure how much the relaxation times τ(S⃗,E) vary across the map. The standard
deviation s is the second key descriptor, as it allows identifying whether the entire map
has to be taken into account or the mean value suffices. Relevant for this consideration
is the standard deviation s relative to the mean ⟨τ⟩. This quantity is called coefficient
of variation C.

C =
s

⟨τ⟩
=

¿
Á
ÁÀ⟨τ2⟩ − ⟨τ⟩2

⟨τ⟩2
. (2.37)

⇒ τC =
⟨τ2⟩

⟨τ⟩
= ⟨τ⟩ (1 +C2

) (2.38)

When the diversity of relaxation times is negligible, C goes to 0, and only the mean
⟨τ⟩ is important. When C = 0.5, the distribution is about as wide as the mean value is
large, implying a maximum relaxation time that is at least three times bigger than the
minimum relaxation time.
From observed DC-conductivity σDC and current relaxation time τC , and a calculated
electronic structure, the variation C can be derived from the ratio of the two observables.

τC
σDC

=W
⟨τ2⟩

⟨τ⟩2
=

1

W
(1 +C2

) = R (2.39)

Even if W is unknown, we can still track the change of the ratio R in a certain material
when introducing a new scattering process. This will tell us how the scattering process
changes the variation C of the relaxation times, even if we do not know the absolute
value of C.

2.5.2 High-frequency limit of the semiclassical picture

We note that for high frequencies the photon energy will be too large to justify the
semiclassical picture. Nevertheless, we can learn two important facts by looking at the
high-frequency limit of the relaxation time distribution formalism. Similarly to the
low-frequency expansion around ωτ = 0 in eq. (2.32), we can also expand eq. (2.30)
around the limit 1

ωτ = 0.
The result is

σ̃(ω) =
ω→∞

W −1
∞

∑
l=1

1

(−iω)l

∞

∫

0

w(τ)
1

τ l−1
dτ =W

∞

∑
l=1

(−iω)−l ⟨τ1−l⟩ (2.40)

The first two terms of the expansion are
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σ̃(ω) =
ω→∞

W −1
[i

1

ω
+

1

ω2
⟨

1

τ
⟩ +O ((

1

ω
)

3

)] . (2.41)

Up to second order in 1
ωτ , eq. (2.41) is identical to

σ̃op(ω) =
σHF

1 − iωτo
; (2.42)

With the high frequency conductivity σHF =W −1
o ⟨ 1

τ
⟩
−1 and an optical current relaxation

time τo = ⟨ 1
τ
⟩
−1. This tells us the following:

1. It is not surprising to observe ‘Drude shape’ optical complex conductivities in
the high-frequency limit, since the limiting expansion might hardly change for a
non-thermal distribution.

2. Even though the same approximate model is observable, the parameters are
fundamentally different. They are probably going to be on the same order of
magnitude, but not directly comparable.

Only if band velocity was energy independent,Wo andW would be equal; and only if all
electrons had the same relaxation time, optical and low-frequency conductivity would
have the same response time. I refer to the assumption that all electrons experience
identical momentum relaxation as ’universal relaxation time assumption’.

2.5.3 Universal relaxation time assumption

The assumption of a universal relaxation time dates back to Paul Drude. For Drude’s
gas of identical, classical particles, the assumption is very reasonable. For a gas of
fermions, which must all differ in at least one quantum number from another, it is not.
Mathematically, the assumption of all electronic states relaxing with the same time
constant τu is expressed as:

τb,s(E , S⃗) = τu ∀ b, s,E , S⃗ (2.43)

This relaxation time τu will also be universal for all different kinds of excitations [27].
Therefore also the point relaxation rates 1

τP (S⃗)
in fig. 2.10 would have to be constant

across the map. Again, the universal relaxation time assumption appears motivated by
simplicity rather than reality. It is extremely common.
In the distribution picture we have just developed, the relaxation time distribution
w(τ) reduces to δ(τ − τu) and the complex conductivity results in the shape of Drude’s
original model:

σ̃ =
W −1τu
1 − iωτu

=
σDC

1 − i2πfτu
(2.44)

Comparing to eq. (2.36) we notice that in the low frequency region ω << 1
τ , the shape

of the conductivity spectra will be identical for a universal relaxation time and a wide
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distribution of relaxation times. The parameters will be different: In the universal
relaxation time scenario σDC is strictly proportional to τC = τu. For a relaxation time
distribution of relative width C, σDC is proportional to τC/(1 +C2).

2.6 Assumptions for the relaxation time distribution model

2.6.1 Linearity of the response

An important assumption done throughout this thesis is the linearity of all responses.
I will motivate this assumption in the background of the phase space density and
Boltzmann’s equation eq. (2.9). The key property of a metal that the size of the
iso-energy surfaces around the chemical potential is large; larger than in all other
conducting systems (such as semiconductors, Dirac-materials or topological insulators)
and of similar surface area as the primitive unit cell. Putting it in a different perspective,
very many states contribute to conduction. Hence, unless specific resonances are
triggered, the energy and momentum from an applied electric field will be distributed
among very many states, that is, across a very large volume of phase space. It requires
extreme amounts of energy to alter the entire volume so that the change in the phase
space density g1 becomes comparable to the equilibrium phase space density g0. By
similar reasoning, since the number of internal states is so large, the number of particles
that have to be added to affect significant changes in the chemical potential is huge. It
is therefore impossible to change the chemical potential of a metal by doping.

2.6.2 Neglecting magnetic fields

I have neglected the magnetic field in the Boltzmann equation eq. (2.9), despite dealing
with iron in this thesis. This is justified by two circumstances:

1. The magnetisation in iron is static on the time scale of the dynamics of electronic
conduction in room temperature.

2. The cyclotron frequency from the magnetisation is small compared to the scat-
tering rates 1

τb,s(p⃗)
.

Time-scale of magnetisation dynamics

The characteristic frequency for the rotation of magnetic domains from the Landau-
Lifschitz-Gilbert equation is about 1 GHz. This is also the frequency scale for magnon-
resonances in ferro-magnetic systems. Large fields with amplitudes of 6 T are required
to change magnetisations on a picosecond or femtosecond time-scale [34].

Cyclotron frequency

The cyclotron frequency ωC is the angular frequency with which a moving particle of
charge q and mass m orbits in a constant magnetic field B.
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2 Theory of electrical conduction in metals

ωC =
qB

m
(2.45)

Magnetic fields force electrons to move on cyclotron orbits, both restricting the available
phase space and forcing the electron to cycle through its orbit. If the electron is much
more likely to be scattered into a different position, potentially on a different orbit
than completing the original orbit, the effects of the magnetic field will be negligible.
Also, any resonances associated with the cyclotron frequency will be so overdamped
that they are irrelevant. The cyclotron frequency for a free electron in a field of 2 Tesla
(approximately the saturation magnetisation of iron) is ca. 0.3 THz, while the expected
scattering rates are roughly 30 THz, about 100 times higher. Therefore I will neglect
any effects of the magnetisation of the iron samples.

2.7 Evidence for the distribution of relaxation times

2.7.1 Maps of point relaxation times

Radio frequency finite-size effects [22] such as the De Haas-van Alphen [35] effect and
similar methods based on the cyclotron resonance [36,37] can map the Fermi velocity
and point relaxation time along certain orbits on the Fermi surface.
Whereas data on the relaxation times for electrical conduction are hard to find, the
so-called point relaxation times or point scattering rates [19, 22] can be determined
in radio frequency size effects, which are again based on the cyclotron resonance and
similar effects. These effects allow selectively exciting electrons from resonant orbits or
even points on the Fermi surface. The relaxation times for these excitations can be
extracted [19,22,36].
In the “golden age of fermiology”3 [22], point relaxation times were mapped for noble
metals [18, 36] at liquid hydrogen temperatures where defect scattering dominates
[38].The point relaxation times are highly anisotropic, even for single-band noble metals
such as gold shown in fig. 2.10.
Since the excitation g1 by radio frequency size effects is markedly different from that
(quasi) DC-electric fields, these point relaxation times may be different from the
relaxation times governing the dynamics of electrical conduction, as explained in fig. 2.7.
If and how much these two types of relaxation times are different is an open question.
Time-resolving the conduction will give us insight into some gross properties of the
map of relaxation times relevant for electrical conduction.

3Term used by Gasparov et al. [22] to describe a boom in measurements of the Fermi surface between
ca. 1970 and 1975
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2.7 Evidence for the distribution of relaxation times

Figure 2.10: Map of the point relaxation rates in gold from impurity scattering on silver
per % of silver content. The map has been calculated from de Haas-van
Alphen effect measurements by Lowndes et. al. [38]. Figure taken from
Springford’s 1975 overview [19]. The map shows a stereographic projection
of 1/48th of the Fermi surface, from which the rest of the surface can
be deduced by symmetry operations. The unit of the relaxation rates
is THz/%. Note the large anisotropy between the “neck” region and the
corner in <110> direction.
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2 Theory of electrical conduction in metals

2.7.2 Deviations from Mathiessen’s rule

In 1864, before the discovery of atomic structure and electrons, Mathiessen and Vogt [39]
measured the resistivity of alloys depending on temperature T and substituent metal
concentration K. For most alloys, Mathiessen and Vogt could calculate the resistivity
of a pure metal form the resistivity scaling of the alloy. Their formula can be rearranged
as:

ρtot = ρ(T ) + ρ(K) (2.46)

Here ρtot is the total resistivity of the alloy. This formula is known as Mathiessen’s rule.
Since already Mathiessen and Vogt [39] found it only to work for most, not all, alloys they
investigated, it is rather a rule of thumb. A more generalised version of this rule permits
to add any dimensions of resistivity scaling in addition to temperature and concentration.
The scaling dimensions often relate to the microscopic scattering mechanisms, for
example the temperature scaling relates to phonon scattering. Sommerfeld [13] showed
that if the mean free path is universal and the scattering cross sections of the different
mechanisms do not correlate, Mathiessen’s rule follows. In this case of a universal
rate and uncorrelated scattering mechanisms, a rate 1

τu(j)
can be attributed to each

scattering mechanism j, such that for the universal scattering time τu

1

τu
=∑

j

1

τu(j)
(2.47)

follows. Since the relaxation time is assumed to be universal, the relaxation time is
directly proportional to the total conductivity.
3 conditions must be met to result in Mathiessen’s rule:

1. The electronic structure remains the same, only the scattering changes

2. The probabilities for scattering by different mechanisms do not correlate

3. The relaxation time is universal

When point 1 and 2 are presumably fulfilled, any deviation from Mathiessen’s rule
must stem from the variety of the relaxation times [19,21]. This phenomenon has been
used in several ways to gain insight into the distribution of relaxation times. Springford
et al. [19] compared the deviations from Mathiessen’s rule to the variety of point
relaxation times they had mapped. Fert and Campbell [20] used the deviations from
Mathiessen’s rule in iron and nickel alloys to derive their spin-split two-current model.
This two-current model was the basis for Fert’s subsequently discovering the giant
magnetoresistance effect [40,41]. The first explanation for non-Mathiessen conductivity
scaling came from Sir Neville Mott [5].
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2.8 Previous models for diverse relaxation times

2.8.1 Mott model

Already Mathiessen and Vogt [39] notice that iron behaved oddly, and subsequent
measurements of the temperature scaling of the resistivity of ferromagnets showed an
inexplicably strong increase of resistivity when approaching the Curie temperature.
Around 1890, the Co55Ni45 and Co84Mn12Ni4 alloys trade named Constantan and
Manganin were discovered. These two alloys have constant resistivity for a temperature
range from 40 to 400 K. Mott [5] showed both phenomena may occur when electrons
with different relaxation times contribute to conduction.

2.8.1.1 Energy dependent relaxation times

For the case of Constantan and Manganin, the density of states per unit energy is large
at the Fermi surface. Therefore a large number of final states is available for electrons
at the Fermi energy. As the probability that an electron scatters is proportional to
the number of states it can scatter into, the relaxation time for electrons with energies
close to the Fermi energy is low. But only slightly above the Fermi energy, the density
of states becomes much smaller, as the d-bands are filled up. Here the relaxation time
is much higher. When the alloys are heated, two processes compete: More electrons
are excited into high energy states with higher relaxation time. More phonons are
created, increasing the electron-phonon scattering rate. The exact alloy composition is
the sweet spot where both processes cancel each other.

2.8.1.2 Spin dependent relaxation times

For ferromagnets, Mott examined the case of Nickel. Here only d spin↓ states are
located at the Fermi edge; while d↑ are at lower energies. When spin-flip scattering
is unlikely, this means that spin ↑ electrons have much fewer final states to scatter
into, hence a much longer relaxation time. These electrons conduct the majority of the
current, not only in spite, but because of having a smaller density of states at the Fermi
level. As the temperature approaches the Curie temperature, spin ↑ and ↓ states shift
towards each other. This leads to a strong increase in final states for the ↑ electrons,
resulting in the observed strong increase in resistivity.

2.8.2 Two-current models

When faced with the realisation that relaxation times in metals are diverse, one can
proceed in two ways. I have introduced the general way, describing the conductivity
for an arbitrary distribution of relaxation times. The other approach is to reduce
complexity as much as possible by choosing the next simplest distribution to a single
relaxation time: two relaxation times. The idea is that all states will be grouped into
two species, one with short and one with long relaxation time.
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2 Theory of electrical conduction in metals

2.8.2.1 Neck-belly two band model

Springford et al. [19] tried to compare the variety of point relaxation times they observed
to the deviations from Mathiessen’s rule by dividing their maps of the Fermi surface
(fig. 2.10) into two regions, “neck” and “belly”. They then calculated a single time for
each region and estimated the deviations from Mathiessen’s rule expected from this.
The agreement was rather qualitative than quantitative, reasons for this could either
be the neck-belly simplification or the disparity between point relaxation times and the
relaxation times of “normal” electrical transport.

2.8.2.2 Spin-split two-current model

Fert and Campbell [20] interpreted the non-Mathiessen resistivity scaling of iron and
nickel alloys by elaborating the idea of spin-split transport proposed by Mott. The
understanding that relaxation times depend on spin led to Fert’s discovery of the giant
magnetoresistance [40] when manipulation of the magnetisation/spin became feasible
in magnetic multilayers [41]. The giant magnetoresistance shows how understanding
the differences in relaxation times paves the way for manipulating the relaxation to
obtain useful physical effects.

2.9 Summarising

2.9.0.1 Calculating current dynamics from basic principles

I summarise the necessary steps one would have to take to calculate conduction
dynamics in a metal from first principles. Calculating the electronic band structure
would merely be the first step. Using this dispersion relation, the relaxation times have
to be calculated for each scattering mechanism in a second step. Thirdly, combining
these relaxation times may require assessing correlations between different mechanisms.
This has to be repeated for each point around the Fermi surface, resulting in a map
of relaxation times in step 4. In a 5th step, the crucial information from the maps
of Fermi velocities and relaxation times is condensed into a distribution of relaxation
times. From this distribution of relaxation times one can calculate the conduction
dynamics; the mean ⟨τ⟩ and variation C of the distribution of relaxation times suffice
for the low frequency limits of conductivity and current response time. Figure 2.11
illustrates this summary.

48



2.9 Summarising

Figure 2.11: Necessary steps to calculate conduction dynamics. As an example map
of the Fermi velocities, I took the map calculated by Gall [30] for copper.
Springford [19] originally published the map of relaxation rates in gold
shown in step 4.
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2.9.0.2 Time constants describing conduction dynamics

The key point to understand the dynamics of conduction in metals is that very many
electronic states contribute to conduction and these states differ in their relaxation
times τ . Given that a multitude of relaxation times τ exists, more than one time
constant appears in the description of time-dependent conduction. The related macro-
scopic observables lag τl and response time τC can be connected to mean ⟨τ⟩ and
the variation C of the microscopic relaxation times τ . In the following, I will discuss
the experimentally observed dynamics in terms of the current response time τC ; the
observed DC conductivity σDC will be proportional to the average of the microscopic
relaxation times ⟨τ⟩. Comparing τC to σDC yields information about the coefficient of
variation C of the distribution of microscopic relaxation times. The table below gives
an overview of the time constants used in this thesis:

name symbol math. def type explanation
lag τl(ω) φ (σ̃) (ω)/ω macro. observ-

able
lag between applied field
and resulting current

current
response
time

τC(ω) tan(φ (σ̃))/ω =

(I(σ̃)/R(σ̃)) /ω
=
ω→0

< τ > (1+C2)

macro. observ-
able

time constant for an expo-
nentially decaying current

point
relaxation
time

τp(p⃗, u) – meso. obs. dissipation constant of a res-
onance u of point/limited
area p⃗ of the Fermi surface

relaxation
time

τ(p⃗) −
g1(p⃗)

IC(g1,p⃗)
theo. approx-
imation (possi-
ble micro. obs.)

approximation of the colli-
sion integral at position p⃗
for constant electric field

mean
relaxation
time

< τ > ∫
∞

0 w(τ)τdτ
= σDCW
=
ω→0

τC(ω)
1+C2

macroscopic av-
erage, not ob-
servable

average over the relaxation
time distribution, relevant
for DC-conductivity

universal
relaxation
time

τu τu = τ(p⃗) ∀
p⃗
⇒

τu =< τ > = τp =
τC

oversimplifying
assumption

Drude’s original assump-
tion that all relaxation
times are equal.

Table 2.1: List of the different relaxation time constants relevant for the description of
the current dynamics.
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3 Thickness scaling of conduction
dynamics

I aim to time resolve conduction in 2.2 to 100 nm thick iron films. For such thin
films, the thickness is similar to the distance an electron is expected to travel before
scattering. This distance is usually referred to as mean free path, though I will use
mostly use the term expected free path. Since the films are so thin, a large fraction of
the electrons may hit one of the surfaces between any two scattering events in bulk.
Since the surfaces are imperfect, electron wave packets reaching the surface may not be
reflected like light hitting a mirror, but rather scattered randomly, like diffuse reflection.
These scattering events also randomise in-plane momentum, reducing the relaxation
time also in the in-plane direction. This leads to a reduced in-plane conductivity for
thin, mono crystalline films. Thomson [42] first proposed this effect. His basic picture
is a good basis, but his mathematical model oversimplified too much to be useful.
Fuchs [43] improved upon Thomson’s model using the Bloch-Boltzmann formalism
introduced in chapter 2. The problem is that Fuchs’s model is still both mathematically
complicated and has a large number of free parameters. Further, the model cannot be
easily appended to predict dynamics. Last but not least, Fuchs presumes all electrons
to have the same, universal mean free path. This contradicts both our knowledge of the
anisotropic Fermi velocity and the distribution of relaxation times. On the other hand,
experimental data for the same system as investigated here (iron epitaxially grown
on MgO) also varies strongly between different studies. Different results on the same
system indicate that sufficient experimental control over the system may not yet have
been achieved. Therefore, I focus an a qualitative rather than quantitative description
of the effects of surface scattering here. The focus is on how surface scattering may
influence the distribution of relaxation times, not only in terms of lowering the average
< τ >, but also the variation C. To start of, we have to understand the concept of a
mean free path.

3.1 Mean free path

By mean free path of an electron we refer to the expected distance the electron travels
before its velocity is randomised. The name mean free path leads to a bit of confusion
when looking at an ensemble of different particles whose expectation values for this
distance are different from one another. The confusion arises when looking at the
ensemble average of the expectation values, which could then be the called ’mean of
mean free paths’. Obviously mean free path and ’mean of mean free paths’ are different
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3 Thickness scaling of conduction dynamics

quantities. I will use expected free path in the following for the expectation value of a
single particle (conventionally ’mean free path’) and average of expected free paths for
’mean of mean free paths’ when necessary to avoid confusion. The expected free path l⃗
of a certain state (b, s,E , S⃗) in direction êj is the product of the group velocity v⃗g and
the relaxation time of that state. When the relaxation time τ depends on the direction
S⃗ in momentum space, τ also depends on direction êj .

l⃗(b,s)(E , S⃗) =∑
j

τ
(b,s)
j (E , S⃗) (v⃗(b,s)g (E , S⃗)êj) êj (3.1)

3.1.1 Universal mean free path assumption

Again, often the assumption is made that the mean free path is universal and isotropic.

l⃗
(b,s)
j (E , S⃗) = lu ∀ b, s,E , S⃗ and j (3.2)

This assumption implies that the magnitude of the group velocity is the same for all
states at the Fermi-surface. This contradicts our knowledge of the Fermi-surface, but it
is simple. This ’universal mean free path’ assumption is used for all common thickness
scaling models [6, 42–44].

3.2 Thomson model

Four years after discovering the electron, J.J. Thomson [42] described electrons inside a
metal scattering of the surface and predicted a thickness scaling from it. Like Drude, he
treats the electrons like as identical classical particles. Thomson assumes the electrons
have an expected free path l∞ in bulk and to scatter when they hit the surface. In a
thin film, the expected free path then depends on the distance of the electron from
the surface and the velocity towards the surface. Fuchs [43] gives a good illustration of
Thomson’s model. My adaptation of Fuchs’s sketch is displayed in fig. 3.1. I will use the
notation of z for the direction perpendicular to the film plane, and the film extending
from z = 0 to z = a. Thomson made extreme assumptions to keep computation simple,
such as assuming that each electron would scatter exactly at the point where it had
travelled a distance equal to the bulk mean free path. This unfortunately caused
conceptual problems and large inaccuracies.

3.3 Fuchs model

Fuchs [43] assumed a similar picture of electrons scattering at the surface. Contrary to
Thomson, he started with Boltzmann’s equation. Rather than introducing a position
dependent collision integral, Fuchs introduced boundary conditions at the interfaces to
model the scattering. Fuchs’s conditions are static, therefore his model cannot predict
dynamics. Fuchs’s model is still the go-to model to which any newer model is compared
to.
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3.3 Fuchs model

Figure 3.1: Sketch of Thomson’s basic idea. The thin metal film goes from z = 0 to
z = a. The free path of the electron is either given by the mean free path in
bulk or the distance to the surface dMax, which depends on initial position
z0 of the electron and the angle ϑ at which it travels towards the surface.

Fuchs derives a static version of Boltzmann’s equation where the phase space density g
depends on the z position:

vz
∂g1(v⃗, z)

∂z
+

1

τu
g1(v⃗, z) =

−eE

m

∂g0(v⃗, z)

∂vx
(3.3)

I have used the E for the electric field, τu for the universal relaxation time, −e and m
for the electron charge and mass and g0 and g1 for the equilibrium phase space density
and its perturbation by the applied field, the same notation as in eq. (2.22). Note that
Fuchs’s phase space comprises velocity v instead of momentum p. The general solution
to eq. (3.3) is

g1(v⃗, z) =
−eEτu
m

∂g0(v⃗, z)

∂vx
[1 +Φ(v⃗)e−

z
τuvz ] . (3.4)

Fuchs assumes the equilibrium density g0 to be constant in space, independent from
z. This is not obvious and rather contradictory to the idea that the scattering is not
homogeneous but concentrated at the surfaces. The function Φ(v⃗) must be determined
by boundary conditions. Further one must differentiate between upward moving (vz > 0)
and downward moving electrons (vz < 0), effectively dividing the phase space into two
halves. The density in the upward moving half of phase space is denoted with a plus,
as g+1 . The density of the vz < 0 half is g−1 .
The assumption then is that electrons hitting a surface are either perfectly specularly
reflected or completely diffusively scattered. The fraction ε of all electrons is reflected.
This leads to the following boundary condition for the density of electrons leaving the
bottom surface at z = 0 [6]:

g0 + g
+
1 (vz, z = 0) = ε [g0 + g

−
1 (−vz, z = 0)] + (1 − ε)g0 (3.5)
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Figure 3.2: Plot of the conductivity scaling according to the Fuchs model for 0 specular

reflection (ε = 0). The conductivity is expressed relative to the bulk
conductivity σ∞; the film thickness relative to the universal mean free path
lu.

and similarly at the top surface z=a:

g0 + g
−
1 (vz, z = a) = ε [g0 + g

+
1 (−vz, z = a)] + (1 − ε)g0. (3.6)

eqs. (3.5) and (3.6) applied to eq. (3.4) yields a z-dependent distribution g1 of the
velocity phase space.

g+1 (v⃗, z) =
−eEτu
m

∂g0

∂vx
[1 +

1 − ε

1 − εe−
a

τuvz

e−
z

τuvz ] , (3.7)

g−1 (v⃗, z) =
−eEτu
m

∂g0

∂vx
[1 +

1 − ε

1 − εe
a

τuvz

e−
z−a
τuvz ] . (3.8)

The current is then the integral of the perturbation g1 over the velocity phase space
and the z-direction (see eq. (2.21)). This rather complicated integral yields a direct
current conductivity σDC relative to the bulk value σ∞ of [6]:

σDC(a)

σ∞
= 1 −

3

2

lu
a
(1 − ε)∫

∞

1
(x−3

− x−5)
1 − e−

a
lu
x

1 − εe−
a
lu
x
dx. (3.9)

Here lu = vF τu is a universal mean free path implying an isotropic Fermi velocity vF
and universal relaxation time τu. This is obviously quite far away from reality. The
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3.3 Fuchs model

specularity parameter ε might depend quite arbitrarily on film thickness, which may
give the model more than one free parameter per observable data point. Fig 3.2 shows
the scaling relation for total catastrophic scattering (ε = 0).

Figure 3.3: Sketch illustrating the anticorrelation between bulk and surface scattering.
An electron which hardly scatters in bulk (red) will have a long expected
free path lR (red dashed line). The long bulk free path electron is hence
very likely to reach the surface and scatter off it. Surface scattering hence
limits the free path of the electron to lS . A different electron with a short
expected free path lB (blue) is unlikely to reach the surface. Its free path
stays unaffected. Hence the less likely electrons scatter in bulk, the more
likely they are to scatter of a surface. Bulk and surface scattering are
anticorrelated.

A couple of things can be learned from Fuchs’s model which will generally hold true
for most, if not all, thickness scaling models assuming a universal mean free path:

1. The universal mean free path lu gives the length scale for the thickness scaling.
The scaling only depends on the fraction a/lu.

2. The the relative propensity of surface scattering depends on the mean free path
in bulk. This means bulk and surface scattering correlate.

In reality, metals cannot be described by a universal mean free path lu, even less so
than by a universal relaxation time τu. This means the universal mean free path has
to be replaced by a distribution wl of expected free paths l. Further, surface and
bulk scattering probabilities are statistically dependent: The lower the bulk scattering
probability of a given electron, the more likely this electron reaches the surface, hence
the higher the probability of scattering on the surface. This anticorrelation between
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3 Thickness scaling of conduction dynamics

bulk and surface scattering has the potential of narrowing the distribution of expected
free paths, and therefore the distribution of relaxation times.

3.4 Scaling of the relaxation time distribution

Figure 3.4: Sketch of narrowing of a distribution by a scattering mechanism preferen-
tially scattering electrons with otherwise large relaxation times τ . Panel
a) shows an example distribution without this scattering mechanism. The
distribution is composed of extremely long relaxation time component (red)
and an equally large short relaxation time component (blue). The variation
C = s/ < τ > of this distribution is large. b) The scattering mechanism is
assumed to be extremely preferential, only scattering long relaxation time
(red) electrons. This drastically reduces the red relaxation time. Therefore
the standard deviation s decreases drastically. The mean relaxation time
< τ > is also reduced, but to a lesser extend, which leads to a reduction in
the coefficient of variation C.

The relevant quantity for the surface scattering probability of a microscopic state is
its expected free path. This microscopic expected free path is directly proportional to
the microscopic relaxation time of this state, the proportionality is given by the group
velocity of that state eq. (3.1). When we now look at an ensemble different states,
this direct proportionality is no longer valid for the quantities of the ensemble: Each
microscopic state may have a different group velocity. For the sake of simplicity, I will
still assume a one-to-one correlation between the distribution of expected free paths
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3.4 Scaling of the relaxation time distribution

and the distribution of relaxation times. This will provide a qualitative understanding
of the mechanisms by which a distribution may either be narrowed or widened by
surface scattering.

3.4.1 Narrowing by anticorrelated scattering mechanisms

An electron travelling towards a surface in a metal film will only reach that surface
if it does not scatter in the bulk before. Therefore bulk and surface scattering must
be anticorrelated, see fig. 3.3. This means that surface scattering may narrow the
distribution; mathematically narrower means smaller variation C; illustrated in fig. 3.4.

3.4.2 Broadening by direction dependent relaxation times

Figure 3.5: Sketch of the dependence of the relaxation time τ of an electron on the
direction it travels. An electron travelling parallel to the surface cannot
scatter on the surface and will therefore retain the bulk relaxation time
τ∞. Electrons travelling directly towards the surface will encounter the
strongest decrease in the expected free time. This process increases the
variation of the distribution of relaxation times.

An electron moving parallel to the surface will not reach it, and therefore cannot scatter
on the surface, only in the bulk. An electron moving directly towards the closest
interface has a high chance of scattering on that interface. In general, the probability
that a certain electron will scatter on a surface rather than in bulk depends on its
distance and direction of travel relative to the surface, illustrated in fig. 3.5. This means
even if there was only a single, universal microscopic relaxation time in bulk, surface
scattering will induce variation in relaxation times by discriminating electrons based
on position and velocity. This additional variation will lead to a broadening of the
relaxation time distribution. In general, this effect will become stronger the stronger
the relative propensity of surface scattering becomes. Therefore this broadening will
out-compete any narrowing by anticorrelated scattering mechanisms when the films
become so thin that surface scattering dominates.
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3 Thickness scaling of conduction dynamics

I note that the relaxation time approximation becomes far less justified in the surface
scattering case, since the potential time of impact of a given electron/state is not
random, but rather entirely determined by speed towards and distance to the surface.
As long as speed and distance are somewhat random within a given group of electrons of
similar relaxation time, the scattering events for the whole group will also appear mostly
random, giving some legitimacy to the approximation. Further quantum mechanical
effects like the uncertainty principle induce at least some randomness in the surface
scattering of an individual state.

3.5 Namba’s roughness effect

3.5.1 Roughness effect on measured conductivity

When dealing with a rough film, the roughness will lower the thickness relevant for
conduction compared to the measured thickness. To illustrate, consider the two
dimensional (2D) scenario of a material of varying height a conducting in direction x.
The direct current resistance Z over a distance D of the wire is given by:

Z =
1

LB
∫

D

0

1

a(x)σDC(a(x))
dx (3.10)

Here LB is the constant width of the wire. Our macroscopic DC-conductivity estimate
< σ >a is an average over all thickness a, computed assuming a universal thickness
equal to the average thickness < a >a:

< σ >a=
D

ZLB < a >
(∫

D

0

1

a(x)σDC(a(x))
dx)

−1

=
1

< a >a
⟨

1

aσDC(a)
⟩

−1

a

(3.11)

The harmonic average < 1
aσDC(a)

>−1=D (∫
D

0
1

a(x)σDC(a(x))
dx)

−1
over the sheet conduc-

tance σ ⋅ a is always smaller than the arithmetic mean < aσDC(a) >, especially because
the conductivity decreases with decreasing thickness. Even if we neglect the thick-
ness dependence of the microscopic conductivity (σDC(a)), we still use the arithmetic
mean for the estimate, while we would need the harmonic mean, see fig. 3.6. Since
the harmonic mean is always smaller than the arithmetic mean, this means we are
underestimating the actual conductivity. The rougher the film, the more this deviation
between harmonic mean and arithmetic mean increases. When one wants to compute
the size of the effect, one needs to know the actual distribution of thicknesses η(a).
Namba [45] assumed a sinusoidal variation of thicknesses which allowed him to calculate
a correction factor for the 2D case. Namba’s analytical model is used for real 3D
films [46], as all realistic 3D calculations must be numeric. I note that in the 3D case,
the current will take the path of least resistance which will reduce the roughness effect.
Namba’s model (combined with an intrinsic model for σDC(a)) does manage to explain
strong reductions in the conductivity for extremely thin films that intrinsic models like
Fuchs’s fail to predict. However one might criticise that at this point the actual model
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3.5 Namba’s roughness effect

might have enough free parameters to fit almost any scaling relation, and, since the
assumptions are not realistic for a 3D film, the parameters are of limited meaning.

Figure 3.6: Sketch of a very rough film. The measured thickness a of this film will
be equal to the arithmetic mean < a >. In the 2D scenario, the thickness
relevant for conduction is the harmonic mean < 1/a >−1. Since the harmonic
mean is always smaller, the average conductivity estimated by assuming
< a > will be lower than the true conductivity.

3.5.2 Roughness effect on the current response time

Of particular interest is how the roughness of the film affects the measurement of the
current response time. For at least a qualitative picture, I extend Namba’s model to
alternate current conductivity. The AC version of eq. (3.10) yields

Z̃ = Z + iX =
1

B
∫

D

0

1

a(x)σ̃(a(x))
dx (3.12)

Here Z is the real resistance and the reactance X gives the imaginary part of the
impedance. With a little complex calculus and eq. (2.35), we find the macroscopic,
thickness averaged current response time τC extracted from the conductivity phase will
be

< τC >a=
−1

ω

X

Z
(3.13)

Now, assuming we have effective Drude responses σ̃ =
σDC(a)

1−iωτC(a)
with thickness dependent

parameters, we get the following expressions for Z and X:

Z =
1

LB
∫

D

0

1

a(x)σDC(a(x))
dx =

D

LB
⟨

1

aσDC(a)
⟩
a

(3.14)

X =
1

LB
∫

D

0

−ωτC(a(x))

a(x)σDC(a(x))
dx =

−ωD

LB
⟨
τC(a)

aσDC(a)
⟩
a

(3.15)

< τC >a =
⟨

τC(a)
aσDC(a)

⟩
a

⟨ 1
aσDC(a)

⟩
a

=
⟨
R(a)
a ⟩

a

⟨ 1
aσDC(a)

⟩
a

(3.16)
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3 Thickness scaling of conduction dynamics

We can see a that < τC >a is a combination of averages, whose effects somewhat cancel
each other out. The measurement of τC is hence relatively unaffected by roughness.

3.5.3 Roughness effect on apparent variation

The ratio R = τC/σDC is connected to the variation C via R = 1
W (1 +C2). Since σDC

will be underestimated in case of a rough film, R and therefore the variation C may be
overestimated.

⟨R⟩a =
⟨τC⟩a
⟨σDC⟩a

=
⟨
R(a)
a ⟩

a

⟨ 1
aσDC(a)

⟩
a

⟨a⟩a

⟨ 1
aσDC(a)

⟩
−1

a

= ⟨
R(a)

a
⟩
a

⟨a⟩a (3.17)

Even when R would not depend on thickness because the variation of relaxation times
remained constant, eq. (3.17) shows that the measured ratio ⟨R⟩a will increase as long
as the roughness relative to the mean thickness increases, since we would compare an
arithmetic mean to a harmonic one.

3.5.4 Size of the roughness effect

We can quickly estimate the size and scaling of the roughness effect. We assume a
model even simpler than Namba’s: A wire that is half of height < a > +h and half of
height < a > −h, as seen in fig. 3.6. In the 2D case, the effect comes from the comparison
of the arithmetic ⟨a⟩a to the harmonic mean ⟨ 1

a
⟩
−1

a
. For our simple model, the ratio

between these two means is

⟨ 1
a
⟩
−1

a

⟨a⟩a
= 1 − (

h

⟨a⟩a
)

2

(3.18)

Hence the roughness size effects become important once the roughness h approaches
the average thickness ⟨a⟩a. The size of the effect will further be reduced since in 3D,
the current will take the path of least resistance, hence thickest portions of the film.
We will need to consider the roughness effect only for the thinnest films, but there it
will easily dominate any possible quantum effects for realistic roughnesses.

3.6 Summary

In general, the thinner a metal film is, the smaller both its conductivity and its current
response time will be. However, the conductivity and current response time will not be
exactly proportional, because surface scattering will change the variation of microscopic
relaxation times. When the films get so thin that the thickness becomes comparable to
the roughness, the intrinsic conductivity may be underestimated.
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4 Substrate referenced transmission
terahertz time domain spectroscopy

4.1 Accessing conduction dynamics in thin metal films by
substrate referenced transmission terahertz time
domain spectroscopy

The overall goal of this thesis is to time-resolve the conduction in metals film. I
want to gain information that can be directly applied to DC transport at room
temperature. Therefore the distribution of electrons probed by the electromagnetic
radiation should not deviate strongly from the Fermi distribution present at room
temperature in equilibrium. This is ensured by keeping the photon energy below the
typical energy of a thermal excitation. This thermal excitation energy corresponds to 6
THz. Relaxation times in metals are believed to be on the order of 10 fs. Hence the
necessary time-resolution is on the order of a femtosecond (10−15 s). Terahertz time
domain spectroscopy has this resolution. Reflection measurements only depend on the
conduction quite directly at the surface. Further they have experimental disadvantages
in achieving the time-resolution.
Therefore I perform transmission measurements. Free-space terahertz spectroscopy
needs samples of an area larger than the THz beam size in the focus, that is larger
than ca. 3x3 mm2. Few-nanometre metallic films cannot be prepared free standing
over such a large area. However, the films can be measured on the substrate they are
grown on, as long as substrate transmits terahertz radiation in the desired frequency
window. In this case a transmission through a blank substrate must be measured as a
reference. I refer to this method as substrate referenced transmission terahertz time
domain spectroscopy (SRT THz TDS).

4.1.0.1 Outline

In the following, I will give a brief introduction of terahertz time domain spectroscopy
and the experimental set-up I used. Then I will show how the time traces of the
terahertz radiation passing the metal film on the substrate can be combined with the
measurement of the reference substrate to yield the THz optical properties of the metal
film. I will show the general case and derive the analytical formula for the commonly
used approximation that the film is in air/vacuum and thin [47]. Here I will start
with the general case. Then I will show how much the inevitable difference between
the thicknesses of two substrates will influence the recovered conduction dynamics.
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4 Substrate referenced transmission terahertz time domain spectroscopy

The thickness difference can be calculated very accurately when the first echo of the
terahertz pulse is taken into account for both reference and sample. The trick is to
derive a quantity which does not depend on the unknown sample film, leaving the
thickness difference as the only unknown variable. I have shown this thickness difference
determination for a “thin” film in an optics letter [48]. Here I will expand this method
for a thin stack of multiple layers (i.e. the sample film and a capping layer) and for
a “thick” metal film. The high refractive index of metals (see fig. 1.4) means that
above ca. 20 nm, metal films are no longer “thin” for the 300 µm terahertz waves. The
properties optically thin and (highly) conductive are hence almost mutually exclusive.
I refer to this fact as the “thin-conductive oxymoron”, and show how the approximation
of a thin film can fail quite spectacularly for metal films as thin as 40 nm.

4.2 Terahertz time domain spectroscopy

Terahertz time domain spectroscopy (THz TDS) is based on measuring pulses in the
electrical field composed of frequencies around 1 THz as a function of time. This
is achieved by splitting a femtosecond laser pulse in two. One pulse generates the
terahertz pulse, the other gates the detection of the terahertz radiation. This technique
samples the electric field of the terahertz radiation as a function of the delay between
the generating and detecting pulses. THz TDS successfully bridges the frequency region
of the “Terahertz gap”. This gap appears around 1 THz as signals around this frequency
are too high for efficient electrical generation and detection but outside the range of
efficient direct optical sources and detectors such as lamps, lasers, and photo-conductors.
In this region THz TDS beats the Fourier transformed infrared spectroscopyin terms
of dynamic range [49].
However, THz time domain spectroscopy is more than a gap-filler. Since it measures the
electrical field as a function of time, it can time-resolve electrical processes. Here, I have
to distinguish two limits of time-resolution: First the fastest variation in the electrical
signal measurable, which is limited by the highest measurable frequency. Second the
smallest measurable difference in lag between two frequency components, either within
the same THz pulse or between different pulses. The accuracy of determining these
lags depends on how well the delay between the generating and detecting laser pulses is
controlled. This timing precision is conceptually independent of the frequency and may
exceed the frequency limitation by 3 orders of magnitude or more in a standard THz
TDS set-up. This is the precision needed to time-resolve conduction in metal films at
room temperature.

4.2.1 Specific set-up used

The set-up I used for the measurements presented in this thesis was designed by Zoltan
Mics and Ivan Ivanov. For a detailed description, I refer the reader to Ivan Ivanov’s
thesis [50]. The set-up is based on an amplified Ti:Sapphire laser. The laser emits 1000
pulses of 800 nm central wavelength per second. Each pulse is 40 fs long and has a pulse
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4.2 Terahertz time domain spectroscopy

Figure 4.1: Schematic of a terahertz time domain spectroscopy experiment. A fem-
tosecond laser pulse is split into a generation and detection pulse. The
generation pulse is converted into a THz pulse in a THz emitter. The THz
pulse propagates through a sample and then to a detection crystal. In
the detection crystal, the instantaneous field of the THz pulse changes the
polarisation state of the detection pulse. The polarisation of the detection
pulse is read out as the difference between the voltages of two photodiodes.

energy of ca. 100 µJ. After the pulses are split, the pulse generating the terahertz retains
90 % of the energy, while the detecting laser pulse retains 10 %. Optical rectification of
the stronger laser pulse in a 1 mm ZnTe crystal generates a terahertz pulse. The laser
pulse is collected, expanded, directed and focussed by a set of parabolic mirrors, first
onto the sample position and then onto the detection crystal. The detection crystal
is another 1 mm ZnTe crystal. The Pockels effect changes the refractive index of the
crystal along the electro-optic axis of this crystal linearly with the applied electric field.
By choosing a suitable polarisation of the detection laser pulse with respect to the
crystal and the THz axis, the THz electric field co-propagating with the detecting laser
pulse through the crystal induces a change in phase in the polarisation component
along the electro-optic axis. This adds a circular component to the polarisation of the
laser pulse. The pulse then passes a quarter-wave plate. The wave plate turns the linear
component into a circular one while the circular component is turned into a linear
polarised beam. The polarisation angle of this beam depends on the phase shift received
in the detection crystal. A Wollaston prism then analyses the polarisation by directing
ordinary and extraordinary beams towards separate photodiodes. The difference in
intensity between ordinary and extraordinary beams are directly proportional to the
phase shift in the detection crystal as long as those phase shifts are small. The linear
relation between phase shift and field means that the intensity difference between the
diodes is proportional to the electric field. To increase detection sensitivity, every
second THz pulse is blocked by a chopper. This allows to lock onto the modulation
of every second detection laser pulse and selectively amplify it. The modulation is
integrated over 1 second in the lock-in amplifier before read out. This measurement is
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4 Substrate referenced transmission terahertz time domain spectroscopy

Figure 4.2: Sketch of the terahertz time domain set-up used. The set-up is based on
two 1 mm (110) ZnTe crystals to generate and detect THz pulses with
femtosecond pulses from an amplified 800 nm laser. The THz pulses are
collimated and focussed by parabolic metal mirrors. The sample and the
detection crystal sit in the focus points of the THz beam. The entire THz
part is enclosed with a box and flushed with dry nitrogen to purge any
water vapour from the THz path.

repeated for a range of delays between the generating and detecting laser pulses. The
delay is set with a delay stage in the path of the detecting beam. The time steps for
the measurements in this thesis are always 50 fs. Figure 4.1 shows the principle of a
time domain spectroscopy experiment, fig. 4.2 the specific set-up for this thesis.

4.2.1.1 Time trace of a terahertz pulse

The data recorded with the above-described experiment are voltage differences as a
function time delay between THz and detection pulses. I refer to these raw data as
time traces. Two typical time traces are shown in fig. 4.3.
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Figure 4.3: Display of two terahertz time traces. The traces represent the voltage
difference between the photodiodes as a function of delay line position,
expressed in time of flight for light. ER is a trace taken through a bare 0.5
mm MgO substrate, ES is the trace acquired after passing through a sample
of 10.3 nm iron on top of a similar MgO substrate. ES was multiplied by 7
for comparability. Two pulses are visible. The first, larger pulse is directly
transmitted through the specimen. The smaller pulse arrives ca. 10 ps
later. This echo pulse once went back and forth within the MgO substrate.
The direct transmissions have the same shape and ES appears slightly
delayed compared to ER. This delay results from the sample substrate
being slightly thicker than the bare reference. The delay is more pronounced
for the echo, as the influence of the thickness difference multiplies here.
The echo of the reference ER pulse is smaller but otherwise similar to the
directly transmitted pulse. The echo in the sample trace is inverted with
respect to the other pulses because it was reflected from the metal film
with higher refractive index than the substrate. Since the metal interface is
more reflective than the substrate air interface, it is also stronger relative
to the direct transmission when compared to the reference.
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4 Substrate referenced transmission terahertz time domain spectroscopy

4.2.1.2 Frequency domain spectra

The spectroscopy part, that is the frequency resolution, is achieved by applying a fast
Fourier transformation algorithm to the time domain data 1. Normally only the first
10 ps window containing the direct pulse is Fourier transformed to avoid Fabry-Perot
interference fringes from the echo. As an example, the amplitude spectra for the time
traces from figure 4.3 is shown in figure 4.4.
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Figure 4.4: Display of two terahertz amplitude spectra from the direct transmission part
of the traces shown in fig. 4.3. The sample spectrum is again multiplied
by 7. The shapes are almost identical. Only the region between 0.3 and
2.3 THz shows significant amplitude. The reduction of intensity for the
spectrometer at low frequencies stem from diffraction effects. The decrease
after 1 THz mainly results from worsening phase matching between the
laser pulses and the THz pulse. Small features in the spectra are absorption
lines of the ZnTe crystals and residual water in the spectrometer. All in all,
the spectral shape depends more on the spectrometer than on the samples.

4.2.1.3 Relative transmission

The measured individual spectra are only proportional to the electric field. Further,
their shape is mainly determined by the spectrometer response function. In order to

1Again note the programs written for engineers and mathematicians such as MatLab use conventions
leading to an opposite sign of the complex phase. A complex conjugation is necessary to retain the
sign conventional in physics.
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4.3 Inverting the transfer function

obtain data that has meaning beyond the specific set-up used, any sample spectrum
needs to be divided by a reference spectrum. Thereby the detector response function
is divided out. Only the complex ratio between the THz fields of the sample and
reference experiments remains. This complex-valued relative transmission Ỹ is the most
primitive quantity that one can universally compare between different measurement
techniques. Figure 4.5 shows the complex THz transmission of the 10.3 nm iron sample
relative to the bare MgO reference.
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Figure 4.5: Amplitude (left axis, black) and lag (right axis, blue) of the complex
transmission Ỹ through a sample relative to a reference. The reference is a
bare MgO substrate, the sample a 10.3 nm iron film supported by MgO. The
lag is the complex phase divided by the angular frequency. Over a range
from ca. 0.6 to 2 THz, both amplitude and lag are almost constant, the
amplitude even at a bit lower frequencies. Both quantities fluctuate strongly
above 2.3 THz when the end of the spectral range of the spectrometer is
reached. From 2.0 to 2.3 THz a slight increase in amplitude is visible. This
may be the result of approaching the minimum measurable transmission of
the spectrometer.

4.3 Inverting the transfer function

The goal of the measurements is to retrieve material parameters (σ̃) from the complex
terahertz transmission Ỹ . The general approach is to model the measured samples.
The model (characterised by parameters G⃗) allows constructing a transfer function
Ỹ (σ̃, G⃗). The transfer function allows predicting the measurement for an accurate
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4 Substrate referenced transmission terahertz time domain spectroscopy

model G⃗ and known material parameters σ̃. The challenge is then to invert this
transfer function, that is to find the set of parameters σ̃, G⃗ that have resulted in the
measured data. This can be attempted numerically by guessing parameters (in this
thesis only σ̃), comparing Ỹ (σ̃, G⃗) with the measured data, improving the guess and
iterating to convergence. For some special cases, the transfer function Ỹ (σ̃, G⃗) can be
approximated by a simple algebraic function, which can be analytically inverted. In
the case of substrate referenced spectroscopy, the assumption of a film so thin that the
phase change during transit is negligible permits the inversion. The assumption that
the film is conductive then allows recovering the conduction dynamics and the sheet
conductance without knowledge of the exact film thickness a.

4.3.1 Geometry

4.3.1.1 The sample

In substrate referenced spectroscopy the electro-optic properties (refractive index /
conductivity) of a supported thin film are measured. The film may be part of a stack
of layers on top of the supporting substrate. I will refer to the stack (or film) and the
substrate as “sample” and use “sample film” when I address the film only. Figure 4.6
gives a sketch of the general sample. In case a stack is measured, the thicknesses of
all layers and the THz refractive indices of all materials except the sample film have
to be known or known to be negligible. The measurement of the refractive index of
the substrate is described in the appendix section 7.3. This a general description of
a sample stack, the specific iron samples investigated in this thesis are described in
section 7.2 and sketched in fig. 7.1.
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Figure 4.6: Sketch of the type of sample investigated with substrate referenced THz
spectroscopy: A sample film whose THz properties are to be determined,
supported by a substrate. The film may be part of a stack of other materials
whose THz properties are known.

4.3.1.2 Path of the pulse through the sample

In a THz TDS measurement, the electric field recorded after transmission through the
sample is compared to the field recorded through a known reference. For substrate
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4.3 Inverting the transfer function

referenced spectroscopy, a bare substrate is used as a reference. I will refer to it simply
as reference or reference substrate.
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Figure 4.7: Sketch of the beam path through a sample and a bare reference substrate.
The transfer functions between the incoming electric field Ein and the
transmitted fields for sample ES and reference ER are the product of the
transfer functions of the individual components. Important dimensions are
indicated. The figure is not to scale.

The transfer functions of sample and reference give the ratio between the incoming
terahertz electric field EIn and the transmitted electric field through the sample ES,I
and the reference ER,I , respectively. The I indicates that only the direct transmissions
through the substrates are considered, the echoes can be separated by temporal
windowing in time domain spectroscopy when they do not overlap. The transfer
function of the entire system can be written as the product of the transfer functions
of the components encountered in the path of the terahertz pulse. Fig. 4.7 depicts
this path for sample and reference. In the sample, the pulse is reflected multiple times
in the iron film and MgO capping layer. I use t̃0,3 to describe this transmission. I
denote the propagation factor the substrate as p3(ls). Here we only consider the direct
transmission. The index 3 indicates the substrate material while ls is the relevant
length. The final transmission from the substrate (3) to air (0) is t3,0.
For the reference, the pulse will travel through air (0) for the thickness x of the stack
on the sample, marked as p0(x). t0,3 gives the in-coupling from air into the substrate,
p3(lR) the propagation through the reference and t3,0 is again the out-coupling factor.
An additional path d is travelled through air to arrive at the same point as the out-
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4 Substrate referenced transmission terahertz time domain spectroscopy

coupling position of the sample. This is p0(d). Note that d can be negative if the
sample substrate is thinner than the reference. This yields the following two equations
eqs. (4.1) and (4.2):

ẼS,I = t̃0,3 ⋅ p3(ls) ⋅ t3,0 ⋅ ẼIn (4.1)

ẼR,I = p0(x) ⋅ t0,3 ⋅ p3(ls) ⋅ t30 ⋅ p0(d) (4.2)

Here Ẽ denotes the spectral densities of the respective E-fields, obtained via Fourier
transform (eqs. (1.2) and (1.3)).
With eq. (1.7) this the relative transmission ỸI of the directly transmitted THz pulses
is:

ỸI =
ẼS,I

ẼR,I
=
t̃0,3

t0,3
p3(d)p0(−(d + x)) (4.3)

While I took care to account for the different distance travelled in the sample with
respect to the reference, I will neglect Gouy shifts. Gouy shifts arise because the samples
are placed in a focus of the THz beam between two parabolic mirrors, which means
that the incident wave is not a plane wave. This leads to Gouy shifts proportional
to the differences in the optical lengths of sample and reference [51]. However, the
differences in optical lengths are very small compared to the focal lengths of the set up
and thus Gouy shifts should be negligibly small.

4.3.2 Transfer matrix method

The transfer matrix gives the general description of a wave propagating through a stack
of layers, taking into account all multiple reflections inside the layers. This is necessary
when these reflections do not appear as separate echos which we can simply cut out in
the time domain. This is the case for the sample stack, which may include capping
and buffer layers in addition to the sample layer of interest.

4.3.2.1 Fresnel coefficients

For normal incidence and relative magnetic permeability µ=1, the Fresnel coefficients
for transmission tl,m and reflection rl,m for a pulse travelling from material l into
material m are [52]

tl,m =
2ñl

ñl + ñm
(4.4)

and rl,m =
ñl − ñm
ñl + ñm

. (4.5)

Here ñj is the refractive index of medium j.
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4.3 Inverting the transfer function

4.3.2.2 Transfer matrix

The following section is based on a paper of Katsidis and Siapkas [52]. Please note
that they use a Fourier transform convention in which a later signal has a decreased
phase, the opposite of what I use here. The transfer matrix T~

~

yields reflection and
transmission of a multi-layered stack taking into account the multiple reflections within
the stack. A stack of N layers will have N +1 interfaces. Each layer and each interface is
assigned its own transfer matrix. The transfer matrix of the entire stack is the ordered
product of all those matrices. The stack commences with an interface. This interface is
assigned the index 0. The first layer is denoted as layer 1, the interface between it and
the following layer 2 is interface 1. The final Nth layer ends with interface N . Such a
stack is sketched in figure 4.8.

21 N

1 2 N-1 N0

x1 x2 x3

E0,In

E0,Out

EN+1,Out

EN+1,In

Figure 4.8: Sketch of a stack of N layers with N + 1 interfaces. Each layer and each
interface is described by a transfer matrix. The transfer matrix of the entire
stack is the product of all those matrices. x is the thickness of each layer.
EIn and EOut mark the incoming and outgoing fields. All fields travelling
to the right are marked in green. They will be noted in the first row of the
field transfer vector. The red fields are travelling to the left and noted in
the second row. The transfer matrix gives the relation between the field
transfer vectors directly in front and behind it. Each interface and layer is
assigned its own transfer matrix. The transfer matrix of the total stack is
the left to right product of the matrices of the components within it.

The transfer matrix T~

~

(0,N) relates the propagation of the electric fields travelling into
(EIn) and out of (EOut) the stack on the left (E0) of the stack to those on the right
EN+1. In this formalism, the fields travelling towards the right are denoted in the
first row, those travelling to the left in the second row of a field transfer vector2. The
relation between these two vectors in front of and behind the stack is

(
E0,In
E0,Out

) = T~

~

(0,N)
⋅ (
EN+1,Out
EN+1,In

) (4.6)

2This is NOT the vector of the electric field! I consider only one polarisation here.
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4 Substrate referenced transmission terahertz time domain spectroscopy

Reflection and transmission coefficients of the stack are then given by the elements of
the transfer matrix

t̃0,N+1 =
EN+1,Out

E0,In
=

1

T~

~

(0,N)
1,1

(4.7)

r̃0,N+1 =
E0,Out

E0,In
=
T~

~

(0,N)
2,1

T~

~

(0,N)
11

(4.8)

r̃N+1,0 =
EN+1,Out

EN+1,In
= −

T~

~

(0,N)
1,2

T~

~

(0,N)
1,1

(4.9)

t̃N+1,0 =
E0,Out

EN+1,In
=
Det (T~

~

(0,N))

T~

~

(0,N)
1,1

. (4.10)

Equation (4.7) gives the coefficient t̃f needed for the relative transmission in equation
(4.3). Reflection and transmission at each interface j are represented by a matrix S~

~

(j)

and the matrix P~

~

(j) gives the propagation through the layer j. The transfer matrix of
the entire stack is the product of the transfer matrices of each component of the stack:

T~

~

(0,N)
= S~

~

(0)
N

∏
j=1

P~

~

(j)S~

~

(j). (4.11)

The propagation transfer matrix P~

~

(j)(x) describes the transfer of electro-magnetic
radiation between two points spaced by a distance x in substance j. The propagation
matrix is connected via the propagation factor pj (eq. (1.7)) to the refractive index ñj
and the thickness xj of layer j:

P~

~

(j)
= (

pj(−x) 0
0 pj(x)

) = (
p

�

j 0

0 pj
) = (

e−ikñjx 0

0 eikñjx
) . (4.12)

The transfer matrix through an interface j between layers j and j + 1 can be built from
Fresnel coefficients. For the transfer matrix I use a shorthand notation assigning only
the interface indices to the Fresnel coefficients (eqs. (4.4) and (4.5)), that is tj,j+1 = tj
and rj,j+1 = rj :

S~

~

(j)
= (

1/tj rj/tj
rj/tj 1/tj

) . (4.13)

4.3.3 Transfer function

Combining eqs. (1.7), (4.4), (4.5), (4.7) and (4.11) to (4.13) yields the transmission
through the stack t̃0,3 as a function of the index of the sample film ñ2.
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4.3 Inverting the transfer function

ỸI,calc(ñ2) = ỸI,Measured (4.14)

t̃0,3 (ñ2)
p3(d)p0(−(d + x))

t0,3
= ỸI,Measured (4.15)

Under the assumption that all other parameters are known, this equation can usually
be solved numerically for the refractive index of the sample film ñ2. I use a simple
procedure by finding the minimum of

∣ỸI,calc(ñ2) − ỸI,Measured∣ . (4.16)

More sophisticated approaches weighting amplitude and phase differently can be used
when needed [53,54].
I will now consider the more specific case of only a single layer: the sample film with a
thickness a. In this case, the transfer function t̃0,3 through the film is [48,55]

t̃0,3 =
2ñ0ñ2

cos(kñ2a)ñ2(ñ0 + ñ3) − i sin(kñ2a)(ñ0ñ3 + ñ2
2)
. (4.17)

This leads to the equation

ỸI(ñ2) =
ñ2(ñ0 + ñ3)e

ik(ñ3−ñ0)de−ikñ0a

cos(kñ2a)ñ2(ñ0 + ñ3) − i sin(kñ2a)(ñ0ñ3 + ñ2
2)

(4.18)

for the direct transmission ỸI . I will now show how to retain an analytical formula
based on the approximation that the sample film is thin.

4.3.3.1 Thin film approximation

The relevant thickness for this approximation is the optical thickness ñ2a of the film.
When this is small compared to the THz wavelength, the cosine and sine expressions in
eq. (4.18) can be approximated by Taylor expansion to the first order of kñ2a around
zero:

∣kñ2a∣ < 0.09 → ∣ cos(kñ2a) − 1∣ < 0.01; (4.19)
∣kñ2a∣ < 0.39 → ∣ sin(kñ2a) − kñ2a∣ < 0.01. (4.20)

Further the exponential e−ikñ0a is approximated as 1 − ikñ0a. This will almost always
be a good approximation if equations (4.19) and (4.20) hold, since ñ2 is typically larger
than ñ0. This yields the expression

ỸI =
(ñ0 + ñ3)e

ik(ñ3−ñ0)d(1 − ikñ0a)

(ñ0 + ñ3) − ika(ñ0ñ3 + 1) +Z0σ̃a
. (4.21)
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4 Substrate referenced transmission terahertz time domain spectroscopy

Here I have used eq. (1.6) to replace the refractive index ñ2 of the sample film by the
complex conductivity σ̃ of the film. Z0 =

1
ε0c0

is the impedance of free space.

σ̃ =
ñ0 + ñ3

Z0a
[(
eik(ñ3−ñ0)d

ỸI
− 1) − ika(ñ0

eik(ñ3−ñ0)d

ỸI
−

1 + ñ0ñ3

ñ0 + ñ3
)] . (4.22)

This formula is not given in the usual overviews and derivations [56–58]. It is, however,
more general and helps to illuminate the additional approximation of the film being
highly conductive.

4.3.3.2 Thin conductive film approximation

I will use the case of the surrounding medium being air or dry nitrogen (ñ0 = 1) to
simplify eq. (4.22)

σ̃Z0a = (1 + ñ3) [(
eik(ñ3−1)d

ỸI
− 1)(1 − ika)] . (4.23)

Here the conductive film approximation assumes that ka is negligible while σ̃Z0a is
not. Therefore ∣Z0σ̃∣ >> k must be fulfilled, which is the same as ∣ñ2∣ >> 1. Using this
approximation (keeping ñ0 general) yields

σ̃ =
ñ0 + ñ3

Z0a
(
eik(ñ3−ñ0)d

ỸI
− 1) . (4.24)

This equation, often referred to as “thin film equation” or “Tinkham approximation” [57],
is very commonly used for thin films. The equation provides a simple formula to
calculate the conductivity σ̃ from the measured field transmission ỸI . I will use this
approximation in the following to obtain starting values for the numerical solution of
eq. (4.16). Within this approximation, the exact film thickness a is not important for
recovering the dynamics of the sheet conductance σ̃a. Note that the combination of
the approximations that the film is thin concerning the optical phase shift (∣kñ2a∣ << 1)
and that it is conductive ∣ñ2∣ >> 1 means that ka << ∣kñ2a∣ << 1. Therefore this thin
conductive film formula (4.24) only applies to extremely thin metal films. The section
“Thin conductive oxymoron” shows how quickly this approximation fails and what
errors arise from failure.

4.4 Substrate thickness correction

In the following section, I will present how to obtain the thickness difference with a
precision of better than 100 nm from the same THz transmission measurement I use
to extract the conductivity3. The only requirement is that in addition to the direct
transmission, the time trace of the first echo is recorded.
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Figure 4.9: Influence of 1 µm thickness difference on the apparent conductivity of a
10 nm film with 100 ms DC sheet conductance. Full lines denote the real,
dashed the imaginary part of the conductivity. The black lines indicate the
true spectrum, blue the conductivity spectrum recovered when neglecting
-1 µm thickness difference and red results from neglecting 1 µm of thickness
difference

4.4.1 Substrate thickness difference

I will illustrate the effect of the substrate thickness difference on the apparent complex
conductivity by a simple method:

1. Chose a sample reference pair of a certain geometry, complex conductivity and
thickness difference.

2. Compute the field transmission of this pair using eq. (4.14).

3. Neglect the thickness difference when recovering the complex conductivity.

I consider a sample stack of thickness a as the only layer on top of a substrate that is
d thicker than the reference. I assume a measurement in air (ñ0 = 1) and use ñ3 = 3.24
for the substrate index (see section 7.3). This value is an approximation of the index
spectrum of magnesium oxide. I keep the thickness of the film a at a constant 10
nm within this section. The conductivity is assumed to be of a Drude spectral shape,
eq. (2.44), with a DC-conductivity σDC and a response time τD.

3in the case of the MgO substrates I investigated
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4 Substrate referenced transmission terahertz time domain spectroscopy

4.4.1.1 Basic impact of variations in substrate thickness

0
1 0
2 0
3 0

0 1 20

5

1 0

Ap
par

en
t 

lag
 τ l [fs

]

 d  = 0
 d  =  - 1  µ m  
 d  =  1  µ mAp

par
en

t 
σ [

106  S/
m]

f  [ T H z ]

Figure 4.10: Influence of 1 µm thickness difference on the apparent conductivity of a
10 nm film with 100 ms DC sheet conductance. The top graph displays
the measured lag τl, the bottom graph the conductivity amplitude σ. The
black lines indicate the true spectra, dashed blue the lag τl and amplitude
σ spectra recovered when neglecting -1 µm thickness difference and dashed
red results including the systematic error from neglecting 1 µm of thickness
difference.

Figures 4.9 and 4.10 illustrate the impact of a sample substrate 1 µm thicker or thinner
than the reference (d = 1 µm respectively -1 µm) on the measurement of a sample film
with a σDC of 107 S/m and τD = 20 fs. I chose the conductivity close to that of perfect
bulk iron, τD = 20 fs is a realistic estimate for a thin metal film. Figure 4.9 shows
the resulting apparent complex conductivity in terms of its real and imaginary parts.
Figure 4.10 displays the same conductivities in terms of conductivity amplitude σ and
lag τl. 4.10. Here the impact of the thickness difference on the measured timing τl
becomes directly obvious. The thickness difference basically shifts the recovered lag by
a constant time, roughly 12 fs in this example. The effect on the apparent amplitude is
hardly visible and probably too small to be resolved within experimental accuracy.
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4.4 Substrate thickness correction

4.4.1.2 Thickness difference indistinguishable from response time

The change in lag by thickness difference seen in 4.10 is almost indistinguishable from
a different current response time. I illustrate this by comparing the lag measured for a
film with 20 fs response time time neglecting 1 µm thickness difference to the true lag
of a film with 8 fs response time in fig. 4.11. Both films have a DC-conductivity of 107

S/m.
The absolute conductivity is even less distinguishable since it is hardly affected by
response time or thickness difference. The following problems arise from this difficulty
to distinguish Drude response times from thickness difference effects:

1. Response time4 data reported without the thickness difference determined may
not be trustworthy.

2. The uncertainty of the thickness difference limits the accuracy of the measured
response time. The current state of the art precision leaves at least 10 fs systematic
error [32,59].

3. Even if a Drude shape conductivity is assumed, fitting the apparent conductivity
with the thickness difference as a free parameter will leave several fs of uncertainty
on the response time, since thickness difference and current response time correlate
strongly.

A possible example of this be seen in comparing literature data from Hilton et.al. [60]
and Bonetti et.al. [9]. In both cases the THz transmission experiments are only side
notes, not key to the papers. Nevertheless Hilton’s 70 fs Drude response time for a
12 nm iron film do not agree well with Bonetti’s 30 fs for a 9 nm iron film, especially
considering Hilton’s film is less than half as conductive as Bonetti’s and hence would
be expected to have a shorter Drude response time. Neither work makes any statement
regarding the expected precision of their measurements.
The slight differences between true lag of the 8 fs film and the distorted lag of the
20 fs film increase with frequency (see fig. 4.11). The differences result from terms
proportional to (ωτD)2. Therefore a larger bandwidth is always helpful to distinguish
the two cases. Further very large distortions will be more obvious. Still ca. 1 fs
precision on the response time measurements will be required. I will, therefore, give a
brief overview of how much systematic error to expect for a given thickness difference.
This will depend on the (DC) conductivity σDC and thickness a of the film. I will limit
this discussion to thin films where only the sheet conductance σDC ⋅ a matters5.

4often referred to as relaxation time or scattering time in the respective publications
5These are thicknesses below 20 nm for typical metals, see page 89 f .
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Figure 4.11: The systematic error from 1 µm thickness difference makes a film with

20 fs current response time almost indistinguishable from a conductivity
with 8 fs response time. The film is a 10 nm thick with 100 ms DC sheet
conductance. The true lag τl for 20 fs current response time τ is indicated
by a black line. The blue line indicates the true lag for 8 fs response time.
The dashed red line results from neglecting 1 µm of thickness difference
when recovering the conductivity shown in black.

4.4.1.3 Sheet conductance impacts thickness difference effect

Staying with 10 nm thick films, a silver film retaining bulk properties would have the
highest possible sheet conductance of 630 mS. The lowest sheet conductance of any
film presented in this thesis is ca. 4 mS for 2.2 nm of iron. However, other samples
under investigation by THz time domain spectroscopy include graphene sheets with
typical sheet conductances of 0.1 to 1 mS and topological insulators with even lower
sheet conductances. Figure 4.12 shows how differently d = 1 µm thickness difference
affects the apparent lag in films of different sheet conductance.

The general trend is that the lower sheet the conductances the larger the thickness
difference error will become. Between 4 and 1 mS a drastic change happens, where
the apparent lag stays no longer flat and the apparent amplitudes sky rockets. This
threshold coincides with the value of 1

Z0
≈ 2.7mS, which is not surprising considering

eq. (4.24).
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Figure 4.12: The systematic error from 1 µm thickness difference changes for different
sheet conductances. The film is a 10 nm thick with 20 fs response time.
The true lag τl and conductivity amplitude are indicated by black lines.
The dashed colourful lines denote the apparent lags and conductivity
amplitudes resulting from neglecting 1 µm thickness difference for films
from 630 to 1 mS of sheet conductance. The lower the sheet conductance
the larger the resulting error on the lag. For 1 ms the apparent lag is off
the chart at less than -100 fs and the apparent amplitude also quickly
deviates beyond the frame.

4.4.1.4 Necessary precision

I aim for 1 fs precision on the measurement of the lag. The sheet conductance of each
film will impact how precise the thickness difference measurement needs to be for the
respective sample. In general, better than 100 nm precision is necessary. For the lowest
sheet conductance measured for this thesis (4 mS), 20 nm precision on the thickness
difference suffice. Fig. 4.13 illustrates this point. The figure is based on the same film
parameters as fig. 4.12 except for reducing d to 20 nm.
Note that the impact of the thickness difference also depends on the substrate index ñ3.
The additional lag of the relative field transmission due to the thickness difference d is
(ñ3 − ñ0)kd. In addition, the relative impedance of the film Z0σ̃a is compared to that
of the substrate in eq. (4.24). I remind that the above estimations have been made for
metal films on MgO. In case films of much lower sheet resistance or substrates of very
different refractive index were to be used, estimations for the impact of the thickness
difference should be redone.
For error estimates on the complex conductivity, I propagate the uncertainties of the
respective thickness difference using the geometry of the respective sample. Note that
uncertainties on the refractive index of the substrate will change the estimated thickness
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Figure 4.13: The systematic error from 20 nm thickness difference changes for different
sheet conductances. The film is a 10 nm thick with 20 fs response time. The
true lag τl and conductivity amplitude are indicated by black lines. The
dashed colourful lines denote the apparent lags and conductivity amplitudes
resulting from neglecting 20 nm thickness difference for films from 100 to
0.01 mS of sheet conductance. Between 100 and 4 ms, neglecting 20 nm of
thickness difference results in less than 1 fs error on the lag. For 1 ms the
apparent lag is already off by 4 fs, for all lower conductances the apparent
lag lies below the limits of the graph. Conductivity amplitudes are less
affected, only for 0.01 mS the apparent amplitude severely deviates from
the true one.

difference by a much larger degree than they change the thickness corrected response
time.

4.4.2 Measuring the substrate thickness difference with the echo

I need better than 100 nm accuracy on the thickness difference to obtain the 1 fs timing
resolution on the conductivity dynamics. Several methods exist in literature to obtain
accurate thickness differences, though exact accuracy estimates are rarely published.

1. Manufacturing sample and reference on the same piece of substrate, tightly
spaced [58]. In an advanced step, two reference areas on both sides of the sample
film allow a correction to any linear skewness of the substrate.

2. Measuring the thickness of the bare sample and reference substrates with THz-
TDS before the deposition of the sample film [33].

3. Measuring the thickness difference afterwards by a different method, i.e visible
optical metrology [61].
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4.4 Substrate thickness correction

The accuracy of option 1 depends on the local thickness variation of the substrate.
Typically the accuracy on the response time is limited to 10 fs or more [32, 59].
Option 2 requires to track any possible changes to the optical thickness of the sample
during sample deposition, i.e. by polishing, etching, buffer layers, and heat treatment.
Mechanical measurements are usually not precise enough for option 3 and every optical
measurement has the difficulty that the influence of the capping layer has to be
discounted. Options 1 and 2 need samples purpose-built for THz spectroscopy. The
thickness difference needs to be known prior to the THz measurement with the required
accuracy. The required accuracy for a target response time again depends on the
(THz) properties of the sample film (see fig. 4.12). This is a complicated, possibly
recursive process. Option 3 allows measuring the thickness difference even after the
measurement of the THz transmission. However it requires a separate experimental
technique, and there may not be a universal technique for every type of sample. The
echo method of thickness difference determination I developed works with the same
THz time domain transmission measurement that will be used to obtain the terahertz
properties of the sample film. Therefore my echo method requires neither a different
type of measurement nor additional THz measurements nor purpose-built samples.The
echo method merely requires that the first echo from the reflection within the substrate
must be measurable and distinct. This method has the potential to measure large
amounts of sample films in a short time and to be used easily in addition to other
methods on the same samples.

4.4.2.1 Beam path of the echo

Comparing echo and direct transmission allows eliminating the sample film properties
from the transfer function and hence measure the thickness difference. The paths of the
terahertz pulses EOut for echo (index II) and direct transmission (index I) are shown
in fig. 4.14.

4.4.2.2 Transfer function of the echo

Tracing the path of the pulse, the relative transfer function of the echo is derived
similarly to the direct transmission eq. (4.3). Here, I repeat the eq. (4.3) for the sake
of comparability.

ỸI =
ẼS,I

ẼR,I
=
t̃0,3

t0,3
p3(d)p0(−(d + x)) (4.25)

ỸII =
ẼS,II

ẼR,II
= ỸI

r̃3,0

r3,0
p3(2d) (4.26)
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Figure 4.14: Sketch of the beam path of the direct transmission (I) and the first echo
(II). The additional path of the echo is shifted down for display. The
important lengths are indicated.

4.4.3 Thin stack approximation

Two relations exist for transmission and reflection from a single interface between layers
l and m:

tl,m = tm,l
ñl
ñm

(4.27)

rl,m = tl,m − 1 (4.28)

When the stack is thin enough, these relations also apply to the transmission t̃ and
reflection r̃ through the stack. When this is the case, eq. (4.25) yields an expression for
t̃0,3. With eqs. (4.27) and (4.28), this expression can be inserted into eq. (4.26). This
yields
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4.4 Substrate thickness correction

r3,0ỸII = ỸIp3(2d) [ỸIt3,0p3(d)p0(−(d + x)) − 1] . (4.29)

Here I used eq. (4.27) again to convert t0,3 into t3,0. Since the stack is thin, x can be
neglected. Inserting the refractive indices and rearranging gives

ỸII

ỸI
(ñ3 − ñ0) − 2ñ3ỸIe

ikd(ñ3+ñ0) + (ñ3 + ñ0) e
2ikdñ3 = 0 = Q. (4.30)

This equation appears as eq. (13) in an optics letter published as part of this PhD
project [48]. In the letter, I derived it for the case of a single thin film, not a stack. In
the letter, n1 denotes the index of air while I use ñ0 in this thesis. I solve eq. (4.30)
for the thickness difference d by numerically searching the minimum of ∣Q∣ for each
frequency step between 0.5 and 2.0 THz. An example of ∣Q(d)∣ from a measurement of
the 10.3 nm iron sample referenced to the reference substrate A is displayed in fig. 4.15.
I use the minimisation algorithm built into MatLab to find the minimum of ∣Q∣. More
advanced numerical methods [53,54] to find the roots of a complex expression like Q
might help in more complicated cases.
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Figure 4.15: Expression ∣Q∣ as a function of thickness for a measurement of the 10.3
nm iron sample reference to substrate A. The common minimum for all
frequencies yields the correct value of the thickness difference. Suitable
boundaries should be chosen for the minimisation algorithm to avoid
getting stuck in local minima at some frequencies.
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4.4.3.1 Arbitrary angles of incidence

This thesis only deals with normal incidence, but this method can be generalised to
arbitrary angles of incidence. Equation (4.29) holds for all angles of incidence Θ0 when
the appropriate Fresnel factors for the respective polarisation and the general version of
propagation factors are used: pl(y) = eikyñl cos(Θl). Θl is can be derived from Θ0 with
Snell’s law of refraction.

4.4.4 Thick conductive film approximation

As stated earlier, metals have a very large refractive index in the terahertz range. In
case of iron, an a =20 nm thick film is the limit for which the thin-film approximation
(eq. (4.24)) can still be applied to recover conductivity data, see page 89. Therefore I
expand the thickness correction method for a film where the terahertz phase change
and/or absorption are no longer small during a single pass of the pulse. Here I consider
just a single sample film, not a stack of several layers including the sample film. I
justify this with the negligible contribution of any thin capping layer compared to the
thicker sample film. Starting with equations eqs. (4.25) and (4.26) I use the expressions
for the transmission t̃0,3 (eq. (4.7)) and reflection r̃3,0 (eq. (4.9)) through the film to
obtain the two expressions [48]:

1

ỸI
=
p0(a + d)p3(−d)

ñ3 + ñ0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

AI(d)

⋅ [cos(kñ2a)(ñ3 + ñ0) − i sin(kñ2a) (
ñ0ñ3

ñ2
+ ñ2)] (4.31)

ỸII

Ỹ 2
I

=
p0(a + d)p3(d)

ñ3 − ñ0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

AII(d)

⋅ [cos(kñ2a)(ñ3 − ñ0) − i sin(kñ2a) (
ñ0ñ3

ñ2
− ñ2)] . (4.32)

I combine these two equations to separate the influence of the sample film from the
thickness difference:

B+ =
1

ỸIAI(d)
+

ỸII

Ỹ 2
I AII(d)

= 2ñ3 [cos(kñ2a) − i sin(kñ2a)
ñ0

ñ2
] (4.33)

B− =
1

ỸIAI(d)
−

ỸII

Ỹ 2
I AII(d)

= 2 [cos(kñ2a)ñ0 − i sin(kñ2a)ñ2] . (4.34)

Now comes the “conductive” approximation. When dealing with a metal sample film,
the refractive film ñ2 will be much larger than the other indices ñ3 and ñ1. Further
even though kñ2a may be large, ka must be small because otherwise the film would not
transmit any terahertz radiation. Therefore the term sin(kñ2a)

ñ0

ñ2
in equation (4.33)

can be neglected. I then express cos(kñ2a) as function of B+:
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cos(kñ2a) =
B+

2ñ3
. (4.35)

This in turn allows to express B− in terms of B+, thus eliminating the unknown index
ñ2:

B− =
B+ñ0

ñ3
− 2i

¿
Á
ÁÀ1 − (

B+

2ñ3
)

2 arccos ( B+2ñ3
)

ka
. (4.36)

This equation is solved similarly to equation (4.29) by numerically finding the minimum
of

Q2 =

RRRRRRRRRRRRRR

B− −B+

ñ0

ñ3
+ 2i
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B+

2ñ3
)

2 ∣R [arccos ( B+2ñ3
)]∣ + i ∣I [arccos ( B+2ñ3

)]∣

ka

RRRRRRRRRRRRRR

. (4.37)

Here I force the real and imaginary parts of ñ2 to be positive, which is a physical
necessity in a metal. This is necessary as the computer may otherwise select the
negative branch of the arccos function.
Note that the values obtained for the film index ñ2 are only rough estimates, which work
well enough to obtain the thickness difference, but should not be used to characterise
the film properties.

4.5 Measurements of the thickness difference

In this section, I present the thickness difference measurements between a set of iron
films on magnesium oxide and bare magnesium oxide references. First I give the specific
statistical methods I used to obtain the values for the thickness difference. Then I
will display the values for the thickness difference I use for further analyses. Lastly,
I will show that the conductive and thin approximations result in values within each
others confidence intervals. This indicates that the thin stack approximation holds for
the thickness difference estimation for much thicker films than for the conductivity
estimation.

4.5.1 Precision estimation

Each pair of sample and reference measurements yields mf values dj for the thickness
difference. mf is the number of frequency steps within the frequency range of optimal
phase resolution. This range spans from 0.6 to 2.0 THz for the spectrometer I use.
I repeated the measurement pairs 10 to 30 times. That makes between 140 and 420
measurements M of the thickness difference for each sample. I use an m = 52 %
trimmed mean to estimate the sample mean to have a robust estimator6. For this

6Estimates using this trimmed mean are robust to both outliers and distribution types; a few outliers
hardly affect the estimate. Trimming by m = 52% is chosen as to allow efficient estimation of the
central values of Gaussian (ideal 0%), Cauchy (ideal 70%) and exponential (ideal 99.9%) distributed
measurements
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4 Substrate referenced transmission terahertz time domain spectroscopy

estimation technique, all values dj are ordered by size. Then the lowest and highest
N = ⌊mM/2⌋ values are discarded. The mean of d is then estimated as:

d =
1

M − 2N

M−N

∑
j=N

dj (4.38)

∆d =
1

1 −m

¿
Á
Á
ÁÀ

M−N

∑
j=N

(d − dj)
2

(M − 2N − 1)(M − 2N − 2)
(4.39)

∆d is the estimate for the error between the mean of the sample of M measurements
and the population mean. I based its formula on the standard error of the arithmetic
mean. I confirmed that eq. (4.39) yields the 68 % confidence interval for the trimmed
mean for samples of above 100 normal distributed randomly generated numbers.

4.5.2 Measurement and statistical precision
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Figure 4.16: Thickness differences between samples and reference substrates. The
rounded metal thickness is used to identify the samples. The samples
were measured in three separate measurement runs. Series 2 and 3 used a
different substrate than series 1. The thickness apparently vary by ca. 30
µm.

Three series of measurements were taken, each almost a year apart from each other.
Further the reference substrate was changed from series 1 to series 2. Table 7.1 in
section 7.4 lists the samples measured in each series.
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4.5 Measurements of the thickness difference

Fig. 4.16 shows that thicknesses between the double polished MgO samples vary by
about 30 µm. This makes thickness difference correction necessary. For these MgO
substrates, no values for the local thickness variation are available. The wafer-to-wafer
variation is specified as 20 µm. Even comparing the same substrates and samples can
lead to a few µm difference, probably due to local thickness variations or sample ageing
effects.
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Figure 4.17: Statistical errors estimated for the thickness differences between substrate
and sample. The rounded metal thickness is used to designate the samples.
All errors are below 80 nm, most below 20 nm. Series 1 has the lowest
errors, series 3 the highest.

The statistical errors of the thickness determination are displayed in fig. 4.17. All
errors are below 80 nm. Series 1 has the smallest errors. The primary reason is that
all measurements of series 1 consist of 30 repetitions. Within series 2, the number
of repetitions was decreased to 10 repetitions, because other error sources usually
dominated the uncertainty of the lag of the conductivity. Only in the case of the 3 nm
sample, the error induced by the uncertainty of the thickness difference in the lag exceeds
1 fs and is dominant. This happens because the 3 nm iron films conductance roughly
matches the terahertz impedance between the MgO substrate and the surrounding air
(eq. (4.40)), thus acting as an antireflection coating [58]. The antireflection condition
is [58]:

ñ3 − ñ0 = Z0σ̃a (4.40)

With for MgO (ñ3 ≈ 3.2) and air (ñ0 = 1) the left hand side yields ≈ 2.2 while for the 3
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4 Substrate referenced transmission terahertz time domain spectroscopy

nm film Z0σDCa is approximately 2.8. The thinner 2 nm film has a much lower value, all
other films much higher values. The antireflection effect is a weakness of my thickness
correction approach, but it will only impact a small range of sheet conductances. The
results will still be competitive with the previous state of the art methods.
On the other hand, the highest precisions obtained are roughly 4 nm, which allows
better than 0.1 fs resolution on the lag. With larger bandwidth and more repetitions
(or signal), few attosecond precision may be feasible with the echo correction method.

4.5.3 Comparing thin and conductive approximations
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Figure 4.18: Systematic difference between conductive film approximation and thin
stack approximation relative to the respective statistical error of the dif-
ference. Only the 40 nm series 2 measurement has deviation between
the two that is larger than its statistical error. For the currently achiev-
able precision, the simpler thin stack approximation can be used for all
thicknesses.

Lastly, I will show that even for films too thick for the requirements of eq. (4.20), the
thin film/stack approximation is accurate enough to determine thickness differences
within the statistical precision of the measurement. Figure 4.18 shows the difference
dCond − dThin between the two approximations relative to the statistical uncertainty
of this difference. Only for the measurement of the 40 nm in the second series the
two approaches deviate by more than the statistical error. I also note that I cannot
detect a systematic pattern for the dCond −dThin, i.e. the differences fluctuate randomly
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from positive to negative. For the currently achievable precision, the simpler thin-stack
approximation can be used for all thicknesses.

4.6 The thin conductive oxymoron
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Figure 4.19: Apparent lag and conductivity amplitude recovered with the thin film
approximation for a material of σDC = 10⋅106 S/m and τD=20 fs depending
on film thickness. Black lines denote the input, colourful lines the apparent
values for 10, 20, 40 and 100 nm. 10 nm almost coincides the input, 20 nm
has a lag that is less than 1 fs smaller. The 40 nm film results in already
3 fs of systematic error on the lag, while spectral shape and amplitude
are still as the input. For 100 nm spectral shape and amplitude also
significantly deviate.

While the thickness difference recovered under the assumption of a thin stack appears
to be still valid for iron films of 100 nm, the complex conductivity recovered under the
same assumption will significantly deviate for iron films above 20 nm of thickness. To
illustrate this, I again perform consistency checks similar to those for the thickness
difference on page 75:

1. Chose a complex conductivity, thickness and substrate index.

2. Compute the field transmission for this film using eq. (4.14).
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3. Apply the thin conductive formula eq. (4.24) when recovering the complex
conductivity.
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Figure 4.20: Lag and conductivity recovered by thin-film approximation for films of
37 MS/m conductivity and 7 fs response time. The thicker the film, the
more the lag decreases. Since in this case the conductivity amplitude also
increases, the apparent conductivity resembles that of partially localised
charge carriers.

The apparent conductivity recovered for a material with σDC of 10 ⋅ 106 S/m and a
Drude response time τD of 20 fs is shown in fig. 4.19 for thicknesses from 10 to 100
nm. For 10 nm the deviation is almost invisible. For 20 nm the change in the apparent
lag is still smaller than 1 fs. For 40 nm the error on the lag increased to 3 fs, while
spectral shape and amplitude remain unchanged. Therefore such an error could not be
seen from the spectra alone. The thin film approximation can lead to a distorted shape
and amplitude for much thicker films, seen in the case of the 100 nm film.
The distortion of the spectral shape of the apparent conductivity towards decreasing
response time and increasing amplitude can lead to the display of the hallmarks of
confined charge carriers. As an example, I show the case of a material with simple
Drude conductivity with 37 ⋅ 106 S/m and a response time τD of 7 fs in fig. 4.20. Here
the larger conductivity leads to larger error in the apparent lag for the same thickness.
For 40 nm the lag already turns negative. The distortion of the spectral shape fits
the Drude-Smith model [62,63] for partially confined carriers as seen in fig. 4.21. The
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Smith’s modification of Drude’s model for the conductivity of partially confined charge
carriers is the following equation:

σ̃DS =
σDC

1 − iωτDS
(1 −

CDS
1 − iωτDS

) (4.41)

Since I picked the conductivity and response time from the DC-conductivity and the
optical/infrared response time of aluminium [15], misinterpreting the failure of the
thin-film approximation for a 40 nm aluminium film as bound charge carriers in a metal
is a realistic possibility.
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Figure 4.21: Lag and conductivity recovered by thin-film approximation for a 40 nm
film of 37 MS/m conductivity and 7 fs response time. The shape of
the apparent conductivity resembles that of partially localised charges,
empirically often described by the Drude-Smith model. The model fits
reasonably well and would mislead to the interpretation that 2/3 of the
charge carriers are confined, not free.
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5 Conduction dynamics in thin iron
films

Here I will present the results of the substrate referenced transmission terahertz
time domain spectroscopy measurements on 12 iron films between 2.2 and 100 nm
thickness. I will start by describing the epitaxy of the iron films on MgO and the
characterisation measurements determining the exact thickness and crystallinity. With
the basic properties of the samples established, I will discuss the THz conductivity
spectra. Here we see that they roughly follow the effective Drude model eq. (2.36).
However, since I achieved 1 fs statistical precision, systematic distortions of the spectra
by up to ca. 3 fs become apparent. Comparing measurements of different samples
under the same experimental conditions to measurements of the same sample under
different conditions shows that the distortions are experimental artefacts. We can
adequately describe the spectra using a current response time and a DC-conductivity,
as predicted by the effective Drude model eq. (2.36). The thickness scaling of these two
parameters is the main focus of our analysis. For iron films on MgO, several thickness-
dependent measurements of the DC-conductivities exist. Like ours, they show decreased
conductivity with decreasing thickness, however, the exact scaling varies widely. Our
iron films are among the most conductive, especially the thinner films. This reaffirms
the quality of our films. For the current response time τC , we are able to resolve
decreasing response times for decreasing thicknesses clearly. Only two data points exist
for comparison, as only two THz measurements have been previously published. Both
report much larger values for the response time at comparable thicknesses, potentially
due to substrate thickness errors. The only thickness scaling of the response time for
a metal film has been published for gold films on silicon. These films are extremely
rough and polycrystalline. Within the 10 fs accuracy of these measurements, no
thickness dependence had been observed. The accuracy of the current response time
measurements in this thesis is not only high enough to resolve thickness scaling, but
even to resolve that the scaling of the response time differs from that of the conductivity,
i.e. the ratio between response time and conductivity is not constant.
The variation of this ratio with thickness reflects the thickness-dependent distribution
of relaxation times: the response time depends on the variation of the distribution of
relaxation times, and the variation of this distribution depends on thickness.
The variation decreases with decreasing thickness down to ca. 10 nm, increasing
again afterwards. This is consistent with anticorrelated surface scattering reducing
variation until surface scattering becomes the dominant mechanism and its anisotropy
increases variation between scattering times. Comparing the ratio between response
time and conductivity with a literature value calculated from the band structure allows
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estimating the variation of relaxation times.
The data and discussion presented in this chapter appear in a recently published
letter [64], though in a bit less detail.

5.1 Preparation and characterisation of the iron films

The preparation and characterisation of the iron films was performed at the IPCM
Strassbourg by Eric Beaurepaire, Jacek Arabski and Guy Schmerber, including the
analyses of the data.

Figure 5.1: X-ray reflectivity measurements of selected iron films. Experimental data
shown in black, a fit for a system of two layers (one iron, one MgO capping)
in red. The four fit parameters are the thicknesses and roughnesses (here σ)
of the layers. The maximum figure of merit χ2 for the fits is 0.04. Panel a)
shows the nominally 5 nm thick film, b) a nominally 10 nm thick film (10.3
in the following), c) the nominally 20 nm thick film and d) the nominally
40 nm thick film. The nominal values come from deposition time and in
situ quartz balance measurements. XRD values deviate by up to 0.3 nm
from them.
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Figure 5.2: Xray diffraction pattern of two iron films at large angles. a) Shows the
diffractogram for the 10.3 nm film, b) for the 40 nm film. The peak around
43 degrees corresponds to (twice) the lattice constant of a face centred cubic
(fcc) MgO lattice in (100) direction. The peak at 65 degree corresponds to
(twice) the lattice constant of a base centred cubic (bcc) iron lattice in the
same direction. No other peaks are visible, indicating only one crystal facet
of the iron film in the system.

Figure 5.3: Images of reflected high energy electrons diffracted from the surface of the
during iron deposition. The images indicate epitaxial uptake of iron.

The iron films were deposited on double-polished magnesium oxide (MgO). The MgO
surface was oriented in the (100) direction of the crystal lattice. Iron was epitaxially
grown on this surface by molecular beam epitaxy. The epitaxy was achieved by a
deposition rate of 0.05 nm per minute in a vacuum of 10−8 Pa pressure onto a substrate
at room temperature. The film thicknesses were monitored in situ by a quartz crystal
microbalance (QCB) and reflection high energy electron diffraction measurements. The
samples were subsequently annealed at 600 K and capped with 12 nm of MgO.
After the preparation, the thickness of selected samples was measured by small-angle
X-ray diffraction (XRD) by a Rigaku SmartLab X-ray diffractometer with a monochro-
matic Ge(220)x2 source delivering a copper Kα1 incident beam (45 kV, 200 mA, λ =
0.154056 nm). Fig 5.1 shows the X-ray diffractograms. Thicknesses extracted from
XRD deviate between 0.1 to 0.3 nm from the QCB measurements, with a standard
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deviation of 0.2 nm. XRD has a precision of ca. 0.1 nm, and I use the more precise XRD
data when existent. The thickness of all other films is the QCB value, with standard
deviation to XRD of 0.2 nm as error estimate. The roughnesses of the films extracted
from XRD average to 0.9±0.1 nm. The roughness does not depend systematically on
thickness. I assume this value for all films. X-ray (fig. 5.2) and reflection high energy
electron diffractograms (fig. 5.3) indicate single-crystalline films with base centred cubic
(bcc) lattice structure.
From what this characterisation can tell us, we have a single crystalline orientation
of the films and we know the average film thickness ⟨a⟩ with 0.1 to 0.2 nm precision.
However, roughnesses of 0.9 nm indicate differing heights on the order of 2-3 atomic
layers. For a sketch of the samples, see section 7.2.

5.2 Conductivity spectra of the iron films
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Figure 5.4: 3 example complex conductivity spectra for the 100 (black) 10.3 (blue) and
2.2 (red) nm films. The left panel shows the conductivity amplitude σ, the
right panel the lag τl. Lines indicate effective Drude models (eq. (2.36))
derived from the data. Error bars indicate standard errors of the mean
derived from repeated measurements. Where invisible, the error bars are
smaller than the markers.

As explained in chapter 4, an individual transmission measurement of a given specimen
consists of recording the electric field transmitted through the specimen and through a
reference substrate. This transmission measurement is then repeated several times. The
measurements on the iron films were performed on three separate occasions, hereafter
referred to as series. The first series was measured in August 2016, the second in August
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2017 and the third in June 2018, as samples became available. Series 1 measurements
were repeated 30 times, the following series 10 times, after learning from series 1 that
the statistical precision was not the limiting factor. Table 7.1 lists the samples measured
in each series. In total, most samples were measured twice.

5.2.1 Example spectra
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Figure 5.5: 3 example complex conductivity spectra for the 100 (black), 10.3 (blue)
and 2.2 (red) nm films. The left panel shows the DC conductivity estimate
σ0 for each frequency, the right panel the current response time τC . Lines
indicate effective Drude models (eq. (2.36)); which are spectral averages of
the data.

Using the method discussed in chapter 4, I recovered THz conductivity spectra from
each of these measurements. I only use the data from the range of highest phase
resolution between 0.6 and 2 THz as in chapter 4. As an example, I show 3 spectra
from the first series in fig. 5.4. I plot the spectra in terms of conductivity amplitude
σ and lag τl. The statistical error on the lags is mostly less than 1 fs, and so is the
systematic one from the thickness difference. This is at least 10 times more precise
than the few previous measurements on thin metal films, and means that we have a
time resolution comparable to intrinsic time scale of the electrical conduction itself.
The rest of this thesis now focusses on what we can learn from the resolved conduction
dynamics, in the framework of chapters 2 and 3.
All three samples show traces roughly agreeing with the effective Drude model eq. (2.36).
I hence extract the current response time τC at each frequency point. These current
response time values are then averaged (weighted by their statistical precision) for
each spectrum. This spectral average τ̄C is my estimator for the current response time.
From there, I obtain an estimate σ0 for the DC conductivity at each frequency point
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via:

σ0(ω) = σ(ω) ⋅
√

1 + (ωτ̄C)2 (5.1)

The combined dc-conductivity estimate σ̄DC is then the spectral average over σ0(ω).
Fig 5.5 shows the spectra for τC and σ0. Their difference to the lag and amplitude
spectra is minute, just the slight decrease towards lower frequencies has vanished.
The following observations can already be made from the spectra alone:

1. The spectra are roughly constant, but they are not constant within their statistical
error.

2. Both response time and conductivity decrease with decreasing thickness, but they
are not directly proportional to each other.

Item 2 will be discussed in the thickness scaling sections 5.3 and 5.4. First, I will
investigate whether the two constants current response time and DC conductivity
suffice to describe the conduction.

5.2.2 Residual correlation

In fig. 5.5, the spectra of the current response time and the DC-conductivity are not
constant within the statistical error estimated from repeated measurements. I note that
the deviations on the response time are better visible in the plot, but the deviations of
the conductivity are similarly significant due to much smaller statistical errors. Further,
the data deviates systematically from the constant lines, for example, both the 10.3
nm and the 2 nm current response time increase in a similar manner from 1.5 THz
onwards. To investigate this behaviour, I plot the differences between the individual
data points and their respective averages for all measurements in fig. 5.6.
The figure 5.6 shows that the residuals of different samples performed in the same series
strongly correlate. The residuals of the same sample measured in different series do
not. This leads me to the conclusion that the residuals are the results of measurement
artefacts characteristic to the series rather than any intrinsic properties of the iron films.
The conduction dynamics within my measurement range can therefore be represented
by the two parameters DC conductivity σ̄DC and current response time τ̄C . The
question left to answer is: How much do the artefacts impact the measurement of these
spectral averages? I will focus the discussion on the response time, the conductivity
was handled in a similar manner. I estimate the impact of the artefacts in two ways:
First by taking into account the reduced sum of residuals to estimate the statistical
error on the average. Second I use the differences between the spectral averages of the
same samples measured in different series. The statistical error on the measurements
lead to errors between 0.2 and 1.2 fs.
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Figure 5.6: Spectra of the residuals of the spectral averages. Upper panels show the
differences between the DC conductivity estimates σ0(f) and their spectral
averages σ̄DC . Lower panels show deviations of the current response times
τC(f) from their spectral averages τ̄C . The first column shows the residuals
of all spectra combined, columns 2 to 4 show each the spectra from a single
measurement series. Strong similarities between the measurements of the
same series are apparent, but no correlation between different series in
general and or between the same samples or samples of similar thickness
specifically are visible (similar thicknesses are indicated by similar colour).
The residuals are hence artefacts specific to the respective measurement
series.

The differences between measurements of the same sample are between 0 and 2.6 fs,
their standard deviation is ca. 1.7 fs. This is somewhat larger than what to expect
from the statistical error, even when factoring in the additional error from the substrate
thickness correction. Therefore, for the samples with more than one measurement, the
measurements are averaged and the differences taken into account to determine the
error.
The average additional error deduced from comparing several measurements of the
same sample is 0.8 fs, and this average value is added into the error estimate for the
samples with only one measurement. Additionally, systematic errors from inaccuracy
of the substrate index are factored in, for thick films also any uncertainties on the film
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5 Conduction dynamics in thin iron films

thickness.
The biggest error contributions are the errors inferred from the residuals and the
differences between repeated measurements. Only in case of the 3 nm sample, the error
from the substrate thickness difference surpasses them. For future improvements in
accuracy, these artefacts have to be targeted. For the conductivity, for some of the
thicker films the differences between repeated measurements matter, but for all thinner
films the uncertainty of the film thickness is the major source of error.

5.2.2.1 Origin of the artefacts

As mentioned above, the result of a measurement in one series was not reproduced
within statistical precision in the next. This is both true for the average values as for
the shape of the residual spectra. In general, the fact that the series were measured
at least 10 months apart from each other gives the possibility of sample ageing. The
samples were kept for ca. 90 % of the time in a dry nitrogen atmosphere to prevent
the iron from rusting and especially the MgO from taking on water. Samples with
visible damage from age or handling were not remeasured, but most samples did survive.
Further, the conductivity did not systematically decrease over time, which would be
expected from rusting. The 12 nm MgO capping layer apparently sufficed to keep the
iron films quite stable. Hence we can rule out ageing as the main cause of the differences
between series. Also, while the measurements were performed on the same sample,
they were not done on the exact same spot. This may cause some discrepancies, but
it does not explain the correlations between the residuals within one series. Occam’s
razor leads me to assume that whatever causes these artefacts most likely also caused
the differences of the spectral averages. This must be something that was the same for
all measurements of a given series. Only two things come to mind: First the state of
the spectrometer, that is its transfer function, and second the reference substrate. I
note that the substrate for series 1 was a different piece of MgO than for series 2 and
3, but since 2 and 3 also differ, that alone does not suffice. The substrate may have
aged between series 2 and series 3, or acquired a dirt layer of some kind. However, of a
more substantial impact might be the variation in substrate thickness. I have shown
how a few tens of nanometres of difference in average thickness affect the measurement
of the response time. But the substrate is not perfectly flat. Far from it. For a
commercial-grade silicon wafer, we would expect up to 1 µm thickness variation over
a distance of 2 cm [65], this means a skewness of several 100 nm over the ca. 3 mm
focus spot. This might, together with any asymmetry in the spectrometer transfer
function, lead to the observed differences, because the orientation and exact position of
the reference substrate was not controlled between series.

5.3 Thickness scaling of conduction

The spectra already indicated that both response time and conductivity decrease with
decreasing thickness, but they are not directly proportional to each other. Plotting
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the conductivity and response time as a function of film thickness together in fig. 5.7
illustrates this very well. The conductivity stays constant for thick films, starts
decreasing at 20 nm, jumps down between 10 and 8 and continues to decrease quickly.
The response time, on the other hand, decreases from 100 nm onwards, also jumps
down between 10 and 8 nm but then quickly levels off around 7 fs for the thinnest films.
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Figure 5.7: Thickness dependence of the DC conductivity and the current response

time. The conductivity (black) is displayed on the left, the response time
(red) on the right axis. The thickness coordinate of the response time data
points is obviously the same as on the conductivity, hence the thickness
uncertainty was only plotted for the conductivity. Both response time and
conductivity decrease with decreasing thickness, but they are not directly
proportional.

5.3.1 Comparison with previous works

I will compare the THz data with theoretical and experimental reports from the scientific
literature. This helps to asses the quality of the iron film, highlight the improvement
of the time resolution and show current debates impacted by this data specifically and
the improved time resolution in general.

5.3.1.1 THz spectroscopy values for iron

For iron, only two SRT THz TDS measurements of the THz conductivity were published,
by Hilton et al. [60] on a 12 nm film and by Bonetti et al. [9] on a 9 nm film. Hilton
reports a very low conductivity of 2.5⋅106 S/m and an extremely high response time
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5 Conduction dynamics in thin iron films

of 70 fs. Bonetti reports a conductivity of 6.4 ⋅106 S/m and a response time of 30 fs1.
Comparing this to 6.80±0.08 ⋅106 S/m and the 19±1 fs for the 10.3 nm film, we see
that Bonetti’s film is similarly conductive, but its response time is ca. 10 fs higher.
This in line with the ca. 10 fs inaccuracy due to substrate thickness difference in the
previous state of the art. Hilton’s combination of low conductivity and extremely
high time would imply ten times fewer free electrons (a ten times smaller integral of
the band velocity over the Fermi surface in the Bloch picture eq. (2.28)), which also
happen to scatter 3 times less often. This is physical unreasonable in the same material.
Considering the relatively good agreement with Bonetti, and the fact that I have an
entire series of consistent data points, I argue that Hilton’s data, at least his response
time, are inaccurate. Neither Bonetti nor Hilton have given explicit accuracy estimates,
so I have assumed significant digit precision.

5.3.1.2 Thickness scaling of THz conductivity in metals

The only other measurement series of time-resolved THz conductivity as a function
metal thickness was done on gold deposited directly on silicon by Walther et al. [32].
The gold formed islands which only connected enough to form a percolation path above
8 nm, and the study stopped at 28 nm mean gold thickness. The conductivity of the gold
increased with increasing thickness, while the response time stayed constant. Given that
the gold was polycrystalline, grain boundary scattering was probably dominant, and if
the grain size did not change much, neither would the intrinsic scattering times. The
films were rough to the point that they had visible holes and even isolated islands. For
such a rough film, my extension of Namba’s model predicts an increase in the apparent
conductivity and constant response time with increasing thickness to roughness ratio
(see section 3.5). On one hand, this nicely explains the observation; on the other hand,
the 10 fs limitation on the accuracy of Walther’s ca. 20 fs response times might very
well have obscured any thickness scaling of the response time.

5.3.1.3 Thickness scaling of iron DC-conductivity

While THz data is scarce, DC-conductivity data is more common, especially on iron.
This is mostly due to interest of the spintronics community, specifically concerning
giant magnetoresistance [46, 66] the 1990’s and recently concerning the anomalous Hall
effect and the spin Hall angle [67, 68]. The resulting magnitude and scaling differ quite
impressively between the different works.
Jacob et al. [46] measured the conductivity during the epitaxial growth on a room
temperature substrate. The key point is that the film was neither annealed nor capped.
Jacob’s iron was not conducting below 3 nm, and the conductivity values are lower
than all other measurements at similar thicknesses, with the exception of Hilton’s [60].

1Both works refer to the time constant as “(Drude) scattering time” rather than response time.
Even though at least Bonetti et al. acknowledge that spin up and spin down relaxation time
are different [9], they somewhat contradictory still interpret conductivity in Drude’s universal
relaxation time picture.
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Figure 5.8: Thickness dependence of the DC conductivity of thin iron films on MgO
measured for this work compared to literature values. My data is displayed
as black circles. Jacob et al. [46] (gold stars) measured the conductivity
of iron during epitaxial deposition on MgO. Schad et al. [66] (red disks)
measured films grown on MgO, but capped with strontium flouride (SrF2).
Sangiao et al. [67] (blue diamonds) and Hou et al. [68] (pink triangles) both
use MgO capping, same as the samples in this thesis. The dashed line
indicates the bulk value, taken from Hust’s report [3].

Jacob et al. extrapolate a bulk conductivity of 6.3 ± 0.8 ⋅ 106 S/m, which is only 61%
of value for optimally annealed bulk iron [3], though that may have been due to the
extrapolation model used.
Schad et al. [66] epitaxially grew their iron from molecular beams on a 50○ C warm
MgO substrate and capped with SrF2. They do not mention any annealing. Their
values are the highest across the board, even exceeding the literature bulk value for
thicknesses above 50 nm. The latter point makes me a bit sceptical, since either Schad
et al. have found a way to make thin iron films more conductive than bulk iron or they
somehow systematically overestimate the conductivity. Schad et al. just state that
their values are “close” to the literature bulk value and do not discuss this comparison
in more detail. Further the values reported for similar thicknesses fluctuate by more
than 10%. These fluctuations suggest somewhat limited statistical accuracy. Within
the fluctuations, Schad’s values are constant above 50 nm film thickness, similar to my
measurement.
Sangiao et al. [67] measured microscopic iron films sputter-deposited on 200○ C hot MgO
and capped with 3 nm of sputter deposited MgO. They report the room temperature
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conductivity only for three samples: a 10 nm film, which is slightly more conductive
than the 10 and 10.3 nm films measured for this thesis; and a 1.8 and a 2.5 nm thick film,
whose conductivities are extremely low. Sangio et al. did extensive characterisation
on these thin films, including transmission electron micrographs, but could not find
any defects or other anomalies explaining this extremely low conductivity. The fact
that those extensively characterised films without apparent defects have a much lower
conductivity than the thin films I measured speaks, I submit, to the quality of my
samples. It also indicates that conductivity itself is probably the best macroscopic
measure of film quality.

Hou et al. [68] studied iron epitaxially grown on MgO, but do not give any details
concerning the growth method and recipe nor characterisation. Their thick films are
slightly less conductive than my measurements, the 8 nm film is slightly more conductive
than my 8.2 nm sample.

Thin iron films, due to their technological application in giant magnetoresistance stacks,
are among the best-studied and controlled nanometric thin film systems. However, the
various samples, nominally all bcc iron, are very different from another. This indicates
the experimental control over the system is still somewhat lacking. This makes a
quantitative comparison with a supposedly universal microscopic model somewhat
useless. Still, Jacob et al. [46] and Schad et al. [66] extracted universal mean free
path values based on different versions of Fuchs’s model [43](section 3.3). 2 Jacob et
al. give a lower limit on the bulk universal mean free path of 11 ± 1 nm while Schad
et al. give 14 nm. The latter estimate contradicts the assumption implied Schad et
al. [66], since they use the approximation of Fuchs’s model for thicknesses much larger
than the mean free path [43] and their result critically depends on the 2 nm film, 7
times thinner than their mean free path value. Those values do not match, but are
surprisingly similar, considering that Jacob et al. extrapolate a bulk conductivity only
half as large as Schad’s. The universal mean free path assumption would require the
mean free path to be directly proportional to the “bulk” value. These inconsistencies
are unsurprising given the lack of control over the system and the lack of justification
for using a universal mean free path to theoretically describe the thickness scaling of
metals in general and iron in particular (sections 2.5.3 and 3.1.1).

The conductivity of the films presented here is comparably high, indicating good film
quality. However, the comparison also emphasizes the jump between the 8.2 and
10 nm films, which most likely results from a sudden reduction in film or interface
quality. Hence I do not attempt quantitatively model the detailed thickness scaling of
conductivity in these iron films.

2Note that both works cite the giant magnetoresistance effect in iron chrome heterostructures [40]
as motivation, which is based on the difference between the expected free paths of spin-↑ and
spin-↓ electrons [20,40,41]. There is some inconsistency in assuming a universal mean free path for
analysing measurements motivated by the variation between expected free paths.
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5.3.1.4 Comparison to other spectroscopic data

One occasionally finds experimental values for Drude model parameters in metals. For
example, Bonetti et al. refer to the 25 fs optical response time τo deduced by Ordal et
al. [15] as “literature values for bulk Fe” and compares this data to their THz current
response time. Such “literature” values are usually derived from optical to mid-infrared
spectroscopy measurements [14, 15, 69]. Optical spectroscopy data on metals is usually
not intrinsically phase resolved. Kramers-Kronig relations are applied to estimate real
and imaginary parts based on amplitude data [14]. This procedure will be the less
accurate, the smaller the analysed frequency range is. The resulting spectra can be
fitted more or less well with Drude’s model eq. (2.3). Ordal et al. write that they could
not fit a Drude model to their data for iron in their 1983 paper [14], but Ordal and
a different group of co-workers do use the mid-infrared part of this data to estimate
Drude parameters in 1988 [15]. I consider the fit for iron generally very poor, and
therefore the values questionable. More importantly, I have shown in section 2.5.2 that
observing a Drude model in the optical range (ω >> τ−1

C ) does not by any means prove
Drude’s hypothesis of a universal relaxation time, nor is the optical response time τo
directly comparable to the current response time τC in the THz regime (ω << τ−1

C ).
Last but not least, Ordal et al. also tried to include resonant cavity measurements
in the THz/far-infrared regime in the data they estimated their Drude parameters
from [15]. These low-frequency measurements should be more relevant for comparison
since they are close to our frequency range. However, Ordal et al. use the assumption
that the real n and imaginary κ part of the refractive index ñ are equal to recover the
material properties from the cavity measurements. As shown in fig. 1.3, this negates
the key influence of the dynamics on the complex refractive index and prohibits any
meaningful estimate of the response time. Generalising for all metals, some infrared
spectroscopy values for optical response times may exist, but Kramers-Kronig and
other analyses schemes result in questionable accuracy and the meaning of these
high-frequency measurements for direct current conductivity is qualitative at best.

5.3.1.5 THz conductivity deduced from surface plasmon polarition propagation

THz transmission measurements of metals tend to agree well with direct current data
in terms of the magnitude of the conductivity [70–72]. However, metal waveguides
perform much worse than they should for flat structures of such highly conductive
materials (see the review by Pandey et al. [72] and references therein). Vice versa,
the conductivities estimated from the surface plasmon polariton (SPP) propagation in
wave guides or plain metal sheets are much lower than the DC-conductivities of those
components. This leads Pandey et al. [72] to conclude that there is “non-Drude like
behaviour of metals in the THz spectral range” (the title of their review). Gerasimov et
al. [73] explain their observed discrepancies by stating that surface properties of metals
are different than in bulk. The data on the iron films measured here show that the
THz properties between “bulk” and very thin, basically surface-only films, are in no
way different enough to explain the discrepancy between the SPP conductivity values
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and direct current data.
Pandey et al. do not claim a definite cause of the discrepancy, but they do rule out the
effect of a surface roughness h of ca. 3 µm (standard deviation of the height); which
was found in a work of Pandey and a different group of co-workers [74]. Pandey et al.
reason that the 3 µm roughness are are much smaller than the free space wavelength
λ0; at their example frequency of 0.5 THz h ≈ 0.005λ0. They make the case that optical
grade metal coatings for mirrors only need to be flat within h < 0.05λ0.
I argue that the relevant wavelength is not the one in air, but the one inside the
material; therefore we should look at λ0

n . As Pandey et al. remind in their review [72],
the real refractive indices n of metals at optical frequencies are very low3. Let us use
the same example as Pandey, gold at 800 nm wavelength. This frequency, gold has
ñ = n + iκ = 0.16 + 5.08i [69]. Therefore the relevant flatness of a h < 0.05λ0 metal
coating is even better with h < 0.008λ0/n for 800 nm light.
In the THz range, metal refractive indices are on the order of several hundred (see
fig. 1.4); at 0.5 THz, gold of a bulk conductivity of 44⋅106S/m and ca. 20 fs response
time [32] should have ñ = 860 + 916i. At 0.5 THz, h = 3µm roughness lead to h = 4.3λ0n ;
that means the roughness is more than 4 times higher than the effective wavelength at
THz frequencies. This is very rough; roughnesses on a similar relative scale severely
impact optical SPP dispersion. The measurements presented here and in the work on
gold meshes [71] show that the THz metal conductivities are on the same order as
the direct current conductivities. I therefore argue that roughness, and not material
properties, is the cause of the slow and lossy propagation of THz SPPs and may be
the factor currently limiting the distance THz signals be transmitted by wire to a few
meters compared to the several hundred meters theoretically possible.

5.4 Thickness scaling of the variation of relaxation times

Despite Mott [5] and Fert [20,40,41] widely spreading the concept that a significant
variation between microscopic relaxation times exists at least in magnetic metals, many
works ignore this fact partially or completely. An example is the work of Hou et
al. [68], who calculate scattering and spin deflection for surface and bulk scattering
in iron films in quite some detail, just to sum scattering and resistivities up with
Mathiessen’s rule. Mathiessen’s rule only applies when there is no variation between
microscopic relaxation times and the scattering mechanisms are uncorrelated (see
section 2.7.2, [13,27]). Neither of the two conditions apply for surface scattering in iron
(see section 3.4.1 and fig. 3.3). Empirically, already Mathiessen and Vogt [39] found
iron to deviate from the scaling relation they observed in most metals.4

3Potentially, the modulus of the index ∣ñ∣ should be used instead of the real part. This will however
not alter the key result, namely that for THz waves, λ0/200 roughness of a metal surface is rough,
while in the optical regime a metal coating with λ0/20 can be considered flat

4The key empirical observation in Hou’s paper [68] is a minimum of the anomalous Hall effect in
temperature and thickness scaling. Hou interprets this in terms of different spin-orbit coupling
for surface and bulk scattering. However, surface scattering may alter the spin polarisation of the
current in a film by preferentially scattering the spin with the longer expected free path. This can,
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So, despite all theoretical insight and experimental evidence, the variation of microscopic
relaxation times is often ignored. In the THz region, interpreting conductivity under
Drude’s assumption of a single, universal relaxation time is still very common [9,32,60],
spurred by the observation that the spectral shape matches Drude’s model. I have
shown that we would also expect an effective Drude type dispersion at THz frequencies
when the microscopic relaxation times vary (see section 2.5, eq. (2.36)). Still, looking
at the observed spectral shape individually, Occam’s razor would dictate interpreting
them according to Drude’s simpler universal relaxation time assumption. However,
there is a way to determine the validity of the universal relaxation time assumption,
since it also dictates that response time and conductivity are proportional.
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Figure 5.9: Ratio R between current response time τ̄C and DC-conductivity σ̄DC esti-
mates as a function of the film thickness. The blue dashed is the constant
fitted to the data, as predicted by the hypothesis of a universal relaxation
time. The probability of obtaining data fitting worse to universal relaxation
time hypothesis is 0.000 000 001, lower than the probability to lie outside
a 6 Gaussian standard deviation confidence interval. The red curve is a
second-order polynomial fit in 1/a, consistent with two competing processes
altering the variation C of the relaxation times. The probability of obtaining
data fitting worse to the red curve is 0.21.

The accuracy of the measurements of the response times is not only high enough to
show that decreasing conductivities correlate with decreasing response times, but it also

at least qualitatively, explain Hou’s observation as well.
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shows that response time and conductivity are not directly proportional. Therefore, I
plot the thickness scaling of the ratio R of response time per conductivity in fig. 5.9.
The ratio starts out high, decreases down to 10 nm and increases again. I analyse how
significant these deviations from direct proportionality are. The best fit for a constant
ratio lies several times the estimated errors above the intermediate films around 10
nm, and several times below that for 100 nm. Under the assumption that the data is
normally distributed, the error bar gives my estimate of the 68 % confidence interval.
Within this assumption, the probability of obtaining data fitting worse to the hypothesis
of a universal relaxation time is 10−9, equivalent to 6 standard deviations for a normal
distribution. The deviations are significant.
The ratio of response times to conductivity R =

τ̄C
σ̄DC

is equal to W ⋅ (1 +C2). I will,
therefore, interpret the scaling of the ratio R as scaling of the variation C of microscopic
relaxation times. The first observation is that above 10 nm, the thicker the film, the
larger R and therefore the variation C. Therefore the variation of relaxation times
in bulk must be large. I have identified 2 mechanisms by which surface scattering
may change the variation of relaxation times: Anticorrelation with bulk scattering
(section 3.4.1) and addition of positional and further directional variation between
scattering times (section 3.4.2). The anticorrelation between scattering mechanisms
decreases the variation of relaxation times. This may explain the observed decrease of
R from bulk towards 10 nm. Surface scattering will add variation between electronic
relaxation times with regards to the electron’s position and speed towards the surface.
This increase in variation will outcompete the anticorrelation with bulk scattering when
surface scattering replaces bulk scattering as the dominant scattering process. At the
point where both scattering processes are equally prevalent, the conductivity should
have dropped roughly by half compared to the bulk value; which is the 8 nm sample in
this study. Therefore, the additional positional and directional variation of microscopic
relaxation times may explain the tentative increase in R for films thinner than 8 nm.
For these thin films, though, any interpretation of the results are tentative only for
several reasons: Firstly, because the statistical accuracy is much smaller than for
the thick films; secondly because other effects like Namba’s roughness size effect [45]
(section 3.5) should result in similar trends. For extremely thin films, even the electronic
structure (and thereby the value of W ) might change [75].
The simplest mathematical formula satisfying the above qualitative argumentation for
the scaling of the ratio R is

R(a) = R∞ −
b1
a
+
b2
a2
. (5.2)

R∞ is the bulk limit of R, the b1 term describes the decrease of variation by anti-
correlated scattering and the b2 term the additional variation due to positional and
directional dependence of the surface scattering probability. This polynomial fits the
observed data decently well (red line in fig. 5.9); the probability to observe worse
fitting data is 0.21.5 The coefficients for which this polynomial fits the data are

5The expectation value of this probability is 0.5.
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R∞ = 34.8 ⋅ 10−22 Ωms, b1 = 9.2 ⋅ 10−15 Ωs and b2 = 2.9 ⋅ 10−6 Ωs/m. Values are given to
significant digit precision. The main function of these parameters is to simplify empiri-
cal comparison of the R(a) data to any future results; the main point shown by this
polynomial describing the data is that the deviations from the universal relaxation time
hypotheses are systematic and qualitatively this systematic scaling can be understood
in terms of a scaling of the variation times. The hypotheses of the anticorrelation of
bulk and surface scattering competing with the increase in directional variation by
surface scattering also qualitatively explains the coincidence the minimum of the R(a)
curve with the thickness where the measured conductivity reduces to half the thick
film limit. The reasoning is a as follows: Anticorrelation with bulk scattering will
only have an effect when bulk scattering is still significant. The minimal variation will
happen where further decreases of the bulk variation will exactly match increases of
the variation of surface scattered electrons. This will most likely happen when both
scattering processes are similarly likely, and this in turn will be roughly where the
resistivity due to surface plus bulk scattering is twice that from bulk scattering alone.

5.4.1 Comparison with band structure calculations

At last, we can compare the estimated bulk value of R to values of W calculated from
band structure. I remind that R = W ⋅ (1 +C2). Therefore we can hope to quantify
the variation C. The quantity W is the same as the product of an assumed universal
relaxation time τu and the bulk resistivity ρ∞; W = τu ⋅ ρ∞. This is the way Gall [30]
denotes it. Gall calculated the value for the 20 most conductive elemental metals. Iron
is only the 22nd most conductive, so it is not included on Gall’s list. Nevertheless, I
can remark that the measured value of R∞ of 34.8 ⋅ 10−22 Ωms is larger than the τu ⋅ ρ∞
of all of the 20 metals Gall calculates. Looking at nickel, a ferromagnet with a cubic
lattice like iron, Gall obtains a value of τu ⋅ρ∞ = 10.0 ⋅10−22 Ωms, 3.5 times smaller than
our observed value for R∞. Cazzaniga et al. [76] calculated a Drude plasma frequency
ωp from his calculated band structure. Via W −1 = ε0ω

2
p from which one can deduce a

value for W of 9.76 ⋅ 10−22 Ωms; very close to Gall’s value for nickel. We can therefore
observe that R∞ is about 3.5 times larger than what band structure calculations predict
for W . From this we can estimate the variation C = 1.6, an extremely large variation
(see an example of a distribution with C = 0.6 variation in fig. 2.9 for comparison).
This implies that the average relaxation time ⟨τ⟩ is 3.5 times smaller than the observed
current response time τC values; the 29 fs responste time of the 100 nm film translate
to a mean relaxation time of only 8 fs.

5.4.2 Comparison with Drude’s model

Quite surprisingly, Drude’s outdated formula eq. (2.3) is still frequently used to estimate
W as (e2n/m)−1 and thereby (universal) relaxation times from empirical conductivities,
mostly in conjunction with values for the electron density n taken from table 1, page 5
of Ashcroft and Mermin’s book [27] and the free electron mass m [76, 77]. Chatterjee
and Meyerovitch [77] even state “A good estimate for τ btr and τb can be obtained from
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the experimental data on bulk resistivity ρ, 1/τ btr = ne
2ρ/m.“, where τ btr appears to

correspond to the average relaxation time ⟨τ⟩ in this thesis. The value of n is even
within Drude’s original theory often not exactly determined, as Ashcroft and Mermin
state that they “have arbitrarily selected one value of [the number of electrons per atom
contributing to conduction] Z for those elements that display more than one chemical
valence” [27], such as iron, which may have oxidation state 2 or 3. Using Ashcroft and
Mermin’s choice of 2 for iron, (e2n/m)−1 = 2.1 ⋅ 10−22 Ωms, five times lower than the
band structure estimate, leading to an estimate on the average bulk response time
⟨τ⟩ of 2 fs, compared to 10 fs from Cazzaniga et. al.’s band structure estimate and a
14 times lower than observed current response time of 29±1 fs at 100 film thickness.
I point out that at least for metals with more than one band at the Fermi surface,
Drude’s original model may only be used for rough estimates with a inaccuracies of
one or two orders of magnitude.

5.5 Summary

I have time-resolved the dynamics of conduction in iron films with enough precision
to demonstrate decreasing current response times with decreasing thickness. The
resolution was sufficiently high to resolve significant deviations between the scaling of
the DC-conductivity and the response time. This happens when a variety of microscopic
relaxation times exists and the variation of these relaxation times changes. At this
point, we need to distinguish between the observable macroscopic response time τC , the
various microscopic relaxation times τ , and the mean relaxation time ⟨τ⟩ parametrising
DC-conductivity σDC . The conductivity spectrum can be fully described by the
distribution w(τ) of microscopic relaxation times. For the low-frequency limit, the
observable DC-conductivity depends on the mean ⟨τ⟩, the response time on mean ⟨τ⟩
and variation C of the distribution of relaxation times. Surface scattering changes
the shape of the distribution of relaxation times, which in turn explains the thickness
scaling of the ratio R = τC/σDC .
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6 Impact of time-resolving conduction
in a metal

In this concluding chapter, I will take a step back and discuss the general implications
that the ability of time-resolving conduction in metals demonstrated in this thesis
has for the understanding and investigation of the conduction process and the time
domain spectroscopy method. The key advantage that time-resolving conduction brings
is adding a second macroscopic observable of the conduction process on top of the
conductivity: the current response time.
Measuring the current response time in a metal with THz time domain spectroscopy
was thought to be impossible by the THz scientists Dressel and Scheffler [78]1 back in
2006. The underlying misconception was that one needs frequencies of the same size as
the rate constant investigated to resolve the respective rate. This argument holds for
resolving resonance frequencies (which are connected to transitions between states of
different energies), but not for damping rates (which are connected to dephasing rather
than energetic transitions). This misconception is likely even more common outside
the THz community. This thesis will spread the understanding of the power of time
domain spectroscopy to measure dephasing processes in general and current response
times in metals in particular.
While this is not the first measurement of current response times in a metal, the
increase in precision achieved here means that now the current response time becomes a
valuable second observable of the conduction process. Adding this second macroscopic
observable will advance the understanding of the conduction process. The thickness
scaling of conduction is one area that may particularly benefit. As the dimensions
of transistors shrink to 10 nm [80, 81] or even lower, so must the dimensions of the
metal wires connecting them. The decreasing conductivity with decreasing dimensions
exacerbates the problem that the resistance of a wire increases when one scales it down
in all three dimensions, contrary to the switching loss of a transistor. This problem
quickly approaches the point where the metal interconnects, and not the semiconductor
transistors, dominate the heat generated in logical circuits and thereby limit the
maximum transistor density and ultimately the computational power. Understanding
the thickness scaling of electrical conduction in metals has thus become industrially
relevant. Experimentally, controlling thin metal films in terms of crystal growth and
quality is difficult, adding a lot of variables influencing a single measured quantity:
the conductivity. Measuring the current response time helps to improve the balance
between the number of experimental variables to be controlled and the number of

1And Dressel’s and Scheffler’s misconception is still spread on wikipedia [79].
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6 Impact of time-resolving conduction in a metal

quantities measured. The correlation between the conductivity and the response time
may serve as a crude consistency check, which may allow uncovering a severely flawed
estimation of the film thickness. This may may prove especially helpful when studying
complex structures like patterned films [71], where the correct thickness average is
hard to estimate. More importantly, I have shown that the current response time
contains additional information about the distribution of microscopic relaxation times,
and thereby delivers additional information on the increased momentum relaxation in
thin films compared to the conductivity. This additional information can advance the
understanding of the thickness scaling of transport processes.

The theoretical description of the current response time also necessitates a fundamental
improvement of the models currently used to describe the thickness scaling of conduction.
Current theoretical descriptions of the scaling make both unrealistic assumptions, such
as universal mean free paths and relaxation times, and depend on a lot of additional
parameters to describe the direct current conductivity as the single resulting observable.
The precise measurement of the current response time necessitates new or expanded
models that can predict the dynamics of conduction. The detailed relation between
response time and conductivity might depend on fewer parameters than either observable.
This may allow testing predictions of conduction models even if the experimental control
over some of the parameters is limited. Even further, I have shown that one has to
abandon the universal mean free path and universal relaxation time assumptions to
accurately derive the current response time. One has to take into account a distribution
of microscopic relaxation times to describe the full dynamics of conduction; for the
current response time in the low-frequency limit, the average and the variation of this
distribution suffice. This demands an even greater revision of the current conductivity
models.

The above discussion holds for the general theoretical description of conduction, not
just in thin films. The reader may have noticed that I did not compare the observed
current response times to estimates based on theoretical calculations. Such estimates
are not published; neither for the current response time nor for a universal or average
relaxation time. An important reason may be the lack of awareness that the time/rate
constants used in the theoretical description of conduction are actual (microscopic)
observables and connect to macroscopic observables like the current response time
which can be measured in addition to the conductivity. As an example, Chatterjee and
Meyerovich [77] derive effective transport times τ (eff)tr (p⃗) as function of momentum
p⃗ from microscopic transition rates to infer the thickness scaling of the conductivity,
but do not give any explicit estimates on the times, their scaling or their distribution.
On a similar note, of the five works [76, 82–85] recently publishing the electronic band
structure of iron, only Cazzaniga et al. [76] did the small extra step to publish the
integral of the band velocity over the Fermi surface, which I denote as W . W is useful
to compare with conductivity measurements [30] and allows estimating the variation
of microscopic relaxation times from the ratio of the effective Drude parameters, as
done in this thesis. Showing that these theoretical quantities are more directly linked
to actual observables hopefully leads to more of them getting published, paving the
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route to a quantitative description of conduction dynamics in metals.
I have shown that while the THz conductivity of iron is well described by an effective
Drude spectrum, the relationship between the parameters of this spectrum does not
match Drude’s hypothesis of a universal relaxation time. In other spectral regions,
such inconsistencies of Drude’s model had already been observed. Ordal et al. [14]
found the infrared spectra of tungsten to fit Drude’s spectral shape well, but obtained
three different Drude relaxation rates for three different ways of extracting this rate
from Tungsten spectra and DC-conductivity. Faced with the fact that Drude’s curve
fits the spectra, but its parameters are inconsistent with Drude’s underlying model,
Ordal et al. did “disclaim any physical significance for the Drude model. The intent is
only to parameterize the optical constants for these metals even when there is some
question as to the physical meaning of the parameters”. With the relaxation time
distribution picture that I have introduced in this thesis, the parametrisation of the THz
spectra is again linked to the microscopic relaxation times and the electronic structure.
Therefore measuring the parameters allows inferring information about the microscopic
relaxation times. Providing this link may be critical in advancing the understanding
of conduction, as even though Drude’s assumption of a universal relaxation time has
been deprived of its theoretical basis and empirically proven wrong multiple times, the
concept of a universal relaxation time and derivatives such as Mathiessen’s “rule” are
still used abundantly. This leads to very questionable inferences from experimental
data and equally questionable assumptions in theoretical calculations. The crux is
“that misinformation can still influence inferences one generates after a correction has
occurred”, as Johnson and Seifert [86] state; “however, providing an alternative that
replaces the causal structure it affords can reduce the effects of misinformation”. I hope
that by enabling measurements precise enough to necessitate going beyond Drude’s
universal relaxation time hypotheses and developing the relaxation time distribution
picture to describe them, this thesis contributes to replacing the universal relaxation
time assumption with the relaxation time distribution picture.
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7 Appendix

7.1 Different relaxation times approximation

This is a less formal and slightly different way of deriving the relaxation times approx-
imation. It is based on expanding the collision integral for a small perturbation g1.
Under the assumption of spatial homogeneity already used to justify the transition
from plasma to gas, the collision integral must vanish in equilibrium; IC(p⃗, g0) = 0.
Now, since the variation of the distribution g1(p⃗

′) at all points p⃗′ is caused by the same
external field E⃗ as g1(p⃗) at point p⃗, these variations should be correlated. Since E⃗
enters linearly into the equation of motion eq. (2.8), we can expect the response to be
linear. Therefore, a linear expansion taking into account the all correlations within the
collision integral will be an adequate description of IC for small variations g1.

IC (p⃗, g0 + g1) = IC (p⃗, g0 + g1)∣g1=0 +
dIC
dg

∣
p⃗,g1=0

g1(p⃗) +O ((g1)
2) = −

g1(p⃗)

τ(p⃗)
(7.1)

Here dIC
dg ∣

p⃗,g1=0
is the derivative of the collision integral.

7.2 Geometry of the iron film samples

The samples presented this thesis are thin iron films epitaxially grown on a MgO
substrate capped with a thin MgO layer. This sequence of layers is sketched in fig. 7.1.
The thickness of the MgO layer is b ≈ 12 nm for all samples. The iron layer is between
a = 2.2 nm to a = 100 nm thick. The substrates of the samples are ls = 500 µm thick.
The substrate thicknesses ls vary by up to 30 µm between samples.
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Figure 7.1: Sketch of an iron film on a magnesium oxide substrate. All films measured
in this thesis are capped by b ≈ 12 nm of MgO to prevent oxidation. The
iron layers range from a = 2.2 nm to a = 100 nm thickness. The substrates
are nominally ls = 500 µm thick. I refer to the whole stacks in the following
as “samples”.

7.3 Substrate index

The refractive index of the substrate ñ3 is necessary to obtain the thickness difference
and to retrieve the complex conductivity. The substrate index is measured by comparing
the field pulse transmitted through a bare substrate to a field pulse transmitted through
dry nitrogen, see fig. 7.2. To exactly determine the substrate thickness, the first echo
in the substrate is also recorded. The resulting time traces are recorded in three
time windows: The direct transmission in the substrate ES,I , the echo ES,II and the
transmission through dry nitrogen EN . For the numerical treatment, the time windows
are chosen to be the same lengths and to have their respective pulses at roughly the
same position relative to the window starting times. These starting times are referred
to as TS,I , TS,II and TN . Having the pulses at similar positions within the windows
will avoid errors in the numerical unwrapping of the phase when the phase jump per
frequency step exceeds 2π.
For an incident pulse E0 the spectral densities of the three pulses read:

ẼS,I = Ẽ0t0,3p3(lS)t3,0 (7.2)

ẼS,II = ẼS,Ir
2
0,3p3(2lS) (7.3)

ẼN = Ẽ0p0(lS) (7.4)

Here ls is the thickness of the substrate material. Remembering that pi(x) = eiω/c0ñix

and using the fact that the index of the transparent substrate is predominantly real,
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7.3 Substrate index

Figure 7.2: Beam paths for the direct transmission and the first echo through a bare
substrate and the beam path through dry nitrogen (air). The substrate
material is denoted with 3 and the nitrogen with 0.

we can write down the following relations for the lags T = φ/ω between the pulses1:

T0,1(ω) = φ(
ẼS,I

ẼN
) /ω = (ñ3 − ñ0)ls/c0 (7.5)

T1,2(ω) = φ(
ẼS,II

ẼS,I
) /ω = 2ñ3ls/c0 (7.6)

T0,1 is the lag between the pulse through air and the direct transmission through the
sample; T1,2 is the lag between direct transmission and first echo. φ(x̃) denotes the phase
of the complex number x̃; c0 is the speed of light in vacuum. The substrate thickness
can then be extracted from each frequency component of the THz measurement using
ñ0 = 1 as:

ls(ω) = c0(T1,2(ω) − 2T0,1(ω))/2 (7.7)
1For the practical numeric data treatment, I use 3 windows with different start times. The differences
in respective start times between two pulses add to the lag between them.
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7 Appendix

Since the thickness needs to be constant, a spectral average l̄s is taken to obtain a
single constant.
With this, the real part n3 of the refractive index of the substrate is:

n3(ω) = c0T0,1(ω)/l̄s + 1 (7.8)

Within the assumption that the absorption is small, the imaginary part κ3 can
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Figure 7.3: The average values of real refractive index of MgO as measured. Statistical

errors not shown, since systematic errors from uncertainties of the substrate
thickness and Gouy shift will dominate them. 1% systematic error assumed
when propagating the error in refractive index onto DC-conductivity and
current response time estimates.

be retrieved by using the amplitude and approximating the ñ3 as n3 in the Fresnel
coefficients:

κ3(ω) = − log(∣
ẼS,I

ẼN2

∣
1

t0,3t3,0
)
c0

lsω
(7.9)

For MgO, the measured κ3 turns out to be very close to 0 and mostly slightly negative;
the latter part is non-physical. Therefore κ3 is set as 0. Figure 7.3 show the measured
real part of the refractive index.
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7.4 Measurement series

7.4 Measurement series

Table 7.1 lists the samples measured in each series.

series month reps samples
1 08.2016 30 “2 nm”, “5 nm”, “8 nm”, “10.3 nm”, “20 nm”, “100 nm”
2 08.2017 10 “3 nm”, “4 nm”, “10.3 nm”, “40 nm”,“60 nm”,“80 nm”
3 06.2018 10 “3 nm”, “4 nm”, “10.0 nm”, “20 nm”, “40 nm”,“60 nm”,“80 nm”, “100 nm”

Table 7.1: Table of measurement series. The table lists the month of the measurements,
the number of repetitions of sample/reference alternations in that round and
the names of the samples, designated by their rounded thickness.
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