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Abstract

Few methods have been developed to investigate copy number variants (CNVs) based
on their predicted pathogenicity. We introduce TADA, a method to prioritise
pathogenic CNVs through assisted manual filtering and automated classification, based
on an extensive catalogue of functional annotation supported by rigourous
enrichment analysis. We demonstrate that our classifiers are able to accurately predict
pathogenic CNVs, outperforming current alternative methods, and produce a
well-calibrated pathogenicity score. Our results suggest that functional
annotation-based prioritisation of pathogenic CNVs is a promising approach to support
clinical diagnostics and to further the understanding of mechanisms controlling the
disease impact of larger genomic alterations.
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Background
The investigation of the genetic causes of rare developmental disorders and, ultimately,
the molecular diagnosis of rare disease patients relies on the accurate detection and
prioritisation of disease-causing DNA variants. It follows that the accurate identifica-
tion and prioritisation of candidate disease-associated genetic variation is a fundamental
question in human genetic research. The disease impact of single nucleotide polymor-
phisms (SNPs) and small Insertions and Deletions (InDels) has been the focus of extensive
study [1–3]. Comparatively, little is known about the mechanisms and disease impact of
structural variants (SVs), including unbalanced SVs, also known as copy number vari-
ants (CNVs). CNVs have significant and pervasive impact on phenotypic variability and
disease: they can affect gene dosage [4] and modulate basic mechanisms of gene regula-
tion [5]. In addition, CNVs have been shown to disrupt topologically associating domains
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(TADs) [6] and can rewire long-range regulatory architectures, resulting in pathogenic
phenotypes [7, 8].
One of the reasons why CNVs are poorly understood is because they are difficult to

reliably detect, filter and interpret given current sequencing technology. New experimen-
tal approaches such as long-read sequencing [9] combined with novel, long-read specific
algorithms for read alignment [10, 11] and SV detection [11–13] are allowing amore thor-
ough survey of the spectrum of large variation in healthy and diseased human genomes
[14, 15]. This raises the need for methods to interpret, score and prioritise SVs to support
clinical practice.
Ongoing efforts to annotate the potential contribution of SVs to disease suggest the pos-

sibility of using functional annotation to stratify SV calls by relevance and/or predicted
pathogenic potential [16]. In terms of tools and methods to prioritise pathogenic CNVs,
a number of approaches have been proposed. ClinTAD [17] and TADeus [18] focus on
providing a visual framework to aid a human expert in manually surveying and flagging
likely relevant SVs. The Variant Effect Predictor (VEP) [19] allows for the annotation of
SNPs as well as CNVs and returns an approximation of the variant’s impact. SVScore
[20] aggregates SNP-level CADD [21] scores, integrating single nucleotide-based delete-
riousness prediction over the length of a SV. This is based on the assumption that SV
effects can be thought of as agglomerates of single-nucleotide-level effects, which is gen-
erally unlikely to be the case, given growing evidence of SV impact on, for instance, gene
dosage [4] and regulatory context [5]. Kumar et al. recently introduced SVFX [22] , a
machine learning framework to quantify pathogenicity for somatic and germline CNVs.
SVFX represents, to our knowledge, the first flexible machine learning-based model for
SV pathogenicity prediction. In their analysis the authors rely mainly on somatic vari-
ants as a proxy for pathogenicity as opposed to a set of germline variants annotated as
pathogenic. While a subset of these variants is actually pathogenic, the model still likely
trains on the differences between somatic and common germline mutations, rather than
pathogenic versus non-pathogenic. The SVFX authors also provide germline models for
specific disease contexts and ClinVar variants. However, their models are limited by a
major aspect of the modelling procedure: SVFX employs a normalisation method caus-
ing information leakage between training and test data and includes SV size as a feature
leading to an overestimation of their performance on germline variants—especially small
to medium sized SVs.
Here, we present the TAD annotation tool (TADA), a method to annotate CNVs in the

context of their functional environment, based on a rich set of coding as well as non-
coding genomic annotation data. The annotation data is centred around TAD boundaries,
which serve both as proxy for the regulatory environment (in that they limit the genomic
annotation potentially affected by the CNV to the loci between boundaries) and as anno-
tation themselves. TADA is designed to assess the functional relevance of user-specified
input sets of CNVs of unknown clinical relevance by one of two methods: (a) annotation,
followed by manual filtering, or (b) machine learning-based automated classification.
Importantly, our machine learning models for duplications and deletions are trained on
a set of annotated pathogenic variants (DECIPHER [23]) and rigourously driven by func-
tional evidence: we carefully assess the potentially discriminating effect of each of the
annotations considered by performing enrichment tests, comparing the expected and
observed overlap of pathogenic versus non-pathogenic CNVs and functional annotation
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data. We demonstrate the applicability of our approach on two separate test sets: (1) a set
of ClinVar variants, a database comprised of curated variants frommultiple studies anno-
tated with their respective clinical significance, and (2) a dataset composed of clinically
validated pathogenic DECIPHER and curated non-pathogenic variants not included in
our training data, resulting in an ROC-AUC for the deletion model of 0.8059 and 0.8865,
respectively. Both the deletion and the duplication model correctly rank more than 30%
of pathogenic variants at the first 5 of 100 ranks based on predicted pathogenicity when
compared to 99 non-pathogenic variants. Our approach outperforms alternative current
methods, namely SVScore, SVFX, CADD-SV and VEP, in direct classification measured
by AUC and F1-score. TADA is available free-of-charge under the MIT license and can
be customised for prioritising or classifying CNVs from different disease contexts.

Results
Enrichment analysis of pathogenic CNVs

We performed a comprehensive enrichment analysis of the pathogenic DECIPHER vari-
ant data set [23] in comparison to a curated set of common, and therefore unlikely
pathogenic, CNV calls [14, 15, 24, 25]. Our purpose was to assess whether we could iden-
tify contrasting patterns of enrichment/depletion in a pathogenic set with respect to a
control set. We reasoned that, if this was the case, the discriminating annotations would
be excellent candidates for a feature set of a classifier to distinguish pathogenic from non-
pathogenic variants. In our analysis, we account for size differences between the variant
sets and for the non-uniform mutation rate across the genome [15] (which would have
artificially inflated fold changes) by building GC-content isochores [26] and constraining
bootstrapping with bins of comparable GC-content signal (Methods for details). The set
of annotations tested in the enrichment analyses was based on evidence from Collins et
al. 2019 [14] and Audano et al. 2019 [15] including coding and non-coding annotation
as well as conservation and predicted loss-of-function (pLoF) metrics. We additionally
integrated TAD boundaries [27], CTCF bindings sites [28], genes associated with develop-
mental disease (DDG2P) as well as genes predicted to be haplosufficient (HS Genes) and
haploinsufficient (HI Genes) [4]. The results for pathogenic and non-pathogenic deletions
are shown in Fig. 1.
We conducted our enrichment tests within the genome association tester (GAT) frame-

work [29], a bootstrap-based method to test for enrichment or depletion of genomic
segments in background annotations accounting for a variety of confounding factors
(Methods for details). Briefly, we generated a number of randomly distributed, size-
matched genomic segments in each simulation and computed overlaps with sets of
genomic annotation. We computed overlaps over all simulations (expected overlaps, see
Methods) and compared them to observed overlaps, producing fold-change (FC) values
and an empirical p value showing the associated significance for each annotation set. The
q value refers to a multiple testing corrected p value [30]. Accepting anything below a
certain q value threshold corresponds to controlling the false discovery rate at that level.
To account for potentially diverging patterns of enrichment/depletion due to the vari-
ant type, we ran enrichment tests separately for deletions and duplications using 10,000
simulations.
In agreement with what was previously shown by Collins et al. 2019 we observe signif-

icant depletion of non-pathogenic deletions in coding regions (logFC = − 0.340, q-val =
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Fig. 1 Enrichment Analysis of non-pathogenic and pathogenic deletions. The figure shows the log2(fold
change) for expected and observed variant overlap for each set of genomic annotations based on 10,000
simulations. The size of the squares on the right side of the figure is proportional to the overlap FC difference
between pathogenic and non-pathogenic deletions. Grey bars and squares indicate a non-significant FC (q
value ≤0.01)

0.15 ∗ 10−3) and regulatory regions (logFC = − 0.240, q-val = 0.15 ∗ 10−3). The depletion
signal increases with predicted haploinsufficiency (logFC =− 1.041, q-val = 0.15∗10−3) of
the affected coding regions and conservation of the regulatory regions (logFC = − 0.768,
q-val = 0.15 ∗ 10−3). While we observe a strong significant depletion of non-pathogenic
deletions in pLoF intolerant genes, we do not detect significant depletion in pLoF tol-
erant genes. We observe stronger enrichment in pLoF intolerant genes with respect to
background gene annotation (logFC = − 0.686, .0.67 ∗ 10−3), confirming previous obser-
vations reporting increased depletion of common structural deletions in coding regions
intolerant to LoF-mutations. In agreement with Audano et al. 2019 [15] we observe signif-
icant enrichment of non-pathogenic deletions in extended (see Methods for an definition
of extended) telomeric regions (logFC = 0.289, q-val = 0.8727 ∗ 10−3). Additionally, our
combined set of non-pathogenic deletions is significantly depleted in TAD boundaries
(logFC = − 0.506, q-val = 0.15 ∗ 10−3) and CTCF binding sites (logFC = − 0.109, q-val =
0.72 ∗ 10−3).
The enrichment analysis of pathogenic DECIPHER deletions reveals patterns of signif-

icant enrichment in all functional annotation except FANTOM5 enhancer regions, TAD
boundaries and extended telomeric regions. The pathogenic deletions are significantly
enriched in coding regions (logFC = 0.316, q-val = 0.15∗10−3), with increased enrichment
for DDG2P genes (logFC = 0.447, q-val = 0.15∗10−3).We observe increased enrichment in
pLoF intolerant genes (logFC = 0.346, q-val = 0.8∗10−3) compared to pLof tolerant genes
(logFC = 0.208, q-val = .15 ∗ 10−3) as well as HI genes (logFC = 0.319, q-val = 0.15 ∗ 10−3)
compared to HS genes (logFC = 0.122, q-val = 0.13 ∗ 10−3). The pathogenic deletions are
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also significantly enriched in extended telomeric regions (logFC = 0.594, q-value = 0.15 ∗
10−3). We are not able to detect significant enrichment of our pathogenic set in any set
of the enhancer annotations, regardless of the extent of sequence conservation. Instead,
we observe significant depletion of pathogenic deletions in highly conserved enhancers
(logFC = − 0.272, q-val = 0.15∗10−3). Even though CNVs have been shown, as previously
mentioned, to cause disease phenotypes by disrupting TAD boundaries, the enrichment
analysis reveals a significant depletion of pathogenic deletions in TAD boundaries (logFC
= − 0.188, q-val = 0.15 ∗ 10−3). The analysis of duplications reveals similar patterns of
enrichment for pathogenic and non-pathogenic variants (Additional file 1: Fig. S1).
Doane et al. 2016 observed an enrichment of CNVs impacting human accelerated

regions (HARs) [31] i.e. regions that are highly conserved across vertebrates with
increased divergence in humans, in individuals with autism spectrum disorder (ASD).
This suggests potential brain associated regulatory function of HARs [31]. To test a
wider range of genomic annotation such as HARs as distinguishing features, we set out
to conduct further enrichment analyses. Motivated by evidence of CNV enrichment in
segmental duplications (SDs) [32], we included SDs in our analysis. Given the increas-
ing evidence for the impact of non-coding variation in Mendelian disorders, localising in
highly conserved, tissue-specific active distal regulatory elements such as enhancers [33],
we also included ChromHMM annotations [34]. The enrichment results of SDs, HARs
and ChromHMM annotation for deletions and duplications are shown in Fig. S2 and S3
(Additional file 1), respectively. Both non-pathogenic and pathogenic deletions are signif-
icantly depleted in polycomb-repressed regions (logFC =− 0.477, q-val = 0.7∗10−3, logFC
=− 0.168, q-val = 0.14∗10−2, respectively) and HARs (logFC =− 0.399, q-val = 0.1∗10−3,
logFC = − 0.216, q-val = 0.1 ∗ 10−3, respectively). We observe no significant depletion
or enrichment of pathogenic or non-pathogenic deletions in any other ChromHMM
annotation or in SDs. In contrast we observe significant enrichment of non-pathogenic
duplications in SDs (logFC = 0.375, q-val = 0.1 ∗ 10−3). We also observe significant deple-
tion of non-pathogenic duplications in polycomb-repressed regions (logFC = − 0.248,
q-val = 0.1 ∗ 10−3) and small but significant depletion in HARs (logFC = − 0.560, q-val =
0.1 ∗ 10−3).
TADs are known to approximately represent windows of constrained regulatory inter-

actions [35]. We reasoned that for TADs of high regulatory relevance, pathogenic CNVs
are likely depleted across the entire TAD environment due to their potential effect on the
corresponding regulatory context. We therefore set out to investigate the enrichment of
pathogenic CNVs in TADs stratified by their regulatory importance.We assumed that the
regulatory importance of a TAD can be approximated by the conservation of enhancer
annotation and the pLoF intolerance of coding annotation within the TAD environment
(Methods for details). We henceforth refer to the resulting set of TAD annotations as
TAD-centric annotations. Figure S4 and S5 (Additional file 1) show the results of the
TAD-centric enrichment analysis for, respectively, deletions and duplications.We observe
significant enrichment of non-pathogenic deletions and duplications in TADs lacking
known coding or regulatory annotation (logFC = 1.128, q-val = 0.47∗10−3, logFC = 1.436,
q-val = 0.15 ∗ 10−3, respectively) and significant depletion of non-pathogenic CNVs in
most TADs containing coding or regulatory elements. In contrast, we observe significant
enrichment of pathogenic deletions in TADs containing coding and regulatory annotation
with an increased enrichment in TADs encompassing at least one highly loF intolerant
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gene (logFC = 0.240, q-val = 0.28 ∗ 10−3). However, we do not detect a signal of enrich-
ment or depletion for pathogenic duplications in TAD-centric annotations and cannot
confirm increased enrichment of pathogenic deletions in TADs containing highly con-
served enhancers compared to TADs with less conserved enhancers. Taken together, the
results point towards selective pressure towards deletions based on the entire affected
regulatory domain rather than individual coding and non-coding annotation.

TADA

We used the observed patterns of enrichment and depletion to inform feature selection
in our TAD annotation tool. However, we are well aware that the relevance of the selected
features for the prioritisation of putative pathogenic variants will differ, based on dis-
ease and sample context. To account for the variable relevance of features we allowed
user-defined annotation alongside the default feature set driven by the results of the
enrichment analysis. A schematic and a detailed description of the TADA workflow is
shown in Fig. 2.

Pathogenicity Prediction

We demonstrate the viability of functional annotation as a basis for putative pathogenic
CNV prioritisation by training classifiers using the TADA tool and evaluating their pre-
dictive performance. We split the variant set used for the enrichment analyses into

Fig. 2 Generalised Workflow of the TADA tool. The basis for the CNV annotation are BED-files of TAD
boundaries and additional sets of genomic annotations e.g. gene coordinates. In a first step, the annotation
sets are sorted into the corresponding TAD environment based on genomic position. The resulting annotated
TAD regions are used as a proxy of the regulatory environment during the CNV annotation (“TAD-aware
annotation”). The default feature set for the CNV annotation process consists of features describing the
distance to genomic elements such as genes and enhancers in the same TAD environment as well as metrics
describing the functional relevance, e.g. conservation scores of affected coding or regulatory elements.
Alternatively, the user can provide a set of BED-files containing the coordinates of genomic elements from
which a new feature set i.e. the distance of CNVs to these annotations is generated. The user is then able to
manually prioritise CNVs based on the distance features. If the default feature set is used TADA also allows for
automated prioritisation using the pathogenicity score computed by our pre-trained random forest model
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deletions and duplications and train separate random forest classifiers on a total of 14
functional annotation derived features (Additional file 1: Table S1). The features include:
distance to the closest gene, FANTOM5 enhancer, CTCF binding site and TAD bound-
ary in the corresponding TAD environment. Additionally, we include loss-of-function
observed/expected upper bound fraction (LOEUF) [14] and Haploinsufficiency poten-
tial [4] for the closest gene as well as evolutionary conservation of the closest enhancer.
Finally, we use the HI log Odds score [4] and a feature corresponding to the overlap of
a CNV with potential regulatory regions based on pcHi-C [36]. Even though TADs have
been shown to be broadly conserved across tissues [37], our choice of TAD boundaries
identified in human embryonic tissue could still, in principle, influence the classifica-
tion. To account for any cross-tissue variability, we also include a score expressing the
conservation of TAD boundaries across tissues i.e. the TAD stability of the closest TAD
boundary [38] as a feature. For each variant type, we split our original data into training
and test set (70/30) stratified by label distribution and trained a random forest classifier.
We then evaluate the performance of the parameter-tuned classifiers using three criteria
1) 5-fold cross-validation (5-CV set), 2) the test-set split of our original data (Test-Split
set) and 3) on a set of pathogenic and benign ClinVar deletions and duplications with-
out overlap to our training data (ClinVar set). This results in ROC-AUC values for the
deletion model of 0.8379 (5-CV ), 0.8059 (Test-Split) and 0.8865 (ClinVar). The ROC-
AUC values for the duplication model are 0.8069 (5-CV ), 0.7868 (Test-Split) and 0.8424
(ClinVar) (Fig. 3C). We compare our predictive performance to SVFX [22], a recently
proposed alternative machine learning approach aimed predominantly at the classifica-
tion of somatic CNVs. Similar to TADA, the SVFX framework allows the user to train
random forest classifiers on individual variant sets to identify pathogenic potential with
regards to a specific disease context. While TADA is trained on size-matched data, SVFX
employs a normalisation method to account for the size bias between pathogenic and
non-pathogenic variants. However, there are practical limitations to this method leading
to overestimated performance metrics (see Methods for details). Thus, to allow for a sen-
sible performance comparison, we trained a SVFX classifier on the same size-matched
training data used for the TADA classifier and compared the CV performance during
training as well as AUC values on the Test-Split and ClinVar variants. The SVFX 5-CV
ROC-AUC values are 0.7836 and 0.7613 for deletions and duplications, respectively and
the performance of SVFX on the test variants is shown in Fig. 3C. TADA outperforms
SVFX for both CV ROC-AUC, Test-Split and ClinVar variants. We also compare our
performance to SVScore [20], applied to the Test-Split and ClinVar variants with default
parameters (seeMethods for details). Briefly, SVScore calculates themean of the ten high-
est CADD scores [21] in the interval affected by a CNV. This results in ROC-AUC values
for the deletions of 0.6909 (Test-Split) and 0.8771 (ClinVar). For duplications, the ROC-
AUC values are 0.7079 (Test-Split) and 0.8582 (ClinVar). TADA outperforms SVScore on
the Test-Split of our original data. The difference on ClinVar variants is less pronounced.
For ClinVar duplications SVScore performs marginally better than TADA. We reasoned
that the increased performance of SVScore forClinVar variants could be due to the differ-
ent size distributions of pathogenic and non-pathogenic variants in the available training
sets at the time of writing. SVScore assigns a score of 100 to all variants larger than 1 Mb,
effectively labelling them as pathogenic. Hence, the method performs particularly well if
most of the pathogenic variants are larger than 1 Mb and most non-pathogenic variants
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Fig. 3 Predictive Performance of the Deletion and Duplication Classifiers. A and B show the ranking
performance of TADA and SVScore for deletions and duplications, respectively. For each bin we computed
the percentage of variants placed amongst the corresponding rank or ranks. Black bars indicate the standard
variation based on 30 random sampling runs. C shows the ROC-Curves and AUC values for the deletion and
duplication classifiers based on the Test-Split and ClinVar variants for both TADA and SVScore

are smaller. This likely leads to an underestimation of the pathogenic potential of smaller
pathogenic variants and a likely high false positive rate for large non-pathogenic variants.
To assess the effect of variant size on the classification performance, we set out to per-
form a second comparison between TADA, SVScore and SVFX using ClinVar deletions
separated by size. The results (Additional file 1: Fig. S6) show superior performance of
TADA across all size groups with the exception of large (> 1 mb) deletions, suggesting
that TADA relies to a lesser degree than the other methods on the size difference between
pathogenic and non-pathogenic variants as a discriminating feature.
Kleinert et al. recently introduced CADD-SV an adaptation of the original CADD

method aimed at the prioritisation of SVs [39]. We show the results of a comparison
between TADA and CADD-SV in Fig. S7 (Additional file 1). TADA outperforms CADD-
SV with regards to the classification of both ClinVar and Test-Split CNVs. However, in
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comparison to the ROC-AUC difference for Test-Set deletions (0.0889), the difference in
performance for Test-Split duplications is less pronounced (0.0012).
We also compared the classification performance of TADA to a fourth alternative

method, the Ensembl Variant Effect Predictor (VEP) [19]. VEP allows to annotate CNVs
with a large variety of regulatory annotation and returns an IMPACT rating which
depends on the calculated variant consequences. Since the rating is a categorisation into
four groups (HIGH,MODERATE, LOW andMODIFIER) a comparison with the continu-
ous scores of TADA and SVScore based on ROC-curves or ranking ability is not possible.
We therefore computed the macro-averaged F1 scores for the test split of our original
data and both the ClinVar variants and those smaller than 1Mb using individual thresh-
olds for TADA, SVScore and VEP (see Methods for details). The results are shown in
Table S2 (Additional file 1). TADA outperforms SVScore and VEP for both deletions and
duplications of our Test-Split variants and ClinVar deletions. For the entire set of ClinVar
duplications SVScore classifies 84% of the variants correctly which is the best macro-
averaged F1 score amongst all tools. However, as shown in the last column of Table S2
and previously discussed in terms of SVScore’s classification performance, the increase
can be explained by the dependency on the size difference between pathogenic and non-
pathogenic variants. For variants smaller than 1 Mb there is only a marginal performance
difference between the tools.
Our analysis of the predictive performance across multiple test sets provides an indi-

cation of the classifier’s ability to distinguish between pathogenic and non-pathogenic
variants given a hard threshold on the pathogenicity probability, i.e. the probability of
the variant to belong to the pathogenic class. In clinical practice the challenge is to sin-
gle out a pathogenic variants from a large background of non-pathogenic variants. An
ideal classifier would therefore focus on producing class probabilities, i.e. a pathogenic-
ity score that allows to rank the true pathogenic variant as high as possible reducing the
total number of variants investigated in further downstream analysis to a manageable
number. As described by Benevenuta et al. [40] a potential criterion for the reliability of
a classifiers class probabilities is its calibration - the fraction of true positives compared
to the mean predicted value [41]. We visualise the calibration of our classifiers in Fig. S8
(Additional file 1) and further set out to evaluate the reliability of our pathogenicity score
by performing a ranking analysis. We generate size-matched batches of 100 deletions or
duplications, containing a single pathogenic and 99 benign ClinVar variants (Methods for
details). For each batch, we computed the rank of the true pathogenic variant based on
predicted pathogenicity (TADA and SVFX) as well as aggregated CADD Score (SVScore)
and obtained the standard deviation of individual ranks. The ranking performance of our
classifiers, SVFX and SVScore for both deletions and duplications is shown in Fig. 3A/B.
Based on 3425 batches, the TADA deletion classifier outperforms SVFX and SVScore,
with 35.9% correct instances in the top 5 ranks compared to 20.9% and 33.9%, respec-
tively. However, SVScore places more correct CNVs in the ranks below the 10th rank. For
duplications 28.66%, 11.7% and 11.06% of variants from 415 batches are placed amongst
the first 5 ranks by TADA, SVFX and SVScore, respectively. In the duplication ranking
analysis TADA outperforms SVFX and SVScore with respect to all ranks (Fig. 3B).
In analysis pipelines of sequencing results, aimed at the identification of putative

pathogenic variants, it is common to discard any variants that occur frequently in a
healthy population panel. A public resource may be used for this purpose, e.g. GnomAD



Hertzberg et al. Genome Biology           (2022) 23:67 Page 10 of 21

[14]. This process results in a set of rare variants that are more likely to be pathogenic
but also more likely to be artefactual given the low observed population frequency in the
reference panel. Hence, a reoccurring scenario is the prioritisation of likely pathogenic
variant candidates amongst the selected rare variants. To test the performance of TADA
and SVScore with regards to rare variants rather than variants classified as benign we
repeated the ranking analysis comparing pathogenic ClinVar variants to rare (<0.1 allele
frequency) GnomAD variants. The results are shown in Fig. S9 and S10 (Additional file 1).
In this analysis SVScore places on average 4.6% more pathogenic variants on the first
5 ranks when compared to TADA. We manually inspected individual CNVs and found
that SVScore assigns low scores to all variants not directly affecting coding regions of
genes while TADA also considers non-coding variants as potentially pathogenic, if the
regulatory environment warrants this classification. To assess the effect of TADA’s non-
coding features on the ranking performance with rare variants we repeated the analysis
using a modified classifier which actively penalises variants not directly affecting coding
regions (Methods for details). The resulting ranking performance is shown in Fig. S11
and S12 (Additional file 1). The performance of TADA improves compared to the ini-
tial ranking analysis of rare variants. However, we reasoned that a model solely focusing
on coding regions would not reflect currently emerging and future CNV effects well as
multiple instances of non-coding pathogenic variation are being identified [5, 42]. The
presented and published model therefore also includes features accounting for the CNV’s
non-coding regulatory environment.
We further tested the performance of our pre-trained duplication model on variants

of two developmental disease (DD) patients reported in a previous study focused on
the benefit of Hi-C for SV identification [43]. In this analysis, we applied our model
trained on DECIPHER data on duplications identified in the individual DD2, including
the coordinates of the disease-causing duplication of DD1 (see Methods for details). The
computed pathogenicity scores of the 255 duplications including the pathogenic variants
of DD1 and DD2 are shown in Fig. S13 (Additional file 1). Both disease-causing dupli-
cations were assigned pathogenicity scores higher than the 90th percentile (0.4336). The
disease-causing DD2 duplication was placed on rank 2 amongst the 255 variants with a
pathogenicity score of 0.7986. The disease-causing DD1 duplication was ranked notably
lower with a score of 0.5865. To investigate the regulatory environment at the duplication
loci as represented in our feature set we visualised the corresponding loci using IGV [44]
as shown in Fig. S14 (Additional file 1). Both variants overlap with TAD boundaries, sev-
eral gene as well as enhancers annotations. The DD2 duplication directly compromises
the SOX9 locus—a highly haploinsufficient DDG2P gene. As presented in the following
paragraph and shown in Fig. S15 (Additional file 1), TADA’s classification process for
duplications is highly influenced by the HI-Score of the closest gene. Thus, The overlap
with the SOX9 likely drives the high pathogenicity score predicted for the DD2 duplica-
tion. The DD1 duplication—as suggested by Melo et al.—effects the expression of KCNJ2
through the formation of a new chromatin domain (neo-TAD) that includes copies of
KCNJ2 and KCNJ16 as well as SOX9 enhancers likely causing the patients phenotype.
While TADA does recognise the close distance of this duplication to developmentally sig-
nificant genes defined by the HI score feature and its overlap with TAD boundaries as
well as enhancers at this locus, it likely does not recognise the complex pathogenic effect
through the neo-TAD formation resulting in a decreased pathogenicity score.
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Our classifier performs well on developmentally associated pathogenic variants and
shows a high test-set and ranking performance for the ClinVar database, indicating that
the model can be applied to a disease and sample context unrelated to the training set.
However, both DECIPHER and ClinVar include primarily coding sequence affecting vari-
ants due to the limitations of the underlying experimental procedures. Only since the
inclusion of WGS—especially long-read WGS—in clinical practice, the focus on non-
coding disease-causing CNVs has increased leading to more comprehensive catalogues of
annotated pathogenic variants. Still, the current publicly available call sets include very
few non-coding sequence affecting disease-causing variants which is likely to be reflected
in our trained classifier. We therefore decided to determine the most relevant features
and identify potential biases in our trained model. To account for any biases introduced
by correlated features, we computed the partial correlation between our features (Addi-
tional file 1: Fig. S16), and computed the mean loss in accuracy for partial correlation
clusters after permutation of highly correlated feature clusters [45] (Methods for details).
The mean loss and standard deviation across 30 computations with different random
seeds is shown in Fig. 4 and Fig. S15 (Additional file 1) for deletions and duplications,
respectively. As expected, the results indicate that both the deletion and the duplication
model rely mainly on coding rather than non-coding functional annotation. The most
relevant features for the trained classifiers are the predicted haploinsufficiency of the
closest gene and the HI Log Odds score, followed by the distance to the closest DDG2P

Fig. 4 Feature Importance of the Deletion Model. The figure shows the mean loss in accuracy after
permutation of highly correlated feature clusters (see Methods for a detailed description of individual
features). The standard deviation based on 30 sampling runs with variable random seed is indicated by black
lines
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gene. Regulatory annotations are of lower importance for classification. This is in agree-
ment with our enrichment results, where we could not observe enrichment of pathogenic
DECIPHER variants in FANTOM5 enhancer annotations, and our previous comparison
of ranking ability for rare variants between TADA and SVScore. However, we expect
non-coding annotation to gain importance as potential pathogenic non-coding training
variants increase.

Discussion
The prioritisation and identification of disease-causing genomic variants is an active field
of genomic research. SNPs and InDels and their relation to human disease have been the
focus of intense study [1, 2]. Although early evidence suggests SVs are a major contributor
to genome-wide variation, comparatively little is known about their disease impact at an
individual and population level. This can be attributed to technical limitations, namely the
accurate identification of SVs and precise SV breakpoint calling. It follows that few studies
have, so far, focused on the prioritisation and ranking of large sets of SV calls to highlight
smaller and more manageable subsets of SVs with higher predicted disease potential.
Experimental as well as algorithmic advancements in the field of SV detection are lead-

ing to an increase in publicly available catalogues of SVs [14, 15]. These catalogues are
focused mainly on common, i.e. likely non-pathogenic variants and reveal patterns of
depletion in coding and regulatory functional annotation. Due to the lack of publicly avail-
able data, an analysis on a comparatively comprehensive catalogue of pathogenic SVs is
missing.
In this work, we used the DECIPHER database of pathogenic CNVs to analyse the

potential of functional annotation and CNV overlap as a distinguishing feature between
pathogenic and non-pathogenic CNVs. We conducted an extensive series of enrich-
ment tests, identifying contrasting patterns of enrichment between pathogenic and
non-pathogenic CNVs for multiple sets of genomic annotation. We observed signifi-
cant depletion of non-pathogenic variants in coding and regulatory regions, positively
correlated with the intolerance to LoF-mutations and predicted haploinsufficiency of
coding regions as well as the primary sequence conservation of regulatory regions. In
our analyses we observed a contrasting pattern of enrichment for pathogenic variants in
coding regions and CTCF binding sites, providing additional evidence for the potential
of functional annotation as a feature to identify pathogenic variants. In further enrich-
ment analyses we included ChromHMM annotations, SDs and HARs. We were not able
to observe a contrasting pattern of enrichment and depletion in this group of annota-
tions, suggesting that ChromHMMannotations, SDs andHARs do not represent genomic
regions with differential selective pressure towards perturbating variation. We also inves-
tigated the overlap of pathogenic and non-pathogenic CNVs with TAD-centric features,
i.e. TADs stratified by regulatory importance.We observed a significant depletion of non-
pathogenic variants in TADs containing regulatory and coding annotation. In contrast,
pathogenic variants are significantly enriched in TADs of regulatory importance. This
could suggest that the selection towards variation affecting functional annotation is likely
to extend to entire regulatory domains. However, to confirm this observation further anal-
ysis needs to be performed with a more extensive catalogue of TAD boundaries across
tissues as well as variants, less liable to the investigator bias towards the coding sequence
effect of CNVs.
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The enrichment analyses also revealed significant depletion of pathogenic variants in
TAD boundaries and highly conserved enhancers, indicating that regulatory functional
annotation is less important than coding sequence-centric annotation in aiding the dis-
crimination of pathogenic versus non-pathogenic variants based on the data sets used in
these analyses. This is perhaps unexpected, given there is increasing evidence on the role
of variants impacting non-coding regulatory elements on rare disease [5, 33]. Account-
ing for the focus of DECIPHER on the coding rather than non-coding effect of CNVs,
we reasoned that the significant depletion of pathogenic variants in non-coding func-
tional associated annotation is a consequence of investigator bias in our set of annotated
pathogenic variants. We anticipate that, with larger less biassed pathogenic SV reposi-
tories becoming available, observed genome-wide SV impact on regulation will yield a
stronger signal. Current prioritisation methods should therefore provide the flexibility to
account for both coding and non-coding effects.
For this purpose we developed TADA, a method to prioritise pathogenic CNVs based

on their overlap with functional annotation. The tool provides the option to manually
prioritise variants, i.e. it returns annotated CNVs as a list that can be sorted by each of
the annotations. It also allows for machine learning-based prioritisation using a random-
forest model trained on a functional annotation-based feature set. The default feature set
that we provide includes coding and non-coding associated features, motivated by the
results of our enrichment analysis. Alternatively, the user can provide a set of genomic
annotation associated with a disease or sample context to generate a custom feature set.
Even though, based on the enrichment analysis, non-coding features such as TAD bound-
aries and enhancer conservation do not assist in the differentiation of pathogenic from
non-pathogenic variants, we decided to include them in the default feature set. We argue
that during manual annotation an prioritisation based on the default feature set the non-
coding can prove to be beneficial in identifying pathogenic variants. We trained random
forest classifiers for deletions and duplications and found they performed well on the
Test-Split and ClinVar variants, outperforming SVFX and CADD-SV with regards to all
test variants and SVScore as well as VEP on all test data with the exception of Clin-
Var duplications. In a second analysis using ClinVar deletions grouped by size, TADA
shows superior performance for smaller to medium sized variants, indicating the robust-
ness of our model towards the size difference between pathogenic and non-pathogenic
variants. To simulate the application of our models in a clinical setting, we computed
the precision of the pathogenicity score over batches of benign variants combined with
a single pathogenic variant. Both the deletion and duplication model performed well,
placing more than 30% of the pathogenic variants amongst the first rank based on the
pathogenicity score, again outperforming SVFX and SVScore. In an analysis focused
on two DD-patients, TADA assigned high pathogenicity scores to both disease-causing
variants, ranking the pathogenic duplications for the DD2 individual 2nd amongst 255
variants. The above indicates that the pathogenicity score is a close approximation of true
pathogenic effect in our test set—especially given the superior ranking ability of our mod-
els. As expected, the analyses of the classifier’s feature importance revealed dependency
on coding regions rather than regulatory regions, mirroring the results of our enrichment
analyses. We therefore recommend the application of the automated prioritisation using
the pre-trained random forest model with focus on the coding rather than non-coding
effect of CNVs. Since TADA is trained on the DECIPHER variants, which were identified
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as the cause of developmentally associated disease phenotypes, we cannot guarantee that
the pre-trained model is able to accurately classify variants in a different disease context.
Hence, we provide the possibility to manually prioritise variants based on a user-defined
or on the default feature set, which also includes features accounting for the non-coding
effect of CNVs.

Conclusions
Thanks to recent experimental and algorithmic approaches SVs can be reliably identi-
fied and their role in clinical diagnostics is beginning to be established. This raises the
need for methods to assist in the identification of pathogenic SVs. Still, the proportion
of balanced SVs in publicly available databases of pathogenic variation is comparatively
low, limiting any supervised machine learning approach focusing on the prioritisation
of pathogenic variants, including TADA. to unbalanced SVs. Nevertheless, our results
show that the automated prioritisation of pathogenic CNVs based on functional anno-
tation is a promising approach. The TADA framework outperforms several comparable
methods with respect to overall predictive performance and ranking ability. With the
likely increasing number of more comprehensive available variant catalogues, we aim to
improve the predictive power of our classifier and adapt our approach to other classes of
disease-relevant genomic structural variation.

Methods
Variant sets

The number of deletions and duplications in the individual data sets pre- and post-
filtering as well the merged common call set are shown in Fig. S17 (Additional file 1).
We obtained 31,615 CNVs from DECIPHER [23]. We filtered the CNVs according to

their pathogenicity and size, and chose to retain variants categorised as pathogenic, likely
pathogenic or unknown with a size larger than 50 bp (20,984 remaining). Since DECI-
PHER serves as database to analyse candidate i.e. potential disease-causing variants, we
reasoned that a large proportion of variants with unknown effect are still likely pathogenic.
We noticed that multiple DECIPHER calls were overlapping and possibly representing the
same variant, we selected the smallest variant for each pair/cluster of overlapping vari-
ants based on a 90% reciprocal overlap (18,792 remaining). Finally, we only kept variants
located on autosomes (18,786 remaining).
The common i.e. non-pathogenic variant set is a compendium built from four differ-

ent data sources: a publication by the Eichler group featuring SVs identified via deep
PacBio sequencing of 15 individuals [15] (97,585 variants), a collection of 14,891 indi-
viduals published by the GnomAD consortium [14] (445,858 variants), a set of CNVs
called from the UK Biobank data set [25] (275,180 variants) and CNVs obtained from the
Database of Genomic Variants (DGV) [24] (114,555 variants). Variants in the set pub-
lished by Audano et al. [15] were mapped to GRCh37 using the LiftOver tool [46]. Three
thousand seven hundred forty-seven of 97,585 variants were lost during this process. All
other SVs were already mapped to GRCh37. In order to match the pathogenic variants
we only kept non-pathogenic CNVs located on autosomes larger than 50bp. We also dis-
carded rare and potentially deleterious variants by applying individual filters to each of
the data sources: we filtered for Shared orMajor deletions published by Audano et al. for
i.e. variants present in all or≥50% of the samples (5404 remaining), GnomAD SV variants
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with an allele frequency (AF) >0.1 (5037 deletions and 1494 duplications remaining), UK
Biobank deletions supported by 3 or more samples (33,373 remaining) and DGV variants
reported in more than one publication (27,235 deletions and 6138 duplications remain-
ing). To account for overlapping variants between different sources of non-pathogenic
variants, we clustered variants with a reciprocal overlap greater or equal to 90% . For each
pair/cluster of overlapping variants we selected a single variant based on their origin,
with the following prioritisation order: Audano et al. 2019, GnomAD-SV, DGV and UK
Biobank. We reasoned that variant calls reported based on sequencing—especially long-
read-sequencing—provide more precisely resolved breakpoints than variants reported
based on array-CGH or SNP-arrays. This resulted in a total number of 53,003 deletions
and 7606 duplications.
While the pathogenic variants were called using array-CGH, the GnomAD and Audano

variants are based on WGS and long-read-sequencing, respectively. The difference
in experimental methods is reflected in the size distribution of pathogenic and non-
pathogenic variants (Additional file 1: Fig. S18). To account for the size bias across
variants sets, we binned the non-pathogenic variants by size using an empirical cumu-
lative distribution function (ECDF) with bin size 60. We then sampled for each bin the
same number of pathogenic variants. For bins with a higher number of non-pathogenic
than pathogenic variants, we sampled the same number of non-pathogenic variants as
pathogenic variants without replacement. The final set of deletions used for training and
testing consisted of 6130 CNVs, 3065 pathogenic and 3065 non-pathogenic matched by
size. The final set of duplications included 3410 CNVs i.e. 1705 pathogenic and 1705
non-pathogenic size-matched variants, also split 70/30 into training and test sets. The
proportion of non-pathogenic variants by data source changed during the size-matching,
due to the lack of short pathogenic variants. Figure S19 (Additional file 1) shows the pro-
portion of variants by pathogenicity and data source before and after the size matching.
Figure S20 (Additional file 1) shows the distribution of non-pathogenic CNVs by data
source across the genome.
We obtained ClinVar CNVs from (https://www.ncbi.nlm.nih.gov/clinvar/) on October

24, 2019 restricting the search by Type of variation to copy number gain, copy number
loss, deletions and duplications. First, we stratified the variants by type of variant i.e. dele-
tions and duplications (73,533 deletions; 47,022 duplications). Then, we separated both
deletions and duplications into pathogenic (Pathogenic and Likely pathogenic annotation)
(11,816 deletions; 3880 duplications) and benign (Benign and Likely benign annotation)
(13,381 deletions; 11,609 duplications) and only kept variants located on autosomes.
Finally, we discarded any duplicated variants (as described above for the DECIPHER
dataset) and those overlapping with our training data (90% reciprocal overlap) in each set
of pathogenic/non-pathogenic deletions and duplications (17,553 deletions; 10,062 dupli-
cations). We conducted an additional analysis to investigate the effect of the reciprocal
overlap threshold on our classification performance. The results are shown in Fig. S21
(Additional file 1). With the exception of a slight increase in classification performance
from 10 to 20% the AUC-ROC values remain similar across the range of reciprocal overlap
thresholds.
For the analysis of the classifiers’ ranking performance, we used the above described

filtered ClinVar variants. To analyse the ranking performance for rare rather than benign
ClinVar variants we used GnomAD CNVs with an AF <= 0.1. We filtered the rare CNVs

https://www.ncbi.nlm.nih.gov/clinvar/
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for duplicated variants, discarding any rare CNVs overlapping with our training data (90%
reciprocal overlap). This resulted in a variant set comprised of 46,880 duplications and
167,817 deletions.

Annotations

We obtained hg19 TAD boundaries from human embryonic cells [6] as described by
MCArthur et al. 2020 [38] annotated with boundary stability. For both the enrichment
testing and the training of the pathogenicity classifier we used FANTOM5 enhancer
annotations [47] without any tissue specifications. We annotated the enhancers using
aggregated 100-way PhastCons [48] i.e. the mean of base-wise conservation scores over
the enhancer interval. The conserved and highly conserved enhancers in the enrichment
analysis correspond to FANTOM5 enhancers with aggregated PhastCons scores over the
75% and 90% percentiles given the background distribution over all enhancer annotations.
We obtained gene annotations from the GnomAD consortium and exon annotations
for the computation of the exon overlap feature from GENCODE (comprehensive gene
annotation v.32) [49]. We stratified the gene annotations by predicted Haploinsufficiency
(p(HI)) [4] and intolerance to loss-of-function mutations i.e. LOEUF [50]. For the enrich-
ment analysis we defined genes with p(HI) > 0.9 and p(HI) < 0.1 as HI Genes and HS
Genes, repsecitvly. Genes with LOEUF<0.1 and LOEUF>0.9 as ploF Tolerant Genes and
ploF Intolerant Genes. We obtained hg19 CTCF binding site annotations from ENCODE
i.e. irreproducible discovery rate (IDR) optimal ChIP-seq peaks (ENCODE Accession
Number: ENCSR000EFI). The computation of overlap with potential regulatory regions
identified in pcHi-C data is based on data from [36]. We selected the P-O-interactions
(−log10(p-value) ≥ 3) for each gene contained in our set of annotated genes and com-
puted the overlap of a CNVs with each interacting fragment i.e. 1 if the CNV overlaps with
a fragment, 0 otherwise. Finally, we divided the sum over all interacting fragment for each
gene by the genes LOEUF value. We obtained hg19 telomeric regions from the UCSC
genome browser [46] and extended them by 5 mbp to match the annotations described
by Audano et al. 2019 [15].

TADAworkflow

During the TADA’s prioritisation process we first perform a TAD-aware Annotation by
computing the overlap of TADs with regulatory elements, namely genes, enhancers and
CTCF sites, and collect the overlapping annotation for each TAD region. This prepro-
cessing step provides two advantages in the subsequent CNV anntotation. First, it allows
for a faster annotation of CNV regions, since all features only have to be computed with
regards to the regulatory elements in the same TAD environment of a CNV e.g. not
all genes have to be considered during overlap computation. Secondly, features extend-
ing the genomic sequence directly affecting the CNV such as the gene associated with
overlapping interacting fragments (derived from pcHi-C) are restricted by the TAD envi-
ronment and, therefore, potentially reflect the true regulatory impact of a CNV better.
We also allow for a user-defined sets of genomic elements during the Annotation pro-
cess. In this case the user needs to provide coordinates in BED-files of genomic elements
which are then again sorted into their corresponding TAD environment. The TAD envi-
ronment can also be provided by the user. During the CNV annotation the distance of
CNVs to their respective closest element of each set of genomic elements is used as a
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feature. The user is then allowed to either train a classifier on two datasets using their own
feature set or manually prioritise variants based on the distance features. Alternatively,
we provide the default feature set as described previously for manual and automated
prioritisation.

Enrichment testing

We performed the enrichment tests using the gat-run protocol of the Genome Associa-
tion Tester (GAT) [29]. GAT is a bootstrap-based approach used to test the association
between sets of genomic intervals. The gat-run.py protocol merges the segments of inter-
est i.e. the CNVs in a preprocessing step, which resulted at first in a coverage (track
density) above 90% for each variant set. To avoid false positive enrichment due to size
bias, we therefore used the size-matched CNVs sets and reduced the track density for
pathogenic and non-pathogenic variants to 30.1% and 22.7%, respectively.
CNVs are non-randomly distributed across the genome. Regions with an increased

amount of paralogous repeats such as segmental duplications are prone to non-allelic
homologous recombination, a recombination process that can lead to the formation of
deletions or duplications [51]. To account for the non-random distribution of CNVs,
we used GC-content families [26] to split the genome into isochores. For each iso-
chore we performed a separate enrichment test using the isochores function of GAT. We
used gat-run.py with the following settings: –nbuckets 10,000 –bucket-size=960 –num-
samples=10,000 –counter=segment-overlap. To compare the FCs between pathogenic and
non-pathogenic variants we used gat-compare.py.

Classification and Preprocessing

We annotated the CNVs with a total of 14 features. In preparation to the classification we
split the data into training and test set (70/30 split).We then imputedmissing data in both
sets with the mean of the corresponding feature in the training set. To account for the
differences in data ranges of raw feature values and decrease the convergence time during
training, we scaled all features to a range between 0 and 1. Similar to the imputation
process, we fit the scaler on the training data and applied it to the test data. Finally, we
trained a Random Forest on the imputed and scaled training set. We then evaluated the
performance based on stratified 5-fold cross-validation, on the separate test set and on
ClinVar variants using AUC.We also computed the individual performance of our model
pathogenic and non-pathogenic Test-Split variants using the F1-score. This resulted in
values of 0.73 (non-pathogenic) and 0.75 (pathogenic) for our deletion model and 0.71
(non-pathogenic) and 0.75 for the duplication model.
As a comparison to our predictive performance we trained an individual model on our

training data using the SVFX framework as instructed on https://github.com/gersteinlab/
SVFX. The SVFX authors suggest to use a normalisation preprocessing step to avoid
potential size bias between pathogenic and non-pathogenic variants. However, a closer
inspection of the underlying code revealed a z-score normalisation applied to the entire
data set before CV i.e. splitting the data into training and test set which directly influences
the CVmeasured performance during training. Since our training set has been previously
size-matched and this normalisation step outside of the CV-loop would cause informa-
tion leakage, we used SVFX without prior z-score normalisation of features. We then
applied the trained model to predict the pathogenicity of the individual test-sets i.e. the

https://github.com/gersteinlab/SVFX
https://github.com/gersteinlab/SVFX
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test set split and ClinVar variants. We also scored the test variants using SVScore (v. 0.6)
with default parameters i.e. top10weighted operation and then normalised the scores for
each set of variants between 0 and 1 to allow comparison to the pathogenicity scores com-
puted by TADA. To compare our method to VEP we used a conda environment (https://
anaconda.org/bioconda/ensembl-vep) v.96.0 and applied the vep function with the default
GRCh37 annotations (Ensembl database version 102) and –max_sv_size set to 109 on the
seperate test set andClinVar variants. We labelled variants with IMPACT ratingHIGH or
MODERATE as pathogenic and computed the macro-averaged F1 score for each variant
set using the f1_score function of sklearn. Similarly, we computed F1 scores for TADA and
SVScore across all variants sets. For TADA we classified all variants with a pathogenicity
score higher than 0.5 as pathogenic and for SVScore we used the 90th percentile of each
CNV set to distinguish between pathogenic and non-pathogenic variants as this is the
threshold with the highest recorded performance in the authors analysis [20].We installed
CADD-SV (v.1.0) locally as described at https://github.com/kircherlab/CADD-SV. Since
CADD-SV requires SVs to be mapped to the GRCh38 reference, we used the LiftOver tool
to retrieve GRCh38 coordinates for all variants used in the performance comparison. In
the LiftOver process 80 Test-Split deletions, 62 Test-Split duplications, 255 ClinVar dele-
tions and 404 ClinVar duplications were lost. As described in the CADD-SV manuscript
we used the maximum of span and flank raw scores as an indicator of CNV pathogenicity
and additionally employed a min-max-normalisation for each variant set to allow for the
performance comparison with TADA.

Ranking performance

In order to test the ranking performance of our trained model i.e. its ability to differen-
tiate the true pathogenic variant from a set non-pathogenic variants we used the above
described benign and pathogenic ClinVar variants. We predicted the pathogenicity score
using our pre-trained random forest classifier and the SVFX model as well as aggregated
CADD scores computed by SVScore. We then binned the rare variants by size using
an ECDF with 60 bins. For each pathogenic variant we selected the closest bin of non-
pathogenic variant by size discarding any variants larger than the largest non-pathogenic
variants. If the corresponding bin contained 99 or more variants we randomly sampled
99 non-pathogenic variants. For the ClinVar variants, this resulted in a total of 3425 and
415 batches of variants for deletions and duplications, respectively. We then sorted the
non-pathogenic variants and the single pathogenic variant by predicted pathogenicity and
used the index in the sorted list as predicted rank. In order to generate standard devia-
tions for the variant placement we repeated the sampling of non-pathogenic variants over
30 (numpy.random.choice) random seeds. We repeated the sorting process with the nor-
malised scores computed by SVScore and the pathogenicity score produced by the SVFX
model and again used the index of the pathogenic variant in the sorted list as rank.
In order to asses the ranking performance of TADA and SVScore for rare variants

we repeated the above process with rare variants obtained from Collins et al. 2019 [14]
using the initial model and modified TADA classifier where the HI, HI log odds score
and LOEUF were all set to fixed values, namely 0, − 10 and 2 if a CNV does not directly
affect a coding region, actively penalising non-coding CNVs. The fixed values were
picked according to the maxima/minima that correspond to the least regulatory impor-
tance of each feature. For example, genes annotated with higher LOUEF scores are less

https://anaconda.org/bioconda/ensembl-vep
https://anaconda.org/bioconda/ensembl-vep
https://github.com/kircherlab/CADD-SV
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likely affected by loss-of-function mutations with 2 being the highest possible value. The
number of batches used in this analysis, each including a single pathogenic and 99 rare
variants, were 4308 and 586 for deletions and duplications, respectively.
For our performance analysis on DD-patients, we obtained the set of the DD2 dupli-

cations upon request from the authors of the original study [43]. The coordinates of
disease-causing duplications were presented in the supplement of their publication. We
filtered the set of 1260 ERDS calls for duplications and included the disease-causing DD1
variant, resulting in a set of 304 duplications of which 255 overlapped with our annotated
set of TADs, allowing them to be prioritised by our duplication model trained on DECI-
PHER data. To produce the screenshot visualising the regulatory environment we used
IGV v11.0.10 [44].

Feature importance

We employed hierarchical clustering using the scipy python package to generate clus-
ters of highly correlated features based on the training set of annotated size-matched
pathogenic and non-pathogenic CNVs. For each cluster with a maximal distance of one
we permutated the correlated feature columns in our training data and computed the
predicted accuracy using the pre-trained random forest model. We then reported the
difference between the accuracy based on the original and permutated data set. Both
accuracies are based on the out-of-bag samples of the random forest model. Using the
numpy.random.choice function we generated 30 random seeds between 0 and 100 and
repeated the permutation process for each random seed. We then computed the mean
and the standard deviation for the distribution of accuracy differences of each cluster.
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