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The “dipolar-octupolar pyrochlore oxides R2M2O7 (R=Ce, Sm, Nd) represent an important op-
portunity in the search for three dimensional Quantum Spin Liquid (QSL) ground states. Their
low energy physics is governed by an alluringly simple “XYZ” Hamiltonian, enabling theoretical
description with only a small number of free parameters. Meanwhile, recent experiments on Ce
pyrochlores strongly suggest QSL physics. Motivated by this, we present here a complete analysis
of the ground state phase diagram of dipolar-octupolar pyrochlores. Combining cluster mean field
theory, variational arguments and exact diagonalization we find multiple U(1) QSL phases which
together occupy a large fraction of the parameter space. These results give a comprehensive picture
of the ground state physics of an important class of QSL candidates and support the possibility of
a U(1) QSL ground state in Ce2Zr2O7 and Ce2Sn2O7.

I. INTRODUCTION

The pursuit of quantum spin liquid (QSL) ground
states has not gone unrewarded. On the theory side,
it has been realized that an enormous diversity of QSL
states are possible1,2 and several physically relevant mod-
els are now known to have QSL ground states3–11. In
experiment, many candidate materials have been es-
tablished, exhibiting spin liquid like properties at low
temperature12–16.

What has yet to be achieved is the combination of a
material with an experimentally robust QSL state, with
theoretical understanding of the microscopic interactions
which give rise to that state and what kind of spin liq-
uid they produce. Some materials studied as potential
QSLs actually order at low temperature17–19, and others
are complicated by chemical or structural disorder20–23.
Meanwhile, the relevant theoretical models are often
complicated, possessing many free parameters24–26.

“Dipolar-octupolar” (DO) pyrochlores R2M2O7

(R=Ce, Sm, Nd; M=Zr, Hf, Ti, Sn, Pb)27–44 con-
stitute an opportunity in this context, with their
low energy physics being described by a simple XYZ
Hamiltonian45,46. Out of this family, Ce2Sn2O7

27,28 and
Ce2Zr2O7

29,30 have been highlighted recently as showing
evidence of QSL physics. Notably, neutron scattering
results for Ce2Zr2O7 bear encouraging similarity to
predictions for a U(1) quantum spin liquid30,47.

In DO pyrochlores, the magnetic rare earth ions form
a corner-sharing tetrahedral structure [Fig. 1 (inset)].
There are strong crystal electric fields (CEFs) acting
on each magnetic site, resulting in a Kramers doublet
at the bottom of the CEF spectrum, separated from
higher states by a large gap ∆CEF ∼ 100K30,37,40.
With the scale of exchange interactions being ∼ 1K28,39,
this motivates a description of the system in terms of
pseudospin-1/2 operators τxi , τ

y
i , τ

z
i . The thing which

sets DO pyrochlores apart from other pyrochlore oxides
is the transformation properties of these operators under
time-reversal and lattice symmetries45,46. τxi and τzi both
transform like the component of a magnetic dipole ori-

ented along the site’s C3 symmetry axis, while τyi trans-
forms like a component of the magnetic octupole tensor.

Assuming nearest-neighbor interactions, symmetry
constrains the Hamiltonian to take the form45:

H =
∑
〈ij〉

[( ∑
α=x,y,z

Jατ
α
i τ

α
j

)
+ Jxz

(
τxi τ

z
j + τzi τ

x
j

)]
.(1)

The final term in Eq. (1) can be removed by a suitably
chosen global transformation τα → τ̃ α̃45,48, reducing the
problem to an XYZ Hamiltonian:

H =
∑
〈ij〉

∑
α=x̃,ỹ,z̃

J̃ατ̃
α
i τ̃

α
j . (2)

An understanding of dipolar-octupolar pyrochlores
and their potential to realize QSL ground states requires
understanding of the ground state phase diagram of Eq.
(2). Certain limits of the parameter space of Eq. (2) have
been well studied, namely: the perturbative limit where
one exchange parameter dominates the other two4,47,49,
the XXZ limit where two of the three exchange pa-
rameters are equal5,50–54 and the region of parameter
space without a sign problem for Quantum Monte Carlo
(QMC)5,45,53–55. However, there is no reason to expect
materials of interest to fall into one of these limits, so a
global phase diagram is needed.

In this Article, we calculate the ground state phase
diagram of Eq. (2), by combining Cluster Mean Field
Theory (CMFT), a variational extension to CMFT
(CVAR)52 and Exact Diagonalization (ED). Where the
results can be compared with available QMC results55,
they agree well. The final result for the phase diagram is
shown in Fig. 1, with the parameter space expressed in
terms of an overall scale J̄ which can be divided out and
two angles φ, ψ:

J̃x̃ = J̄ cos(φ) sin(ψ), J̃ỹ = J̄ sin(φ) sin(ψ),

J̃z̃ = J̄ cos(ψ) (3)

We find four U(1) spin liquid phases, occupying a large
combined portion of the parameter space, competing
with an antiferromagnetic “all in/all out” (AIAO) phase
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J̃x̃ = J̄ cos(�) sin( ), J̃ỹ = J̄ sin(�) sin( ), J̃z̃ = J̄ cos( )
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FIG. 1. Ground state phase diagram of the XYZ model [Eq. (2)] on the pyrochlore lattice (inset), describing dipolar-octupolar

pyrochlores. The three exchange parameters J̃α̃ are represented in terms of an overall scale J̄ and two angular variables φ, ψ
[Eq. (3)]. The phase diagram features “all in/all out” (AIAO) and octupolar ordered phases, and four distinct U(1) QSLs.
These four QSLs are distinguished by whether the emergent electric field of the low energy gauge theory transforms like a
magnetic dipole or octupole, and by the flux penetrating elementary plaquettes in the ground state (0 or π). The phase
diagram is obtained by combining Cluster Mean Field Theory (CMFT), a cluster variational (CVAR) calculation and Exact
Diagonalization (ED) as described in the text. The two regions bounded by black dashed lines correspond to the subset of
parameters in Eq. (5), from which the entire phase diagram can be generated using unitary transformations.

and octupolar order. The four U(1) QSLs all host gap-
less photons and gapped fractionalized charges, and are
thus realizations of emergent electromagnetism4,6,47,49.
They are labelled dipolar/octupolar-U(1)0/π with the
dipolar/octupolar label referring to whether the emer-
gent electric field transforms like a magnetic dipole or
octupole56,57, and the 0/π subscript referring to the U(1)
flux penetrating elementary plaquettes in the ground
state.

The remainder of this Article is devoted to explaining
the calculations leading to Fig. 1, before finishing with a
brief discussion of the outlook for experiments.

The Article is structured as follows:

• In Section II we describe some simple dualities
which allow the whole phase diagram to be gen-
erated from calculations covering only a subregion
of parameter space.

• In Section III we calculate the ground state phase
diagram using CMFT, augmented with the CVAR
approach.

• In Section IV we show ED calculations on a 16-
site cluster, and use these as an alternative route
to calculate the ground state phase diagram.

• The construction of the complete phase diagram
[Fig. 1], from the combination of the calculations
in the preceding sections, is then described in Sec-
tion V.

• Section VI gives a summary of the results and an
outlook for future work on dipolar-octupolar py-
rochlores.

II. DUALITIES OF THE MODEL AND
REDUCED PARAMETER SPACE

In calculating the phase diagram it is useful to note
that Eq. (2) has some dualities in which the exchange
parameters can be permuted by a unitary transformation
acting on H. Specifically:

H(J̃z̃, J̃x̃, J̃ỹ) = U2π/3,111H(J̃x̃, J̃ỹ, J̃z̃)U†2π/3,111
H(J̃ỹ, J̃x̃, J̃z̃) = Uπ/2,001H(J̃x̃, J̃ỹ, J̃z̃)U†π/2,001 (4)

where Uγ,v represents a global rotation by an angle γ
around axis v of pseudospin space (which is not the same
as a rotation in the physical crystal space). Making use
of these dualities means that we do not actually need to
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FIG. 2. CMFT and CVAR calculations of the ground state
phase diagram of H [Eqs. (2), (6)] within the region of pa-

rameter space given by (7) with J̃z̃ > 0. CMFT calculations
give two regimes for the optimal configuration of the aux-
iliary fields hi: an ordered region where the hi point uni-
formly along the y axis of pseudospin space (red) and a dis-
ordered region with a large degeneracy of CMFT solutions
where hi = σihz̃i , with signs σi summing to zero on every
tetrahedron (green). The CVAR calculation, which incorpo-
rates quantum tunnelling between CMFT solutions, breaks
the degenerate region into two, based on the sign of the ef-
fective tunnelling matrix element geff . Positive (negative)
values of geff lead ultimately to a π-flux (0-flux) U(1) QSL
ground state.

study the full parameter space of J̃x̃, J̃ỹ, J̃z̃, it is enough
to consider a subset of parameters

|J̃z̃| > |J̃x̃|, |J̃ỹ|, J̃x̃ > J̃ỹ (5)

from which we can then generate the rest of the phase
diagram by applying the transformations from Eq. (4)
to our results. The parameter space dsecribed by (5) is
delineated by the black dashed lines in Fig. 1.

Taking J̃z̃ to be the strongest exchange parameter as
in (5), if J̃z̃ < 0 it is clear that the ground state will
simply order ferromagnetically with respect to the z̃-axis
of pseudospin space. In terms of the physical magnetic
moments this implies AIAO order. The more challenging
problem is to discover what happens when J̃z̃ > 0.

To study this case we rewrite the Hamiltonian in terms
of spin ladder operators τ̃±i :

H =
∑
〈ij〉

[
J̃z̃ τ̃

z̃
i τ̃

z̃
j − J̃±

(
τ̃+i τ̃

−
j + τ̃−i τ̃

+
j

)
+J̃±±

(
τ̃+i τ̃

+
j + τ̃−i τ̃

−
j

) ]
(6)

where J̃± = − 1
4

(
J̃x̃ + J̃ỹ

)
and J̃±± = 1

4

(
J̃x̃ − J̃ỹ

)
. The

subregion of parameter space given by (5) then becomes:

|2(J̃±± − J̃±)| < J̃z̃, |2(J̃±± + J̃±)| < J̃z̃, J̃±± > 0.(7)

III. PHASE DIAGRAM FROM CLUSTER
MEAN FIELD THEORY

A. CMFT Calculation

To begin, we consider the phase diagram using a tetra-
hedral CMFT, as employed for the XXZ limit (J̃±± = 0)
in Ref. 52. A summary of the calculation is given here,
with a detailed description found in Appendix A.

To construct the CMFT we use the fact that the py-
rochlore lattice can be divided into two sets of tetrahedra
‘A’ and ‘B’, with all neighbors of an ‘A’ tetrahedron being
‘B’ tetrahedra and vice versa. We then seek to optimize
a product wave function over all ‘A’ tetrahedra:

|ψCMFT〉 =
∏
t∈A
|φt〉. (8)

The wave function |φt〉 on each tetrahedron t is defined to
be the ground state of a single tetrahedron Hamiltonian

H′t|φt〉 = ε0,t|φt〉. (9)

H′t contains the original exchange terms acting on the
bonds of t as well as auxiliary fields hi on each site

H′t =
∑
〈ij〉∈t

[
J̃z̃ τ̃

z̃
i τ̃

z̃
j − J̃±

(
τ̃+i τ̃

−
j + τ̃−i τ̃

+
j

)
+J̃±±

(
τ̃+i τ̃

+
j + τ̃−i τ̃

−
j

) ]
−
∑
i∈t

∑
α=x̃,ỹ,z̃

hαi τ̃
α
i .(10)

The auxiliary fields hi then serve as variational parame-
ters for optimizing |ψCMFT〉, and a CMFT wave function
can be indexed by a configuration of hi on the lattice.

There are two regimes for the optimal configuration
of hi in CMFT as shown in Fig. 2. For sufficiently
large, positive, values of J̃± or J̃±± the optimal solu-
tions have hi ordered ferromagnetically along the y-axis
of pseudospin space. This implies 〈τ̃ ỹ〉 6= 0, and there-
fore octupolar order since τ̃ ỹ transforms like a magnetic
octupole45.

In the remainder of the phase diagram there is a large,
ice-like, degeneracy of disordered CMFT solutions, with
hi = σihz̃i where h is a fixed, uniform, magnitude and
σi = ±1, subject to the constraint that σi sum to zero
on every tetrahedron.

B. Cluster variational (CVAR) calculation

To resolve the CMFT degeneracy in the disor-
dered regime, we follow the cluster variational (CVAR)
method52. The calculation is described briefly here with
further details given in Appendix B.
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FIG. 3. ED calculations of the ground state phase diagram of H [Eqs. (2), (6)] within the region of parameter space given by

(7) with J̃z̃ > 0. (a) Second derivative of the ground state energy in ED on a 16-site cubic cluster with respect to J̃± for various

values of J̃±±/J̃z̃. The peaks indicate a qualitative change in the ground state58, associated to the transition to long range
order. (b) Color plot of the gap to excitations with odd total τ̃ z̃ within 16-site ED. The white line indicates the position of
peaks in the second derivative of ground state energy [(a)]. The gap collapses rapidly upon crossing the white line, supporting
the conclusion that this line corresponds to a transition to long range order breaking π-rotation symmetry around the z̃-axis
in the thermodynamic limit.

Labelling CMFT ground states according to their con-
figuration of signs {σ} we write down a generalized su-
perposition of CMFT solutions

|ϕ〉 =
∑
{σ}

a{σ}|ψCMFT({σ})〉 (11)

where a{σ} are unknown coefficients. We then seek to
optimize the new variational energy

Evar =
〈ϕ|H|ϕ〉
〈ϕ|ϕ〉 . (12)

Eq. (12) can be expanded in terms of the overlap be-
tween distinct CMFT wavefunctions, in a similar spirit
to the derivation of dimer models from an expansion in
the overlap between singlet coverings of a lattice59. This
generates an effective Hamiltonian in the space of CMFT
solutions, where the leading term is a six-site ring ex-
change which flips the values of σi on hexagonal plaque-
ttes where σ alternates in sign around the plaquette, with
matrix element geff .

This Hamiltonian has already been studied using
Quantum Monte Carlo47,49. It can have two different
QSL ground states depending on the sign of geff . Both
are U(1) QSLs with gapped, bosonic, charges and gap-
less photons. The two ground states are distinguished
by the U(1) flux threading elementary plaquettes in the
ground state. This background flux vanishes for geff < 0
(U(1)0) but is equal to π on every plaquette for geff > 0
(U(1)π). The value of geff can be extracted from the
CMFT calculation for all values of exchange parameters
(see Appendix B), and by this means the degenerate re-
gion within CMFT can be divided into two ground state
QSL phases (U(1)0 and U(1)π) depending on the sign of

geff . The boundary between regions with different signs
of geff is shown in Fig. 2. This constitutes our estimate
of the boundary between 0-flux and π-flux QSLs.

IV. EXACT DIAGONALIZATION

We now turn to ED calculations on a 16-site cubic
cluster with periodic boundaries, to obtain alternative
estimates of the phase boundaries.

A. Boundary of octupolar ordered phase

Fig. 3(a) shows the second derivative of the ground

state energy on this cluster with respect to J̃±, at various

fixed values of J̃±±/J̃z̃. This second derivative exhibits

a peak as J̃± is swept, indicating a qualitative change in
the ground state58.

Fig. 3(b), shows the position of these peaks as a

function of J̃±/J̃z̃ and J̃±±/J̃z̃, laid over a color plot
of the gap to excitations with odd total τ̃ z̃. The parity

p = (−1)
∑

i τ̃
z̃
i is conserved by H, with the ground state

always having p = 1. The line of peaks in the second
derivative of the ground state energy coincides with a
rapid decrease of the gap to p = −1 excitations. This
suggests the formation of a twofold degenerate ground
state in the thermodynamic limit, breaking π rotation
symmetry around the z̃ axis, consistent with the octupo-
lar order identified in CMFT. We thus interpret the peaks
in the second derivative of the ground state energy as in-
dicative of a transition to octupolar order.
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FIG. 4. Estimate of the phase boundary between the quantum spin liquids QSL0 and QSLπ, within ED. (a) Collapse of gaps

to lowest excited states in the sector with even total τ̃ z̃, within 16-site ED. The gaps are plotted as a function of J̃±/J̃z̃ for

three different values of J̃±±/J̃z̃. For a given value of J̃±±/J̃z̃ the gaps come close to zero around the same point, which we take
as an indication of the suppression of tunnelling within the low energy manifold of states. This corresponds with expectations
from perturbation theory and CVAR calculations for the transition between QSL0 and QSLπ, which happens when the leading
tunnelling term between ice-like states changes sign. (b) The position of the collective minima in the gaps in the even sector as
a function of exchange parameters, which serves as the ED estimate of the boundary between QSLs (points). This is compared
with the estimate of the same phase boundary from CVAR (solid line).

B. Boundary between QSLs

It is not easy to cleanly distinguish between the two
QSL phase, QSL0 and QSLπ using ED on a small clus-
ter. However, some insight into how to identify the phase
boundary can be gained by considering how this transi-
tion occurs in the perturbative limit and in the CVAR
approach.

From the perspective of both perturbation theory and
CVAR, the transition from QSL0 to QSLπ occurs when
the leading tunnelling matrix element, geff , between
ice-like states changes sign. At the point where geff
vanishes, tunnelling is restricted to higher order pro-
cesses and will therefore be suppressed, leading to a near
restoration of the degeneracy of ice-like states.

Returning to ED, this suggests that the transition from
QSL0 to QSLπ will be accompanied by a simultaneous
collapse of many excited states, in the sector with even
total τ̃ z̃, to near zero energy. Such a collapse is indeed
observed in the ED data, as shown in Fig. 4(a). The
position of this collective minimum in the gaps within
the even sector constitutes the ED estimate of the phase
boundary between the two QSLs. The phase boundary
thus obtained is compared with that from CVAR in Fig.
4(b), with the two estimates agreeing closely.

C. Combining information from CMFT/CVAR
and ED

Combining the information from CMFT/CVAR and
ED gives the phase diagram shown in Fig. 5.

For J̃± < 0 the CMFT and ED estimates of the oc-

tupolar phase boundary agree closely. For J̃± > 0 the ED

estimates a larger region of octupolar order (and hence a
smaller QSL region) than does the CMFT approach.

For J̃± > 0 the model has no sign problem from the
perspective of QMC, and in this regime we can com-
pare with previous QMC studies. Several previous QMC
studies of the case J̃±± = 0 have observed the transition

from QSL0 to the ordered phase as J̃± is increased5,53–55.
A recent QMC study by Huang et al55 has studied the
behavior of this phase boundary as a function of J̃±±.
Comparison with these results can be used to adjudicate
between ED and CVAR where they disagree. The ED
calculation gives closer agreement with the QMC results
from [55] than CMFT/CVAR does, and therefore we will
take the ED calculation as our estimate of the boundary
of the octupolar phase.

The estimates of the boundary between the two QSL
phases agree closely between CVAR and ED, as shown in
Fig. 4 (b). There is, however, some difference between

the two estimates at larger negative values of J̃±. For
the purpose of Fig. 5 we use the boundary from CVAR
because it gives a more direct prediction of the transition
between the two states in the thermodynamic limit, as
opposed to the more indirect inference from the behavior
of gaps in ED.

V. CONSTRUCTION OF COMPLETE PHASE
DIAGRAM

The phase diagram in Fig. 5 can then be extended to
the full parameter space using the duality relations [Eq.
(4)].

In doing this, we must take into account how the dual-
ity transformations act on the ground states. For exam-
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FIG. 5. Ground state phase diagram of H [Eqs. (2), (6)], in

the parameter region (7) with J̃z̃ > 0., obtained from com-
bining CMFT, CVAR and ED calculations. This region of
parameter space corresponds to the lower region bounded by
dashed lines in Fig. 1. The full phase diagram in Fig. 1 can
be generated by applying the dualities described in Sec II to
this region and to the upper region bounded by dashed lines
in Fig. 1 which has all-in-all-out order throughout.

ple, the octupolar ordered phase with 〈τ̃ ỹi 〉 6= 0 becomes
an AIAO phase when acted on by a transformation which
swaps the ỹ-axis with the x̃-axis or z̃-axis. On the other
hand, transformations which swap only the x̃-axis and
z̃-axis, don’t change the classification of the ground state
phase because τ̃ x̃i and τ̃ z̃i transform equivalently under
point-group and time reversal symmetries.

Similar considerations allow us to distinguish four dif-
ferent kinds of U(1) QSL, generated from the two in the
phase diagram of Fig. 5. In the 0-flux and π-flux QSLs in
Fig. 5 the emergent electric field of the QSL Ei ∼ τ̃ z̃i 4,50

and therefore transforms like a magnetic dipole. If we act
a transformation that swaps the z̃-axis and ỹ-axes, then
Ei ∼ τ̃ ỹi and transforms like an octupole. We should
therefore not only distinguish U(1) QSLs by the flux but
by the dipolar or octupolar character of the emergent
electric field, giving four distinct QSLs on the complete
phase diagram56,57.

Applying these arguments to the parameter space cov-
ered in Fig. 5, and to the case of J̃z̃ < 0, allows us to
generate the full phase diagram, shown using spherical
coordinates [Eq. (3)] in Fig. 1.

VI. SUMMARY AND OUTLOOK

We have thus established a phase diagram for
the generic, symmetry allowed, nearest neighbour ex-
change Hamiltonian describing dipolar-octupolar (DO)
pyrochlores R2M2O7 (R=Ce, Sm, Nd). The picture we
arrive at is an encouraging one for the realization of QSL
states. There are four distinct U(1) QSLs on the phase
diagram of the generic nearest neighbor model, and be-
tween them they occupy ∼ 19% of the available parame-
ter space.

Amongst materials, Ce2Zr2O7
29,30, Ce2Sn2O7

27,28 and
Sm2Zr2O7

35 stand out as lacking low temperature order.
The Ce pyrochlores in particular seem promising with
recent neutron scattering results on Ce2Zr2O7 bearing
similarity to predictions for emergent photons30. Low
energy correlations in Ce2Sn2O7 seem to be dominantly
octupolar in nature28, which would be consistent with
either of the two octupolar spin liquids on the phase di-
agram [Fig. 1].

It will be important to establish estimates of the ex-
change parameters of Ce2Zr2O7 and Ce2Sn2O7, combin-
ing information from inelastic neutron scattering with fits
to thermodynamic data. Mean field calculations in [28]
give an initial estimate for Ce2Sn2O7 of Jy = 0.48K, Jz =
0.03K, while setting Jx and Jxz to zero, in the basis of
Eq. (1). This would place Ce2Sn2O7 in the Octupolar-
U(1)π region of the phase diagram. It would be useful
to refine this estimate with all parameters allowed to be
finite, and using calculations beyond mean field theory.

If refined parameterisations place Ce2Zr2O7 and
Ce2Sn2O7 within the QSL regimes of Fig. 1, then this
will be a strong indication that they are indeed U(1)
QSLs, and the parameterized model will provide a plat-
form for further theoretical study. Understanding the
effects of disorder of the crystal structure is also likely to
be crucial, particularly in regard to the possible substi-
tution of magnetic Ce3+ with non-magnetic Ce4+30.

For those DO pyrochlores that are known to possess
magnetic order at low temperature, the spin liquid
phases may also manifest at finite temperature, as
suggested recently in Nd2Zr2O7

61. In such cases it may
even be possible to tune into the T = 0 QSL phase using
chemical or physical pressure, giving another avenue to
realize these exotic states of matter.

Note: After completion of this work, the author
became aware of a recent paper by Patri et al62 which
also presents calculations of the ground state phase
diagram of DO pyrochlores.
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Jianhui Xu and Danielle Yahne. The author also thanks
Paul McClarty for comments on the draft manuscript.
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A

B

FIG. 6. The pyrochlore lattice with ‘A’ and ‘B’ tetrahedra
highlighted in red and blue, respectively.

Appendix A: CMFT solutions in the ice-like régime

The CMFT proceeds by optimizing variational wave-
functions of the form:

|ψCMFT({hi})〉 =
∏
t∈A
|φt({hi∈t})〉 (A1)

where the product is over all ‘A’ tetrahedra [Fig. 6],
{hi} is the configuration of auxiliary fields defined on
each site and the single tetrahedron wavefunctions |φt〉
depend only on the fields on sites belonging to tetrahe-
dron t. The auxiliary fields hi are variational parameters
for optimizing the CMFT energy

ECMFT = 〈ψCMFT|H|ψCMFT〉 (A2)

The wave functions |φt({hi∈t}) are taken to be eigen-
states of a single tetrahedron Hamiltonian H′t

H′t =
∑
〈ij〉∈t

∑
α=x̃,y,z

J̃α̃τ̃
α̃
i τ̃

α̃
j −

∑
i∈t

∑
α=x̃,y,z

hαi τ̃
α
i (A3)

H′t|φt({hi∈t})〉 = ε0,t|φt({hi∈t})〉. (A4)

ECMFT is then:

ECMFT =
∑
t∈A

ε0,t +
∑
i

∑
α=x̃,y,z

hαi 〈τ̃αi 〉

+
∑
〈ij〉B

∑
α=x̃,y,z

J̃α̃〈τ̃ α̃i 〉〈τ̃ α̃j 〉 (A5)

where the final term in Eq. (A5) sums over bonds belong-
ing to ‘B’ tetrahedra and accounts for the interactions on
those tetrahedra.

There is a large region of the phase diagram [Fig. 2 of
main text] in which the optimal solutions for hi take the
form:

hx̃i = hỹi = 0, hz̃z = σih

σi = ±1. (A6)

Correspondingly, the expectation values of the spin com-
ponents are:

〈τ̃ x̃i 〉 = 〈τ̃ ỹi 〉 = 0

〈τ̃ z̃i 〉 = σis (A7)

with h and s being uniform across the system, and fixed
by the energy optimization for a given parameter set.

With this form for the auxiliary fields, the mean field
energy [Eq. (A5)] becomes

ECMFT =
∑
t∈A

ε0,t +Nhs+ J̃z̃s
2
∑
〈ij〉B

σiσj . (A8)

Any arrangement of signs σi such that

∑
i∈t

σi = 0 ∀ tetrahedra t (A9)

gives rise to the same value of ε0,t, as can be inferred
from the symmetries of the original Hamiltonian. The
remaining terms in Eq. (A8) are also the same for all
configurations obeying Eq. (A9). Thus we have a large
degeneracy of mean field solutions in this regime.

Each arrangement of signs σi obeying Eq. (A9) defines
a CMFT wavefunction [via Eqs. (A1), (A4) and (A6)]
which we will denote with |ψCMFT ({σ})〉. Explicitly,
the form of single tetrahedron wave functions |φt({σi∈t)〉
(denoted simply as |σ0σ1σ2σ3〉) relates to the configura-
tion of signs on t in the following way, written in the basis
diagonalizing τ̃ z̃i :

|+ +−−〉 =
√

1− µ2 − ν2 − ρ2| ↑↑↓↓〉
+
µ

2
(| ↑↓↑↓〉+ | ↑↓↓↑〉+ | ↓↑↑↓〉+ | ↓↑↓↑〉)

+ν| ↓↓↑↑〉+
ρ√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉)

|+−+−〉 =
√

1− µ2 − ν2 − ρ2| ↑↓↑↓〉
+
µ

2
(| ↑↑↓↓〉+ | ↑↓↓↑〉+ | ↓↑↑↓〉+ | ↓↓↑↑〉)

+ν| ↓↑↓↑〉+
ρ√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉)

|+−−+〉 =
√

1− µ2 − ν2 − ρ2| ↑↓↓↑〉
+
µ

2
(| ↑↑↓↓〉+ | ↑↓↑↓〉+ | ↓↑↓↑〉+ | ↓↓↑↑〉)

+ν| ↓↑↑↓〉+
ρ√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉)

| − −+ +〉 =
√

1− µ2 − ν2 − ρ2| ↓↓↑↑〉
+
µ

2
(| ↑↓↑↓〉+ | ↑↓↓↑〉+ | ↓↑↑↓〉+ | ↓↑↓↑〉)

+ν| ↑↑↓↓〉+
ρ√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉)
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FIG. 7. Parameters µ, ν and ρ which enter the single tetrahedron wavefunctions [Eq. (A10)], plotted as a function of the
exchange parameters in the region where the CMFT solutions have an ice-like degeneracy.

| −+−+〉 =
√

1− µ2 − ν2 − ρ2| ↓↑↓↑〉
+
µ

2
(| ↑↑↓↓〉+ | ↑↓↓↑〉+ | ↓↑↑↓〉+ | ↓↓↑↑〉)

+ν| ↑↓↑↓〉+
ρ√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉)

| −+ +−〉 =
√

1− µ2 − ν2 − ρ2| ↓↑↑↓〉
+
µ

2
(| ↑↑↓↓〉+ | ↑↓↑↓〉+ | ↓↑↓↑〉+ | ↓↓↑↑〉)

+ν| ↑↓↓↑〉+
ρ√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉) (A10)

The parameters µ, ν and ρ can always be chosen to be
real. This choice, combined with the choice to define the
first term on the right hand side of each line of (A10) to
be positive, removes any phase ambiguity in the CMFT
wavefunctions. µ, ν and ρ vary as a function of the ex-
change parameters J̃α̃ and are plotted in Fig. 7.

Appendix B: Details of CVAR calculation

The goal of the CVAR calculation is to resolve the
degeneracy of the CMFT solutions by considering a new
trial wavefunction which is a superposition of the CMFT
solutions:

|ϕ〉 =
∑
{σ}

a{σ}|ψCMFT({σ})〉. (B1)

where a{σ} are, a priori unknown, complex, coefficients.
We then seek to optimize the variational energy

Evar =
〈ϕ|H|ϕ〉
〈ϕ|ϕ〉 =

∑
{σ}{σ′} a

∗
{σ′}a{σ}X{σ′}{σ}∑

{σ}{σ′} a
∗
{σ′}a{σ}O{σ′}{σ}

≡ a† ·X · a
a† ·O · a (B2)

FIG. 8. Magnitudes of the single tetrahedron overlap param-
eters o2 and o4. These function as the small parameters for
the expansion of the CVAR energy.

where X is a matrix containing the Hamiltonian matrix
elements between different CMFT wavefunctions and O
contains the overlaps (the CMFT wavefunctions are not
generally orthogonal to one another)

X{σ′}{σ} = 〈ψCMFT({σ′})|H|ψCMFT({σ′})〉 (B3)

O{σ′}{σ} = 〈ψCMFT({σ′})|ψCMFT({σ′})〉. (B4)

It is then useful to define a new matrix X′ with van-
ishing diagonal elements:

X′ = X− ECMFTO (B5)

such that

Evar = ECMFT +
a† ·X′ · a
a† ·O · a . (B6)

We then relate the vector of coefficients a, to a new
normalized vector b via:

a = O−1/2 · b (B7)

b† · b = 1 (B8)
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+
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,

FIG. 9. Processes which flip a six-site loop of alternating
sign variables σi provide the leading matrix elements in X′,O′

and Heff [Eq. (B10)],52.

The variational energy is then

Evar = ECMFT + b† ·Heff · b (B9)

where

Heff = O−1/2 ·X′ ·O−1/2 (B10)

The optimal superposition of CMFT solitions is then
given by the ground state of Heff and Eq. (B7).

We then expand Heff in terms of two overlap parame-
ters o2 and o4, which can be defined from the wavefunc-
tions in Eqs. (A10):

o2 = 〈+ +−− |+−+−〉 =
µ2

2

+ρ2 + µ(ν +
√

1− µ2 − ν2 − ρ2) (B11)

o4 = 〈+ +−− |+−+−〉 = µ2 +

ρ2 + 2ν
√

1− µ2 − ν2 − ρ2. (B12)

These two quantities are treated as small parameters for
the purposes of the expansion and indeed they are small
through most of the relevant parameter space, as shown
in Fig. 8.

To expand Eq. (B10) we note that all the diagonal
elements of O are unity, and the leading off diagonal
elements ∼ (o2)3 (coming from the process illustrated in
Fig. 9) so we can write

O−1/2 = (1 + O′)−1/2 ≈ 1− 1

2
O′. (B13)

The first two terms of the expansion of Heff are then:

Heff ≈ X′ − 1

2
(O′ ·X′ + X′ ·O′). (B14)

The leading elements in X′ are ∼ (o2)2 (again, from the
process in Fig. 9) and the leading elements in O′ ·X′ are
∼ (o2)5 and so we henceforth drop the second term.

We then need to evaluate the leading matrix elements
in X′ which connect configurations of σi which differ on
a single hexagonal plaquette as shown in Fig. 9. The
matrix element to a flip a hexagon is geff . The sign of

FIG. 10. Contributions to geff . The matrix element be-
tween two configurations which differ by flipping the central
hexagon has three distinct non-vanishing contributions: from
the ‘A’ tetrahedra highlighted in red, from the ‘B’ bonds in
blue which connect to the interior of the hexagon and from
the ‘B’ bonds in green which connect to the exterior of the ‘A’
tetrahedra belonging to the hexagon. The contribution from
bonds drawn with narrow black lines vanishes.

geff determines whether the ground state should be a 0
or π flux QSL, with

geff < 0 =⇒ U(1)QSL0 (B15)

geff > 0 =⇒ U(1)QSLπ (B16)

as may be inferred from prior quantum Monte Carlo stud-
ies of the six-site ring exchange Hamiltonian49 and from
a unitary transformation which relates the sign-problem
free case (geff < 0) to the frustrated case (geff > 0)4.

Quite generally the matrix element of X′ between two
CMFT wavefunctions can be written as

X ′{σ′}{σ} =∑
t∈A

(
〈ψCMFT({σ′})|Ht|ψCMFT({σ})〉 − εAO{σ′}{σ}

)
+
∑
〈ij〉∈B

J̃z̃

(
〈ψCMFT({σ′})|τ̃ z̃i τ̃ z̃j |ψCMFT({σ})〉 −

s2σiσjO{σ′}{σ}

)
(B17)

where the first sum is over ‘A’ tetrahedra and the sec-
ond is over bonds belonging to ‘B’ tetrahedra. Ht is the
original exchange Hamiltonian on tetrahedron t (distinct
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FIG. 11. Tunnelling matrix element geff , calculated using Eq.
(B24), and the numerically determined CMFT wavefunctions,
plotted over the region of parameter space where the CMFT
solutions are highly degenerate. The sign of geff , shown in
the second panel, determines whether a 0-flux or π-flux U(1)
QSL phase is predicted.

from H′t in Eq. (A3)) and

εA = 〈+ +−− |Ht|+ +−−〉

= J̃z̃

(
−1

2
+ 2ρ2

)
+

2
√

2J̃±±ρ(2µ+ ν +
√

1− µ2 − ν2 − ρ2)

−2J̃±µ(µ+ 2(ν +
√

1− µ2 − ν2 − ρ2)). (B18)

The contribution of any ‘A’ tetrahedron which does
not change configurations between {σ′} and {σ} to Eq.
(B17) vanishes. Similarly, the contribution of any ‘B’
bond connecting two unchanged ‘A’ tetrahedra vanishes.

There are three kinds of non-vanishing contribution
to the matrix element to flip a hexagon. Firstly, the
three ‘A’ tetrahedra belonging to the flipped hexagon
(highlighted in red in Fig. 10) contribute:

gA = (o2)2(η2 − o2εA) (B19)

where

η2 = 〈+ +−− |Ht|+−+−〉

= −1

4
J̃z̃

(
µ2 − 6ρ2 + 2µ(ν +

√
1− µ2 − ν2 − ρ2)

)
+2
√

2J̃±±ρ(2µ+ ν +
√

1− µ2 − ν2 − ρ2)

−J̃±(1− ρ2 + 2(µ+ ν)(µ+
√

1− µ2 − ν2 − ρ2)).

(B20)

Secondly, there are contributions from ‘B’ bonds con-
necting to the interior of the flipped hexagon (highlighted
in blue in Fig. 10):

gB1,ij = −J̃z̃s2σiσj(o2)3. (B21)

Finally, there are contributions from ‘B’ bonds con-
necting to the exterior of the ‘A’ tetrahedra on the flipped
hexagon (highlighted in green in Fig. 10):

gB2,ij = J̃z̃s(ζ − s)σiσj(o2)3. (B22)

where

ζ =
〈+ +−− |τ̃ z̃0 |+−+−〉

o2

=
µ
(
−ν +

√
1− µ2 − ν2 − ρ2

)
µ2 + 2ρ2 + 2µ(ν +

√
1− µ2 − ν2 − ρ2)

(B23)

Summing these contributions and accounting for the
fact that σi must alternate around the hexagon and must
obey Eq. (A9) everywhere, we arrive at the matrix ele-
ment:

geff = 3(o2)2
(
η2 − εAo2 + J̃z̃s

2o2 − 2J̃z̃s(ζ − s)o2
)

(B24)

From Eq. (B24) and the numerically determined
CMFT wavefunctions we can calculate geff and thus pre-
dict the ground state in the degenerate region of CMFT
from the sign of geff . The behavior of geff and sign(geff )
over the relevant region of parameter space is shown in
Fig. 11.
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