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In the era of social media, every day billions of individuals produce content in socio-technical
systems resulting in a deluge of information. However, human attention is a limited resource and
it is increasingly challenging to consume the most suitable content for one’s interests. In fact, the
complex interplay between individual and social activities in social systems overwhelmed by infor-
mation results in bursty activity of collective attention which are still poorly understood. Here, we
tackle this challenge by analyzing the online activity of millions of users in a popular microblog-
ging platform during exceptional events, from NBA Finals to the elections of Pope Francis and the
discovery of gravitational waves. We observe extreme fluctuations in collective attention that we
are able to characterize and explain by considering the co-occurrence of two fundamental factors:
the heterogeneity of social interactions and the preferential attention towards influential users. Our
findings demonstrate how combining simple mechanisms provides a route towards complex social
phenomena.

The ability to filter the most relevant data out of a
deluge of information characterizes human intelligence.
When this ability is coupled with individual’s behavioral
responses, like deciding to take an action based on the
processed information, intriguing phenomena [1] such as
collective attention might emerge. Like popularity, at-
tention depends on a variety of both endogenous and ex-
ogenous factors that have effects on several aspects of
human behavior, from timing patterns of activity [2] to
peculiar responses to shocks [3]. The advent of social me-
dia and the possibility to record the simultaneous activ-
ity of millions of individuals allows the study of this type
of phenomena on unprecedented large scales. In fact,
such responses are often characterized by information
cascades [4–8] and exhibit a rich dynamics with a long
memory which is responsible, for instance, for the emer-
gence of power-law distributed physical observables such
as waiting times [9, 10] and responses to social-media
items [11]. This dynamics has been successfully modeled
by a special class of self-exciting point processes known
as Hawkes processes [12], described by a self-reinforced
dynamics where the likelihood of future events increases
with the occurrence of a specific event.

Like online popularity [13–19], collective attention is
characterized by a quickly growing accumulated focus on
a specific topic, e.g. presidential elections discussion on
socio-technical systems, until a well identified peak of
attention is reached, followed by a phase of decreasing
interest with a slow decay [20–22]. The dynamical fea-
tures of both the rise and decline of attention are still
debated, although there is some evidence in support of
power-law distributed activity [9, 10, 14] which is a sig-
nature of criticality in complex networked systems [23].
On the one hand, some studies succeeded in providing
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a description of collective attention dynamics while ne-
glecting the effects of the underlying social structure [24].
In this case, popularity and the rise of attention are un-
derstood as the result of an extrinsic factor – the amount
of promotions from the outside world that a content, such
as a video or a news, receives – acting upon two intrinsic
factors, namely sensitivity to promotion and inherent vi-
rality [25]. On the other hand, recent studies highlighted
the effects of the topological features, i.e. the under-
lying network of interactions, as well as of competing
dynamics and memory time on the spreading phenom-
ena observed in socio-technical systems [26]. Along this
direction, many studies proposed different models based
on the interplay between social structure and complex
spreading dynamics to characterize the collective behav-
ior observed in social media [27], specially during special
events such as the discovery of the “God particle” [28]
or in response to real-world exogenous shocks such as
disasters [29]. The interplay between system’s topology
and statistics of exogenous factors – such as news media
– determine time-dependent network correlations that
have been captured by more complex dynamical models
of human activity, such as non-stationary [30] and non-
linear [31] Hawkes processes and stochastic differential
equations with Lévy noise [32].

Here, we show that by combining two very simple
mechanisms characterizing human activity it is possible
to reproduce the most salient statistical features of ex-
treme fluctuations [34] during collective attention in on-
line social systems, without focusing on the evolution of
the underlying dynamics. More specifically, we consider
a preferential attachment process, related to individual’s
neighborhood and social connectivity that characterizes
the network topology, and a preferential attention pro-
cess, a cognitive dynamics related to individual’s atten-
tion bias towards specific users of the network.
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Figure 1. Social bursts of collective attention dur-
ing exceptional events. (A) Volume of activity in
tweets/minute across several hours observed in the microblog-
ging platform Twitter and measured during special events like
Pope Francis’ election (2013), Cannes Film Festival (2013),
50th anniversary of Martin Luther King’s most famous speech
(2013) and gravitational waves discovery (2016). (B) Bursts
decay either instantaneously (bottom) or with some charac-
teristic relaxation dynamics (top). The collective activity
shown here aggregates the number of messages and the so-
cial actions they trigger: N(t) + Rretweets(t) + Rreplies(t).

RESULTS

Overview of the data sets. In this work, we analyze
the online activity of millions of users posting millions of
messages in Twitter, a popular microblogging platform,
during some special events. More details about the data
are provided in Tab. I. We focus on events of wide public
interest spanning different topics, such as the elections of
Pope Francis (religion), NBA finals (sport), the discovery
of gravitational waves (science), the Cannes Film Festival
(culture). The data sets consist of the second-by-second
online activity that for the subsequent analysis has been
aggregated at the time scale of T = 1 min.

Analysis of bursty activity due to collective at-
tention. Let us focus our attention on the evolution
of collective attention dynamics over time, during differ-
ent special events, shown in Fig. 1. A common feature,
observed in all events regardless of their type (e.g., polit-
ical, religious, cultural, scientific), is the bursty behavior
of the social system: spikes of activity appear to be ran-
domly placed on top of a more smooth temporal varia-
tion. Fig. 1B shows that the spikes are extremely sharp in
time, characterized either by an abrupt increase followed
by either a decrease of activity within one time unit (1
minute, in the figure) or by a slightly slower decrease of
activity resembling the relaxation of a system’s response
to some stimulus.

To better understand the nature of such a bursty be-
havior, we decompose the overall activity into its compo-

nents due to individual’s lone activity (“Tweet”) – post-
ing messages related to the event which do not involve
other users – and to social interactions, such as endorsing
(“Retweet”) or replying to (“Reply”) other individual’s
posts. Fig. 2 shows that bursts dominated by both indi-
vidual and social activities exist. Counting the contribu-
tion of each activity to many different bursts, compared
against random expectations, reveals that the social ac-
tivities are more frequently responsible for the spikes (see
Suppl. Fig. 1–2). The goal of this manuscript is to pro-
vide a statistical characterization of this bursty activ-
ity and to discuss possible mechanisms that account for
them.

Characterizing bursty activity in collective atten-
tion. Our goal is to clarify what type of mechanisms can
be responsible for the spiky online activity summarized
above. Recent studies attempted to relate the overall col-
lective activity to peculiar characteristics of the under-
lying social structure or the influence of endogenous and
exogenous factors [31]. The extremely fast and socially-
dominated nature of spikes point towards a mechanism
of reinforcement of collective behaviour taking place en-
dogenously in a social network. Our hypothesis is that
the variety of fluctuations observed in empirical data are
due to the interplay between topological effects, related
to the individual’s neighborhood and social connectivity,
and cognitive effects, related to the individual’s bias to-
wards activity from specific users participating into the
process. Both effects are known to concentrate the atten-
tion in the few most connected users. This motivates us
to search for mathematical models that account for the
spiky collective attention observed in online platforms
such as Twitter and that just depend on individual’s re-
lationships and interactions.

We concentrate on the typical case of spikes gener-
ated by social activities in response to previous messages.
Once a message i is posted, the ki followers of the source
user who posted it can act socially (i.e., in Twitter this
might correspond to a Reply or a Retweet, correspond-
ing to a direct comment or an endorsement, respectively).
In our simple model, the multiple factors affecting this
response are reduced to two: pA(t) the probability of a
follower being active and qi(t) the probability of an ac-
tive follower to react. The extremely short time scales of
the spikes suggests that the reactions to a message are
dominated by the immediate followers of the source user,
instead of long/deep cascades of interactions in the net-
work. With this simplifying assumptions, the probability
that the message i triggers Ri social activities (responses)
at time t is given by

P (Ri(t)|i) = B(kipA(t), qi(t)), (1)

where B is the Binomial distribution with kipA(t) sam-
ples and probability qi(t). The overall social activities
R(t) at time t is obtained summing the number of trig-
gered responses Ri(t) over all N(t) messages contributing
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Figure 2. Demultiplexing collective attention into spe-
cific activities. Collective attention resulting from the su-
perposition of different individual and social activities (left
to right), during different exceptional events (top to bottom).
Bursts in the overall activity over time, automatically iden-
tified and marked with dots, are mostly driven by social in-
teractions – Retweet and Reply in this study (see Suppl. Inf.
for further analysis) – which are influenced by the social net-
work’s structure.

to social activities at time t as

R(t) =

N(t)∑
i=1

Ri(t) ≈ pA(t)

N(t)∑
i=1

qi(t)ki, (2)

where the approximation is based on the expected num-
ber of interactions kipA(t)qi(t), the average of distribu-
tion in Eq. (1). In Eq. (2), we consider messages to be
randomly placed in the network so that for each mes-
sage the user associated to i (with ki and qi) is randomly
chosen. In particular, we consider ki to be a random
sample of the degree distribution of the network ρ(k).
Our analysis of empirical data reveals that the duration
of bursts due to social actions is, on average, shorter
than 5 minutes, with 15 minutes as an upper bound
(see Suppl. Fig. 2). Due to this extremely short time
scales of the duration of the bursts, and similar short
time scales for the social reactions to posted messages
(see Suppl. Fig. 3), in our model we estimate N(t) (the
number of messages contributing to social activities at
time t) simply as the average number of messages pub-
lished in a window of time around t (see Ref. [11] for a
more detailed account of the slow temporal decay of the
number of social interactions to a message). It is worth
remarking that messages should not be necessarily pro-
duced at time t, but they can be posted before without
triggering social interactions before time t.

Equation (2) defines our simple model for collective at-
tention, and different scenarios are obtained by specify-
ing the network (its degree distribution ρ(k)) pA(t), and
qi(t). The probability of a users to be active pA(t) simply

re-scales the number R(t) of social activities and will thus
not be relevant in our explanation of the spikes. The two
critical parameter in the different scenarios are ki – the
number of users that receive the message i – and qi(t) –
the probability of user i to act socially (retweet/reply).
We consider three different scenarios of increasing com-
plexity:

1. Homogeneous: qi(t) = q(t) is independent of i and
ρ(k) is sharply peaked around an average degree
〈k〉 (e.g., ρ(k) ∼ Pois(〈k〉)). In this case, the role
of q(t) is to simply re-scale pA(t), which are both
assumed to have a smooth temporal dependence
not related to the spikes. Fluctuations in this sce-
nario are expected to be small because of the well-
behaved degree distribution ρ(k), so that this sce-
nario acts as a null model.

2. Heterogenous: we incorporate to the previous sce-
nario the well-known fact that ρ(k) is a fat-tailed
distribution, decaying as ρ(k) ∼ k−(1+µ) for k � 1.
Typically 1 < µ < 2 and in the specific case of
Twitter, µ ' 1.2 was measured [33]. Much larger
fluctuations are expected in this scenario because
of the strong variations in ki for different i, i.e.,
the messages coming from hubs (ki � 〈k〉) are ex-
pected to receive much more interactions than mes-
sages from typical nodes (ki ≈ 〈k〉).

3. Preferential attention: we incorporate to the pre-
vious scenario the fact that reaction to a message
is more likely if it comes from a user that is per-
ceived as important or central. The simplest proxy
for such an importance is the degree of the message
creator and thus we use qi(t) ∝ ki.

For each of the scenarios, the sum in Eq. (2) effec-
tively considers samples of distribution with short (case
1) or fat (case 2 and 3) tails. The restriction 2 < µ < 3,
valid for all degree distributions, ensures that 〈k〉 is well
defined in scenario 2. In contrast, scenario 3 effectively
corresponds to drawing samples from a distribution with
exponent µ− 1 and therefore with a diverging mean (see
Materials and Methods, Model with preferential atten-
tion).

Revealing the mechanisms behind collective at-
tention. The mechanisms behind collective attention
can be revealed by testing to which extent the scenarios
above describe the observations. We are interested in the
spikes observed in the data, an extreme case of variabil-
ity of the activity. Here, the data is represented by a
time series of length L encoding the collective activity of
the social network over time. We divide this time series
into non-overlapping windows of size ` and, for each win-
dow w = 1, 2, ..., L/`, we quantify the spikiness Sw in the
window as the ratio between the maximum and the mean
volume R(t) of social responses, for t in the window:

Sw =
max
t∈w

R(t)

〈R(t)〉t∈w
. (3)
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Figure 3. Fluctuation analysis of social bursts during collective attention. Scaling of fluctuations versus number of
tweets (NT,w) for social activities (replies and retweets) during different exceptional events, for the time window ` = 20 minutes
(see the text for details). For instance, NT,w = 1000 indicates an average of 50 posts per minute. Points denote empirical data,
whereas shaded areas indicate the 90% confidence on expectation obtained from simulated collective attention corresponding
to i) homogenous social structure with uniformly distributed attention (“Hom.”); ii) social structure obtained from preferential
attachment with uniformly distributed attention (“Het.”); iii) social structure obtained from preferential attachment with
preferential attention (“Het. & Atten.”).

The overall number of posted messages in each window
is indicated by NT,w =

∑
t∈wN(t) and we consider N(t)

in Eq. (2). First we discuss the expectations for the de-
pendence of Sw on NT,w for the three scenarios of our
model. As argued above, the scenarios correspond to
random sampling of three fundamentally different types
of distribution (short, heavy, and extremely heavy-tails).
Accordingly, the E[R] and RMax – the expected value of
R(t) and its largest value in ` independent realizations,
respectively – scale differently with the number of mes-
sages NT,w, leading to the following estimations of the
spikiness Sw (see Materials and Methods, Sum of fat-
tailed variables and Maxima):

1. Homogeneous: Sw ∼ 1/
√
NT,w, i.e., the usual

central-limit-theorem decay (i.e., spikiness is not
expected for large values of NT,w)

2. Heterogeneous: Sw ∼ 1/N
1−1/µ
T,w , i.e., a slower de-

cay of Sw (i.e., spikiness persist for larger values of
NT,w)

3. Preferential attention: Sw does not depend onNT,w
or, at most, decays slower than algebraic.

The scaling (“∼”) relationships above hold for NT,w(t)�
1, the usual setting of the generalized central limit the-
orem (see Materials and Methods). When NT,w(t) ≈ 1,
R(t) will follow the distribution of qi(t)ki. As antici-
pated, the activation probability pA(t) just rescales the
triggered social activities R(t) in Eq. (2) and therefore it
cancels out in the ratio defining Sw in Eq. (3).

In the analysis of the empirical data, typical choices
for ` range from 20 minutes to a few hours: it can not be
too small or too large, to allow for a significant number
of samples to be analyzed. Each time window consists of
` measurements, because we have built the data sets at
1 minute resolution.

In order to allow for a meaningful comparison between
the data and the results obtained from the model, we
generate several independent Monte Carlo realizations of
the overall collective activity – including posting mes-
sages and social responses – in a window of size ` and,
for each realization, we calculate the corresponding spik-
iness. This is done for increasing values of NT,w and
using N(t) = NT,w/`. This choice of N(t) is justified
by the short time scales of the reactions to tweets –
as argued after Eq. (2)– and can be viewed as a lower
bound on the number of messages actively generating
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Table I. Information about data sets used in this study.

Event Messages Users From To Days Keywords

Papal Conclave (Pope
Francis)

5,538,257 2,530,554 2013-02-
25

2013-03-
19

21.43 “pope”, “benedict”, “pontifex”,
“resign”, “conclave”, “vatican”

NBA Finals 2,993,898 1,115,981 2015-06-
05

2015-06-
21

15.55 “#nbafinals”

Cannes Film Festival 1,521,977 521,151 2013-05-
06

2013-06-
03

27.93 “cannes film festival”, “cannes”,
“#cannes2013”, “#festi-
valcannes”, “#palmdor”,
“canneslive”

Gravitational Waves
Discovery

859,585 451,739 2016-02-
10

2016-02-
16

5.71 “ligo”, “#gravitationalwaves”,
“#ligo”, “gravitational waves”,
“#gravitational waves”, “grav-
itational #waves”, “onde
gravitazionali”, “#Ondes-
Gravitationnelles”, “Ondas
gravitacionales”, “Ondes
Gravitationnelles”, “#ondas
#gravitacionales”, “#ondas
gravitacionales”

50th Anniv. of M.L.
King’s “I have a dream”
speech

496,094 391,467 2013-08-
25

2013-09-
02

7.77 “Martin Luther King”,
“#ihaveadream”

reactions at time t. The value of the spikiness expected
from the models and its corresponding variability, respec-
tively 〈Sw〉 and σSw

, are calculated over the ensemble of
Monte Carlo realizations. For each scenario, we build
the 90% confidence interval around the expected spiki-
ness and we evaluate whether the pairs (NT,w, Sw) mea-
sured from the data lie within this region. The results of
our analysis are shown in Fig. 3. The fluctuation analysis
reveals some remarkable features of collective attention.
The three models introduced in this work account, all to-
gether, for observations. The statistics of social activities
can widely vary within the same event, as in the case of
Pope Francis election, where replies fluctuations are well
explained either by the preferential attachment or the
preferential attention models. In general, the spikes of
Retweets are compatible with the heterogeneous model,
while the spikes of Replies are larger than expected by
the heterogeneous model and can only be accounted in
the preferential attention scenario.

DISCUSSION

During events of special relevance, collective activity
is usually more frenetic – i.e. the probability of posting
is sufficiently high to guarantee a larger number of mes-
sages posted to the social system, typically well above 50
messages per minute – and the overall interest in the sub-
ject is driven by external factors. On top of this (smooth)
overall tendency, extremely large fluctuations can be ob-
served in form of spikes of activities. This spikes have
very short duration (often less than a 1 minute) and re-
flect a burst of activity and a dramatic concentration of

the total social attention. Our main empirical finding is
to identify and characterize these spikes. In particular,
while spikes can have different origins, most spikes origi-
nate from social activities – such as Replies or Retweets
in Twitter – in response to messages coming from well
connected nodes.

We proposed a simple stochastic model to understand
the extreme fluctuations observed in social bursts of col-
lective attention. It incorporates two fundamental mech-
anisms: the preferential attachment process, related to
individual’s neighborhood and social connectivity that
characterize the observed network topology, and a pref-
erential attention process, a cognitive dynamics related
to individual’s attention bias towards specific users of the
network. In this work we considered an heterogeneous
connectivity distribution scaling as k−2.2, according to
independent measurements [33], and attention bias lin-
early proportional to the connectivity k. Comparing the
model predictions with Twitter data, we find that the
more extreme bursts of collective behavior – typically in
form of Replies – can be understood only through the
combination of those two processes.

Our results show that two simple mechanisms are able
to reproduce the statistical features of the appearance of
spikes during exceptional events and our approach pro-
vides a procedure to measure the existence and the in-
fluence of preferential attention during events triggering
collective attention.
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MATERIALS AND METHODS

Overview of the data sets. Messages posted by users
in Twitter, a popular microblogging platform, have been
collected using the streaming real-time provided by Twit-
ter API platform, filtered by the specific keywords re-
ported in Tab. I. By default, Twitter limits to 1% of
the overall number of messages per second that can be
retrieved from the streaming API. However, when the
fraction of tweets concerning specific keywords is smaller
than 1% of the global volume, Twitter does not apply
limitations and the complete flow of information is col-
lected. When this is not the case, Twitter provides mes-
sages of warning, reporting the cumulative number of
missed tweets. For all events considered in this work,
the estimated completeness of the sample is above 95%.
Because of Twitter policies, the data sets (original tweet
IDs) are available upon request. Time series, the main
data analyzed in this work, will be made publicly avail-
able at this URL: www.

Model with preferential attention. We consider that
the probability of a social action is not a constant q but
depends on the message i as qi = qkαi . From Eq. (2) we
obtain

RN = pA

N∑
i=1

qiki ∝
N∑
i=1

k1+αi .

This can be viewed as a sum of N i.i.d. random variables
xi ≡ k1+αi which then, a part from pre-factors, is in the
form of Eq. (4). The distribution of xi, ρ(x), is related
to ρ(k) by ρ(x) = ρ(k)/dx/dk. For the power law case
ρ(k) ∼ k−(1+µ) we obtain

ρ(x) ∼ k−(1+µ+α) ∼ x−(1+µ+α)/(1+α)).

This means that the model with preferential attention
is equivalent to the model with heterogeneous networks
with a modified exponent, obtained by the mapping of
the exponents 1+µ 7→ 1+µ′ = (1+µ+α)/(1+α). In the
text we consider the case α = 1 which leads to a modified
exponent µ′ = µ/2. In particular, 1 < µ < 2 is mapped
to 0.5 < µ′ < 1. The degree distribution of networks is
µ > 1 and therefore an effective exponent with µ < 1
(the third case discussed below, 0 < µ < 1) can only be
achieved through the incorporation of preferential atten-
tion.

Sum of fat-tailed variables. Let x ≤ 0 be a random
variable with distribution ρ(x) such that ρ(x) ∼ x−(µ+1)

for large x, with µ > 0 (fat tails). We are interested in
the sum of N independent samples of x

RN =

N∑
i=1

xi. (4)

Following Ref. [34], the following cases can be described:
1. µ ≥ 2. In this case, which includes also distri-

butions ρ(x) with short tails (such as the Poisson
distribution in scenario 1.), both moments 〈x〉 and
〈x2〉 exist and for large N the usual central limit
theorem applies such that E[RN ] = 〈x〉N and vari-
ance V[RN ] = 2σ2

xN . Therefore, fluctuations are
small and decay with N as

√
V[RN ]

E[RN ]
∼ 1√

N
.

2. 1 < µ < 2. In this case, 〈x〉 exists but 〈x2〉 does
not. The expected value E[RN ] = 〈x〉N holds, but
the fluctuations increase dramatically. In particu-
lar, V[RN ] diverges with N as

(RN − E[RN ])2 ∼ N2/µ, (5)

and therefore√
(RN − E[RN ])2

E(RN )
∼ N (1−µ)/µ. (6)

This still decays to zero because (1− µ)/µ < 0.

3. 0 < µ < 1. In this case 〈x〉 is not defined and

E[RN ] ∼ N1/µ. (7)

Maxima. Our measure of spikiness Sw defined in Eq. (3)
consider the block-` maximum of R, denoted by RMax

(i.e., the largest value of R(t) in ` independent realiza-
tions). For ρ(x) ∼ x−(1+µ), the tails of the distribution
of R(t) behave as the tails of ρ(x) and therefore, from
extreme value theory, we expect the scaling

Rmax ∼ N1/µ, (8)

for 0 < µ < 2 and Rmax ∼
√
N for µ > 2 (including the

Poisson distribution).

ACKNOWLEDGMENTS

M.D.D. acknowledges partial financial support from
the Max Planck Institute for the Physics of Complex
Systems. EGA was funded by the University of Sydney
bridging Grant G199768.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.



7

[1] J. P. Bagrow, D. Wang, and A.-L. Barabasi, PloS one 6,
e17680 (2011).

[2] A.-L. Barabasi, Nature 435, 207 (2005).
[3] B. Roehner, D. Sornette, and J. V. Andersen, Interna-

tional Journal of Modern Physics C 15, 809 (2004).
[4] K. Lerman and R. Ghosh, in Fourth International AAAI

Conference on Weblogs and Social Media (2010).
[5] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J.

Watts, in Proceedings of the fourth ACM international
conference on Web search and data mining (ACM, 2011)
pp. 65–74.

[6] S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts,
in Proceedings of the 20th international conference on
World Wide Web (ACM, 2011) pp. 705–714.

[7] R. A. Baños, J. Borge-Holthoefer, and Y. Moreno, EPJ
Data Science 2, 6 (2013).

[8] S. Goel, A. Anderson, J. Hofman, and D. J. Watts, Man-
agement Science 62, 180 (2015).

[9] R. Crane and D. Sornette, Proceedings of the National
Academy of Sciences 105, 15649 (2008).

[10] R. Crane, F. Schweitzer, and D. Sornette, Physical Re-
view E 81, 056101 (2010).

[11] P. Mathews, L. Mitchell, G. Nguyen, and N. Bean,
in Proceedings of the 26th International Conference on
World Wide Web Companion (2017) pp. 14930–1498.

[12] A. G. Hawkes, Biometrika 58, 83 (1971).
[13] G. Szabo and B. A. Huberman, Communications of the

ACM 53, 80 (2010).
[14] J. Ratkiewicz, S. Fortunato, A. Flammini, F. Menczer,

and A. Vespignani, Physical Review Letters 105, 158701
(2010).

[15] Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Ea-
ger, and A. Mahanti, Performance Evaluation 68, 1037
(2011).

[16] F. Figueiredo, F. Benevenuto, and J. M. Almeida, in
Proceedings of the fourth ACM international conference
on Web search and data mining (ACM, 2011) pp. 745–
754.

[17] L. De Vries, S. Gensler, and P. S. Leeflang, Journal of
interactive marketing 26, 83 (2012).

[18] R. Bandari, S. Asur, and B. A. Huberman, in Sixth Inter-
national AAAI Conference on Weblogs and Social Media

(2012).
[19] H. Pinto, J. M. Almeida, and M. A. Gonçalves, in Pro-
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[21] J. Lehmann, B. Gonçalves, J. J. Ramasco, and C. Cat-
tuto, in Proceedings of the 21st international conference
on World Wide Web (ACM, 2012) pp. 251–260.

[22] E. Omodei, M. De Domenico, and A. Arenas, Frontiers
in Physics 3, 59 (2015).

[23] S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes,
Reviews of Modern Physics 80, 1275 (2008).

[24] F. Wu and B. A. Huberman, Proceedings of the National
Academy of Sciences 104, 17599 (2007).

[25] M.-A. Rizoiu, L. Xie, S. Sanner, M. Cebrian, H. Yu,
and P. Van Hentenryck, in Proceedings of the 26th Inter-
national Conference on World Wide Web (International
World Wide Web Conferences Steering Committee, 2017)
pp. 735–744.

[26] J. P. Gleeson, K. P. O’Sullivan, R. A. Baños, and
Y. Moreno, Physical Review X 6, 021019 (2016).

[27] S. A. Myers and J. Leskovec, in Proceedings of the
23rd international conference on World wide web (ACM,
2014) pp. 913–924.

[28] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi,
Scientific reports 3, 2980 (2013).

[29] X. He and Y.-R. Lin, EPJ Data Science 6, 30 (2017).
[30] N. R. Tannenbaum and Y. Burak, Physical Review E 96,

062314 (2017).
[31] K. Fujita, A. Medvedev, S. Koyama, R. Lambiotte, and

S. Shinomoto, Physical Review E 98, 052304 (2018).
[32] J. M. Miotto, H. Kantz, and E. G. Altmann, Phys. Rev.

E 95, 032311 (2017).
[33] H. Kwak, C. Lee, H. Park, and S. Moon, in Proc. 19th

Intern. Conf. on World Wide Web (ACM, 2010) pp. 591–
600.

[34] J.-P. Bouchaud and A. Georges, Physics Reports 195,
127 (1990).



8

Supplementary Figure 1. Density of social bursts. Fraction of bursty activity due to specific actions (T = tweet, RT =
Retweet, RE = Reply) and their combinations during 9 exceptional events (see Main Text for an overview of the data sets).
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Supplementary Figure 2. Duration of social bursts. Distribution of bursts’ duration due to specific actions (T = tweet, RT
= Retweet, RE = Reply) and their combinations measured from all the exceptional events considered in this study (see Main
Text for an overview of the data sets).
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Supplementary Figure 3. Correlated activity during collective attention. From top to bottom: i) volume per minute of
non-social (orange) and social activities (light blue for retweets, dark green for replies); ii) cross-correlation, color coded, as a
function of temporal delay (y axis) and natural time (x axis) between different activities.
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Supplementary Figure 4. Correlated activity during collective attention. From top to bottom: i) volume per minute of
non-social (orange) and social activities (light blue for retweets, dark green for replies); ii) cross-correlation, color coded, as a
function of temporal delay (y axis) and natural time (x axis) between different activities.
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Supplementary Figure 5. Correlated activity during collective attention. From top to bottom: i) volume per minute of
non-social (orange) and social activities (light blue for retweets, dark green for replies); ii) cross-correlation, color coded, as a
function of temporal delay (y axis) and natural time (x axis) between different activities.
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Supplementary Figure 6. Correlated activity during collective attention. From top to bottom: i) volume per minute of
non-social (orange) and social activities (light blue for retweets, dark green for replies); ii) cross-correlation, color coded, as a
function of temporal delay (y axis) and natural time (x axis) between different activities.
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Supplementary Figure 7. Correlated activity during collective attention. From top to bottom: i) volume per minute of
non-social (orange) and social activities (light blue for retweets, dark green for replies); ii) cross-correlation, color coded, as a
function of temporal delay (y axis) and natural time (x axis) between different activities.
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