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We develop a bosonization formalism that captures non-perturbatively the interaction effects
on the Q = 0 continuum of excitations of nodal fermions above one dimension. Our approach
is a natural extension of the classic bosonization scheme for higher dimensional Fermi surfaces to
include the Q = 0 neutral excitations that would be absent in a single-band system. The problem is
reduced to solving a boson bilinear Hamiltonian. We establish a rigorous microscopic footing for this
approach by showing that the solution of such boson bilinear Hamiltonian is exactly equivalent to
performing the infinite sum of Feynman diagrams associated with the Kadanoff-Baym particle-hole
propagator that arises from the self-consistent Hartree-Fock approximation to the single particle
Green’s function. We apply this machinery to compute the interaction corrections to the optical
conductivity of 2D Dirac Fermions with Coulomb interactions reproducing the results of perturbative
renormalization group at weak coupling and extending them to the strong coupling regime.

Introduction. The remarkable success of bosonization
in capturing the non-perturbative properties of interact-
ing fermions in one-dimension [1] has long motivated the
quest for extensions of this program to higher dimensions.
One major such enterprise has been the development of
higher dimensional bosonization of Fermi surfaces [2–6].
In this approach, particle-hole creation operators of a

given total momentum Q, c†k+Q/2c
†
k−Q/2, are promoted

to bosonic creation operators with a commutator that
is approximated as a number. The resulting bosonized
Hamiltonian only couples bosonic modes with momen-
tum Q to bosons with either +Q or −Q. Namely, there
is zero amplitude for a particle hole-pair with momentum
Q to transition into two particle-hole pairs with momenta
Q1,2 and Q = Q1 + Q2. The only allowed process are
for the particle-hole pair with momentum Q to scatter
into another one with the same Q, or to create pairs of
particle-hole pairs with momentum +Q and −Q (for a
succinct incarnation of this structure see, e.g., Eq.(7.1)
in Ref. [7]). This assumption of separability of Hilbert
spaces of particle hole pairs with different magnitudes of
|Q|, lies at the heart of the higher dimensional bosoniza-
tion approach to Fermi surfaces and it is believed to be
an asymptotically correct description of particle-hole ex-
citations of Landau fermi liquids at small |Q|.

Ordinary single-band Fermi liquids do not have low
energy particle-hole excitations with total momentum
Q = 0 and therefore this sector does not appear in
the conventional problem of bosonization of Fermi sur-
faces. In contrast, nodal semimetals, in which the Fermi
surface shrinks to a point, such as Weyl or massless
Dirac semimetals, have a non-trivial set of gapless optical
Q = 0 particle-hole excitations. The central purpose of
the present study is to develop a systematic bosonization
approach to this sector for gapless semimetals. For con-
creteness we will discuss only 2D massless Dirac fermions,
such as those appearing in graphene and the surface of
3D topological insulators, but our ideas can be naturally
extended to other cases and higher dimensions. To de-
scribe such excitations, we will borrow the central as-
sumption of the bosonization approach of Fermi surfaces,
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FIG. 1. (a,b) Creation of an electron-hole pair as the flipping
of a pseudospin on a vortex configuration. (c) The n-th order
diagram of the KB sum for the particle-hole propagator as-
sociated with SCHF. The double lines are Green’s functions
dressed by SCHF self-energies, and the wiggly lines are inter-
action matrices. (d,e) Rediscretization from the square to the
polar lattice.

namely, that such optical particle-hole pairs are decou-
pled from the particle-hole pairs of finite momentum Q.
We expect this simplification to be justified at low en-
ergies in phases which are adiabatically related to free
fermions, in a similar sense to how such decoupling allows
to describe Fermi liquids which are adiabatically related
to free fermions in the higher dimensional bosonization
of Fermi surfaces. We will, however, establish, a very
explicit and solid connection between our bosonization
approach and the conventional Feynman diagrammatic
perturbation theory that demonstrates the validity of
this central assumption of our approach. Specifically,
we will prove that the solution of our effective bosonic
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Hamiltonian for the optical particle-hole pairs is exactly
equivalent to the self-consistent Kadanoff-Baym resum-
mation [8, 9] of the particle-hole propagator at Q = 0,
associated with the self-consistent Hartree-Fock approx-
imation to the single particle-particle Green’s function.

As an application of our approach we will compute
the interaction corrections to the optical conductivity
of 2D Dirac fermions with Coulomb interactions, whose
strength is parametrized by the effective fine structure
constant α = e2/εv, where v is the velocity of the Dirac
fermions and ε the dielectric constant of the surround-
ing medium. This optical conductivity at low energies
is determined by fundamental constants of nature, and
given by σ0 = e2/16~ per Dirac cone [10, 11]. Its zero
frequency limit is not expected to be renormalized by
interactions, but, Coulomb interactions can produce a
slow flow as a function of frequency to such value and
a non-trivial non-analytic frequency dependence at low
energies. Early perturbative calculations of such correc-
tions where in mutual disagreement [12, 13], but sub-
sequent studies [14–20] validated the result of Ref. [12].
As we will see, our approach will recover the perturba-
tive results of Ref. [12] at small interactions and extend
them non-perturbatively to finite α. Non-perturbative
attempts to understand the effects of Coulomb interac-
tions in the optical conductivity of Dirac fermions have
been scarce. A Quantum Monte Carlo effort [21] to com-
pute the optical conductivity concluded that interaction
corrections remain rather small even at α ∼ 2. Our anal-
ysis will also support this conclusion, which is broadly in
agreement with experiments that have found values close
to that for non-interacting fermions [22–24].

Effective Hamiltonian and Hilbert space. The micro-
scopic Hamiltonian is (~ = 1):

H = v
∑

k,σ,σ′

ψ†k,σ (k · σσσ′)ψ†k,σ′

+
1

2A

∑
kk′

∑
σσ′

Vqψ
†
k′+q,σ′ψ

†
k−q,σψ

†
k,σψ

†
k′,σ′ ,

(1)

where A is the system area, and Vq is the Fourier trans-
form of the interaction potential. It is convenient to
imagine the Fermions moving in a 2D Torus so that its
momentum is quantized on a lattice. In this momentum
lattice the complete many-body Hilbert space is a tensor
product of empty, singly and doubly occupied states:

H =
⊗
k

(|0〉k ⊕ |↑〉k ⊕ |↓〉k ⊕ |↑↓〉k) . (2)

The kinetic term in Eq. (1) produces no fluctuations be-
tween the occupancy of the momentum sites, and favors
a ground state with singly occupied states with a suitably
oriented spin in the form of vortex around the Dirac point
(see Fig. 1a). The interactions are a form of pair hopping
terms that have a finite amplitude to induce transitions
into states with doubly occupied sites and empty sites.
Crucially, the subspace of the Hilbert space with singly

occupied sites is equivalent to the space of particle-hole
pairs with zero total momentum, Q = 0, while those
states with doubly occupied and empty sites contain
particle-hole excitations of finite momentum Q. There-
fore, following the spirit of higher dimensional bosoniza-
tion, we will project the Hamiltonian in Eq. (1) onto the
Hilbert space of singly occupied sites in the momentum
lattice, depicted in Fig. 1b. This Hilbert space contains
a spin-1/2 at each momentum site:

Hsingle =
⊗
k

(|↑〉k ⊕ |↓〉k) , (3)

and the projection of the Hamiltonian from Eq. (1) leads
to the following Heisenberg model:

PHP =
∑
k

vk · sk −
∑
k6=k′

Vk−k′

4A
sk · sk′ , (4)

where sk =
∑
σ,σ′ ψ

†
k,σσσσ′ψ

†
k,σ′ is a spin operator for

the k site of the momentum lattice. The first term in
Eq. (4) is a Zeeman vortex field and the second term is
a long-range exchange coupling.

This Hamiltonian is not exactly solvable but the fluctu-
ations around the non-interacting state can be described
by a Holstein-Primakoff expansion [25]. To do so, we
choose a spin basis that diagonalizes the kinetic energy

at each momentum site sk = −szkk̂ + sxkẑ + sykφ̂ where ẑ

is the out-of-plane direction and φ̂ = ẑ× k̂. The spin op-

erators can be expanded as szk ≈ 1− 2b†kb
†
k, sxk ≈ b

†
k + b†k,

and isyk ≈ b
†
k−b

†
k. Up to boson bilinears the Hamiltonian

becomes (see §A 2 of [26]):

HHP =
∑
k,k′

B†kHkk′B
†
k′ , (5)

with B†k =
(
b†k b†k

)
, and

Hkk′ = δkk′

(
2Ek 0

0 −2Ek

)
− Tkk′ , (6)

with Ek = v|k|+ Σk and Σk =
∑

k′ Vk−k′ cosφkk′/2A is
the Hartree-Fock self-energy and Tkk′ is the interaction
matrix in the band basis (for details see §A 1 of [26])

Tkk′ =
Vk−k′

4A

(
1 + cosφkk′ 1− cosφkk′
1− cosφkk′ 1 + cosφkk′

)
. (7)

Connection to perturbation theory. We will now
demonstrate that the solution of the boson bilinear
Hamiltonian in Eq. (5) is exactly equivalent to the
calculation of the particle-hole propagator within the
Kadanoff-Baym (KB) resummation of Feynman dia-
grams associated with the self-consistent Hartree-Fock
(SCHF) approximation to the single-particle Green’s
function. In terms of electrons, the boson creation op-

erator, b†k corresponds to the interband Q = 0 electron-

hole pair creation operator: b†k = ψ†k+ψ
†
k−, where the
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subindex s = ± denotes the conduction and valence
bands. Therefore, our goal is to compute the electron-
hole pair propagator defined as:

χs1s2k1k2
(t) = −iT

〈
ψ†k1s1

(t)ψ†k1s̄1
(t)ψ†k2s̄2

ψ†k2s2

〉
, (8)

including all the terms of the KB SCHF resummation,
which includes the entire Bethe-Salpeter ladder series
with all internal single-particle Green’s functions dressed
with the SCHF self-energy [8, 9]. These SCHF Green’s
functions are given by (see §A 3 in [26]):

Gs1s2k (ω)= ks1 ks2k1 =
δs1s2

ω − s1(Ek − iη)
. (9)

and the n-th order Feynman diagram of this series is
shown in Fig. 1c. The zeroth order term of the series is:

χ(0)s0s1
k0k1

(ω) = −δk0k1δs0s1

(
δs0,1 − δs0,−1

ω − 2s0(Ek0
− iη)

)
. (10)

An important property of this series, that can be read-
ily obtained by integrating over internal intermediate fre-
quencies, is that the intermediate Green’s functions are
all constrained to satisfy s = s′ which physically means
that the intermediate pairs always have one electron in
the conduction and the other in the valence band. This
allows to cast the series as a matrix geometric series in-
volving χ0 and T of eq. (7) of the form:

χ(ω) = χ0(ω) + χ0(ω)T
(
χ0(ω) + χ0(ω)Tχ0(ω) + · · ·

)
,

and therefore the solution of the series has the form:

χ−1
k0kf

(ω) = −(ω − iη)τzδk0kf
−Hk0kf

, (11)

where Hk0kf
is given in Eq. (6) and τz is the diagonal

Pauli matrix. The structure of this correlator is equal to
the propagator of the HP bosons of the Hamiltonian (6).
We therefore see that the exciton propagator has an iden-
tical effective Hamiltonian to the one obtained from the
HP bosonic Hamiltonian in Eq. (6), demonstrating that
the bosonized Hamiltonian is equivalent to self-consistent
KB resummation of the particle-hole propagator.

Momentum space reparametrization. So far we have
imagined our system to have a finite size so that mo-
menta belongs to a discrete lattice. However, it is con-
venient to perform a reparametrization that manifestly
displays the symmetries of the thermodynamic limit. If
we parametrize momentum space by a new coordinate
z(k), we can trade our boson Hamiltonian by one in a
different lattice given by:

HHP =
∑
z,z′

B†zHzz′B
†
z′ . (12)

As detailed in [26], in order to preserve the underlying
microscopic normalization of the states, the boson oper-
ators and the Hamiltonian in the new lattice need to be
rescaled as follows:

Bz = J(z)Bk, Hzz′ = J(z)J(z′)Hkk′ , (13)

where J(z) =
√
D(z)(∆z1∆z2)/(∆k1∆k2), ∆ki =

2π/Li, ∆zi is the discretization unit of the new coor-
dinate system and D(z) is the Jacobian of the transfor-
mation. In particular, in order to exploit the emergent
rotational invariance in the thermodynamic limit, we use
the following polar parametrization z = (k, φ):

km =
K√
2

tan2(m∆θ), φn = n∆φ, (14)

where (km, φn) are the polar coordinates of a given site
in the polar momentum lattice depicted in Figs. 1d and
1e, K is the UV momentum scale, ∆θ = (π/2)/(M + 1),
∆φ = 2π/(2L+ 1), and n = 0, ..., 2L, m = 1, ...,M .

The radial discretization we are choosing is denser at
small k and more dilute at large k. This is not crucial
but allows faster numerical convergence at low energies.
Notice also that we do not have a hard cutoff but the
largest momentum apporaches infinity as M → ∞. We
have verified that the results we will describe are inde-
pendent of the specific choice of the radial discretization
once the grids become sufficiently dense [26].

Applying the transformation from Eq. (13) to the bo-
son Hamiltonian from Eq. (12) leads to the following
decoupling into angular momentum channels:

B`m =

L∑
`=−L

ei`φnBmn, HHP =
∑
m`

B`†mH
`
mm′B

`
m′ (15)

Therefore the problem reduces to a set of bosons mov-
ing in an effective one dimensional radial space for each
angular momentum channel which in general needs to be
solved numerically.

Optical Conductivity. As a concrete application of
our formalism we study the Coulomb interaction cor-
rections to the optical conductivity of Dirac fermions.
We follow the Kubo approach to compute the con-
ductivity from the current-current correlator χµν(t) =
iΘ(t)A 〈[jµ(t), jν(0)]〉. The total current operator carries
Q = 0, so it can be represented exactly within the effec-
tive spin-1/2 Hilbert space of Eq. (4) as follows:

j =
v

A

∑
k

ψ†kσ1
σσ1σ2ψ

†
kσ2

=
v

A

∑
k

ŝk (16)

Using the HP approximation for the spin operators, the
current-current correlator then can be expressed as (see
Eq. (C8) in [26])

χϕϕ(t) = iΘ(t)
2v2∆θ

(2K)2(2π)

∑
mm′

Sm

〈[
B1†
m (t), B1†

m′

]〉
Sm′ ,

where [B`†m ] =
(
b`†0 · · · b

`†
M b`†0 · · · b

`†
M

)
and [Sm] =(

t0 · · · tM − t0 · · · − tM
)

are scale factors with tm =
3
√

tan(θm) sec(θm). Because the current transforms as a
vector under rotations the calculation of the conductiv-
ity only requires solving the boson bilinear Hamiltonian
of Eq. (15) for the angular momentum channel ` = 1.
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FIG. 2. (a) Conductivity at weak couplng. Thick: Numerical
data. Dotted: RG correction σ̃(ω). Solid: perturbative cor-
rection from Ref. [12]. (b) Conductivity at strong coupling.

Then if the Hamiltonian for the ` = 1 angular momen-
tum channel is diagonalized by a transformation of the
form (see also [27]):

B1†
m =

∑
n

R†mnD
†
n, H

1
mm′ =

∑
nn′

R∗mnΩnn′R
∗
n′m′ (17)

where Ωnn′ = diag
(
ω0 · · ·ωM −ω0· · ·− ωM

)
is the diag-

onal matrix of the eigenvalues of Eq. (5), the real part
of the conductivity can be obtained from the following
Lehmann-type representation (see Eq. (C12) in [26]):

σ(ω) =
v2∆θ

(2K)2

∑
m

∣∣∣∣∣∑
n

R∗mnSn

∣∣∣∣∣
2
δ(ω − ωm)

ωm
. (18)

We will now describe the results for the optical conduc-
tivity obtained by numerically diagonalizing the ` = 1
angular momentum bilinear Hamiltonian of Eq. (15) for
the Coulomb interaction Vq = 2πe2/ε|q|. Further de-
tails on the numerics can be found in [26]. To isolate the
interaction corrections to σ(ω) we define:

σ̃(ω) =
σ(ω)− σ0

σ0
(19)

where σ0 = e2/16 is the non-interacting conductivity
of Dirac fermions. The leading perturbative correction
to this conductivity is expected to be of the form [12]:
σ̃ = Cα+O(α2), with C = (19− 6π)/12. We have been
able to reproduce this perturbative correction numeri-
cally at small α as shown by solid horizontal lines in Fig.
2a along with the full numerical result from Eq. (18).
At larger values of α, clear deviations from the leading
perturbative result are seen in Fig. 2b. One of the con-
spicuous deviations is a logarithmic decrease of the con-
ductivivity at low frequencies (see [26]). This logarithmic
decrease can be explained by the logarithmic running of

the coupling constant at small frequencies expected from
the perturbative renormalization group (RG) analysis:

σ̃(ω) =
Cα

1 + α
4 ln

(Kv
ω

) ≈ Cα(1 +
α

4
ln
( ω

Kv

))
(20)

The predicted RG logarithmic correction is shown by a
dotted line in Fig. 2a which is in good agreement with
the numerical implementation of Eq. (20) at small α.
For larger values of α we see clear deviations from this
leading RG perturbative result, as shown in Fig. 2b.

Nevertheless, as shown in Fig. 2, even for a value of α
as large as α = 5 the maximal deviation of the conductiv-
ity from the non-interacting value is only about 4%. This
indicates a resilience of conductivity of Dirac fermions to
interactions corrections even when non-pertubative ef-
fects are included, in agreement with experiments that
have obtained values close to those of non-interacting
fermions [22–24]. We even suspect that the interaction
corrections in a full exact solution of the Hamiltonian in
Eq. (1) would even be weaker than the corrections we
obtained, because the RPA screening of the Coulomb in-
teractions, roughly speaking, should lead to a reduction
of the effective value of α → αRPA ≈ α/(1 + πNα/8),
where N is the total number of Dirac cones (e.g. N = 4
for graphene [16]).

Discussion and Summary. We have developed a for-
malism that captures non-perturbatively the effects in-
teractions on the continuum of Q = 0 particle-hole exci-
tations of Dirac fermions. Our approach is constructed
by projecting the full microscopic many-body Hamilto-
nian of Dirac fermions into the subspace of singly occu-
pied momentum states, leading to an effective spin-1/2
Heisenberg-like model in a momentum lattice. This prob-
lem is subsequently reduced to a boson bilinear Hamilto-
nian by a standard Holstein-Primakoff transformation.
We have provided a solid microscopic justification for
this formalism by showing that it is equivalent to the
Kadanoff-Baym resummation of the particle-hole prop-
agator associated with the SCHF approximation to the
single particle Green’s function. This approximation is
expected to capture the essential universal low energy
properties of the semi-metallic phase that evolves adi-
abatically from Free fermions. We have applied this
formalism to compute the Coulomb interaction correc-
tions to the optical conductivity of Dirac fermions and
found that it recovers the results of perturbative renor-
malization group at weak coupling [12] and extended
them to strong coupling. Remarkably, we have found
that the Coulomb interaction corrections remain very
weak (∼ 4%) up to values of the effective fine struc-
ture constant α ∼ 5, in agreement with experiments in
graphene that have measured a value of the optical con-
ductivity that is consistent with the free electron the-
ory [22–24]. Although our discussion has been restricted
to 2D Dirac fermions, our approach can be naturally gen-
eralized to other multi-band semi-metals and higher di-
mensions, such as Weyl semimetals [28] and novel nodal
fermions [29], providing an interesting tool to capture
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non-perturbative effects of interactions on the correlation functions of Q = 0 operators of these phases.
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SUPPLEMENTAL MATERIAL

Appendix A: Connection to perturbation theory

1. Band basis and interaction matrix

In this section, we provide details of the derivation
of Eqs. (5) to (7) starting from Eq. (1). We begin
describing the transfomation from pseudo-spin basis onto
band basis. In the band basis s = {+,−} the kinetic term

is (e±iφ = k̂x ± ik̂y):

ψ†kσ (k · σσσ′)ψ†kσ′ =

= k(e−iφψ†k↑ψ
†
k↓ + e+iφψ†k↓ψ

†
k↑).

(A1)

Band and pseudospin basis are related by:

ψkσ =
∑
s

〈σ|ks〉ψks,(
ψk↑
ψk↓

)
=

1√
2

(
e−iφ/2 e−iφ/2

e+iφ/2 −e+iφ/2

)(
ψk+

ψk−

)
.

(A2)

Fermion bilinears transform as∑
σ

ψ†k1σ
ψ†k2σ

=
∑
s1s2

〈k1s1|k2s2〉ψ†k1s1
ψ†k2s2

, (A3)

where

〈k1s1|k2s2〉 =

(
cos φ12/2 i sin φ12/2
i sin φ12/2 cos φ12/2

)
, (A4)

where φi is the polar angle of ki, and φ12 = φ1 − φ2.
The part of the Hamiltonian in Eq. (1) that produces
only Q = 0 inter-band transitions in the band basis is

ψ†k1s1
ψ†k2s2

ψ†k2s̄2
ψ†k1s̄1

. Therefore:∑
σ1σ2

ψ†k1σ2
ψ†k2σ2

ψ†k2σ1
ψ†k1σ1

=

=
∑
s1s2

|〈k1s1|k2s2〉|2 ψ†k1s1
ψ†k2s2

ψ†k2s̄2
ψ†k1s̄1

.

Consequently, the Hamiltonian in Eq. (1) of the main
text projected onto the subspace of singly occupied mo-
mentum sites, defined in Eq. (4), can be expressed as
follows:

PHP = v
∑
k

|k|
(
ψ†k+ψ

†
k+ − ψ

†
k−ψ

†
k−

)
−
∑

k1 6=k2

∑
s1s2

T s1s2k1k2
ψ†k1s1

ψ†k1s̄1
ψ†k2s̄2

ψ†k2s2
,

(A5)

with T s1s2k1k2
given by:

Tk1k2
=
Vk1−k2

4A

(
1 + cosφ12 1− cosφ12

1− cosφ12 1 + cosφ12

)
. (A6)

The Hamiltonian of Eq. (A5) can then be expressed in
terms of spin operators and leads to the Heisenberg-like
model introduced in Eq. (4) of the main text.

2. Holstein-Primakoff expansion

We select the following spin basis

sk = −szkk̂ + sxkẑ + sykφ̂, (A7)

which diagonalizes the kinetic term. On this basis, the
Hamiltonian can be expanded in a bosonic representation
by means of the Holstein-Primakoff (HP) transformations
(S = 1/2):

szk = 2
(
S − b†kb

†
k

)
= 1− 2b†kb

†
k,

sxk ≈
√

2S
(
b†k + b†k

)
= b†k + b†k,

isyk ≈
√

2S
(
b†k − b

†
k

)
= b†k − b

†
k.

(A8)

The term corresponding to the exchange coupling in Eq.
(4) can be transformed into pairing and hopping terms
of bosons up to bilinears:

sk · sk′ ≈
(

1 + b†kb
†
k + b†k′b

†
k′

)
cosφkk′

+
(
b†kb
†
k′ + b†kb

†
k′

)
(1 + cosφkk′)

+
(
b†kb
†
k′ + b†kb

†
k′

)
(1− cosφkk′) .

(A9)

The resulting bosonic Hamiltonian after applying the
HP transformations is:

HHP =
∑
k

2v|k|b†kb
†
k +

∑
k6=k′

Vk−k′

A
b†kb
†
k cosφkk′

+
∑
k6=k′

Vk−k′

4A
(1 + cosφkk′)

(
b†kb
†
k′ + b†kb

†
k′

)
+

+
∑
k6=k′

Vk−k′

4A
(1− cosφkk′)

(
b†kb
†
k′ + b†kb

†
k′

)
.

(A10)

The first line contains the kinetic and self-energy terms.
The second line can be viewed as boson hopping terms
in the momentum lattice. The third line can be viewed
as pairing terms which change the number of bosons.
Lastly, by using the Bogoliubov basis given by

B†k =
(
b†k b†k

)
, (A11)

the Hamiltonian can be expressed as shown in Eq. (5)
and (6) of the main text.

3. Details of connection to perturbation theory

The propagator of the Dirac fermions without interac-
tions is diagonal in the band basis and is given by:

G
(0)
ss′(ω,k)= ks ks′k1 =

δss′

ω − s(v|k| − iη)
. (A12)
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Moreover, the Hartree-Fock self-energy of the fermions
is:

Σk =
ks ksk1

k − p

k
=

1

2A

∑
p

Vk−p cosφkp. (A13)

We can then sum the Dyson series to get the dressed
fermionic propagator:

G0
ss′(ω,k)= ks ks′k1 =

δss′

ω − s(Ek − iη)
,(A14)

where Ek = v|k| + Σk. Equivalently in matrix notation
we can write:

G−1(ω,k) =

(
ω − Ek + iη 0

0 ω + Ek − iη

)
. (A15)

Our goal is to compute the specific resummation of
Feynman diagrams for the particle-hole propagator asso-
ciated with the Kadanoff-Baym (KB) conserving approx-
imation that results from the self-consistent Hartree-Fock
(SCHF) approximation to the single particle Green’s
function. This resummation consists of the sum of the in-
finite series of the Bethe-Salpeter ladder for the particle-
hole propagator with internal Green’s functions dressed
by the Hartree-Fock self energy from Eq. (A15). The
series is depicted in Fig. 3. The particle-hole propaga-
tor of interest is defined in Eq. (8). The zeroth order
non-interacting term of the series is given by:

χ(0)ss
′

k (ω) = −
∫

dν

2πi
Gks(ω + ν)Gks′(ν) (A16)

= −
∫

dν

2πi

1

(ω + ν) + s′(Ek − iη)

1

ν + s(Ek − iη)

= −δs′,s̄
(

δs,+ − δs,−
ω − (s− s′)(Ek − iη)

)
.

or expressed as a matrix in the band basis

χ
(0)
k0

(ω) =

( −1
ω+(2Ek0

−iη) 0

0 1
ω−(2Ek0

−iη)

)
. (A17)

We will now illustrate the leading terms of the series
involving the interaction matrix from Eq. (A6). The
diagrams involved at first order in the Bethe-Salpeter
ladder are shown in the Fig. 3b, and given by (we assume
summation on any repeated index):

χ(1)s0sf
k0kf

(ω)= χ(0)s0sf
k0kf

(ω)+ χ(0)s0
k0

(ω)T
s0sf
k0kf

χ(0)sf
kf

(ω).

Similarly the n-th term of the series, shown in Fig. 3c,
is given by

χ(n)s0sf
k0kf

(ω)= χ(0)s0sf
k0kf

(ω)+ χ(0)s0
k0

(ω)T
s0sf
k0k1

χ(0)sf
kf

(ω)

+ χ(0)s0
k0

(ω)T s0s1k0k1
χ(0)s1

k1
· · ·χ(0)sn−1

kn−1
T
sn−1sf
kn−1kf

χ(0)sf
kn

(ω).

The full summation can therefore be expressed as a geo-
metric series:

χ(ω) = χ0(ω) + χ0(ω)Tχ0(ω) + χ0(ω)Tχ0(ω)Tχ0(ω) + · · ·
= χ0(ω) + χ0(ω)T

(
χ0(ω) + χ0(ω)Tχ0(ω) + · · ·

)
,

k1

ω + ν0

ν0

k0s0

k0s̄0
k1

ω + ν0 ω + ν1

ν1ν0

k0s0 k1s1

k1s̄1k0s̄0

ω + ν0
ω + ν1 ω + ν2 · · ·

ω + kn

νn
· · ·ν2ν1

ν0

k0s0
k1s1 k2s2 · · ·

knsn

kns̄n
· · ·k2s̄2k1s̄1

k0s̄0

(a) (b)

(c)

FIG. 3. Diagrams associated to the zeroth (a), first (b) and
n-order (c) corrections of the Bethe-Salpeter ladder.

which correspond to a Dyson-like equation for the dressed
particle-hole propagator χ(ω):

χ
s0sf
k0kf

(ω)= χ(0)s0sf
k0kf

(ω)+χ(0)s0
k0

(ω)T s0s1k0k1
χ
s1sf
k1kf

(ω),

whose solution is given by:(
χ−1

)s0sf
k0kf

(ω)= δ
s0sf
k0kf

(
χ(0)−1

)s0
k0

(ω)+T
s0sf
k0kf

. (A18)

Replacing the results from Eq. (A17) and (A6) we get:

χ−1
k0kf

(ω) = −
(
ω + 2Ek0 − iη 0

0 ω − 2Ek0 − iη

)
−
Vk0−kf

4A

(
1 + cosφ0f 1− cosφ0f

1− cosφ0f 1 + cosφ0f

)
.

(A19)

or, by using the definition of the HP boson Hamiltonian
in Eq. (6) of the main text we get the final expression of
the exciton propagator, given by

χ−1
k0kf

(ω) = −(ω − iη)τzδk0kf
−Hk0kf

. (A20)

The structure of this correlator is identical to the prop-
agator of the HP bosons of the Hamiltonian (A10). From
the above, we can assert that the full resummation of the
KB conserving approximation associated with SCHF is
equivalent to solving the HP bilinear boson problem.

Appendix B: Momentum space reparametrization

1. General coordinate transformations on the
continuum limit

We begin by taking the continuum limit of the Hamil-
tonian in the Bogoliubov basis (5), for this purpose it is
convenient to define a rescaled Hamiltonian and boson
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creation operator as follows:

B(k) ≡ lim
∆k→0

Bk√
∆kx∆ky

,

H(k,k′) ≡ lim
∆k→0

Hkk′

∆kx∆ky
,

(B1)

where ∆kx,y = 2π/
√
A , A is the system area that we

take to be a square. The discrete lattice of momenta with
square symmetry is depicted in 1d of the main text. The
above re-definitions allow to obtain the following contin-
uum commutation relations fo boson operators:[

B(k), B†(k′)
]

= lim
∆k→0

I
δkk′

(∆k)2
= Iδ2(k− k′),

where

I =

(
1 0
0 −1

)
. (B2)

With these rescalings we can convert the sums over mo-
menta into continuum integrals, obtaining the continuum
version of the boson Hamiltonian HHP from Eq. (5):

HHP = lim
∆k→0

∫
d2k

(∆k)2

d2k′

(∆k)2
B†kHkk′B

†
k′

= lim
∆k→0

(∆k)4

∫
d2k

(∆k)2

d2k′

(∆k)2
B†σ(k)H(k,k′)B†σ(k′)

=

∫
d2kd2k′B̂†σ(k)H(k,k′)B̂†σ(k′).

From this continuum Hamiltonian we can perfom a
change of coordinates k(z) with Jacobian D(z) = |∂k∂z |
with the following redefinitions:

B(z) =
√
D(z)B(k(z)),

H(z, z′) =
√
D(z)D(z′)H(k(z),k(z′)),

(B3)

whose purpose is to mantain the same form of the com-
mutation relations and the Hamiltonian as follows:[

B(z), B†(z′)
]

= Iδ2(z− z′),

HHP =

∫
d2zd2z′B̂†σ(z)H(z, z′)B̂†σ(z′).

Lastly, on the new coordinate system, we proceed to
re-discretize the expressions, as follows:

Bz ←
√

∆z1∆z2B(z),

Hz,z′ ← ∆z1∆z2H(z, z′),
(B4)

that yield the new discrete commutation relations and
Hamiltonian[

B†z, B
†
z′

]
= Iδzz′ ← I∆k1∆k2δ

2(z− z′)

HHP =
∑
z,z′

B†zHzz′B
†
z′ . (B5)

Therefore, in summary, the relation between operators
and the Hamiltonian matrix in the new lattice defined
by the discretization of the coordinates z(k), with the
original operators and Hamiltonian of the square lattice
is:

Bz =

√
D(z)

∆z1∆z2

∆kx∆ky
Bk

Hzz′ =
√
D(z)D(z′)

∆z1∆z2

∆kx∆ky
Hkk′

(B6)

The idea is that the Hamiltonian HHP in Eq. (B5) will
produce the same physical results as the one in the square
lattice in Eq. (5) of the main text in the thermodynamic
limit.

2. Polar re-discretization

We choose z = (k, φ) where k is the radius of the mo-
mentum vector and φ its polar angle. We will discretize
the radial direction in a non-uniform way, to make it
denser at small momenta and more dilute at large mo-
menta. We have checked numerically that the precise
form of the discretization is not crucial, but the choice
we are making produces faster convergence to the ther-
modynamic limit. Therefore we choose the radius to be:

k(θ) =
K√
2

tan2(θ), (B7)

where K is a UV momentum scale, and θ ∈ (0, π/2) is
another parameter labeling the radial coordinate that we
will choose to be uniformly discretized. The correspond-
ing Jacobian for this parametrization is:

D(θ) = k
dk

dθ
= K2 tan3(θ)

cos2(θ)
. (B8)

We choose θ and φ to be uniformly discretized as follows:

θm = m∆θ, m ∈ {1, · · · ,M},
φn = n∆φ, n ∈ {0, · · · , 2L},

(B9)

where

∆θ =
π/2

M + 1
, ∆φ =

2π

2L+ 1
. (B10)

After replacing (B7) and (B8) into (B6) we get the
expression for Bk and Hkk′ in the polar lattice

Bn†m =
K
2π

√
A∆θ∆φtmB

†
kmn

,

Hnn′

mm′ =
K2

(2π)2
A∆θ∆φtmtm′Hkmnkm′n′ ,

(B11)

where t(θm) =
√

tan(θm) sec(θm) and kmn = k(θm, φn).
Finally, the whole Hamiltonian is

HHP =
∑
mn

∑
m′n′

Bn†m Hnn′

mmB
n′†
m′ . (B12)
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3. Angular momentum channels

Because the Hamiltonian matrix Hkk′ that enters into
the Hamiltonina HHP in Eq. (5) of the main text only
depends on the difference between the polar angles φ−φ′
we have conservation of the angular momentum l of the
bosons. Consequently, we perform Fourier transforms
on the polar angles for the fields Bmn and the matrix
Hmn,m′n′

Bn†m =
1√

2L+ 1

L∑
`=−L

e−i`φnB`m,

Hnn′

mm′ =

L∑
`=−L

e−i`(φn−φn′ )H`
mm′ ,

(B13)

such that the total Bogoliubov Hamiltonian decomposes
into a direct sum for different angular mommentum chan-
nels, as follows:

HHP =
∑
mm′`

B`†mH
`
mm′B

`
m′ . (B14)

Appendix C: Optical Conductivity

1. Current density

The current density operator is given by the spinor
bilinear

j =
1

A

∑
k

vΨ†kσΨ†k =
1

A

∑
k

vŝk. (C1)

After applying the Holstein-Primakoff expansion for the
spins, this current can be expanded in terms of bosonic
terms, and the leading expression is linear in the bosons
and given by:

j ≈ v
∑
k

sykφ̂ = v
∑
k

i(b†k − b
†
k)φ̂ = v

∑
k

iB†kIφ̂, (C2)

where we also did the HP transformations (A8) and chose
the Bogoliubov basis (A11) with the vector I = diag(I) =

(1,−1)
T

. Then, the optical conductivity is obtained as
the imaginary part of the susceptibility

χµν(t) = iΘ(t)A 〈[jµ(t), jν(0)]〉 . (C3)

Without loss of generality, we choose the x-component of
the current density:

jx = v
∑
k

iITB†k sinφk. (C4)

We can now apply the lattice transformations on jxφ

jxφ = i
vK
√

∆θ∆φ

2π
√
A

∑
mn

SmB
n†
m sinφn, (C5)

where m ∈ {1, · · · , 2M}, and the Jacobian of the trans-
formation has been combined with the vector I as follows

[Sm] =
(
t0 · · · tM − t0 · · · − tM

)
. (C6)

with tm = 3
√

tan(θm) sec(θm). Then, the Fourier trans-
form is done, obtaining

jx = i
vK
√

∆θ

2
√

2πA

∑
m

Sm(B1†
m −B−1†

m ). (C7)

The corresponding susceptibility is given by

χ(t) = iΘ(t)
v2K2∆θ

8π
× (C8)

×
∑
mm′

(
Sm

〈[
B1
m(t), B1†

m′(0)
]〉
Sm′

+Sm

〈[
B−1
m (t), B−1†

m′ (0)
]〉
Sm′

)
.

Inversion symmetry guarantees that ` = 1 contributes
the same as ` = −1, so that

χ(t) = iΘ(t)
v2K2∆θ

8π
×

×
∑
mm′

Sm
〈[
B1†
m (t), B1†

m (0)
]〉
Sm′ .

(C9)

2. Representation of the optical conductivity

Let us assume that we diagonalize the Hamiltonian
from Eq.(15) for the l=1 angular momentum channel via
a Bogoliubov transformation, expressed as follows:

B1†
m =

∑
n

R†mnD
†
n, (C10)

H1
mm′ =

∑
nn′

R∗mnΩnn′R
∗
n′m′ , (C11)

where Ωnn′ = diag
(
ω0 · · ·ωM − ω0 · · · − ωM

)
is the di-

agonal matrix of the eigenvalues of the ` = 1 block of the
HP Hamiltonian [27]. Replacing such transformations in
Eq. (C9) we get

χ(t) = iΘ(t)
v2K2∆θ

8π
×

×
∑
mn

e−iΩnntSmR
∗
mn

〈[
D1†
n , D

1†
n′

]〉
R∗n′m′Sm′ .

which, because of
〈[
D1†
n , D

1†
n′

]〉
= Inn′ , yields

χ(t) = iΘ(t)
v2K2∆θ

8π

∑
mn

e−iΩnntSmR
∗
mnInn′R

∗
n′m′Sm′ .

Then, we take the Fourier transform of χ(t) to get the
frequency-dependent susceptibility

χ(ω) =
v2K2∆θ

8π

∑
mn

SmR
∗
mnInn′R∗n′m′Sm′

ω − Ωnn + iη
.
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Finally, we take the imaginary part of Eq. (C12) to
get the optical conductivity depending on frequency as
the following Lehmann-type representation:

σ(ω) = −e
2

ω
Im[χ(ω)]

=
v2K2∆θ

4

∑
m

∣∣∣∣∣∑
n

R∗mnSn

∣∣∣∣∣
2
δ(ω − ωm)

ωm
.

(C12)

Appendix D: Numerical results

As with any Lehmann representation of a conductivity,
Eq.(18) is understood as a sequence of Dirac delta func-
tions that approaches a continuous function in the ther-
modynamic limit. To obtain such continuous function it
is useful to replace the Delta delta functions by a distri-
bution that integrates to 1 but has a width that is larger
than the finite size energy level spacing. A particularly
convenient choice is to replace the Delta functions by re-
tangular distributions with width ∆ωm = ωm − ωm−1

and height 1/∆ωm, between two adjacent energy levels
ωm and ωm−1, where we have assumed that the energy
levels are ordered as ωm > ωm−1 . With this, we find
that the conductivity can be approximated as:

σ(ωm) =
v2K2∆θ

4

|
∑
nR
∗
mnSn|

2

ωm(ωm − ωm−1)
. (D1)

All the plots presented for the optical conductivity corre-
spond to the relative optical conductivity by substracting
σ0 = e2/16 and dividing by σ0:

σ̃(ω) =
σ(ω)− σ0

σ0
. (D2)

To perform numerical calculations we have solved the
Bogoliubov Hamiltonian of bosons from Eqs. (5) to (7)
of the main text using a Coulomb interaction that has
an explicit short distance (UV) and large distance (IR)
regularization of the form:

Vq =
e−|q|/K − e−|q|/KIR

|q|
(D3)

where K is the large momentum cutoff and KIR is the
small momentum cutoff. Physically K is of the order of
the inverse lattice spacing and KIR can be literally viewed
as controlled by the inverse distance to a metallic plane
where image charges are produced. Throughout the pa-
per we have used the UV cutoff K as the unit of momen-
tum and vK as the unit of frequency. Although our model
could have been used to study this physically sensible sit-
uation, we have focused on results that are universal and
independent of these cutoffs. To do so we have only ex-
tracted information that numerically remains invariant
as the cutoffs are respectively sent to infinity and zero.
We describe the details of this procedure in the remainder
of this supplementary section.

1. Discretization size dependence

Because the absolute correction to the conductivity re-
mains small even up to larger values of α ∼ 5, it is im-
portant to ensure that our results converge as the size of
discretization grid grows. We will now describe details of
the dependence of the numerically computed conductiv-
ity on the size of the discretization grid.

To recapitulate, the numerical problem for the clacu-
lation of the conductivity reduces to the solution of Bo-
goliubov Hamiltonian of bosons for the l=1 channel. This
Hamiltonian only has a nontrivial radial momentum co-
ordinate, which we have discretized as follows:

km =
K√
2

tan2(θm) =
K√
2

tan2

(
π/2

M + 1

)
. (D4)

M is the integer labeling the total number of radial dis-
crete momenta we include in the Hamiltonian, and we
have taking it to range from M = 102 to 104. Figure 4
illustrates the behavior of the conductivity as a function
of M for α = 1.

FIG. 4. Optical conductivity σ̃(ω) vs. system size or dis-
cretization of the k axis with KIR/K = 104 and α = 1.

The extrapolation of large M is done using the val-
ues of 103 ≤ M ≤ 104, by fitting a linear function that
depends on 1/M . To make sure that the extrapolation
does not change if we choose a different 6 × 103 ≤ M ≤
104, and have verified that both extrapolations produce
curves that lie on top of each other with the essentially
the same values.
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2. Dependence on the IR cutoff

In Fig. 5 we plot the behavior of the conductivity ex-
trapolated to M →∞ for different values of the IR cutoff
(each panel is for a different fixed value of α). We see in
Fig. 5, that at extremely low frequencies the conductiv-
ity has a bump followed by drop that changes with the
value of the IR cutoff. Therefore this bump and the drop
which occur at very low frequencies is a consequence of
the IR cutoff which models screening of the Coulomb at
long distances as captured by Eq. (D2).

FIG. 5. The top panel corresponds to α = 0.02, the middle
to α = 0.2, and the bottom to α = 2. The lower inset shows
the color convention for different choices of IR cutoff.

Therefore, although this low frequency behavior is not
completely unphysical as it models the behavior of the
optical conductivity in the presence of a perfect metal-
lic screening gate, it is not part of the universal behav-
ior of the ideal unscreened Coulomb interaction that we
are interested in. However, Fig. 5 demonstrates clearly
that the conductivities follow a universal curve because
they agree perfectly at higher frequencies. Eventually the
conductivity escapes from this universal curve at low fre-
quencies when the IR cutoff becomes important. There-
fore, we conclude from Fig. 5, that if we see that two
curves with different IR cutoff overlap until some low
frequency, and below this frequency they start to deviate
from each other, the behavior for frequencies above this
frequency at which they deviate is universal and repre-
sents the behavior for the ideal ideal Coulomb interaction
problem without any IR cutoff. The results presented in
the main text correspond to frequencies ranges where we
observe independence of the IR cutoff, and where we are
confident that we are simulating the ideal behavior of the
unscreened Coulomb interaction.

3. Non-perturbative effects of large α on the
optical conductivity

According to the perturbative RG result described in
Ref. [12], the optical conductivity is expected to have
the following behavior at small frequencies and small α:

σ̃(ω) =
Cα

1 + α
4 ln

(Kv
ω

) ≈ Cα(1 +
α

4
ln
( ω

Kv

))
, (D5)

where C = 19−6π
12 . In the second line of this equation we

have expanded the denominator in α to get the leading
logarithmic correction to the conductivity. Other loga-
rithmic corrections are expected to contain higher powers
of α. We have indeed observed such a weak logarithmic
drift of the conductivity with frequency at small values
of α, as depicted in Fig. 6. By fitting the conductivity
with a logarithmic dependence:

σ̃lin(ω) = σ̃0 + σ̃1 ln
( ω

Kv

)
, (D6)

we obtained the coefficients which are listed in Table I.

α Cα× 10−4 Cα2/4× 10−7 σ̃0 × 10−4 σ̃1 × 10−7

0.01 1.254 3.134 1.255 2.552

0.02 2.507 12.53 2.515 10.42

0.05 6.269 78.36 6.341 67.11

0.10 12.54 313.4 12.80 251.6

TABLE I. Coefficients of linear regression for σ̃(ω) in the in-
terval ω/Kv ∈ [10−3, 10−2].

As we see there is excellent agreement between the
value of σ̃0 at weak coupling and also a reasonable agree-
ment for the value of σ̃1 with those of the perturbative
analysis of Ref. [12]. Therefore we have been able cap-
ture the logarithmic running of the coupling constant ex-
pected from the RG analysis at weak coupling.

FIG. 6. Numerical calculation of the conductivity (color lines)
and the the expected value from the leading order perturba-
tive RG (dotted lines). The logarithmic running of the cou-
pling constant leads to a visible linear logarithmic drift of the
conductivity at weak coupling.
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