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1 Introduction

A modular graph function (MGF) maps a decorated graph to an SL(2,Z) invariant func-
tion on the upper half complex plane H1. MGFs generalize non-holomorphic Eisenstein
series as well as multiple zeta values (MZVs), and may be further generalized to produce
non-holomorphic modular forms instead of modular functions.1 MGFs constitute the ba-
sic building blocks for the evaluation of genus-one contributions to effective low energy
interactions in string theory: they arise as multiple integrals over a torus world-sheet of
products of the Green function for a conformal scalar and its derivatives. Individual cases
were studied in [1] and [2], while their systematic investigation was initiated in [3–6].

Using the procedure of holomorphic subgraph reduction [7, 8], large families of MGFs
were shown to satisfy a rich hierarchy of algebraic and differential identities in [7, 9–11]. In
particular, MGFs were shown to obey inhomogeneous Laplace eigenvalue equations for the

1We shall also use the acronym MGF to refer to modular graph forms.
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two-loop case in [3], for the Mercedes diagram in [12], and more general tetrahedral MGFs
in [13, 14]. A Mathematica package is now available for the systematic implementation
of identities among MGFs in [11] and brought into wider context in the PhD thesis [15].
Their reduction to iterated Eisenstein integrals via generating series [16, 17] exposes all their
relations and furthermore a connection to elliptic MZVs in open-string computations [18]
and may clarify the connection with Brown’s construction of non-holomorphic modular
forms [19, 20].

Elliptic modular graph functions and forms (eMGFs) are generalizations of modular
graph functions and forms in the same way as elliptic functions generalize the notion
of modular forms. An eMGF maps a graph to a non-holomorphic single-valued elliptic
function of one or several variables on the torus, and is invariant under the modular group
transforming both on the modulus and on the torus points. Perhaps the simplest and
earliest examples of eMGFs are the conformal scalar Green function on the torus or, for
that matter, any conformal Green function on the torus, and Zagier’s single-valued elliptic
polylogarithms [21]. More sophisticated examples of eMGFs have emerged recently as a
result of systematic investigations into the non-separating degenerations of higher-genus
MGFs in [22].

For example, in the non-separating degeneration limit of a genus-two MGF, the genus-
two surface degenerates to a torus with two punctures, and the genus-two MGF degenerates
to a modular function on the torus that depends on the locations of the two punctures [23].
The resulting limit of the genus-two MGF is therefore an eMGF on the torus. Actually, it
is not just the non-separating limit but rather the full Laurent expansion of the genus-two
MGF near the non-separating node that systematically produces eMGFs as coefficients of
the Laurent expansion. Higher genus MGFs will reduce to a torus with multiple punctures
upon taking multiple non-separating degenerations simultaneously, thereby giving rise to
eMGFs which depend on multiple points on the torus. In each case, the effect of the
punctures may be encoded in terms of a group character, and it is this point of view that
we shall adopt to define eMGFs in all generality in this paper.

Elliptic modular graph functions inherit the implications of identities satisfied by their
MGF ancestors. An example of this phenomenon was uncovered in [24] where an algebraic
identity between genus-two MGFs was shown to imply a highly non-trivial identity between
its genus-one eMGF descendants. The latter was proven shortly thereafter via the direct
use of genus-one methods in [25]. Further relations among genus-one eMGFs involving
examples built from up to five Green functions were recently studied in [26].

In the present paper, we shall present a general definition of eMGFs in various different
but equivalent formulations. The first represents the eMGF associated with an arbitrary
(decorated) graph in terms of a multiple Kronecker-Eisenstein sum in which the dependence
on the points on the torus are introduced through the character of an Abelian group. The
co-moving coordinates which are used to represent the points of the torus may be viewed
as characteristics, in complete analogy with Jacobi ϑ-functions with characteristics where
arbitrary real characteristics may be traded for a point on the torus. The second equivalent
representation of an eMGF is in terms of multiple integrals over the torus of products of
non-holomorphic modular forms D+ which are equivalent to Zagier’s single-valued elliptic
polylogarithms. This formulation is an immediate generalization of the manner in which
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MGFs arise in string theory as multiple (configuration space) integrals over the torus. The
third equivalent formulation to be detailed below is through the use of a generating series
for entire families of eMGFs in terms of Kronecker-Eisenstein series. The relation with
iterated modular integrals gives a fourth formulation, whose study will be relegated to a
separate forthcoming paper [27].

Following the definition of eMGFs in these various formulations, we proceed to deriving
algebraic and differential relations for the characters and for the eMGFs, in close parallel
to the corresponding derivations in the case of MGFs. In particular, we shall prove the
generalization of the holomorphic subgraph reduction procedure to the case of eMGFs,
using the integral formulation of eMGFs and the Fay identities between the coefficient
functions of the Kronecker-Eisenstein series. We shall also show the validity of Laplace
eigenvalue equations for all two-loop eMGFs, again in close parallel to the case of MGFs
studied in [3]. Finally, we shall provide examples of algebraic and differential identities
between eMGFs of low weight and various loop orders.

A complementary perspective on eMGFs in one variable and their differential prop-
erties is given on the basis of generating series of Koba-Nielsen integrals with eMGFs in
their expansion coefficients. These generating series can be obtained from those of genus-
one integrals in closed-string amplitudes [16, 17] by leaving two rather than one of the
punctures unintegrated (one of the unintegrated punctures can always be fixed at the
origin). The open-string counterparts of such generating series were investigated in [28]
and shown to obey Knizhnik-Zamolodchikov-Bernard(KZB)-type differential equations on
a twice-punctured torus. We will spell out the analogous KZB-type equations of the gener-
ating series of eMGFs which furnish an equivalent formulation of the differential properties
of eMGFs and sidestep holomorphic subgraph reduction. Moreover, the differential equa-
tions of the generating series will play a central role in the description of eMGFs in terms
of iterated modular integrals [27].

Organization. The remainder of this paper is organized as follows. In section 2 we
provide the definition of eMGFs in terms of Kronecker-Eisenstein sums and characters
as well as their equivalent integral formulation. In section 3 we define the derivatives of
eMGFs with respect to the modulus and with respect to the points on the torus, prove
the holomorphic subgraph reduction procedure for eMGFs, derive the Laplace eigenvalue
equations in various infinite families, and provide some examples of differential identities
at low weight. In section 4 we derive dihedral eMGFs from generating series of Koba-
Nielsen integrals, and generalize this construction in appendix A to the trihedral case and
in section 5 to the general one-variable case. Additional technical details and comments
have been relegated to appendices B–D.
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Figure 1. The torus Σ = C/Λ with a choice of canonical homology cycles A and B (left figure),
is represented in the plane by a parallelogram with complex coordinates z, z̄ (middle figure) or a
square with real coordinates 0 ≤ u, v ≤ 1 (right figure) related by z = uτ + v, and opposite sides
pairwise identified.

2 Elliptic modular graph forms as lattice sums

In this section we shall introduce elliptic modular graph forms (eMGFs) as multiple
Kronecker-Eisenstein sums (MKES), generalizing the corresponding sums for modular
graph forms (MGFs) by including a character of an Abelian group in the summand. These
characters may equivalently be parametrized by points on the torus. Following the defini-
tion of eMGFs, we shall in the next section derive their basic properties, obtain the integral
and differential equations they satisfy, extend the procedure of holomorphic subgraph re-
duction developed for MGFs to the case of eMGFs, and provide examples.

2.1 Basics

A torus Σ of modulus τ ∈ H1 = {τ ∈ C, Im(τ) > 0} is a compact Riemann surface of
genus one without boundary and may be given as the quotient of C by a lattice Λ,

Σ = C/Λ Λ = Zτ + Z (2.1)

The torus Σ may be represented in C as a parallelogram parametrized by local complex
coordinates z, z̄ subject to the identifications z ∼ z+ 1 and z ∼ z+ τ , or as a square in R2

parametrized by real coordinates u, v subject to the identifications u ∼ u+1 and v ∼ v+1,
as shown in figure 1. The relation between these representations is given by

z = uτ + v u, v ∈ [0, 1] (2.2)

The coordinate z has the advantage of being complex, while (u, v) has the advantage of
being co-moving coordinates whose range is independent of τ . The trade-offs are familiar
in the context of Jacobi ϑ-functions with real characteristics (u, v) which may converted
into a point z ∈ Σ using (2.2). Integrations over the torus Σ are normalized according to,∫

Σ

d2z

Im τ
=
∫ 1

0
du
∫ 1

0
dv = 1 d2z

Im τ
= idz ∧ dz̄

2 Im τ
= dv ∧ du (2.3)

The points in the lattice Λ correspond to the allowed momenta on the torus and may
be parametrized as follows,

p = mτ + n ∈ Λ m,n ∈ Z (2.4)
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A modular transformation performs a change of canonical homology basis of A and B

cycles which permutes the individual points in Λ but leaves the lattice Λ invariant. The
action of modular transformations on the complex data τ, z, p,

τ ′ = ατ + β

γτ + δ
z′ = z

γτ + δ
p′ = p

γτ + δ

(
α β

γ δ

)
∈ SL(2,Z) (2.5)

induces the corresponding transformations on the real data (u, v) and (m,n), related to z
and p by (2.2) and (2.4) respectively,(

v′

−u′

)
=
(
α β

γ δ

)(
v

−u

) (
n′

−m′

)
=
(
α β

γ δ

)(
n

−m

)
(2.6)

The ranges of (u, v) and (u′, v′) generally differ from one another, but are such that the area
of the fundamental region for Σ is 1. Note that the modular group used here is SL(2,Z)
rather than PSL(2,Z) because the element −I acts non-trivially on z, p, (u, v) and (m,n)
even if it acts trivially on τ .

2.2 The Eisenstein series and the scalar Green function

The prototype of an MGF is the non-holomorphic Eisenstein series Ek(τ) defined by the
following Kronecker-Eisenstein sum,

Ek(τ) =
( Im τ

π

)k ∑
p∈Λ′

1
|p|2k

=
( Im τ

π

)k ∑
(m,n)∈Z2

(m,n) 6=(0,0)

1
|mτ + n|2k

(2.7)

where Λ′ = Λ \ {0}. In fact, Ek is invariant under modular transformations (2.6) and
thus an example of a modular graph function. The series is absolutely convergent for
Re(k) > 1 and may be analytically continued in k to the full complex plane with a simple
pole at k = 1.

The prototype of an eMGF is the non-holomorphic elliptic function gk(z|τ), defined
using the relation z = uτ + v with u, v ∈ R,

gk(z|τ) =
( Im τ

π

)k ∑
(m,n)∈Z2

(m,n) 6=(0,0)

e2πi(nu−mv)

|mτ + n|2k
(2.8)

For Re(k) > 1, the series is absolutely convergent, while for Re(k) = 1 its convergence is
conditional and defined by the Eisenstein summation convention in which the sum over n
is carried out first. The scalar Green function g(z|τ) on the torus of modulus τ corresponds
to g(z|τ) = g1(z|τ) which may alternatively be expressed in terms of the Jacobi ϑ-function
and the Dedekind η-function by,

g(z|τ) = − log
∣∣∣∣ϑ1(z|τ)
η(τ)

∣∣∣∣2 + 2π(Im z)2

Im τ
(2.9)

where η(τ) = q
1

24
∏∞
n=1(1− qn) with q = e2πiτ and the ϑ-function is normalized as follows,

ϑ1(z|τ) = q1/8(eiπz − e−iπz)
∞∏
n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn) (2.10)
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For Re(k) > 1 we have gk(0|τ) = Ek(τ) and for integer k > 1 the functions gk may be
obtained recursively from the scalar Green function g by convolution with g,

gk+1(z|τ) =
∫

Σ

d2w

Im τ
gk(z − w|τ)g(w|τ) (2.11)

The functions gk(z|τ) are modular invariant and thus elliptic modular graph functions,

gk(z′|τ ′) = gk(z|τ) (2.12)

where the transformation law for z and τ is given in (2.5).

2.3 Characters and characteristics

The distinction between the summands in the Kronecker-Eisenstein sums for Ek and gk
lies entirely in the exponential factor, which may be viewed as a character for the Abelian
group corresponding to the lattice Λ in a representation labelled by the characteristics
(u, v) ∈ R2/Z2. It may also be viewed as a character for the Abelian group corresponding
to the torus Σ in a representation labelled by the pair (m,n) ∈ Z2.

Points in Σ may equivalently be labelled by z or by (u, v) related to one another by (2.2)
while points in Λ may equivalently be labelled by p or (m,n) related to one another by (2.4).
We shall choose to label the characters by complex variables z and p rather than by the
pairs (u, v) and (m,n) because this notation is more compact and because holomorphicity
will be paramount to us.2 Thus, we label the characters as follows,

χp(z|τ) = e2πi(nu−mv) = exp
( 2πi
τ − τ̄

(p̄z − pz̄)
)

(2.13)

The character is independent of τ when expressed in terms of (u, v) and (m,n) variables,
but its τ -dependence must be included when formulated in terms of the variables z and p.
As a character either of a representation Λ → U(1) or of a representation Σ → U(1), χ
satisfies the following group-theoretic relations,

χp1+p2(z|τ) = χp1(z|τ)χp2(z|τ)
χp(z1 + z2|τ) = χp(z1|τ)χp(z2|τ)

χp(z|τ) = χ−p(z|τ) = χp(−z|τ) (2.14)

and the characters of the identity elements are given by χ0(z|τ) = χp(0|τ) = 1. The
character is modular invariant when all its arguments are transformed according to (2.5),

χp′(z′|τ ′) = χp(z|τ) (2.15)

a result that is even more transparent when the character is expressed in terms of the real
pairs (u, v) and (m,n) due to the fact that we have n′u′ − m′v′ = nu − mv when these
variables are related by the modular transformations given for real variables in (2.6).

2For a given value of τ , we shall indiscriminately refer to z or to (u, v) as characteristics, by a slight
abuse of nomenclature. Our conventions for the sign of the exponent in (2.13) agree with the conventions
used in [21, 23] but are opposite to [16, 17, 29].
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The functions gk(z|τ), which were introduced in (2.8), may be readily expressed in
terms of the character χ,

gk(z|τ) = (Im τ)k
πk

∑
p∈Λ′

χp(z|τ)
|p|2k

(2.16)

They may be generalized by assigning independent values to the exponents of p and p̄ in
the sum over p ∈ Λ′, which leads us to introduce the following combinations,

D+[ ab ](z|τ) = (Im τ)a
πb

∑
p∈Λ′

χp(z|τ)
pap̄b

(2.17)

For a = b, these functions reduce to the modular functions ga(z|τ) defined in (2.8). When
a 6= b, there is no power of Im τ by which they can be normalized canonically. The
normalization chosen here (and indicated with the + subscript) is such that their modular
weight (0, b− a) has vanishing holomorphic part so that the forms transform as follows,

D+[ ab ]
(
z′|τ ′

)
= (γτ̄ + δ)b−a D+[ ab ](z|τ) (2.18)

where the transformations of z and τ are given in (2.5). They are multiples of the single-
valued elliptic polylogarithms Da,b(z|τ) introduced by Siegel and Zagier [21] which are
related to our normalization by,

Da,b(z|τ) = (τ−τ̄)a+b−1

2πi
∑
p∈Λ′

χp(z|τ)
pap̄b

= (2i)a+b−2(π Im τ)b−1D+[ ab ](z|τ) (2.19)

In view of this relation, it should be expected more generally that elliptic modular graph
functions and forms will be related to single-valued elliptic multiple polylogarithms.

2.4 Kronecker-Eisenstein series and coefficients

Another important building block and prototype for eMGFs will be the Kronecker-
Eisenstein series, defined in terms of ϑ-functions by,

Ω(z, η|τ) = exp
(
2πiη Im z

Im τ

)ϑ′1(0|τ)ϑ1(z+η|τ)
ϑ1(z|τ)ϑ1(η|τ) (2.20)

The function Ω(z, η|τ) is defined for z, η ∈ C. It is meromorphic in η with simple poles
at η ∈ Λ, and transforms with phase factors under both η → η + 1 and η → η + τ . By
contrast, as a function of z it is invariant under z → z+Λ, but fails to be meromorphic due
to its exponential prefactor. The function Ω(z, η|τ) is given by the following Kronecker-
Eisenstein sum over either Λ or Λ′ in terms of the character χ in (2.13),

Ω(z, η|τ) =
∑
p∈Λ

χp(z|τ)
η − p

= 1
η

+
∑
p∈Λ′

χp(z|τ)
η − p

(2.21)

This series is conditionally convergent and is defined here using the Eisenstein summation
convention.
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From its definition, the Kronecker-Eisenstein series has the transformation law,

Ω
(

z

γτ + δ
,

η

γτ + δ

∣∣∣∣ατ + β

γτ + δ

)
= (γτ + δ)Ω(z, η|τ) (2.22)

under SL(2,Z). The Laurent expansion of Ω(z, η|τ) in the variable η produces the
Kronecker-Eisenstein coefficient functions f (k)(z|τ),

Ω(z, η|τ) =
∞∑
k=0

ηk−1f (k)(z|τ) (2.23)

where f (0)(z|τ) = 1 while for k ≥ 1 we have,

f (k)(z|τ) = −
∑
p∈Λ′

χp(z)
pk

(2.24)

The following equivalent expressions may be derived for f (1)(z|τ),

f (1)(z|τ) = ∂z log ϑ1(z|τ) + 2πi Im z

Im τ
= −∂zg(z|τ) (2.25)

signaling that this function is invariant under z → z+Λ as expected, and has a simple pole
in z for all z ∈ Λ. The function f (1)(z|τ) enters string theory either as the Green function
for the (b, c) system of weight 0, or as the Green function for a world-sheet fermion with
odd-odd spin structure. The appearance of the non-holomorphic addition results from the
presence of zero modes for each of these situations.

For k ≥ 2, the functions f (k)(z|τ) are all invariant under z → z + Λ as expected,
without poles. For example, we have (with a prime denoting derivatives of ϑ1 in the first
argument),

f (2)(z|τ) = 1
2

{
f (1)(z|τ)2 + ∂2

z log ϑ1(z|τ)− ϑ′′′1 (0|τ)
3ϑ′1(0|τ)

}
= −2πi∂τg(z|τ) (2.26)

where the τ -derivative is performed at constant (u, v) rather than at constant z, see early
section 3.1. From (2.22) we deduce that,

f (k)(z′|τ ′) = (γτ + δ)kf (k)(z|τ) (2.27)

under the transformation (2.5).
The modular forms introduced in (2.18) may be expressed as convolutions of f and f̄ ,

∫
Σ

d2w

Im τ
f (a)(z−w|τ)f (b)(w|τ) = (−π)b

(Im τ)a D
+[ ab ](z|τ) (2.28)

which will serve as a prototype for the construction of higher elliptic modular graph forms.
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2.5 Elliptic modular graph functions and forms

In this section we shall introduce general eMGFs. An eMGF maps a graph Γ to a non-
holomorphic elliptic function depending on the modulus τ ∈ H1, and on a set of charac-
teristics (ur, vr) or equivalently points zr = urτ + vr on Σ. An eMGF may be represented
by a multiple sum, with characters, over the lattice Λ or Λ′ that we shall refer to as a
multiple Kronecker-Eisenstein sum (MKES), or as a multiple integral over products of
Kronecker-Eisenstein coefficient functions f (k)(z|τ) and the functions gk(z|τ).

In either case, the construction of eMGFs generalizes the construction of MGFs by the
inclusion of a character. The generalization of a character to a product of R copies of Λ
and Σ is obtained in terms of the characters on each copy by multiplication,

ΣR → U(1) : (z1, · · · , zR)→ χp1(z1|τ)× · · · × χpR(zR|τ) (2.29)

where the characteristics zr = urτ + vr for r = 1, · · · , R are allowed to be independent of
one another. Using the integration (2.3) over Σ such product over characters satisfy the
following integral formula,∫

Σ

d2z

Im τ

(
R∏
r=1

χpr(zr−z|τ)
)

= δ

( R∑
s=1

ps

)(
R∏
r=1

χpr(zr|τ)
)

(2.30)

The Kronecker δ equals 1 when the sum ∑
sms = ∑

s ns = 0 and vanishes otherwise.

2.5.1 Definition and properties of dihedral eMGFs

We begin by introducing dihedral eMGFs in terms of a MKES over R edges with momenta
pr ∈ Λ′ for r = 1, · · · , R, two vertices of valence greater or equal to 3, and an arbitrary
number of bivalent vertices. The exponents ar of the holomorphic momenta pr, the expo-
nents br of the anti-holomorphic momenta p̄r, and the characteristics zr are arranged in
R-dimensional arrays A, B and Z, respectively,

A = [a1, a2, . . . , aR]
B = [b1, b2, . . . , bR]
Z = [z1, z2, · · · , zR]

|A| =
R∑
r=1

ar |B| =
R∑
r=1

br (2.31)

where ar, br ∈ Z. The associated dihedral eMGF is defined by the following MKES,

C+
[
A
B
Z

]
(τ) = (Im τ)|A|

π|B|

∑
p1,...,pR∈Λ′

δ

(
R∑
s=1

ps

)
R∏
r=1

χpr(zr|τ)
parr p̄

br
r

(2.32)

which is absolutely convergent if ar + ar′ + br + br′ > 2 for any pair 1 ≤ r, r′ ≤ R and
defined by Eisenstein summation convention in case of conditional convergence.

Clearly, the dihedral eMGF (2.32) is invariant under simultaneous permutations of
the (ar, br, zr) in A,B,Z. Its modular transformation properties follow from the modular
invariance of the characters shown in (2.15) and the customary transformation laws of pr
and τ given in (2.5),

C+
[
A
B
Z′

]
(τ ′) = (γτ̄ + δ)|B|−|A| C+

[
A
B
Z

]
(τ) (2.33)
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where Z ′ = [z′1, · · · , z′R] with z′r = zr/(γτ+δ) for r = 1, · · · , R, as given in (2.5). In view of
this modular transformation law, one may view dihedral eMGFs as non-holomorphic Jacobi
forms of weight (0, |B|−|A|) and vanishing index. For |A| 6= |B| there is no canonical choice
of the power of Im τ and the normalization chosen here (indicated again with the superscript
+) is such that the modular weight (0, |B|−|A|) has vanishing holomorphic entry. The
eMGF with conjugate normalization (denoted with the superscript −) is related as follows,

C−
[
A
B
Z

]
(τ) = (π Im τ)|B|−|A| C+

[
A
B
Z

]
(τ) = C+

[
B
A
−Z

]
(τ) (2.34)

and has modular weight (|A| − |B|, 0). Additionally, we have a reflection symmetry,3

C+
[
A
B
−Z

]
= (−1)|A|+|B| C+

[
A
B
Z

]
(2.35)

and momentum conservation,
R∑
r=1
C+
[
A−Sr
B
Z

]
=

R∑
r=1
C+
[

A
B−Sr
Z

]
= 0 , C+

[
A
B

Z−zS

]
= C+

[
A
B
Z

]
(2.36)

where S = [1, 1, · · · , 1], the parameter z ∈ C is arbitrary, and Sr = [0, · · · 0, 1, 0, · · · , 0] has
zeros in every entry except for the entry r where the value is 1. The last identity expresses
translation invariance on Σ and uses the fact that ∏R

j=1 χpj (z|τ) = 1 on the support of
momentum conservation.

Equivalently, we may express an eMGF as an integral over Σ of a product of the mod-
ular forms D+[ ab ](z|τ) defined by (2.17). The equivalence with the MKES representation
may be established by using the integral formula on characters given in (2.30). In the
dihedral case we have,

C+
[
A
B
Z

]
(τ) =

∫
Σ

d2z

Im τ

R∏
r=1
D+[ ar

br

]
(zr−z|τ) (2.37)

where A, B and Z are the arrays of ar, br and zr given in (2.31). Just as for MGFs, any
eMGF with R = 1 vanishes,

C+
[ a
b
z

]
(τ) = 0 (2.38)

Making use of the special case of (2.17),

D+[ 0
0 ](z|τ) =

∑
p∈Λ′

χp(z|τ) = (Im τ)δ2(z, z̄)− 1 (2.39)

the integral representation (2.37) implies a simple algebraic identity when a column of
exponents in the eMGF has vanishing entries. In this case (2.39) implies the identity,

C+
[
a1 a2 ... aR 0
b1 b2 ... bR 0
z1 z2 ... zR 0

]
=
(

R∏
r=1
D+[ ar

br

]
(zr)

)
− C+

[ a1 a2 ... aR
b1 b2 ... bR
z1 z2 ... zR

]
(2.40)

This relation is the generalization of the algebraic reduction formulas for MGFs [7].
3Henceforth, when the dependence on τ is clear from the context we shall omit τ .
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2.5.2 Definition and properties of eMGFs for arbitrary graphs

Next, we generalize eMGFs to the case of an arbitrary graph by starting from MGFs
for arbitrary graphs and multiplying the summand in the Kronecker-Eisenstein sum by a
character. The resulting general formulation is as follows.

A decorated graph (Γ,A,B,Z) with V vertices and R directed edges consists of a con-
nectivity matrix with components4 Γv r, for v = 1, · · · , V and r = 1, · · · , R and decoration
of the edges by exponents ar, br ∈ Z and characteristics zr for r = 1, · · · , R, assembled into
arrays A = [a1, · · · , aR], B = [b1, · · · , bR] and Z = [z1, · · · , zR]. To the decorated graph
(Γ,A,B,Z) we associate a function on ΣR ×H1 by,

C+
[A
B
Z

]
(τ) = (Im τ)|A|

π|B|

∑
p1,...,pR∈Λ′

(
R∏
r=1

χpr(zr|τ)
(pr)ar (p̄r)br

)
V∏
v=1

δ

(
R∑
r=1

Γv rpr
)

(2.41)

where

|A| =
R∑
r=1

ar |B| =
R∑
r=1

br (2.42)

A sufficient condition for absolute convergence of (2.41) is that for any two edges 1 ≤
r, r′ ≤ R the sum of weights ar + br + ar′ + br′ > 2. The normalization by powers of (Im τ)
is canonical only when |A| = |B| and otherwise has been chosen so that the modular weight
has vanishing holomorphic entry. The modular transformation law if given as follows,

C+
[
A
B
Z′

]
(τ ′) = (γτ̄ + δ)|B|−|A| C+

[A
B
Z

]
(τ) (2.43)

where τ ′ and Z ′ = [z′1, · · · , z′R] are given in (2.5). The momentum conservation identities
take the following form,

R∑
r=1

Γv r C+
[
A−Sr
B
Z

]
(τ) =

R∑
r=1

Γv r C+
[
A
B−Sr
Z

]
(τ) = 0 (2.44)

and translation invariance generalizes to,

C+
[
A
B
Zs

]
(τ) = C+

[A
B
Z

]
(τ) Zs = Z − z

∑
r

Γv rSr (2.45)

see (2.36) for their dihedral instances. A detailed discussion of trihedral eMGFs can be
found in appendix A. Any convergent eMGF grows at most polynomially when τ → i∞,
see appendix C of [23] for examples, similar to the case of MGFs [5].

According to (2.43), the modular weight of an eMGF is given by (0, |B| − |A|) that we
shall often refer to weight for simplicity. The graph Γ has a definite loop order L and we
transfer this notion to the eMGF by saying that the eMGF has a loop order L. For instance,
the dihedral eMGF in (2.32) with R edges is said to have loop order L = R−1. One of the

4The components of the connectivity matrix are Γv r = +1 (Γv r = −1) if the directed edge r is incoming
(outgoing) for the vertex v and vanish otherwise. We employ the notation A etc. to distinguish the case of
general topology from the dihedral topology where we write A.
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themes of this paper will be that there are algebraic relations between eMGF that relate
different eMGFs of potentially different loop order up to τ -independent functions. Thus,
the notion of loop order of an eMGF can change when representing it differently.

A different notion, called depth of an eMGF, will be introduced in section 3.4. It is
related to differential relations satisfied by eMGFs and leads to irreducible iterated integral
representations with Kronecker-Eisenstein functions f (k) as integration kernels. The depth
of an eMGF can differ from the loop order and we shall argue that it is a more intrinsic
property of eMGFs.

2.6 One-loop eMGFs

In this section, we provide additional relations between the functions C+, D+, f (k) and gk
in the special case of one-loop graphs. We collect here the following special cases of the
functions D+ which will be useful,

D+[ 0
0 ](z|τ) = (Im τ)δ2(z)− 1

D+[ 1
1 ](z|τ) = g(z|τ)

D+[ k
k

]
(z|τ) = gk(z|τ)

D+[ a0 ](z|τ) = −(Im τ)a f (a)(z|τ)

D+[ 0
b

]
(z|τ) = (−1)b−1π−b f (b)(z|τ) (2.46)

Further specialization to vanishing argument z for k ≥ 2 and a, b ≥ 3 gives,

D+[ k
k

]
(0|τ) = gk(0|τ) = Ek(τ)

D+[ a0 ](0|τ) = −(Im τ)a f (a)(0|τ) = (Im τ)aGa(τ)

D+[ 0
b

]
(0|τ) = (−1)b−1π−b f (b)(0|τ) = π−bGb(τ) (2.47)

The holomorphic Eisenstein series Ga(τ) is a modular form of weight (a, 0) defined by,

Ga(τ) =
∑
p∈Λ′

1
pa

(2.48)

The series is absolutely convergent for a ≥ 3 and vanishes for all odd a ≥ 3. For a = 2
the conditionally convergent series may be regularized preserving modular invariance while
giving up meromorphicity, to produce the non-holomorphic but modular Eisenstein series
Ĝ2, which is related to f (2) and D+ as follows,

Ĝ2(τ) = (Im τ)−2D+[ 2
0 ](0|τ) = −f (2)(0|τ) (2.49)

and f (2)(0|τ) is the finite limit as z → 0 of the formula given in (2.26) for f (2)(z|τ).
The simplest non-vanishing examples of dihedral eMGFs (2.32) have R = 2 and thus

two columns since one-column eMGFs vanish by (2.38). Based on (2.35) and (2.36), one
can rearrange the eMGF so that the second column has vanishing entries,

C+
[ a1 a2
b1 b2
z1 z2

]
(τ) = (−1)a2+b2 C+

[
a1+a2 0
b1+b2 0
z1−z2 0

]
(τ) (2.50)
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2.7 Two-loop eMGFs

The simplest generalizations of Zagier’s single-valued elliptic polylogarithms are two-loop
eMGFs with R = 3 columns in (2.32),

C+
[ a1 a2 a3
b1 b2 b3
z1 z2 z3

]
(τ) = (Im τ)a

πb

∑
p1,p2,p3∈Λ′

δ(p1+p2+p3)χp1(z1|τ)χp2(z2|τ)χp3(z3|τ)
pa1

1 p̄
b1
1 p

a2
2 p̄

b2
2 p

a3
3 p̄

b3
3

(2.51)

where we denote the two-loop instances of |A| and |B| by

a = a1 + a2 + a3 , b = b1 + b2 + b3 (2.52)

Similar to (2.50), one can bring the two-loop eMGFs (2.51) into a canonical form with one
vanishing entry among both the aj and bj : following the strategy in section 2.6 of [30], the
vanishing of exponents of pr, p̄r can be enforced by the partial-fraction decompositions

1
pa1

1 p
a2
2 p

a3
3

=
a1∑
k=1

λk(a1, a2)
pk1 p

a−k
3

+
a2∑
k=1

λk(a2, a1)
pk2 p

a−k
3

1
p̄b1

1 p̄
b2
2 p̄

b3
3

=
b1∑
`=1

λ`(b1, b3)
p̄`1 p̄

b−`
2

+
b3∑
`=1

λ`(b3, b1)
p̄`3 p̄

b−`
2

(2.53)

that are valid when p1 + p2 + p3 = 0 and where

λk(a1, a2) = (−1)a1+a2+k(a1+a2−k−1
a2−1

)
(2.54)

Straightforward insertion of (2.53) into (2.51) leads to the decomposition into two-loop
eMGFs of canonical form with entries c1 0 c3

0 d2 d3
in the first two rows:

C+
[ a1 a2 a3
b1 b2 b3
z1 z2 z3

]
(τ) =

a1∑
k=1

b1∑
`=1

λk(a1, a2)λ`(b1, b3) C+
[
a−k 0 k

0 b−` `
z3 z2 z1

]
(τ)

+
a1∑
k=1

b3∑
`=1

λk(a1, a2)λ`(b3, b1) C+
[
k 0 a−k
0 b−` `
z1 z2 z3

]
(τ)

+
a2∑
k=1

b1∑
`=1

λk(a2, a1)λ`(b1, b3) C+
[
a−k 0 k

0 ` b−`
z3 z1 z2

]
(τ) (2.55)

+
a2∑
k=1

b3∑
`=1

λk(a2, a1)λ`(b3, b1) C+
[

0 k a−k
0 b−` `
z1 z2 z3

]
(τ)

The last line can be reduced to one-loop eMGFs (2.50) by the algebraic reduction (2.40),5

a2∑
k=1

b3∑
`=1

λk(a2, a1)λ`(b3, b1) C+
[

0 k a−k
0 b−` `
z1 z2 z3

]
(τ)

=
a2∑
k=1

b3∑
`=1

λk(a2, a1)λ`(b3, b1) C+
[

k 0
b−` 0
z21 0

]
(τ) C+

[
a−k 0
` 0
z31 0

]
(τ) (2.56)

−(−1)a3+b1+b3 (a1+a2−1)! (b1+b3−1)!
a1! (a2−1)! b1! (b3−1)! C

+
[
a 0
b 0
z23 0

]
(τ)

5The term in the last line stems from carrying out the sum over k and ` via
a2∑
k=1

(−1)kλk(a2, a1) = (−1)a1+a2 (a1+a2−1)!
a1!(a2−1)!
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3 Differential identities and HSR

In this section, we shall show that the derivatives of eMGFs, either in the modulus τ or in
the characteristics zr, produce linear combinations of eMGFs. For certain configurations
of vanishing anti-holomorphic exponents, subgraphs arise which involve only holomorphic
momenta. The procedure of holomorphic subgraph reduction, which is designed to simplify
the Kronecker-Eisenstein sums is such cases, is generalized here from the case of dihedral
MGFs introduced in [7] and generalized in [8] to trihedral MGFs. A simplified derivation of
holomorphic subgraph reduction is presented here in terms of Kronecker-Eisenstein series
and the use of the Fay identity, following [11]. A major motivation for the study of eMGFs
is to generalize the system of differential equations obeyed by Zagier’s single-valued elliptic
polylogarithms to higher depth.

3.1 Derivatives in τ

As in the case of configuration space integrals, the most useful definition of the derivative
with respect to τ (or with respect to τ̄) is obtained by keeping the co-moving coordinates
(u, v) of z = uτ + v and the co-moving momenta (m,n) of p = mτ + n fixed. Inspection
of (2.13) then readily confirms that χp(z|τ) is then independent of τ and τ̄ so that its
derivatives in τ and τ̄ vanish,

∂τχp(z|τ) = ∂τ̄χp(z|τ) = 0 for (u, v) and (m,n) fixed (3.1)

We shall define the covariant derivative ∇τ , or Maass operator, mapping the space of
modular forms of weight (0, µ) to those of weight (0, µ−2) while keeping all co-moving
coordinates (u, v) in Σ and all co-moving momenta (m,n) in Λ fixed, as follows,

∇τ = 2i(Im τ)2∂τ for (u, v) and (m,n) fixed (3.2)

Its complex conjugate ∇τ = −2i(Im τ)2∂τ̄ maps the space of modular forms of weight
(µ, 0) to those of weight (µ−2, 0) while keeping (u, v) and (m,n) fixed. In the following
it is always understood that (u, v) and (m,n) are kept fixed in τ -derivatives unless stated
otherwise.

Since we have ∇τχp(z|τ) = 0, the relations giving the τ -derivatives of MGFs [7] carry
over almost verbatim to arbitrary eMGFs, and we have,

π∇τ C+
[A
B
Z

]
(τ) =

R∑
r=1

ar C+
[
A+Sr
B−Sr
Z

]
(τ)

π∇τ C−
[A
B
Z

]
(τ) =

R∑
r=1

br C−
[
A−Sr
B+Sr
Z

]
(τ) (3.3)

where Sr was introduced below (2.36) and the second equation may be obtained from the
first by complex conjugation and suitable change of normalization by factors of (Im τ). For
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one-loop eMGFs, the general equations (3.3) reduce as follows,

π∇τ D+[ ab ](z|τ) = a D+
[
a+1
b−1

]
(z|τ)

(π∇τ )m D+[ ab ](z|τ) = (a+m−1)!
(a−1)! D+

[
a+m
b−m

]
(z|τ)

(π∇τ )m gk(z|τ) = (k+m−1)!
(k−1)! D+

[
k+m
k−m

]
(z|τ) (3.4)

The first equation reproduces the well-known differential equations of Zagier’s single-valued
elliptic polylogarithms (2.19),

∇τDa,b(z|τ) = Im τ
(
aDa+1,b−1(z|τ) + (b−1)Da,b(z|τ)

)
(3.5)

Special cases giving Kronecker-Eisenstein coefficients are as follows,

(π∇τ )b D+[ ab ](z|τ) = −(a+b−1)!
(a−1)! (Im τ)a+bf (a+b)(z|τ)

(π∇τ )k gk(z|τ) = −(2k−1)!
(k−1)! (Im τ)2kf (2k)(z|τ) (3.6)

When evaluated at z = 0, we recover the following relations for one-loop MGFs,

(π∇τ )m D+[ ab ](0|τ) = (a+m−1)!
(a−1)! D+

[
a+m
b−m

]
(0|τ)

(π∇τ )b D+[ ab ](0|τ) = (a+b−1)!
(a−1)! (Im τ)a+bGa+b(τ)

(π∇τ )mEk(τ) = (k+m−1)!
(k−1)! D+

[
k+m
k−m

]
(0|τ) (3.7)

Analogous equations may be obtained for the action of ∇τ .

3.2 Derivatives in z

It will be convenient to us the following covariant derivative in z and z̄, at fixed τ and p,

∇z = ∂u − τ̄ ∂v = 2i(Im τ) ∂z
∇z = ∂u − τ∂v = −2i(Im τ) ∂z̄ (3.8)

Applied to the character, we obtain,

∇zχp(z|τ) = 2πi p̄ χp(z|τ)
∇zχp(z|τ) = 2πi p χp(z|τ) (3.9)

Note that the τ -derivative ∇τ in (3.2) for (u, v) and (m,n) fixed only commutes with ∇z
(as will become important for the discussion of sections 4.4 and 5.3) but not with ∇z.

The action of ∇z on an arbitrary eMGF will be obtained by differentiating the char-
acters that appear in the eMGF according to (3.9). To obtain the general formula for this
derivative, we must allow for the possibility that all characters zr depend on the variable z
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through arbitrary linear combinations compatible with the group character structure of χ.
Therefore, the general formula reads as follows,

∇z C+
[A
B
Z

]
= 2i

R∑
r=1

∂zr
∂z
C+
[
A
B−Sr
Z

]
(3.10)

For the special case where s ≤ R of the characteristics zr coincide with z while the remaining
R − s characteristics are independent of z, we obtain the following simplified and more
explicit expression,

∇z C+
[
a1 ... as as+1 ... aR
b1 ... bs bs+1 ... bR
z ... z zs+1 ... zR

]
= 2i

s∑
r=1
C+
[
a1 ... ar ... as as+1 ... aR
b1 ... br−1 ... bs bs+1 ... bR
z ... z ... z zs+1 ... zR

]
(3.11)

This formula is valid for arbitrary eMGFs.
For one-loop eMGFs, (3.10) simplifies to

(∇z)mD+[ ab ](z|τ) = (2i)m D+[ a
b−m ](z|τ)

(∇z)mgk(z|τ) = (2i)m D+
[

k
k−m

]
(z|τ) (3.12)

as well as

(∇z)bD+[ ab ](z|τ) = −(2i)b(Im τ)af (a)(z|τ)

(∇z)kgk(z|τ) = −(2i)k(Im τ)kf (k)(z|τ) (3.13)

which, using (2.19), reproduces,

∇zDa,b(z|τ) = −4π Im τDa,b−1(z|τ) (3.14)

the well-known differential equations of Zagier’s single-valued elliptic polylogarithms.

3.3 Holomorphic subgraph reduction

As we will see, the appearance of Kronecker-Eisenstein coefficients f (k)(z|τ) as in (3.6)
is a general feature of iterated τ -derivatives of eMGFs, regardless of the graph topology.
In order to expose factors of f (k)(z|τ) in the differential equations beyond the one-loop
case, we will need the generalization to eMGFs for the procedure of holomorphic subgraph
reduction (HSR) for MGFs [7].

In the dihedral case, HSR is a prescription to resolve the simultaneous vanishing of
two anti-holomorphic exponents, such as in,

C+
[
a1 a2 A
0 0 B
z1 z2 Z

]
(3.15)

in terms of eMGFs of lower loop number. Convergence will be guaranteed when a1 +a2 ≥ 3
and z2 6= z1, which we shall assume to hold at first. These rearrangements are necessary
since the evaluation of further ∇z,∇τ via (3.3) and (3.10) generically leads to negative
entries bj that cannot be removed via momentum conservation (2.36).
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While HSR for MGFs was initially performed based on partial-fraction manipulations
of the lattice momenta pj in nested sums [7, 8], a reformulation in terms of Fay identities
among Kronecker-Eisenstein coefficients was later on given in [11]. Here, we shall follow
the latter approach which is based on the Fay identity [31, 32],

Ω(z1, η1|τ)Ω(z2, η2|τ) = Ω(z1−z2, η1|τ)Ω(z2, η1+η2|τ) + Ω(z2−z1, η2|τ)Ω(z1, η1+η2|τ)
(3.16)

Upon expanding each Ω in a Laurent series in η1 and η2, and identifying alike coefficients,
we obtain the following identities between the Kronecker-Eisenstein coefficients [33],

f (a1)(z1−z|τ)f (a2)(z2−z|τ) = (−1)a2−1f (a1+a2)(z1−z2|τ) (3.17)

+
a1∑
k=0

(a1+a2−k−1
a1−k

)
f (k)(z1−z2|τ)f (a1+a2−k)(z2−z|τ)

+
a2∑
k=0

(a1+a2−k−1
a2−k

)
f (k)(z2−z1|τ)f (a1+a2−k)(z1−z|τ)

These relations will play an important role for the generating series to be discussed in later
sections as well. Converting (3.17) among the f (a) into a relation amongst the forms D+

using (2.46), and the notations a0 = a1 + a2 and z12 = z1 − z2, we find,

D+[ a1
0 ] (z1−z|τ)D+[ a2

0 ] (z2−z|τ) = (−1)a2−1D+[ a0
0 ] (z12|τ) (3.18)

−
(a0−1
a1

)
D+[ a0

0 ](z2−z|τ) +
a1∑
k=1

(a0−k−1
a1−k

)
D+[ k

0
]
(z12|τ)D+

[
a0−k

0

]
(z2−z|τ)

−
(a0−1
a2

)
D+[ a0

0 ](z1−z|τ) +
a2∑
k=1

(a0−k−1
a2−k

)
D+[ k

0
]
(z21|τ)D+

[
a0−k

0

]
(z1−z|τ)

In obtaining (3.18) from (3.17), we have treated the contribution k = 0 in (3.17) separately
as one has f (0)(z|τ) = 1 but D+[ 0

0 ] (z|τ) would produce an unwanted δ-function contri-
bution, as may be seen from (2.39). The relation (3.18) provides a simplification for the
product D+[ a1

0 ](z1−z|τ)D+[ a2
0 ](z2−z|τ) in the integral representation (2.37) of dihedral

eMGFs with b1 = b2 = 0 which is equivalent to HSR, and the final formula for HSR of
dihedral eMGFs is given by,

C+
[
a1 a2 A
0 0 B
z1 z2 Z

]
= (−1)a2 D+[ a0

0 ](z12) C+
[
A
B
Z

]
−
(a0−1
a1

)
C+
[
a0 A
0 B
z2 Z

]
+

a1∑
k=1

(a0−1−k
a1−k

)
D+[ k

0
]
(z12) C+

[
a0−k A

0 B
z2 Z

]
(3.19)

−
(a0−1
a2

)
C+
[
a0 A
0 B
z1 Z

]
+

a2∑
k=1

(a0−1−k
a2−k

)
D+[ k

0
]
(z21) C+

[
a0−k A

0 B
z1 Z

]

where the one-loop lattice sums on the right-hand side may be rewritten in terms of
f (k)(z12|τ) via (2.46). Similar applications of the Fay identities (3.17) can be used to
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recursively perform the HSR for higher-point eMGFs, see [11] for analogous techniques for
MGFs and [7, 8] for the earlier approach based on lattice-sum manipulations. For trihedral
eMGFs (A.1) with a holomorphic two-point graph, the HSR can be found in appendix A.2
which literally follows the integrand manipulations of (3.18). The HSR for a holomorphic
three-point graph is spelled out in appendix A.3. Moreover, as shown in appendix A.4,
Fay identities also imply algebraic relations among trihedral eMGFs that are not amenable
to HSR.

3.3.1 Coincident limit of the elliptic HSR
In order to recover the HSR formulae for dihedral MGFs from (3.19), it remains to drop
the restriction z1 6= z2. Most of the terms have a straightforward limit z1 → z2, except for
the contribution of k = 1. The singular behavior D+[ 1

0 ](z12|τ) → −(Im τ)/z12 gives rise
to the following z1-derivative in the coincident limit,

lim
z2→z1

D+[ 1
0 ](z12)

{
C+
[
a0−1 A

0 B
z2 Z

]
− C+

[
a0−1 A

0 B
z1 Z

]}
= (Im τ)∂z1 C+

[
a0−1 A

0 B
z1 Z

]
= C+

[
a0−1 A
−1 B
z1 Z

]
(3.20)

which we have evaluated via (3.11). Hence, the coincident limit of (3.19) reads,

C+
[
a1 a2 A
0 0 B
z z Z

]
= (−1)a2 D+[ a0

0 ](0) C+
[
A
B
Z

]
−
(a0
a1

)
C+
[
a0 A
0 B
z Z

]
+

a1∑
k=4

(a0−1−k
a1−k

)
D+[ k

0
]
(0) C+

[
a0−k A

0 B
z Z

]
(3.21)

+
a2∑
k=4

(a0−1−k
a2−k

)
D+[ k

0
]
(0) C+

[
a0−k A

0 B
z Z

]

+
(a0−2
a1−1

){
D+[ 2

0 ](0) C+
[
a0−2 A

0 B
z Z

]
+ C+

[
a0−1 A
−1 B
z Z

]}
where the one-loop lattice sums on the right-hand side may be rewritten in terms of Gk(τ)
and Ĝ2(τ) via (2.47) and (2.49). By additionally setting z and all the entries of Z to zero,
one recovers the HSR for dihedral MGFs.

3.3.2 Examples of the elliptic HSR
We will later on see that all the eMGFs in the expansion of the generating series Y τ

~η to be
introduced in sections 4 and 5 can be addressed within the following notable subclass of
elliptic HSR-identities (3.19), again using the notation a0 = a1 + a2,

−a1 C+
[
a1+1 a2 A

0 0 B
z1 z2 Z

]
+ a2 C+

[
a1 a2+1 A
0 0 B
z1 z2 Z

]
= −a0(−1)a2 D+[ a0+1

0
]
(z12) C+

[
A
B
Z

]
+
( a0
a1−1

)
C+
[
a0+1 A

0 B
z1 Z

]
−
a1+1∑
k=3

(k−1)
(a0−k
a2−1

)
D+[ k

0
]
(z12) C+

[
a0+1−k A

0 B
z2 Z

]

−
( a0
a2−1

)
C+
[
a0+1 A

0 B
z2 Z

]
+
a2+1∑
k=3

(k−1)
(a0−k
a1−1

)
D+[ k

0
]
(z21) C+

[
a0+1−k A

0 B
z1 Z

]

+
(a0−2
a1−1

)
D+[ 2

0 ](z12)
{
C+
[
a0−1 A

0 B
z1 Z

]
(τ)− C+

[
a0−1 A

0 B
z2 Z

]}
(3.22)
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These combinations do not involve the singular contribution D+[ 1
0 ](z12|τ)→ −(Im τ)/z12,

so that the coincident limit is regular. Moreover, the coefficient of D+[ 2
0 ](z12|τ) in the last

line drops out in the coincident limit z1 → z2, so that the conditionally convergent lattice
sum D+[ 2

0 ](0|τ) ∼ Ĝ2(τ) in the last line of (3.21) drops out as well.
An important special case is obtained by setting a2 = 1 in (3.22),

C+
[
a1 2 A
0 0 B
z1 z2 Z

]
− a1 C+

[
a1+1 1 A

0 0 B
z1 z2 Z

]
= (a1+1)D+[ a1+2

0
]
(z12) C+

[
A
B
Z

]
(3.23)

− C+
[
a1+2 A

0 B
z2 Z

]
−
a1+1∑
k=3

(k−1)D+[ k
0
]
(z12) C+

[
a1+2−k A

0 B
z2 Z

]

+ a1
2 (a1+1) C+

[
a1+2 A

0 B
z1 Z

]
+ D+[ 2

0 ](z12)
{
C+
[
a1 A
0 B
z1 Z

]
− C+

[
a1 A
0 B
z2 Z

]}
By furthermore setting a1 = 1, 2, 3 in (3.23) for instance, we obtain

C+
[

1 2 A
0 0 B
z1 z2 Z

]
− C+

[
2 1 A
0 0 B
z1 z2 Z

]
= C+

[
3 A
0 B
z1 Z

]
− C+

[
3 A
0 B
z2 Z

]
+ 2D+[ 3

0 ](z12) C+
[
A
B
Z

]
(3.24)

+ D+[ 2
0 ](z12)

{
C+
[

1 A
0 B
z1 Z

]
− C+

[
1 A
0 B
z2 Z

]}
C+
[

2 2 A
0 0 B
z1 z2 Z

]
− 2 C+

[
3 1 A
0 0 B
z1 z2 Z

]
= 3 C+

[
4 A
0 B
z1 Z

]
− C+

[
4 A
0 B
z2 Z

]
+ 3D+[ 4

0 ](z12) C+
[
A
B
Z

]
(3.25)

− 2D+[ 3
0 ](z12) C+

[
1 A
0 B
z2 Z

]
+ D+[ 2

0 ](z12)
{
C+
[

2 A
0 B
z1 Z

]
− C+

[
2 A
0 B
z2 Z

]}
C+
[

3 2 A
0 0 B
z1 z2 Z

]
− 3 C+

[
4 1 A
0 0 B
z1 z2 Z

]
= 6 C+

[
5 A
0 B
z1 Z

]
− C+

[
5 A
0 B
z2 Z

]
+ 4D+[ 5

0 ](z12) C+
[
A
B
Z

]
(3.26)

− 3D+[ 4
0 ](z12) C+

[
1 A
0 B
z2 Z

]
− 2D+[ 3

0 ](z12) C+
[

2 A
0 B
z2 Z

]
+ D+[ 2

0 ](z12)
{
C+
[

3 A
0 B
z1 Z

]
− C+

[
3 A
0 B
z2 Z

]}
3.3.3 Examples of two-loop eMGFs

We shall now apply some of the above examples of elliptic HSR to identify the simplest
differential equations of eMGFs beyond the one-loop case (3.6). The elliptic generalization
of the two-loop MGF C1,1,1 was studied under the name D(1)

3 in [23], both of which are
given as follows in the present notation,

C1,1,1 = C+
[ 1 1 1

1 1 1
0 0 0

]
= E3 + ζ3 , D

(1)
3 (z) = C+

[ 1 1 1
1 1 1
z 0 0

]
(3.27)

and its τ -derivatives following from (3.3) are,

(π∇τ )D(1)
3 (z) = C+

[ 2 1 1
0 1 1
z 0 0

]
+ 2 C+

[ 2 1 1
0 1 1
0 z 0

]
(3.28)

(π∇τ )2D
(1)
3 (z) = 4 C+

[ 2 2 1
0 0 1
z 0 0

]
+ 2 C+

[ 2 2 1
0 0 1
0 0 z

]
− 4 C+

[ 3 1 1
0 0 1
z 0 0

]
− 4 C+

[ 3 1 1
0 0 1
0 z 0

]
− 4 C+

[ 3 1 1
0 0 1
0 0 z

]
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Based on the HSR-identity (3.25) and its coincident limit, the second derivative can be
simplified to,

(π∇τ )2D
(1)
3 (z) = 8D+[ 5

1 ](z) + 4D+[ 5
1 ](0) + 4D+[ 3

0 ](z)D+[ 2
1 ](z) (3.29)

The entire right-hand side has been reduced to (products of) one-loop eMGFs. More-
over, the product D+[ 3

0 ](z)D+[ 2
1 ](z) with the Kronecker-Eisenstein coefficient D+[ 3

0 ](z) =
−(Im τ)3f (3)(z) is unprecedented in the differential equations (3.6) of one-loop eMGFs.
This last term in (3.29) signals that D(1)

3 (z) is what should be called a depth-two eMGF
since f (3) multiplies a one-loop eMGF ∼ D+[ 2

1 ](z) which in turn produces another f (3)

upon differentiation in τ via (3.6). Hence, one may view (3.29) as the simplest example
of Zagier’s single-valued elliptic polylogarithms at depth two. The relation between the
notion of depth and the differential equations satisfied by eMGFs will be explored in more
detail in section 3.4.

We also note in the limit z → 0, the relation (3.29) loses its last term since f (3)(z) is
an odd function of z in agreement with the vanishing of G3. Therefore, the MGF C1,1,1

obtained from D
(1)
3 (z) in the z → 0 limit is only of depth one.

As another two-loop example, one can apply the HSR (3.24) to

(π∇τ ) C+
[ 1 1 1

0 1 1
z 0 0

]
= 2 C+

[ 1 2 1
0 0 1
z 0 0

]
− 2 C+

[ 2 1 1
0 0 1
z 0 0

]
(3.30)

= 2D+[ 2
0 ](z)D+[ 2

1 ](z) + 2D+[ 4
1 ](z)

with D+[ 2
0 ](z) = −(Im τ)2f (2)(z) multiplying another one-loop eMGF D+[ 2

1 ](z) with f (3)

in its τ -derivative. By the same arguments as above, the eMGF C+
[ 1 1 1

0 1 1
z 0 0

]
is therefore of

depth two.

3.3.4 Examples of three-loop eMGFs

Similarly, the simplest examples at three-loop order include the objects

D
(1)
4 (z) = C+

[ 1 1 1 1
1 1 1 1
z 0 0 0

]
, D

(2)
4 (z) = C+

[ 1 1 1 1
1 1 1 1
z z 0 0

]
(3.31)

introduced in [23]. Their second τ -derivatives can again be simplified using the HSR
identity (3.25)

(π∇τ )2D
(1)
4 (z) = 18D+[ 4

0 ](z)D+[ 2
2 ](0) + 18D+[ 4

0 ](0)D+[ 2
2 ](z) + 6D+[ 3

0 ](z) C+
[ 1 1 1

0 1 1
z 0 0

]
+ 36D+[ 6

2 ](z) + 36D+[ 6
2 ](0) + 12D+[ 4

1 ](z)D+[ 2
1 ](z)

− 6D+[ 3
1 ](z)2 − 6D+[ 3

1 ](0)2 − 12D+[ 3
1 ](z)D+[ 3

1 ](0) (3.32)

(π∇τ )2D
(2)
4 (z) = 12D+[ 4

0 ](0)D+[ 2
2 ](0) + 24D+[ 4

0 ](z)D+[ 2
2 ](z) + 8D+[ 3

0 ](z) C+
[ 1 1 1

0 1 1
z 0 0

]
+ 48D+[ 6

2 ](z) + 24D+[ 6
2 ](0) + 16D+[ 4

1 ](z)D+[ 2
1 ](z)

− 8D+[ 3
1 ](z)2 − 16D+[ 3

1 ](z)D+[ 3
1 ](0) (3.33)
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where we have used the following identities in intermediate steps.

C+
[ 4 1 1

0 1 1
0 0 0

]
= 3 C+

[ 6 0
2 0
0 0

]
− C+

[ 3 0
1 0
0 0

]2
2 C+

[ 4 1 1
0 1 1
0 z 0

]
+ C+

[ 4 1 1
0 1 1
z 0 0

]
= 6 C+

[ 6 0
2 0
z 0

]
+ 3 C+

[ 6 0
2 0
0 0

]
− C+

[ 3 0
1 0
z 0

]2
(3.34)

+ 2 C+
[ 4 0

1 0
z 0

]
C+
[ 2 0

1 0
z 0

]
− 2 C+

[ 3 0
1 0
z 0

]
C+
[ 3 0

1 0
0 0

]
The first identity can for instance be imported from the Mathematica notebooks of [11],
and the second one will be proven in section 3.4.

The last terms in the first lines of (3.32) and (3.33) identifies D(1)
4 (z) and D(2)

4 (z) to be
eMGFs at depth three: the Kronecker-Eisenstein coefficient D+[ 3

0 ](z) = −(Im τ)3f (3)(z)
multiplies the eMGF C+

[ 1 1 1
0 1 1
z 0 0

]
which was found to be of depth two in (3.30). We shall

rederive the above examples from generating functions in section 4.5.

3.4 The sieve algorithm and the notion of depth

In this section, we formalize the notion of depth by generalizing the concepts of [7] related
to the so-called sieve algorithm. The basic idea is to consider powers of the Maass operators
∇τ acting on an eMGF C+ with labels A,B,Z as in (2.41). Since the differential operator
lowers the antiholomorphic B labels according to (3.3), this, together with momentum
conservation, eventually leads to eMGFs that are amenable to HSR. One takes successive
derivatives (∇τ )m of (2.41) until one can first use HSR to extract a factor of a one-loop
function D+[ k

0
]
(z) = −(Im τ)kf (k)(z) with k 6= 0 multiplying another eMGF C+

(k) in the
schematic form,

(π∇τ )mC+ = (Im τ)kf (k)C+
(k) + Ĉ+ (3.35)

where both C+
(k) and Ĉ

+ are Q-linear combinations of other general eMGFs of the form (2.41)
and not amenable to HSR, see for instance (3.30). We define the depth of the original eMGF
C+ as the maximum of (the depth of C+

(k) plus one) and the depth of Ĉ+.
The eMGFs C+

(k) generated by HSR and Ĉ+ therefore have to be subjected to the same
procedure of taking successive derivatives ∇mτ until one can again separate out a function
(Im τ)k′f (k′)(z). If the eMGF multiplying (Im τ)k′f (k′)(z) is constant, then C+

(k) is defined
to have depth one which is the base of the recursive definition. The recursive algorithm
is guaranteed to terminate after a finite number of steps since the antiholomorphic indices
of the eMGFs are lowered in each step, and negative entries bj are always removed by
combinations of HSR and momentum conservation. Like this, the depth of an eMGF with
antiholomorphic indices B is manifest after no more than |B| powers of ∇τ .

Note that the functions (Im τ)kf (k)(z) and (Im τ)k′f (k′)(z) generated by HSR may have
arguments z = 0 and thereby reduce to holomorphic Eisenstein series. Hence, the present
definition of depth also applies to MGFs and coincides with the notion of depth in [17, 34]
adapted to the iterated-Eisenstein-integral representations in the references. Since at the
one-loop order the action of both (∇z)b and (∇τ )b on eMGFs D+[ ab ](z) produces a factor
of (Im τ)kf (k)(z) under (3.6) and (3.13), one may wonder whether the definition of depth
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should be based on ∇τ or ∇z. With our above definition based on ∇τ , the notion of depth
for eMGFs reduces to that of MGFs as z → 0, which is not the case for ∇z as it annihilates
MGFs.

3.4.1 Example of the sieve algorithm for eMGFs

The simplifications of eMGFs by repeated ∇τ -derivatives and HSR not only pinpoint an
unambiguous notion of depth but also generate relations among eMGFs through a gener-
alization of the sieve algorithm for MGFs in [7]. As an illustration, we derive the relations
among two-loop eMGFs in the second and third line of (3.34): the first derivatives of the
eMGFs on the left-hand side are given by

π∇τ C+
[ 4 1 1

0 1 1
z 0 0

]
= 20 C+

[ 7 0
1 0
z 0

]
− 2 C+

[ 7 0
1 0
0 0

]
− 6 C+

[ 4 0
0 0
z 0

]
C+
[ 3 0

1 0
0 0

]
− 2 C+

[ 2 0
0 0
z 0

]
C+
[ 5 0

1 0
0 0

]
+ 2 C+

[ 2 0
0 0
z 0

]
C+
[ 5 0

1 0
z 0

]
(3.36)

and

π∇τ C+
[ 4 1 1

0 1 1
0 z 0

]
= 8 C+

[ 7 0
1 0
z 0

]
+ 10 C+

[ 7 0
1 0
0 0

]
− 3 C+

[ 4 0
0 0
0 0

]
C+
[ 3 0

1 0
z 0

]
− 3 C+

[ 4 0
0 0
z 0

]
C+
[ 3 0

1 0
z 0

]
+ 2 C+

[ 3 0
0 0
z 0

]
C+
[ 4 0

1 0
z 0

]
+ 4 C+

[ 5 0
0 0
z 0

]
C+
[ 2 0

1 0
z 0

]
+ C+

[ 2 0
0 0
z 0

]
C+
[ 5 0

1 0
0 0

]
− C+

[ 2 0
0 0
z 0

]
C+
[ 5 0

1 0
z 0

]
(3.37)

The last lines of (3.36) and (3.37) drop out from the combination in (3.34), i.e.

π∇τ
(
2 C+

[ 4 1 1
0 1 1
0 z 0

]
+ C+

[ 4 1 1
0 1 1
z 0 0

] )
= 36 C+

[ 7 0
1 0
z 0

]
+ 18 C+

[ 7 0
1 0
0 0

]
− 6 C+

[ 4 0
0 0
z 0

]
C+
[ 3 0

1 0
0 0

]
− 6 C+

[ 4 0
0 0
0 0

]
C+
[ 3 0

1 0
z 0

]
− 6 C+

[ 4 0
0 0
z 0

]
C+
[ 3 0

1 0
z 0

]
+ 4 C+

[ 3 0
0 0
z 0

]
C+
[ 4 0

1 0
z 0

]
+ 8 C+

[ 5 0
0 0
z 0

]
C+
[ 2 0

1 0
z 0

]
= π∇τ

(
6 C+

[ 6 0
2 0
z 0

]
+ 3 C+

[ 6 0
2 0
0 0

]
− C+

[ 3 0
1 0
z 0

]2
− 2 C+

[ 3 0
1 0
z 0

]
C+
[ 3 0

1 0
0 0

]
+ 2 C+

[ 4 0
1 0
z 0

]
C+
[ 2 0

1 0
z 0

] )
(3.38)

This equality is still valid after dropping the ∇τ on the two sides, i.e. it can be uplifted
to (3.34) since the objects in the parenthesis have modular weight (0,−4) and do not
admit any integration constants. First, we observe in analogy with [7, Lemma 1] and from
the polynomial growth of eMGFs near the cusp τ → i∞ that any integration constant
can at most depend on the co-moving coordinates (u, v) of the elliptic variable z. These
transform as a vector under SL(2,Z), see (2.6), but it is impossible to construct an SL(2,Z)
singlet using only a single (commuting) vector, therefore the integration constant must be
independent of (u, v) as well. As there is no constant with a non-trivial modular weight,
the integration constant must vanish identically.

3.4.2 Depth of eMGFs and iterated τ -integrals

The above definition of depth can be translated into iterated-integral representations of
eMGFs. Similar to the MGF case [6, 17], the differential equations (3.6) of D+[ ab ](z|τ) at
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depth one can be solved via meromorphic τ integrals (to be performed at fixed u, v)∫ τ

i∞
dτ1 (τ1)j f (a+b)(uτ1+v|τ1) , 0 ≤ j ≤ a+b−2 (3.39)

and their complex conjugates whose coefficients are rational functions of τ and τ̄ . Higher-
depth eMGFs admit similar representations where (3.39) generalizes to iterated integrals
with multiple integration kernels τ j1f (k1), . . . , τ j`f (k`) and the depth of the eMGF sets
the maximum value of `. The exploration of this form of eMGFs based on the generating-
series considerations in later parts of the present paper will be the subject of a subsequent
publication [27].

Alternatively, one can integrate the differential equations of eMGFs w.r.t. z rather
than τ . At depth one, this has been implemented by expressing Zagier’s single-valued
elliptic polylogarithms in terms of finite linear combinations of meromorphic elliptic poly-
logarithms6 – iterated integrals over z – and their complex conjugates [36].

3.5 Laplace equations

In this section, we initiate the study of Laplace equations of modular invariant eMGFs,
i.e. dihedral ones (2.32) with |A| = |B| and trihedral ones (A.2) with |A| + |C| + |E| =
|B|+ |D|+ |F |. The modular invariant Laplacian on functions φ(τ) with vanishing modular
weight is given by

∆φ(τ) = 4(Im τ)2∂τ̄∂τφ(τ) = ∇τ
(
(Im τ)−2∇τφ(τ)

)
(3.40)

with the complex conjugate ∇τ = −2i(Im τ)2∂τ̄ of the Cauchy-Riemann derivative (3.2).
We reiterate that the τ -derivatives in (3.40) are taken at constant (ur, vr) if φ(τ) is chosen to
be an eMGF depending on z1, z2, . . . , zR. The Laplace action on modular invariant eMGFs
can be evaluated by combining the Cauchy-Riemann equation (3.3) with the complex-
conjugation properties (2.34), e.g.

∆D+[ k
k

]
(z|τ) = ∇τ

(
(Im τ)−2 k

π
D+

[
k+1
k−1

]
(z|τ)

)
= kπ∇τ D+

[
k−1
k+1

]
(−z|τ)

= k(k−1)D+[ k
k

]
(−z|τ) = k(k−1)D+[ k

k

]
(z|τ) (3.41)

This is completely analogous to the derivation of the Laplace equation of non-holomorphic
Eisenstein series Ek defined in (2.7) and reproduces the well-known Laplace eigenvalue
equation of the gk(z|τ) functions (2.8)

(
∆− k(k−1)

)
gk(z|τ) = 0 (3.42)

6By the tension between meromorphicity, homotopy invariance and doubly periodic integration kernels
for iterated integrals on the torus, several variants of the elliptic polylogarithms of Brown and Levin [32]
have appeared in the physics literature [33, 35]. The representations of D+[ ab ](z|τ) in [36] are based on the
elliptic polylogarithms with meromorphic integration kernels [35].
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3.5.1 Laplace equations of two-loop eMGFs

For MGFs built solely from Green functions, the Laplace equations have been studied for
two-loop graph functions [3], the Mercedes diagram [12], tetrahedral MGFs [13], certain
dihedral three-loop MGFs [14] and generating series of Koba-Nielsen integrals [16]. We
shall now generalize the Laplace equations of the two-loop MGFs in [3] to the elliptic case

Ca,b,c(Z) = C+
[
a b c
a b c
z1 z2 z3

]
=
( Im τ

π

)a+b+c∑
p1,p2,p3∈Λ′

δ(p1+p2+p3)χp1(z1)χp2(z2)χp3(z3)
|p1|2a|p2|2b|p3|2c

(3.43)

which is the special case of the two-loop eMGFs in (2.51) where the holomorphic and
antiholomorphic exponents line up. Only two of the characteristics Z = [z1, z2, z3] enter
as independent variables by translation invariance (2.36) and the ubiquitous dependence
on τ is again left implicit. By repeating the steps in (3.41), one can straightforwardly
evaluate the Laplace action to yield

∆Ca,b,c(Z) =
(
a(a−1) + b(b−1) + c(c−1)

)
Ca,b,c(Z)

+ ab

{
C+
[
a+1 b−1 c
a−1 b+1 c
z1 z2 z3

]
+ C+

[
a−1 b+1 c
a+1 b−1 c
z1 z2 z3

]}
(3.44)

+ ac

{
C+
[
a+1 b c−1
a−1 b c+1
z1 z2 z3

]
+ C+

[
a−1 b c+1
a+1 b c−1
z1 z2 z3

]}
+ bc

{
C+
[
a b+1 c−1
a b−1 c+1
z1 z2 z3

]
+ C+

[
a b−1 c+1
a b+1 c−1
z1 z2 z3

]}
The eMGFs in the last three lines with different holomorphic and antiholomorphic entries
can be rewritten in terms of the Ca,b,c(Z) with integer shifts in a, b, c via momentum
conservation (2.36), e.g.

C+
[
a+1 b−1 c
a−1 b+1 c
z1 z2 z3

]
+ C+

[
a−1 b+1 c
a+1 b−1 c
z1 z2 z3

]
=Ca+1,b+1,c−2(Z) + Ca−1,b+1,c(Z) (3.45)

+ Ca+1,b−1,c(Z)− 2Ca,b+1,c−1(Z)− 2Ca+1,b,c−1(Z)

The manipulations in (3.44) and (3.45) have already been used in [3] to derive the Laplace
eigenvalue equations of MGFs Ca,b,c(Z=[0, 0, 0]), and we find the same structure for their
elliptic generalization(

∆− a(a− 1)− b(b− 1)− c(c− 1)
)
Ca,b,c

= +ab
(
Ca−1,b+1,c + Ca+1,b−1,c + Ca+1,b+1,c−2 − 2Ca,b+1,c−1 − 2Ca+1,b,c−1

)
(3.46)

+ bc
(
Ca−2,b+1,c+1 + Ca,b−1,c+1 + Ca,b+1,c−1 − 2Ca−1,b,c+1 − 2Ca−1,b+1,c

)
+ ca

(
Ca−1,b,c+1 + Ca+1,b−2,c+1 + Ca+1,b,c−1 − 2Ca,b−1,c+1 − 2Ca+1,b−1,c

)
where the common arguments of the eMGFs (Z|τ) have been suppressed.
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3.5.2 Evaluating Ca,b,0 and Ca,b,−1

Starting out with a, b, c ≥ 1 in (3.46), its right-hand side may end up involving a lower
index which vanishes or which equals −1. We shall now evaluate both of these functions
separately. The first case can be simplified through momentum conservation (2.36) and
the factorization property (2.40),

Ca,b,0 = C+
[
a b 0
a b 0
z1 z2 z3

]
= D+[ aa ] (z13)D+[ b

b

]
(z23)− C+

[
a b
a b
z1 z2

]
= ga(z13)gb(z23)− ga+b(z12) (3.47)

leading to combinations of the gk(z|τ) functions. The second case also requires momentum
conservation (2.36) and factorization (2.40)

Ca,b,−1 = C+
[
a−1 b 0
a−1 b 0
z1 z2 z3

]
+ C+

[
a b−1 0
a b−1 0
z1 z2 z3

]
+ C+

[
a−1 b 0
a b−1 0
z1 z2 z3

]
+ C+

[
a b−1 0
a−1 b 0
z1 z2 z3

]
= ga−1(z13)gb(z23) + ga(z13)gb−1(z23) (3.48)

+ D+[ a−1
a ] (z13)D+

[
b
b−1

]
(z23) + D+[ a

a−1 ] (z13)D+
[
b−1
b

]
(z23)

3.5.3 Examples at low weight
By the last line in (3.48), the Laplacian of Ca,b,c(Z) with one of a, b, c = 1 cannot be solely
expressed in terms of objects gk(z) and Ca,b,c(Z) whose holomorphic and antiholomorphic
entries are lined up. For instance, the terms in the second line of

∆C1,1,1(Z) = 2g3(z12) + 2g3(z23) + 2g3(z31) (3.49)

+
{
D+[ 1

2 ](z13)D+[ 2
1 ](z23) + D+[ 2

1 ](z13)D+[ 1
2 ](z23) + cyc(z1, z2, z3)

}
are a signal for irreducible depth-two admixtures that can also be seen from the second
Cauchy-Riemann derivative (3.29) of C1,1,1(z, 0, 0) = C+

[ 1 1 1
1 1 1
z 0 0

]
. We similarly obtain,

(∆− 2)C2,1,1(Z) = 5g4(z12) + 5g4(z13)− g4(z23) + g2(z12)g2(z13)

+ 2D+[ 2
1 ](z32)D+[ 2

3 ](z12) + 2D+[ 2
1 ](z23)D+[ 2

3 ](z13)− g2(z13)g2(z23)

+ 2D+[ 1
2 ](z32)D+[ 3

2 ](z12) + 2D+[ 1
2 ](z23)D+[ 3

2 ](z13)− g2(z12)g2(z23)

(∆− 6)C3,1,1(Z) = C2,2,1(Z) + C2,1,2(Z) + C1,2,2(Z) + 8g5(z12) + 8g5(z13)

+ 3D+[ 1
2 ](z23)D+[ 4

3 ](z13)+3D+[ 2
1 ](z23)D+[ 3

4 ](z13)−2g2(z23)g3(z13)

+ 3D+[ 1
2 ](z32)D+[ 4

3 ](z12)+3D+[ 2
1 ](z32)D+[ 3

4 ](z12)−2g2(z23)g3(z12)

(∆− 4)C2,2,1(Z) = −2C2,1,2(Z)− 2C1,2,2(Z) + 12g5(z12)− 2g5(z13)− 2g5(z23)

+ 2g2(z23)
(
g3(z12)− g3(z13)

)
+ 2g2(z13)

(
g3(z12)− g3(z23)

)
+ 4D+[ 2

3 ](z23)D+[ 3
2 ](z13) + 4D+[ 2

3 ](z13)D+[ 3
2 ](z23) (3.50)

by combining (3.46) with (3.47) and (3.48). Note that (3.49) and (3.50) reduce to the
following Laplace equations of MGFs [3] as Z → 0:

∆C1,1,1(Z = 0) = 6E3 , (∆− 2)C2,1,1(Z = 0) = 9E4 − E2
2 (3.51)

∆C2,2,1(Z = 0) = 8E5 , (∆− 6)C3,1,1(Z = 0) = 3C2,2,1(Z = 0) + 16E5 − 4E2E3
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One may try to repeat the strategy in the MGF literature to seek linear combinations F
of Ca,b,c and ga+b+c such that the expression (∆−λ)F for some eigenvalue λ simplifies.
However, combinations of Ca,b,c and ga+b+c do not suffice to eliminate the D+[ ab ] (zij)
functions with a 6= b from the Laplace equations, i.e. the combinations

F3(Z) = C1,1,1(Z)− 1
3g3(z12)− 1

3g3(z23)− 1
3g3(z13)

F4(Z) = −1
2C1,2,1(Z)− 1

2C1,1,2(Z) + 1
5g4(z12) + 1

5g4(z13) + 1
2g4(z23) (3.52)

F5(Z) = 1
4C1,2,2(Z) + 1

4C2,1,2(Z) + 1
4C2,2,1(Z)− 1

10g5(z12)− 1
10g5(z23)− 1

10g5(z13)

can at best be engineered to eliminate ga+b+c and Ca,b,c from the right-hand sides of

∆F3(Z) = D+[ 1
2 ](z13)D+[ 2

1 ](z23) + D+[ 2
1 ](z13)D+[ 1

2 ](z23) + cyc(z1, z2, z3) (3.53)
∆F5(Z) = D+[ 2

3 ](z13)D+[ 3
2 ](z23) + D+[ 3

2 ](z13)D+[ 2
3 ](z23) + cyc(z1, z2, z3)

as well as

(∆− 2)F4(Z) = g2(z12)g2(z13) +
{
D+[ 2

1 ] (z12)D+[ 2
3 ] (z23) + D+[ 1

2 ] (z12)D+[ 3
2 ] (z23)

− D+[ 2
1 ] (z12)D+[ 2

3 ] (z13)− D+[ 1
2 ] (z12)D+[ 3

2 ] (z13) + (z2 ↔ z3)
}
(3.54)

In the limit where zj → 0, the above D+[ ab ] at odd a+b vanish, such that (3.53) and (3.54)
reduce to well-known Laplace equations of MGFs including [3]

(∆− 2)
(
−C2,1,1 + 9

10E4

)
= E2

2 (3.55)

3.5.4 Examples beyond two-loop eMGFs
The same interplay of Cauchy-Riemann equations, complex conjugations and momentum
conservation can be used to simplify the Laplacian of modular invariant eMGFs associated
with higher-loop dihedral graphs. For entries A,B of identical weight, we obtain

(
∆ + |A|

)
C+
[
A
B
Z

]
=

R∑
r,r′=1

arbr′ C+
[
A+Sr−Sr′
B−Sr+Sr′

Z

]
, |A| = |B| (3.56)

which verbatim generalizes the Laplacian of dihedral modular invariant MGFs in [7]. When
applied to the eMGFs D(1)

4 (z), D(2)
4 (z) in (3.31), the direct outcome of (3.56) is

∆D(1)
4 (z) = 3 C+

[ 2 0 1 1
0 2 1 1
z 0 0 0

]
+ 3 C+

[ 0 2 1 1
2 0 1 1
z 0 0 0

]
+ 6 C+

[ 1 2 0 1
1 0 2 1
z 0 0 0

]
∆D(2)

4 (z) = 4 C+
[ 2 0 1 1

0 2 1 1
z z 0 0

]
+ 8 C+

[ 2 1 0 1
0 1 2 1
z z 0 0

]
(3.57)

As detailed in [25], the right-hand sides of (3.57) simplify upon taking the linear combina-
tion D(1)

4 (z)− 3
4D

(2)
4 (z) and adding products of depth-one MGFs,

∆
(
D

(1)
4 (z)− 3

4D
(2)
4 (z)− 3E2g2(z) + 3

2g2(z)2 + 3
4E

2
2

)
(3.58)

= 2
(
D

(1)
4 (z)− 3

4D
(2)
4 (z)

)
+ 9E4 − 18E2g2(z) + 9g2(z)2 + 3

2E
2
2
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The simplicity of this particular linear combination can also be understood from the τ -
derivatives in (3.32) and (3.33): the relative coefficient of −3

4 ensures that the only depth-
three term ∼ D+[ 3

0 ](z) C+
[ 1 1 1

0 1 1
z 0 0

]
drops out from (π∇τ )2(D(1)

4 (z)− 3
4D

(2)
4 (z)). Hence, the

Laplace equation (3.58) eventually relates eMGFs of depth two.
In combination with the Laplace equation of the MGF D4 = C+

[ 1 1 1 1
1 1 1 1
0 0 0 0

]
[3], the

motivation for deriving (3.58) in [25] was to prove the Laplace equation

∆
(
F4(z)− 1

2F2(z)2
)

= 2F4(z)− 3F2(z)2

F2(z) = E2 − g2(z) (3.59)

F4(z) = D4
12 −

D
(1)
4 (z)
3 + D

(2)
4 (z)
4

which arose as a corollary of identities among higher-genus MGFs in [24].

4 Dihedral eMGFs from Koba-Nielsen integrals

We shall now explain how eMGFs arise from world-sheet integrals involving Koba-Nielsen
factors. This involves a generalization of the generating series of MGFs that were introduced
in [16, 17], and the open-string analogues of the subsequent generating functions of eMGFs
have been introduced and analyzed in [28]. This section deals with the case of two points,
i.e. dihedral eMGFs, and the next section covers the general case.

4.1 Two-point generating series and component integrals

Using the Kronecker-Eisenstein series (2.21) we define the following (2× 2)-array of gener-
ating series,

Yij(z0, η, η̄|τ) = 2i Im τ

∫
Σ

d2z2
Im τ

es02g(z02|τ)+s12g(z12|τ)

×

 Ω(z12, (τ−τ̄)η|τ)Ω(z12, η|τ) Ω(z02, (τ−τ̄)η|τ)Ω(z12, η|τ)

Ω(z12, (τ−τ̄)η|τ)Ω(z02, η|τ) Ω(z02, (τ−τ̄)η|τ)Ω(z02, η|τ)


ij

(4.1)

where i, j ∈ {1, 2} and

KN2(z0|τ) = es02g(z02|τ)+s12g(z12|τ) (4.2)

augments the usual Koba-Nielsen factor exp(s12g(z12|τ)) for two points z1 and z2 by an
additional factor depending on the extra puncture z0. The latter will be the elliptic variable
for the dihedral eMGFs since z1 can be fixed to zero by translation invariance and z2 is
integrated over. There are extra propagators from the extra puncture z0 only to the
unfixed z2 and this will generalize to higher-point cases in the next section. A factor
exp(s01g(z01|τ)) — that would be needed for a complete (n+1)-point Koba-Nielsen integral
— does not depend on the integration variables and we leave it out to simplify some of
the following expressions. Note that the variables η and η̄ do not appear symmetrically
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in definition (4.1) due to the (τ−τ̄) multiplying η but not η̄. As we shall see below this
effects the modular transformation of the generating series.

From the expansion (2.24) of the Kronecker-Eisenstein series we can define component
integrals by Laurent expanding to a given order in the variables η and η̄ by

Yij(z0, η, η̄|τ) =
∑
a,b≥0

ηa−1η̄b−1(2πi)bY (a|b)
ij (z0|τ) (4.3)

where the factor of (2πi)b is a convenient convention. Henceforth, we shall suppress the
arguments z0 and τ on the component integrals and use the shorthand

f
(a)
ij = f (a)(zij |τ) (4.4)

to compactly represent their integrands. The explicit form of the component integrals

Y
(a|b)
ij = (τ−τ̄)a

(2πi)b
∫

Σ

d2z2
Im τ

es02g(z02|τ)+s12g(z12|τ)

f (a)
12 f

(b)
12 f

(a)
02 f

(b)
12

f
(a)
12 f

(b)
02 f

(a)
02 f

(b)
02


ij

(4.5)

manifests their modular weights (0, b−a) under (2.5)

Y
(a|b)
ij (z′|τ ′) = (γτ̄ + δ)b−aY (a|b)

ij (z|τ) (4.6)

The second arguments (τ−τ̄)η and η̄ of the Kronecker-Eisenstein series in the generating
series (4.1) are engineered to attain vanishing holomorphic modular weights, at the expense
of introducing factors of Im τ into their complex-conjugation properties

Y
(a|b)
ij = (4y)a−bY (b|a)

ji with y = π Im τ (4.7)

The generating function (4.1) transforms as

Yij

(
z0

γτ + δ
, (γτ̄ + δ)η, η̄

γτ̄ + δ

∣∣∣ατ + β

γτ + δ

)
= Yij(z0, η, η̄|τ) (4.8)

showing the asymmetric role played by η and η̄.

4.1.1 Expansion of component integrals

Expanding the component integrals (4.5) in the Mandelstam variables s02 and s12 yields
dihedral eMGFs, and the powers of Im τ in (4.5) line up with those in the normalization
of the C+ in (2.32). For instance, for a, b 6= 0 the 11-component is

Y
(a|b)

11 = (τ−τ̄)a
(2πi)b

∑
k,`≥0

sk02s
`
12

k! `!

∫
Σ

d2z2
Im τ

(g(z02|τ))k(g(z12|τ))`f (a)
12 f

(b)
12

= (−1)b(2i)a−b
∑
k,`≥0

sk02s
`
12

k! `! C
+
[
a 0 1k 1`
0 b 1k 1`
0 0 zk 0`

]
, (a, b) 6= (1, 1) (4.9)

Within the arrays, zk = (z0, . . . , z0) denotes k repeated entries and similarly for 0 and 1.
Here and below, we rename z0 → z within the entries of eMGFs to avoid cluttering. The
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case (a, b) = (1, 1) is excluded from (4.9) since the short-distance behavior f (1)
12 f

(1)
12 ∼ |z12|−2

and es12g(z12|τ) ∼ |zij |−2sij introduces a kinematic pole in s12 upon integration over z2. This
pole can be exposed by standard subtraction schemes as for instance used in appendix D
of [16]

Y
(1|1)

11 = Im τ

π

∑
`≥0

∑
k≥1

sk02s
`
12

k! `!

∫
Σ

d2z2
Im τ

(g(z12|τ))`
(
g(z02|τ)k − g(z01|τ)k

)
f

(1)
12 f

(1)
12

− 1
s12

∑
k,`≥0

sk02s
`
12

k! `! g(z01|τ)k
∫

Σ

d2z2
Im τ

(g(z12|τ))` (4.10)

see appendix C.1 for a derivation and appendix C.2 for the leading orders of the α′-
expansion.

For a = 0 or b = 0, the corresponding edges disappear from (4.9), and we have

Y
(a|0)

11 = −(2i)a
∑
k,`≥0

sk02s
`
12

k! `! C
+
[
a 1k 1`
0 1k 1`
0 zk 0`

]
for a 6= 0

Y
(0|b)

11 = (−1)b−1(2i)−b
∑
k,`≥0

sk02s
`
12

k! `! C
+
[ 0 1k 1`
b 1k 1`
0 zk 0`

]
for b 6= 0 (4.11)

Y
(0|0)

11 =
∑
k,`≥0

sk02s
`
12

k! `! C
+
[ 1k 1`

1k 1`
zk 0`

]

The other components Y (a|b)
ij only differ by the characteristics in the first or second column

of the eMGFs in the expansions (with a, b 6= 0 and (a, b) 6= (1, 1))

Y
(a|b)

12 = (−1)b(2i)a−b
∑
k,`≥0

sk02s
`
12

k! `! C
+
[
a 0 1k 1`
0 b 1k 1`
z 0 zk 0`

]

Y
(a|b)

21 = (−1)b(2i)a−b
∑
k,`≥0

sk02s
`
12

k! `! C
+
[
a 0 1k 1`
0 b 1k 1`
0 z zk 0`

]
(4.12)

Y
(a|b)

22 = (−1)b(2i)a−b
∑
k,`≥0

sk02s
`
12

k! `! C
+
[
a 0 1k 1`
0 b 1k 1`
z z zk 0`

]
and the special cases with a = 0 or b = 0 are similar to (4.11). We note in particular that
the pure Koba-Nielsen integrals satisfy

Y
(0|0)

11 = Y
(0|0)

12 = Y
(0|0)

21 = Y
(0|0)

22 (4.13)

The extensions of (4.12) to (a, b) = (1, 1) can be reduced to Y (1|1)
11 in (4.10) and

Y
(1|1)

12 = − 1
s02

(
Y

(0|0)
11 + s12Y

(1|1)
11

)
(4.14)

by the following operations evident from the integral representations (4.5)

Y
(1|1)

22 = Y
(1|1)

11
∣∣z0→−z0
s12↔s02

, Y
(1|1)

21 = Y
(1|1)

12 (4.15)

As detailed in appendix C.2, the limit z0 → 0 of Y (1|1)
12 does not commute with its α′-

expansion, so we define the latter through the integration-by-parts identity (4.14).
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4.1.2 Examples of component-integral expansions

Examples of the above component integral expansions are

Y
(0|0)

11 = 1 + 1
2(s2

02 + s2
12) C+

[ 2 0
2 0
0 0

]
+ s02s12 C+

[ 2 0
2 0
z 0

]
+ 1

6(s3
02 + s3

12) C+
[ 1 1 1

1 1 1
0 0 0

]
+ 1

2s02s12(s02 + s12) C+
[ 1 1 1

1 1 1
z 0 0

]
+ 1

24(s4
02 + s4

12) C+
[ 1 1 1 1

1 1 1 1
0 0 0 0

]
(4.16)

+ 1
6s02s12(s2

02 + s2
12) C+

[ 1 1 1 1
1 1 1 1
z 0 0 0

]
+ 1

4s
2
02s

2
12 C+

[ 1 1 1 1
1 1 1 1
z z 0 0

]
+O(s5

ij)

as well as

Y
(1|0)

11 = 2is02 C+
[ 2 0

1 0
z 0

]
+ is2

02 C+
[ 1 1 1

0 1 1
z 0 0

]
+ is02s12 C+

[ 1 1 1
0 1 1
z 0 0

]
+O(s3

ij)

Y
(2|0)

11 = 4s02 C+
[ 3 0

1 0
z 0

]
+ 4s12 C+

[ 3 0
1 0
0 0

]
+ 2s2

12 C+
[ 2 1 1

0 1 1
0 0 0

]
+ 2s2

02 C+
[ 2 1 1

0 1 1
z 0 0

]
+ 4s12s02 C+

[ 2 1 1
0 1 1
0 z 0

]
+O(s3

ij)

Y
(3|0)

11 = −8is02 C+
[ 4 0

1 0
z 0

]
− 4is2

02 C+
[ 3 1 1

0 1 1
z 0 0

]
+ 8is02s12 C+

[ 3 1 1
0 1 1
0 z 0

]
+O(s3

ij)

Y
(1|0)

12 = −2is12 C+
[ 2 0

1 0
z 0

]
− is02s12 C+

[ 1 1 1
0 1 1
z 0 0

]
− is2

12 C+
[ 1 1 1

0 1 1
z 0 0

]
+O(s3

ij)

Y
(2|0)

12 = 4s02 C+
[ 3 0

1 0
0 0

]
+ 4s12 C+

[ 3 0
1 0
z 0

]
+ 2s2

02 C+
[ 2 1 1

0 1 1
0 0 0

]
+ 2s2

12 C+
[ 2 1 1

0 1 1
z 0 0

]
+ 4s02s12 C+

[ 2 1 1
0 1 1
0 z 0

]
+O(s3

ij)

Y
(3|0)

12 = 8is12 C+
[ 4 0

1 0
z 0

]
+ 4is2

12 C+
[ 3 1 1

0 1 1
z 0 0

]
− 8is02s12 C+

[ 3 1 1
0 1 1
0 z 0

]
+O(s3

ij) (4.17)

where we used the simplification rules from section 2.5, for instance translation invariance
or momentum conservation to rewrite

C+
[ 1 1 1

1 1 1
z z 0

]
= C+

[ 1 1 1
1 1 1
z 0 0

]
, C+

[ 1 1 1
0 1 1
0 z 0

]
= −1

2 C
+
[ 1 1 1

0 1 1
z 0 0

]
(4.18)

In later examples, we will also take advantage of the expansions

Y
(4|0)

11 = −16
{
s02 C+

[ 5 0
1 0
z 0

]
+ s12 C+

[ 5 0
1 0
0 0

]
+ s02s12 C+

[ 4 1 1
0 1 1
0 z 0

]
+ 1

2s
2
02 C+

[ 4 1 1
0 1 1
z 0 0

]
+ 1

2s
2
12 C+

[ 4 1 1
0 1 1
0 0 0

]
+O(s3

ij)
}

Y
(4|0)

12 = −16
{
s02 C+

[ 5 0
1 0
0 0

]
+ s12 C+

[ 5 0
1 0
z 0

]
+ s02s12 C+

[ 4 1 1
0 1 1
0 z 0

]
+ 1

2s
2
02 C+

[ 4 1 1
0 1 1
0 0 0

]
+ 1

2s
2
12 C+

[ 4 1 1
0 1 1
z 0 0

]
+O(s3

ij)
}

(4.19)

We note that some of the terms in the expansion are MGFs rather than eMGFs.

4.2 z0-derivatives of the generating series

The dependence of the generating series (4.1) on the elliptic variable z0 can be determined
using the differential operator ∇z0 = 2i Im τ∂z0 defined in (3.8). For this we record the
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following derivatives of the Kronecker-Eisenstein series [16, 32]7

∂zΩ(z, η|τ) = −2πiη̄
τ−τ̄

Ω(z, η|τ) + πδ(2)(z, z̄) (4.20)

and recall (2.25) for z-derivatives of the Green function. Moreover, the following iden-
tity [16] is a variant of the Fay identities (3.16)

f
(1)
02 Ω(z12, η|τ) = f

(1)
01 Ω(z12, η|τ) + ∂ηΩ(z12, η|τ)− Ω(z01,−η|τ)Ω(z02, η|τ) (4.21)

Using these it is straight-forward to compute

∇z0Y11 = −s02
[
(τ−τ̄)f (1)

01 Y11 + ∂ηY11 − (τ−τ̄)Ω(z01,−(τ−τ̄)η|τ)Y12
]

∇z0Y12 = 2πiη̄Y12 + s12
[
−(τ−τ̄)f (1)

01 Y12 + ∂ηY12 + (τ−τ̄)Ω(z01, (τ−τ̄)η|τ)Y11
]

∇z0Y21 = −2πiη̄Y21 − s02
[
(τ−τ̄)f (1)

01 Y21 + ∂ηY21 − (τ−τ̄)Ω(z01,−(τ−τ̄)η|τ)Y22
]

∇z0Y22 = s12
[
−(τ−τ̄)f (1)

01 Y22 + ∂ηY22 + (τ−τ̄)Ω(z01, (τ−τ̄)η|τ)Y21
]

(4.22)

For deriving this equation we have used partial integration to rewrite ∂z0Ω(z02, (τ−τ̄)η|τ) =
−∂z2Ω(z02, (τ−τ̄)η|τ) in terms of derivatives on the Koba-Nielsen factor and the Ω term.

Upon expansion of the Kronecker-Eisenstein series we obtain the matrix form

∇z0Yij = 2πiη̄(j−i)Yij +
∑
k≥0

(τ−τ̄)kf (k)
01

2∑
`=1

Rη(xk)j`Yi` (4.23)

where the following 2× 2 matrices no longer depend on τ

Rη(x0) =
(
−s02∂η −s02η

−1

s12η
−1 s12∂η

)

Rη(x1) =
(
−s02 s02
s12 −s12

)
(4.24)

Rη(xk) =
(

0 s02(−η)k−1

s12η
k−1 0

)
for k ≥ 2

The z-derivatives in (4.23) generalize those of the generating functions of open-string Koba-
Nielsen integrals studied in [28] which were shown in the reference to obey an elliptic KZB-
system [37–39]. The operators Rη(xk) furnish a (2 × 2)-matrix representation (acting on
functions of η) of abstract generators xk in the KZB equation for z-derivatives as discussed
in [28, §4] and agree with the operators r0,2(xk) in the reference at s01 = 0. However, there
is no open-string analogue of the first term 2πiη̄(j − i)Yij on the right-hand side of (4.23).

7The contributions from the delta function in (4.20) are suppressed within Koba-Nielsen integrals since
factors of esijg(zij |τ) scale with |zij |−2sij as zi → zj . Their vanishing in the limit of colliding punctures stems
from the analytic continuation from the region with Re(sij) < 0, or the “cancelled-propagator argument”
in old string-theory lingo.
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4.2.1 Implications for component integrals

When evaluated for component integrals Y (a|b)
ij as defined in (4.5), these derivatives with

respect to z0 become

∇z0Y
(a|b)

11 = −s02(τ−τ̄)f (1)
01 Y

(a|b)
11 − as02Y

(a|b)
11

− s02

a+1∑
k=0

(−1)k(τ−τ̄)kf (k)
01 Y

(a+1−k|b)
12

∇z0Y
(a|b)

21 = −s02(τ−τ̄)f (1)
01 Y

(a|b)
21 − as02Y

(a+1|b)
21

− s02

a+1∑
k=0

(−1)k(τ−τ̄)kf (k)
01 Y

(a+1−k|b)
22 − Y (a|b−1)

21

∇z0Y
(a|b)

12 = −s12(τ−τ̄)f (1)
01 Y

(a|b)
12 + as12Y

(a+1|b)
12

+ s12

a+1∑
k=0

(τ−τ̄)kf (k)
01 Y

(a+1−k|b)
11 + Y

(a|b−1)
12

∇z0Y
(a|b)

22 = −s12(τ−τ̄)f (1)
01 Y

(a|b)
22 + as12Y

(a+1|b)
22

+ s12

a+1∑
k=0

(τ−τ̄)kf (k)
01 Y

(a+1−k|b)
21 (4.25)

see [40] for similar differential equations of open-string component integrals. By the α′-
expansions (4.9) to (4.12) in terms of eMGFs, these differential equations are generat-
ing functions of z-derivatives of individual eMGFs in (3.10). Moreover, all the dihedral
HSRs (3.19) are automatically performed on the right-hand side of (4.25): the one-loop
eMGFs (τ−τ̄)kf (k)

01 = −(2i)k D+[ k
0
]
(z01|τ) generated by HSR are already explicit, and

none of the terms in the α′-expansions (4.9) to (4.12) of Y (a|b)
ij are amenable to further

HSR.
Let us consider an example by using the expansions (4.16) and (4.17) in terms of

eMGFs. The differential equations (4.25) give for instance

∇z0Y
(0|0)

11 = −s02Y
(1|0)

12 (4.26)

which at the order of s2
02s12 implies from (4.16) and (4.17) that (z = z0)

1
2∇z C

+
[ 1 1 1

1 1 1
z 0 0

]
= i C+

[ 1 1 1
0 1 1
z 0 0

]
(4.27)

This is consistent with the z-derivative of the eMGF on the left-hand side via (3.11). The
z0-derivatives (4.25) of several further component integrals are gathered in appendix B.1.

4.3 τ -derivatives of the generating series

We next determine the dependence of the generating series on the modular parameter τ ,
using the methods of [16, 17]. Besides ∂τΩ(z, η|τ) = 0 at fixed u and v, an important
identity for this is [16, 32],

π

( ∇τ
Im τ

+ 1 + η∂η

)
Ω(z, η|τ) = (Im τ)∂z∂ηΩ(z, η|τ) (4.28)
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where we recall that the τ -derivative ∇τ defined in (3.2) is taken at fixed co-moving coor-
dinates (u, v). When the τ -derivative acts on the Koba-Nielsen factor (4.2) it generates

π∇τ
(Im τ)2KN2(z0) =

(
−s02f

(2)
02 − s12f

(2)
12

)
KN2(z0) (4.29)

and therefore we also require the following consequences of the Fay identity involving
f

(2)
ij [16]

(
f

(1)
02 ∂η − f

(2)
02
)
Ω(z12, η|τ) =

(1
2∂

2
η − f

(2)
01

)
Ω(z12, η|τ)− Ω(z02, η|τ)∂ηΩ(z01,−η|τ) (4.30)

(
f

(1)
12 ∂η − f

(2)
12
)
Ω(z12, η|τ) =

(1
2∂

2
η − ℘(η|τ)

)
Ω(z12, η|τ) (4.31)

where ℘(η|τ) is the Weierstraß function that has the following expansion in η

℘(η|τ) = 1
η2 +

∞∑
k=4

(k−1)ηk−2Gk(τ) (4.32)

with Gk(τ) the holomorphic Eisenstein series (2.47) that vanishes for odd k.
Evaluating the τ -derivative of the generating series Yij of (4.1) leads to the Cauchy-

Riemann equation,

−4π∇τYj1 = 2πiη̄∂ηYj1 − s02(τ−τ̄)2f
(2)
01 Yj1 + 1

2(s02+s12)∂2
ηYj1

− s02(τ−τ̄)
(
∂ηΩ(z01,−(τ−τ̄)η

))
Yj2 − s12(τ−τ̄)2℘

(
(τ−τ̄)η

)
Yj1

−4π∇τYj2 = 2πiη̄∂ηYj2 − s12(τ−τ̄)2f
(2)
01 Yj2 + 1

2(s02+s12)∂2
ηYj2 (4.33)

+ s12(τ−τ̄)
(
∂ηΩ

(
z01, (τ−τ̄)η

))
Yj1 − s02(τ−τ̄)2℘

(
(τ−τ̄)η

)
Yj2

By expanding both the Weierstraß function and ∂ηΩ(z01,±(τ−τ̄)η) in η, we obtain,

−4π∇τYij =
2∑
`=1

[
−Rη(ε0) +

∞∑
k=2

(k−1)(τ−τ̄)kf (k)
01 Rη(bk) (4.34)

+
∞∑
k=4

(1−k)(τ−τ̄)kGkRη(εk)
]
j`

Yi`

where the following 2× 2 matrices no longer depend on τ ,

Rη(ε0) = 1
η2

(
s12 s02
s12 s02

)
− 1

2(s02+s12)∂2
η − 2πiη̄∂η

Rη(εk) =
(
ηk−2s12 0

0 ηk−2s02

)
for k ≥ 4 (4.35)

Rη(b2) =
(
−s02 s02
s12 −s12

)

Rη(bk) =
(

0 (−η)k−2s02
ηk−2s12 0

)
for k ≥ 3
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The steps for this calculation are analogous to [16, 28]. The terms involving f (k)
01 in (4.34)

are due to the elliptic variable z0 and do not feature in the generating series of MGFs
studied in [16, 17], whereas they appear in an analogous open-string calculation in [28,
§4] whose normalization we have adopted here.8 By inspection of the explicit operators
in (4.35) and comparison with (4.24), we see that,

Rη(bk) = Rη(xk−1) for k ≥ 2 (4.36)

which holds in identical form for their open-string analogues in [28] by the integrability of
the elliptic KZB system.

Similar operators Rη(εk) in the τ -derivatives of generating functions without the ex-
tra puncture [16, 41, 42] were conjectured to furnish a matrix operator representation of
Tsunogai’s derivation algebra [43, 44]. As we will see in sections 4.4 and 5.3, the oper-
ators Rη(εk), Rη(bk) in (4.35) and their generalizations to n ≥ 3 points obey modified
commutation relations studied in the context of an elliptic KZB system [28].

4.3.1 Implications for dihedral eMGFs as single-valued elliptic polylogarithms

Since all the matrix entries Yij generate dihedral eMGFs upon expansion in η, η̄, s02 and
s12, the form of the τ -derivative in (4.34) implies that they generalize Zagier’s single-valued
elliptic polylogarithms to arbitrary depth: we have seen examples of eMGFs at depth two
and three in sections 3.3.3 and 3.3.4 whose τ -derivatives introduce f (k)

01 → f (k)(z) multi-
plying lower-depth objects and thereby generalize the differential equations (3.6) at depth
one. From the f (k)

01 that multiply the entire generating series in (4.34), there cannot be an
upper limit to the depth of the eMGFs in the α′-expansions (4.9) and (4.12). Conversely, a
solution of (4.31) via Picard iteration will be explored in [27] where iterated integrals over
τ with an unbounded number of integration kernels f (k)(uτ+v|τ) are introduced.

4.3.2 Implications for component integrals

The Cauchy-Riemann equation (4.34) can be considered for the component integrals Y (a|b)
ij

introduced in (4.5). For these we obtain (for j = 1, 2 and any a, b ≥ 0),

−4π∇τY (a|b)
j1 = aY

(a+1|b−1)
j1 − s02(τ−τ̄)2f

(2)
01 Y

(a|b)
j1 − s02Y

(a+2|b)
j2

+ 1
2s12(a−1)(a+2)Y (a+2|b)

j1 + 1
2s02a(a+1)Y (a+2|b)

j1

− s12

a+2∑
k=4

(k−1)(τ−τ̄)kGkY (a+2−k|b)
j1

+ s02

a+2∑
k=2

(−1)k(k−1)(τ−τ̄)kf (k)
01 Y

(a+2−k|b)
j2

−4π∇τY (a|b)
j2 = aY

(a+1|b−1)
j2 − s12(τ−τ̄)2f

(2)
01 Y

(a|b)
j2 − s12Y

(a+2|b)
j1 (4.37)

+ 1
2s02(a−1)(a+2)Y (a+2|b)

j2 + 1
2s12a(a+1)Y (a+2|b)

j2

8Note that, apart from the absence of s01 in this work, the only difference to the open-string 2 × 2
representations r0,2(·) in [28] occurs in Rη(ε0) = r0,2(ε0)− 2ζ2(s02+s12)− 2πiη̄∂η.
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− s02

a+2∑
k=4

(k−1)(τ−τ̄)kGkY (a+2−k|b)
j2

+ s12

a+2∑
k=2

(k−1)(τ−τ̄)kf (k)
01 Y

(a+2−k|b)
j1

Similar to (4.25), these differential equations generate the τ -derivatives of individual eMGFs
in (3.3) upon α′-expansion. Again, the factors of (τ−τ̄)kf (k)

01 and (τ−τ̄)kGk signal that
dihedral HSRs (3.19) and their coincident limits (3.21) are automatically performed. Fur-
thermore, by the absence of D+[ 1

0 ](z01) and D+[ 2
0 ](0) from (4.37), the HSR incorporated

in these all-order differential equations are all from the subclass (3.22).
Let us consider an example of a τ -derivative of the generating series of eMGFs, fo-

cussing again on the simplest case Y (0|0)
11

−4π∇τY (0|0)
11 = −s12Y

(2|0)
11 − s02Y

(2|0)
12 (4.38)

Referring back to the component expansion in (4.16) and (4.17), we can consider the order
s02s

2
12 of this equation which becomes,

π∇τ C+
[ 1 1 1

1 1 1
z 0 0

]
= 2 C+

[ 2 1 1
0 1 1
0 z 0

]
+ C+

[ 2 1 1
0 1 1
z 0 0

]
(4.39)

which is consistent with (3.3). A variety of further examples of ∇τY (0|0)
11 can be found in

appendix B.2.

4.4 Commutation relations from integrability

Similar to the discussion of the elliptic KZB system obeyed by the open-string analogue
of the generating series (4.1) [28], the commutativity of mixed derivatives9 ∇z0∇τ implies
commutation relations of the operators Rη(xk), Rη(εk), Rη(bk). From their appearance in
the z0- and τ -derivatives (4.23) and (4.34), we obtain the direct analogues,

Rη([x0, εk]) =
k/2−1∑
a=1

(−1)aRη([xa, xk−1−a]) , k ≥ 4 (4.40)

Rη([xw, εk]) = −
w−1∑
a=0

(
w−1
a

)
Rη([xa+1, xk+w−a−2]) , k ≥ 4, w ≥ 1

of the relations among the r0,2(·) in the open-string setup [28], see appendix D for further
details. Here and below, we are using the shorthand Rη([a, b]) = Rη(a)Rη(b)−Rη(b)Rη(a).

9For the differential operators ∇τ and ∇z defined in (3.2) and (3.8), the following identity is useful for
the comparison of mixed derivatives,

−4π∇τ
[
(τ−τ̄)kf (k)(z|τ)

]
= k∇z(τ−τ̄)k+1f (k+1)(z|τ)

We recall that only the holomorphic versions ∇z and ∇τ commute, whereas ∇z does not commute with ∇τ
at fixed (u, v).
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However, the first term 2πiη̄(j−i)Yij in the z0-derivative (4.23) cannot be absorbed
into a redefinition of Rη(x0) acting solely on the second index j. This leads to deformations
of some of the commutation relations compared to the reference, i.e. the terms ∼ 2πiη̄ in,

Rη([x0, ε0])j` = 2πiη̄(`−j)Rη(ε0)j`

Rη([xw, ε0])j` =
bw/2c−1∑
a=0

(
w

a

)
(w−1−2a)

(a+1) Rη([xa, xw−1−a])j` (4.41)

+ 2πi(w−1)η̄(j−`)Rη(xw−1)j` , w ≥ 1

due to the last line of (D.1), for instance,

Rη([x1, ε0])j` = 0 (4.42)
Rη([x2, ε0])j` = Rη([x0, x1])j` + 2πiη̄(j−`)Rη(x1)j`

We observe the following relations for the adjoint action10 of ε0 on the operators εk and xk
(with k ≥ 1) under Rη(·)

Rη(adkε0εk+1) = 0 (4.43)
Rη(adkε0xk) = 0

which we have verified up to k = 6. In the open-string case, when the η̄-terms are absent,
it was shown in [28] that the relations (4.41) imply the second line of (4.43). The first line
is reminiscent of Tsunogai’s derivation algebra [43, 44] whose abstract generators εk obey
adkε0εk+1 = 0, see section 5.3 for further details.

The n-point analogues of these relations and others will be discussed in section 5.3.
Given that the above commutators apply to the operators Rη(bk) = Rη(xk−1) in the τ -
derivatives (4.34), they constrain the possible differential equations of eMGFs. As will
be explored in future work [27], the above commutation relations reduce the number of
independent iterated integrals in a perturbative solution to the differential equations of the
series Yij . Hence, the commutators of Rη(εk) and Rη(xw) crucially enter the counting of
independent eMGFs at given modular and transcendental weights, see [17] for the analogous
counting of MGFs.

4.5 Extracting differential equations of eMGFs

We shall now revisit the τ -derivatives (3.30), (3.32) and (3.33) of specific eMGFs and
pinpoint the equivalent of the underlying HSRs at the level of the generating series. The
three examples of this section occur in the α′-expansions (4.16) and (4.17) of component
integrals via

i C+
[ 1 1 1

0 1 1
z 0 0

]
= Y

(1|0)
11

∣∣
s2

02

1
6 C

+
[ 1 1 1 1

1 1 1 1
z 0 0 0

]
= Y

(0|0)
11

∣∣
s3

02s12
(4.44)

10The adjoint action is defined as adxy = [x, y].
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1
4 C

+
[ 1 1 1 1

1 1 1 1
z z 0 0

]
= Y

(0|0)
11

∣∣
s2

02s
2
12

and generalize the earlier ones in (4.26) and (4.38). The τ -derivative of the odd eMGF in
the first line can be read off from the coefficient of s2

02 on the right-hand side of

−4π∇τY (1|0)
11 = s02(Y (3|0)

11 − Y (3|0)
12 )− 2s02(τ−τ̄)3f (3)(z)Y (0|0)

11

+ s02(τ−τ̄)2f (2)(z)(Y (1|0)
12 − Y (1|0)

11 ) (4.45)

In combination with the α′-expansions (4.16) and (4.17) of the component integrals on the
right-hand side, this leads to the following equivalent of (3.30)

(π∇τ ) C+
[ 1 1 1

0 1 1
z 0 0

]
= 2D+[ 4

1 ](z) + 1
2(τ−τ̄)2f (2)(z)D+[ 2

1 ](z) (4.46)

Similarly, the second τ -derivatives of the weight-four examples in (4.44) follow from the
differential equation

(−4π∇τ )2Y
(0|0)

11 = −2s12(s02+s12)Y (4|0)
11 − 2s02(s02+s12)Y (4|0)

12

+ 3(s2
02+s2

12)(τ−τ̄)4G4Y
(0|0)

11 − 6s02s12(τ−τ̄)4f (4)(z)Y (0|0)
11

+ 2s02s12(τ−τ̄)3f (3)(z)(Y (1|0)
12 − Y (1|0)

11 ) (4.47)

α′-expanding the integrals on the right-hand side via (4.16), (4.17), (4.19) and isolating
the coefficients of s3

02s12 and s2
02s

2
12 yields the equivalents

(π∇τ )2D
(1)
4 (z) = − 9

8(τ−τ̄)4f (4)(z)D+[ 2
2 ](0) + 9

8(τ−τ̄)4G4D+[ 2
2 ](z)

− 3i
4 (τ−τ̄)3f (3)(z) C+

[ 1 1 1
0 1 1
z 0 0

]
+ 36D+[ 6

2 ](z) + 36D+[ 6
2 ](0)

− 6D+[ 3
1 ](z)2 − 6D+[ 3

1 ](0)2 + 12D+[ 4
1 ](z)D+[ 2

1 ](z)

− 12D+[ 3
1 ](z)D+[ 3

1 ](0) (4.48)

(π∇τ )2D
(2)
4 (z) = 3

4(τ−τ̄)4G4D+[ 2
2 ](0)− 3

2(τ−τ̄)4f (4)(z)D+[ 2
2 ](z)

− i(τ−τ̄)3f (3)(z) C+
[ 1 1 1

0 1 1
z 0 0

]
+ 48D+[ 6

2 ](z) + 24D+[ 6
2 ](0)

+ 16D+[ 4
1 ](z)D+[ 2

1 ](z)− 8D+[ 3
1 ](z)2 − 16D+[ 3

1 ](z)D+[ 3
1 ](0)

(4.49)

of (3.32) and (3.33). We have again used the identities (3.34) in intermediate steps which
can be derived either from the sieve algorithm as in section 3.4.1 or from the last line of
the all-order differential equations (B.4).

The procedure of this section to extract the differential equations of eMGFs from those
of Koba-Nielsen integrals in (4.37) is particularly efficient to systematically derive a large
number of τ -derivatives: instead of performing HSR on a case-by-case basis in the α′-
expansion, the exposure of f (k)(z) and Gk in (4.45) or (4.47) applies to all orders in α′ and
therefore incorporates an infinity of HSRs.
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5 Higher-point eMGFs from Koba-Nielsen integrals

In this section, the two-point generating functions Yij in (4.1) along with their differen-
tial equations in z0 and τ will be generalized to higher multiplicity. While the two-point
integrals Yij only generate dihedral eMGFs, the n-point Koba-Nielsen integrals to be intro-
duced below generate eMGFs of arbitrary graph topologies. The differential equations of
all eMGF topologies will be shown to line up with higher-depth versions of Zagier’s single-
valued elliptic polylogarithms. The expansion of (n ≥ 3)-point generating series below for
instance features the trihedral eMGFs in appendix A and additional two-loop eMGFs that
were absent in Yij . Hence, the higher-point generating functions of this section furnish
a variety of single-valued elliptic polylogarithms at higher depth that drop out from the
two-point setup.

5.1 Higher-point generating series

The n-point generating series of this section generalize the two-point integrands in (4.1) to
multiple factors of left- and right-moving Kronecker-Eisenstein series Ω and Ω̄. Following
the integrands of earlier generating series of genus-one integrals [16, 28, 41, 42], both left-
and right-movers will be composed of building blocks

ϕ~η(k1, k2, . . . , kr|τ) = Ω(zk1k2 , ηk2k3...kr |τ)Ω(zk2k3 , ηk3k4...kr |τ) . . .Ω(zkr−1kr , ηkr |τ) (5.1)

with ϕ∅(k|τ) = 1 and ϕη`(k, `|τ) = Ω(zk`, η`|τ) in case of one or two entries. The sums
ηki...kj = ηki + . . .+ ηkj of consecutive expansion variables ηk in the second arguments are
engineered to obtain the simple differential equation for the complex conjugate

∂zjϕ~η(1, ρ(2, 3, . . . , r)|τ) = 2πiηj
τ−τ̄

ϕ~η(1, ρ(2, 3, . . . , r)|τ) , j = 2, 3, . . . , r (5.2)

that does not depend on the permutation ρ ∈ Sr−1 of its entries.
Following the open-string integrands of [28] that also accommodate an extra uninte-

grated puncture z0, we will consider products of ϕ~η(1, . . .) and ϕ~η(0, . . .) for both chiral
halves of their closed-string versions below. The remaining legs 2, 3, . . . , n will be dis-
tributed over the ellipses of ϕ~η(1, . . .) and ϕ~η(0, . . .), and there are n! admissible ways of
doing so (including cases with a single entry ϕ∅(0|τ) = ϕ∅(1|τ) = 1). In an open-string
setting with a fixed integration domain γ on the A-cycle of a torus, these integrands give
rise to the following n!-component vectors of integrals,

Z(γ|KL ) =
∫
γ

(
n∏
j=2

dzj
)
ϕ~η(1,K)ϕ~η(0, L)

n∏
0≤i<j

esijgopen(zij |τ) (5.3)

that close under derivatives w.r.t. z0 and τ [28]. The entries of the ordered sequences K =
(k1k2 . . . ki) and L = (`1`2 . . . `j) are disjoint and yield {k1, k2, . . . , ki} ∪ {`1, `2, . . . , `j} =
{2, 3, . . . , n} as their union. The details of the open-string Green function11 gopen(zij |τ),

11Similar to the differential equations (2.25) and (2.26) of the closed-string Green function, the open-string
Green function in genus-one amplitudes can be taken to obey

∂zgopen(z|τ) = −f (1)(z|τ) , 2πi∂τgopen(z|τ) = −f (2)(z|τ)− 2ζ2
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the integration cycles γ and the association of ϕ~η(1,K)ϕ~η(0, L) with two Cayley graphs
rooted at the unintegrated punctures z1 and z0 can be found in the reference.

The corresponding closed-string generating functions generalizing the Yij in (4.1) are
constructed from a double copy of the integrand of (5.3)

Y (MN |KL ) = (2i Im τ)n−1
∫

Σn−1

(
n∏
j=2

d2zj
Im τ

)
KNn(z0|τ) (5.4)

× ϕ(τ−τ̄)~η(1,K)ϕ(τ−τ̄)~η(0, L)ϕ~η(1,M)ϕ~η(0, N)

up to a rescaling of all the formal variables η2, η3, . . . , ηn in the left-moving factors by
(τ−τ̄). This rescaling was already present in the factors of Ω(zj2, (τ−τ̄)η|τ) in the two-
point integrand (4.1) and ensures that the holomorphic modular weight of the component
integrals in (5.4) vanishes. The Koba-Nielsen factor is again taken to exclude a contribution
of s01g(z01|τ) that can be pulled out of the integral

KNn(z0|τ) =
n∏

0≤i<j
(i,j) 6=(0,1)

esijg(zij |τ) (5.5)

and we fix z1 = 0 by translation invariance as in the previous section. We suppress the
explicit dependence on ηi, η̄i, z0 and τ in the definitions (5.3) and (5.4).

The entries of the n!×n! matrix of closed-string integrals in (5.4) are labelled by 2 + 2
ordered sequences for the left- and right movers, i.e. there are n! choices of M

N and K
L

each. For instance, the 2× 2 matrix at two points in (4.1) arises from the choices M
N ,

K
L ∈

{ 2
∅ ,
∅
2 }, associated with double copies of {ϕη2(1, 2), ϕη2(0, 2)}. Similarly, the closed-string

integrals (5.4) at n = 3 points form a 6×6 matrix indexed by M
N ,

K
L ∈ {

23
∅ ,

32
∅ ,

2
3 ,

3
2 ,
∅
32 ,

∅
23 },

referring to a double copy of

n = 3 ⇒ ϕ~η(1,K)ϕ~η(0, L) ∈

ϕη2,η3(1, 2, 3), ϕη2,η3(1, 3, 2), ϕη2(1, 2)ϕη3(0, 3),

ϕη3(1, 3)ϕη2(0, 2), ϕη2,η3(0, 3, 2), ϕη2,η3(0, 2, 3)

 (5.6)

As will be spelt out below, also the closed-string generating functions (5.4) are closed
under differentiation in z0 and τ . This supports the expectation that the n! families of
ϕ~η(1,M)ϕ~η(0, N) form a basis of chiral integrands in Koba-Nielsen integrals at genus one
under Fay identities and integration by parts. It would be interesting to find a general
proof and to find a precise formulation in the language of twisted deRham theory.

5.1.1 Expansion of component integrals
The lattice-sum representations of its constituents implies that the simultaneous Laurent
expansion of (5.4) in sij , ηj and η̄j yields eMGFs at each order. At fixed order in ηj and
η̄j , one encounters component integrals over Kronecker-Eisenstein coefficients as in (4.5).

At three points, for instance, the first entry in the 6× 6 matrix yields

Y
(a,b|c,d)
23
∅
∣∣ 23
∅

= 1
(2πi)c+dY ( 23

∅ |
23
∅ )
∣∣∣
ηa−1

23 ηb−1
3 η̄c−1

23 η̄d−1
3

(5.7)

= (2i)a+b−c−d (Im τ)a+b

πc+d

∫
Σ

d2z2
Im τ

∫
Σ

d2z3
Im τ

f
(a)
12 f

(b)
23 f

(c)
12 f

(d)
23 KN3(z0)
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Each term in its α′-expansion can be lined up with the definition (A.1) or integral repre-
sentation (A.2) of trihedral eMGFs

Y
(a,b|c,d)
23
∅
∣∣ 23
∅

= (2i)a+b−c−d(−1)c+d
∞∑

k1,...,k5=0

sk1
12s

k2
13s

k3
23s

k4
02s

k5
03

k1!k2!k3!k4!k5!

× C+
[
a 0 1k1 1k4
0 c 1k1 1k4
0 0 0k1 (z)k4

∣∣∣∣∣ b 0 1k3
0 d 1k3
0 0 0k3

∣∣∣∣∣ 1k2 1k5
1k2 1k5
0k2 (−z)k5

]
(5.8)

where we have assumed that a, b, c, d 6= 0 to avoid trivialization of edges and (a, c), (b, d) 6=
(1, 1) to avoid kinematic poles as in (4.10). Moreover, we have not performed any topo-
logical simplifications (A.4) for low values of the ki and again renamed z0 → z to avoid
cluttering. When defining the three-point component integrals of the remaining matrix
entries, the expansion variables η23, η3, η̄23, η̄3 in (5.7) need to be adapted to the Kronecker-
Eisenstein integrand in (5.6), e.g. Y (a,b|c,d)

2
3
∣∣ ∅

23
would be the coefficient of ηa−1

23 ηb−1
3 η̄c−1

2 η̄d−1
3 .

The same approach leads to eMGFs of box-, kite- and tetrahedral eMGFs in the α′-
expansion of four-point component integrals, and there are no limitations to the eMGF
topologies obtained from generating functions (5.4) at higher multiplicity.

5.1.2 Two-loop eMGFs and beyond at leading orders in α′

We shall now focus on the α′ → 0 limit of various three-point component integrals (5.7)
and compare the contributions from different matrix entries. The simplest choice of M

N =
23
∅ = K

L in (5.8) yields products of one-loop eMGFs

Y
(a,b|c,d)
23
∅
∣∣ 23
∅

= (2i)a+b−c−d C+
[
a 0
c 0
0 0

]
C+
[
b 0
d 0
0 0

]
+O(sij) (5.9)

at leading order in α′, while different matrix entries turn out to yield two-loop eMGFs.
Here and below, we assume a, b, c, d 6= 0 and (a, c), (b, d) 6= (1, 1) to avoid trivialization of
edges and kinematic poles. With a different choice of f (c)

ij f
(d)
pq in the integrand of (5.7),

we obtain,

Y
(a,b|c,d)
32
∅
∣∣ 23
∅

=
Y ( 32

∅ |
23
∅ )

(2πi)c+d
∣∣∣
ηa−1

23 ηb−1
3 η̄c−1

23 η̄d−1
2

= (2i)a+b−c−d(−1)a+c C+
[
a b 0
c 0 d
0 0 0

]
+O(sij)

Y
(a,b|c,d)
2
3
∣∣ 23
∅

=
Y ( 2

3 | 23
∅ )

(2πi)c+d
∣∣∣
ηa−1

23 ηb−1
3 η̄c−1

2 η̄d−1
3

= (2i)a+b−c−d(−1)b+c+d C+
[
b a 0
d 0 c
z 0 0

]
+O(sij)

Y
(a,b|c,d)
3
2
∣∣ 23
∅

=
Y ( 3

2 | 23
∅ )

(2πi)c+d
∣∣∣
ηa−1

23 ηb−1
3 η̄c−1

3 η̄d−1
2

= (2i)a+b−c−d(−1)b+c+d C+
[
b a 0
c 0 d
0 0 z

]
+O(sij) (5.10)

Y
(a,b|c,d)
∅
32
∣∣ 23
∅

=
Y ( ∅32 |

23
∅ )

(2πi)c+d
∣∣∣
ηa−1

23 ηb−1
3 η̄c−1

23 η̄d−1
2

= (2i)a+b−c−d(−1)a+c C+
[
a b 0
c 0 d
z 0 0

]
+O(sij)

Y
(a,b|c,d)
∅
23
∣∣ 23
∅

=
Y ( ∅23 |

23
∅ )

(2πi)c+d
∣∣∣
ηa−1

23 ηb−1
3 η̄c−1

23 η̄d−1
3

= (2i)a+b−c−d(−1)a+c C+
[
a 0
c 0
z 0

]
C+
[
b 0
d 0
0 0

]
+O(sij)
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When also varying the f (a)
ij f

(b)
pq integrands in (5.9) and (5.10), the corresponding α′ → 0

limits include for instance

Y
(a,b|c,d)
32
∅
∣∣ 2

3
=
Y ( 32

∅ | 23 )
(2πi)c+d

∣∣∣
ηa−1

2 ηb−1
3 η̄c−1

23 η̄d−1
2

= (2i)a+b−c−d(−1)c C+
[
a b 0
d 0 c
0 z 0

]
+O(sij) (5.11)

Y
(a,b|c,d)
3
2
∣∣ 2

3
= Y ( 3

2 | 23 )
(2πi)c+d

∣∣∣
ηa−1

2 ηb−1
3 η̄c−1

3 η̄d−1
2

= (2i)a+b−c−d(−1)a+d C+
[
b 0
c 0
z 0

]
C+
[
a 0
d 0
z 0

]
+O(sij)

Note that the expansions (4.9) and (4.12) of the two-point component integrals only gen-
erate the restricted class C+

[ a 0 1
0 b 1
z1 z2 z3

]
of two-loop eMGFs with zi ∈ {0, z} and unit entries

in the third column. Hence, already the α′ → 0 limits in (5.9) to (5.11) exemplify the
extra value of three-point generating series to more flexibly access dihedral eMGFs. In
fact, it was shown in section 2.7 that any C+

[ a1 a2 a3
b1 b2 b3
z1 z2 z3

]
with zi ∈ {0, z} can be expanded in

terms of the two-loop MGFs in (5.10) and (5.11) with one of the ai and bj vanishing each.
Similarly, (n ≥ 4)-point generating series are needed to obtain trihedral eMGFs beyond
the restricted class in (5.8) and the remaining three-point component integrals.

With no upper limit on the multiplicity n of the generating series, all convergent
eMGFs (2.41) will eventually be generated by the α′ → 0 terms of component integrals,
regardless of their topology. Convergence of the lattice sums is ensured by excluding
those combinations of integrands f (1)

ij f
(1)
ij → |zij |−2 that introduce kinematic poles (e.g.

by imposing (a, c), (b, d) 6= (1, 1) in the above three-point examples). Still, one can use
subtraction schemes generalizing the ones in appendix C.1 to capture the (possibly nested)
kinematic poles of integrals over pairs of f (1)

ij f
(1)
ij .

5.2 Differential equations

The open-string prototypes (5.3) of the generating functions of eMGFs [28] obey KZB-type
differential equations

∂z0Z(γ|KL ) =
∑
P,Q

Xopen(KL |
P
Q )Z(γ| PQ ) (5.12)

2πi∂τZ(γ|KL ) =
∑
P,Q

Dopen(KL |
P
Q )Z(γ| PQ )

that do not depend on the choice of the integration cycle γ as long as the Koba-Nielsen fac-
tor vanishes on its boundary components. The (n!×n!)-matrix valued differential operators
Xopen and Dopen solely depend on z0 and τ via f (k)

01 and Gk,

Xopen =
∞∑
k=0

f
(k)
01 r~η(xk) (5.13)

Dopen = −r~η(ε0) +
∞∑
k=4

(1−k)Gkr~η(εk) +
∞∑
k=2

(k−1)f (k)
01 r~η(bk)

The notation r~η(·) refers to “open-string type” matrix representations of abstract operators
xj , εj , bj in an elliptic KZB system. Their all-multiplicity form is determined in section 4
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of [28], and each entry of the n!×n! matrices is linear in sij . The sums over P,Q in (5.12)
and later equations are understood to run over the n! distributions of {2, 3, . . . , n} into the
integrands ϕ~η(1, P )ϕ~η(0, Q) as described around (5.3).

The closed-string analogues of the differential equations (5.12) in z0 and τ take the
almost identical form: as will be justified below, the n-point generating series (5.4) of
eMGFs obeys the KZB-type differential equations

∇z0Y (MN |KL ) =
∑
P,Q

( ∞∑
k=0

(τ−τ̄)kf (k)
01 R~η(xk)

)
K
L

∣∣P
Q

Y (MN |
P
Q ) + 2πi(η̄L−η̄N )Y (MN |KL )

−4π∇τY (MN |KL ) =
∑
P,Q

(
−R~η(ε0) +

∞∑
k=2

(k−1)(τ−τ̄)kf (k)
01 R~η(bk) (5.14)

+
∞∑
k=4

(1−k)(τ−τ̄)kGkR~η(εk)
)
K
L

∣∣P
Q

Y (MN |
P
Q )

where we recall that ∇z0 = (τ−τ̄)∂z0 and use the shorthand

η̄L =
∑
j∈L

η̄j (5.15)

Most of the (n!×n!)-matrix valued operators R~η(·) are identical to their open-string coun-
terparts r~η(·) in (5.13) and [28],

R~η(xk) = r~η(xk)
∣∣
s01→ 0 ∀ k ≥ 0

R~η(bk) = r~η(bk)
∣∣
s01→ 0 ∀ k ≥ 2 (5.16)

R~η(εk) = r~η(εk) ∀ k ≥ 4

and we therefore inherit the following relations

R~η(bk) = R~η(xk−1) ∀ k ≥ 2 (5.17)

The need to set s01 → 0 on the open-string side in (5.16) only affects r~η(x1), r~η(b2) and
is just an artifact of s01gopen(z01|τ) entering the Koba-Nielsen factor of (5.3) while its
closed-string counterpart (5.5) is defined without s01g(z01|τ). Apart from this matter of
convention, the only difference between open- and closed-string operators occurs for ε0

R~η(ε0) = r~η(ε0)− 2ζ2

n∑
0≤i<j

sij − 2πi
n∑
j=2

η̄j∂ηj (5.18)

which closely follows the analogous relation from the z0-independent generating series [16,
17]. The combination r~η(ε0) − 2ζ2s012...n causes all the ζ2 to vanish as expected for an
operator relating closed-string quantities. At two points, for instance, we have [28]

rη(ε0) = 1
η2

(
s12 s02
s12 s02

)
− 1

2(s02+s12)∂2
η + 2ζ2(s01+s02+s12) (5.19)
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which reproduces the operator Rη(ε0) in (4.35) via (5.18). The remaining 2 × 2-matrices
rη(·) in the open-string differential equation (5.12) at two points are identical to their
closed-string counterparts Rη(·) in (4.24) and (4.35).

At three points, explicit 6×6 results for the three-point instances of rη2,η3(xk), rη2,η3(εk)
and rη2,η3(bk) can be found in sections 4.2.3, 4.2.4, 4.3.2 and 4.3.3 of [28]. The conventions
for ordering the rows and columns of the matrices in the reference follow the enumeration
of basis integrands in (5.6).

5.2.1 Origin of the closed-string differential equations

The τ -dependent constituents (τ−τ̄)kf (k)
01 and (τ−τ̄)kGk in (5.14) arise from the expansion

of Ω(z01, (τ−τ̄)ηL) and ℘((τ−τ̄)ηL) similar to those in (4.22), (4.33) and the open-string
differential equations in section 4 of [28]. Both the relation (5.16) between the operators
r~η(·) and R~η(·) in the open- and closed-string differential equations and the appearance
of the term 2πi∑n

j=2 η̄j∂ηj in (5.18) from the τ -derivative closely follow the results of [16]
on z0-independent generating series. The term 2πi(η̄L−η̄N )Y (MN |KL ) in (5.14) from the
z0-derivative, however, does not have any analogue in earlier work, and it generalizes the
term 2πiη̄(j−i)Yij in (4.23) to n points.

The first contribution 2πiη̄LY (MN |KL ) stems from the integrations by parts in the
simplification of the z0-derivative. As one can see in (4.16) of [28], the total derivatives
∂zj (with j ∈ {2, 3, . . . , n}) discarded in the open-string integrands are determined by the
factor of ϕ~η(0, L) in the integrand. The integrations by parts of these ∂zj yield terms of
the form 2πiη̄j via (5.2) that do not depend on the choices of M,N in ϕ~η(1,M)ϕ~η(0, N)
and add up to η̄L defined in (5.15).

The second contribution −2πiη̄NY (MN |KL ) in turn is a direct consequence of (5.2) and
translation invariance which implies ∂z0ϕ~η(0, N) = − 2πi

τ−τ̄ η̄Nϕ~η(0, N), regardless of the
choice of K,L in ϕ~η(1,K)ϕ~η(0, L).

5.2.2 Implications for eMGFs as single-valued elliptic polylogarithms

By the form of the differential equation (5.14), we arrive at the same type of conclusion
as in section 4.3.1: the eMGFs in the expansion of the generating series Y (MN |KL ) in
ηj , η̄j and sij generalize Zagier’s single-valued elliptic polylogarithms D+[ ab ] to arbitrary
depth. Since the higher-point generating series of this section probe eMGFs beyond the
dihedral topology, (5.14) implies that the general eMGF (2.41) regardless of the graph
topology obeys a higher-depth analogue of the differential equations (3.6) of the D+[ ab ]. In
a perturbative solution of (5.14) via Picard iteration [27], this will lead to a characterization
of arbitrary eMGFs via iterated τ -integrals with various numbers of integration kernels f (k)

and Gk.

5.3 Commutation relations from integrability and beyond

We shall now discuss the commutation relations of the operators R~η(xw) = R~η(bw+1) and
R~η(εk) that govern the differential equations (5.14) of the generating series of eMGFs. This
will extend the discussion in section 4.4 not only by the generalization to n points but also
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by classes of commutation relations that do not follow from the integrability of the KZB
system and connect with Tsunogai’s derivation algebra.

As in the two-point case, the commutativity of ∇z0 and ∇τ imposes commutation
relations among the operators in (5.14), see appendix D for intermediate steps in deriving
the subsequent results. The commutation relations (4.40) of the two-point 2× 2 operators
Rη(·) can be uplifted in identical form to their n-point n!× n! counterparts R~η(·)

R~η([x0, εk]) =
k/2−1∑
a=1

(−1)aR~η([xa, xk−1−a]) , k ≥ 4 (5.20)

R~η([xw, εk]) = −
w−1∑
a=0

(
w−1
a

)
R~η([xa+1, xk+w−a−2]) k ≥ 4, w ≥ 1

where we use the shorthand R~η([a, b]) = R~η(a)R~η(b) − R~η(b)R~η(a). In the generalization
of (4.41) to higher multiplicity in turn, the terms ∼ 2πiη̄(j−`) in the two-point relations
are promoted to differences of η̄L and η̄Q in (5.15):

R~η([x0, ε0])K
L

∣∣P
Q

= 2πi(η̄Q−η̄L)R~η(ε0)K
L

∣∣P
Q

R~η([xw, ε0])K
L

∣∣P
Q

=
bw/2c−1∑
a=0

(
w

a

)
(w−1−2a)

(a+1) R~η([xa, xw−1−a])K
L

∣∣P
Q

(5.21)

+ 2πi(w−1)(η̄L−η̄Q)R~η(xw−1)K
L

∣∣P
Q

While (5.20) agrees literally with the commutation relations of the operators r~η(xw) =
r~η(bw+1) and r~η(εk) in the open-string differential equations (5.12) [28], the extra terms
∼ 2πi(η̄L−η̄Q) in (5.21) are specific to closed strings. They balance the discrepancy ∼
2πiη̄j∂ηj between r~η(ε0) and R~η(ε0) in (5.18). In view of the analogous commutation
relations among the r~η(·), (5.21) is equivalent to[

n∑
j=2

η̄j∂ηj , R~η(x0)
]
K
L

∣∣P
Q

= (η̄Q−η̄L)R~η(ε0)K
L

∣∣P
Q

(5.22)

[
n∑
j=2

η̄j∂ηj , R~η(xk)
]
K
L

∣∣P
Q

= (k−1)(η̄L−η̄Q)R~η(xk−1)K
L

∣∣P
Q
, k ≥ 1

5.3.1 Beyond integrability

On top of the commutation relations (5.20) and (5.21) derived from integrability, the
operators R~η(xw) = R~η(bw+1) and R~η(εk) at n points are expected to obey variants of
the relations of Tsunogai’s derivation algebra [43, 44]. We henceforth suppress the matrix
indices K

L

∣∣ P
Q to avoid cluttering and use the notation

adxy = [x, y] , R~η(adNε0y) = adNR~η(ε0)R~η(y) , N ≥ 0 (5.23)
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for the adjoint Lie action. The (n! × n!)-matrix valued operators in (5.16) and (5.18) are
conjectured to enjoy the following nilpotency property, generalizing (4.43) at two points,

R~η(adk−1
ε0 εk) = 0 , k ≥ 4

R~η(adk−1
ε0 bk) = 0 , k ≥ 2 (5.24)

The first relation would imply that the property adk−1
ε0 εk = 0 of the derivations are pre-

served, though we will give examples below around (5.28) that not all their commuta-
tion relations are preserved by R~η(·). This is in contrast to the εk-type operators in the
differential equations of generating functions of elliptic multiple zeta values [41, 42] and
MGFs [16, 17]: in the simplified setting without the elliptic variable z0, the operators of
the reference are believed to furnish matrix representations of Tsunogai’s derivation al-
gebra which has been supported by evaluating a large number of nested commutators at
multiplicities n ≤ 5.

Even though the R~η(εk), R~η(bk) in this work are not expected to be matrix represen-
tations of the derivations εk, the nilpotency property (5.24) is believed to hold at any
multiplicity and supported by a broad range of explicit checks. On the basis of (5.24), the
differential equations (5.14) of generating series of eMGFs will be solved by Picard iteration
in follow-up work [27] and related to iterated τ -integrals.

Apart from the nilpotency property adk−1
ε0 εk = 0, Tsunogai’s derivations obey a variety

of further commutation relations [44–46] starting with

0 = [ε10, ε4]− 3[ε8, ε6] (5.25)
0 = 2[ε14, ε4]− 7[ε12, ε6] + 11[ε10, ε8]

at depth two and

0 = 80[ε12, [ε4, ε0]] + 16[ε4, [ε12, ε0]]− 250[ε10, [ε6, ε0]] (5.26)
− 125[ε6, [ε10, ε0]] + 280[ε8, [ε8, ε0]]− 462[ε4, [ε4, ε8]]− 1725[ε6, [ε6, ε4]]

at depth three. Relations at higher weight and depth can also be downloaded from [47].
The n!× n! matrices R~η(εk) preserve (5.25) in the sense that for instance

0 = R~η([ε10, ε4])− 3R~η([ε8, ε6]) (5.27)

since their open-string counterparts obey r~η([ε10, ε4])− 3r~η([ε8, ε6]) [28] and agree with the
R~η(εk) for the cases k ≥ 4 relevant to depth-two relations.

The depth-three relation (5.26), by contrast, no longer holds under the naive replace-
ment εk → R~η(εk). Still, both (5.25) and (5.26) are preserved when promoting

εk →

R~η(ε0) : k = 0

R~η(εk) +R~η(bk) : k ≥ 4
(5.28)

and the same has been observed for the open-string operators r~η(εk) in the place of R~η(εk)
in (5.28) [28].

– 45 –



J
H
E
P
0
3
(
2
0
2
1
)
1
5
1

In summary, the derivation algebra [43, 44] is a rich source of candidate commutation
relations of R~η(εk) and R~η(bk) that cannot be derived from integrability. In some cases such
as (5.24) and (5.27), these candidate relations have been verified to hold on a case-by-case
basis for low values of k or n and are then conjectured to generalize to all k and n. As
exemplified by the depth-three relation (5.26), however, some of the εk relations [44–47]
need to be modified to find an echo at the level of R~η(εk) and R~η(bk). The systematics is
likely to match the analysis of the open-string operators r~η(·) [28] and will be left as an
open problem.

5.3.2 Implication for the counting of independent eMGFs

While the above commutation relations among R~η(εk) and R~η(bk) are believed to be multi-
plicity agnostic, the two-point examples in (4.35) obey additional relations that are absent
at n ≥ 3. For instance, the diagonal form of Rη(εk≥4) = ηk−2diag(s12, s02) implies that
all two-point commutators Rη([εk1 , εk2 ]) vanish for k1, k2 ≥ 4. Hence, only their (n ≥ 3)-
point analogues can serve as meaningful testing grounds for relations like (5.27), where the
two-point example would be insensitive to the relative factor of −3.

The relations among Rη(εk) and Rη(bk) lead to a constrained class of differential equa-
tions for the dihedral eMGFs generated by Yij in (4.1). This resonates with the finding of
section 5.1 that (n ≥ 3)-point generating functions feature additional eMGFs, say those of
trihedral topologies or more general two-loop eMGFs in case of n = 3.

This situation is similar to that of generating series of MGFs that was investigated
in [16, 17]. The εk-type operators governing their τ -derivatives also exhibit degenerate com-
mutators at two points. As a consequence, the simplest imaginary MGF cusp forms [30]
were found to drop out from the two-point generating series of MGFs [17]. Moreover,
the absence of higher-depth MZVs in the degeneration of the two-point MGFs at the
cusp [17, 48–50] obstructs the appearance of single-valued iterated Eisenstein integrals
that require irreducible MZVs beyond depth one in their completion to be a modular form.
The connection between iterated Eisenstein integrals and MZVs as their multiple modular
values is actively discussed in the recent mathematics literature [19, 20, 51, 52].

In summary, the differential equations of the (n ≥ 3)-point eMGF generating se-
ries (5.4) are crucial for obtaining a reliable picture of the multiplicity-agnostic commuta-
tion relations of R~η(εk) and R~η(bk). Those in turn will serve as a starting point to count
the number of independent eMGFs (under Q-relations over MZVs and MGFs) at given
transcendental and modular weight [27]. This strategy has been used for the counting of
independent MGFs of arbitrary graph topology [17], where each relation in the derivation
algebra beyond adk−1

ε0 εk = 0 was found to yield additional dropouts.

6 Conclusion

In this work, we have defined eMGFs as non-holomorphic single-valued elliptic functions
associated to decorated Feynman graphs of a conformal scalar on a torus. They generalize
the MGFs in the configuration-space integrals of closed-string amplitudes at genus one by
additionally depending on an arbitrary number of torus punctures zr through the graph
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decorations. In string perturbation theory, eMGFs are naturally introduced in the non-
separating degeneration limit of higher-genus MGFs.

We have derived infinite families of algebraic and differential identities among eMGFs,
in many cases by following the key ideas in the derivation of identities among MGFs.
A key feature of eMGFs which was absent for MGFs are the meromorphic Kronecker-
Eisenstein coefficients f (k) in their differential equations w.r.t. zr and τ which we have
exposed from two complementary perspectives: an elliptic analogue of the holomorphic
subgraph reduction formulas for MGFs and generating functions of Koba-Nielsen integrals.

The differential properties of eMGFs generalize those of Zagier’s single-valued elliptic
polylogarithms to higher depth. This motivates a variety of follow-up studies of relevance
to both physicists and mathematicians:

• In the same way as MGFs reduce to iterated Eisenstein integrals and their complex
conjugates, eMGFs admit representations in terms of iterated integrals of meromor-
phic Kronecker-Eisenstein coefficients over the modular parameters. On the one hand,
the iterated-integral perspective will expose all algebraic relations among eMGFs that
are obscured by their lattice-sum representations and result in practical procedures
to analytically and numerically control their functional dependence on zr, and τ . On
the other hand, this may guide first steps in generalizing Brown’s construction [19, 20]
of non-holomorphic modular forms to include elliptic variables.

• It would be interesting to express eMGFs in terms of finite combinations of Brown-
Levin elliptic polylogarithms [32] and their complex conjugates as done at depth one
in [36]. This may lead to an explicit construction of a single-valued map for the
Brown-Levin elliptic polylogarithms. Upon evaluation at z = 0, such a single-valued
map for elliptic polylogarithms should yield another explicit realization of MGFs as
single-valued elliptic MZVs, complementing the construction in [18]. This amounts
to identifying the meromorphic counterparts in the realization of MGFs via z → 0
limits of eMGFs [6].

At the level of computational practicalities, an important follow-up step is to systematically
analyze and generate the relations among eMGFs, similar to the Mathematica package
for MGF relations [11]. Moreover, the Koba-Nielsen integrals and generating-function
techniques in sections 4 and 5 are likely to streamline the non-separating degenerations of
genus-two four- and five-point integrals initiated in [23, 24].

A Trihedral eMGFs

In this appendix, we define trihedral eMGFs and obtain some of their most important
properties in explicit form. A trihedral graph is connected; may have arbitrary depth
and weight; and has three vertices of valence three or higher in addition to an arbitrary
number of bivalent vertices. The first definition is in terms of Kronecker-Eisenstein sums,
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generalizing (2.32) of the dihedral case,

C+
[
A
B
Z

∣∣∣ CD
Y

∣∣∣ EF
X

]
(τ) = (Im τ)|A|+|C|+|E|

π|B|+|D|+|F |

∑
pr,kr,`r∈Λ′

δ

(
R1∑
r=1

pr −
R2∑
r=1

kr

)
δ

(
R2∑
r=1

kr −
R3∑
r=1

`r

)

×
(

R1∏
r=1

χpr(zr)
parr p̄

br
r

)(
R2∏
r=1

χkr(yr)
kcrr k̄

dr
r

)(
R3∏
r=1

χ`r(xr)
`err ¯̀fr

r

)
(A.1)

The arrays A,B,Z have entries ar, br, zr for r = 1, · · · , R1; the arrays C,D, Y have entries
cr, dr, yr for r = 1, · · · , R2 and the arrays E,F,X have entries er, fr, xr for r = 1, · · · , R3.
The trihedral eMGFs defined this way have two different permutation symmetries. First,
the eMGF is invariant under the R1! permutations of the triplets (ar, br, zr) within the
column of arrays A,B,Z. Second, it is also invariant under the 3! permutations of the
columns of arrays. The trihedral eMGF of (A.1) transforms under SL(2,Z) as a modular
form of weight (0, |B|+|D|+|F |−|A|−|C|−|E|), thereby generalizing (2.33) for the dihedral
case. The trihedral analogues of (2.36) may be found in appendix A.1.

The notation of (A.1) to arrange the arrays A,B,C,D,E, F and X,Y, Z into three
columns reflects the connectivity of the vertices and edges. A similar notation can be
found in [11] for the more complicated graph topologies in four-point MGFs, namely the
box-, kite- and tetrahedral topology. The notation for additional topologies of MGFs in
the reference can be similarly adapted to eMGFs by adjoining an array of characteristics Z
to each pair of arrays A,B that encode the holomorphic and antiholomorphic decorations
in a given part of the graph.

Alternatively, the trihedral eMGFs may also be obtained via an integral representation
in terms of the functions D+ of (2.17), thereby generalizing the dihedral formula (2.37) to
the trihedral case, and we have,

C+
[
A
B
Z

∣∣∣ CD
Y

∣∣∣ EF
X

]
(τ) =

∫
Σ

d2z

Im τ

∫
Σ

d2w

Im τ

(
R1∏
r=1
D+[ ar

br

]
(zr−z|τ)

)
(A.2)

×
(

R2∏
r=1
D+[ cr

dr

]
(yr+z−w|τ)

)(
R3∏
r=1
D+[ er

fr

]
(xr+w|τ)

)

The trihedral analog to (2.40) when a single column vanishes is given by,12

C+
[ 0 A

0 B
0 Z

∣∣∣ CD
Y

∣∣∣ EF
X

]
=
(

R1∏
r=1
D+[ ar

br

]
(zr)

)
(−1)|E|+|F | C+

[
C E
D F
Y −X

]
− C+

[
A
B
Z

∣∣∣ CD
Y

∣∣∣ EF
X

]
(A.3)

and there are topological simplifications to dihedral eMGFs in case of empty arrays or pairs
of single-entry arrays such as A = a and C = c, e.g.

C+
[
A
B
Z

∣∣∣ CD
Y

∣∣∣ ] = C+
[
A
B
Z

]
C+
[
C
D
Y

]
(A.4)

C+
[ a
b
z

∣∣∣ cd
y

∣∣∣ EF
X

]
= (−1)a+b+c+d C+

[
a+c E
b+d F
−z−y X

]
In the remainder of this appendix, we gather the generalizations of various identities among
dihedral eMGFs (2.32) to the trihedral case (A.1).

12Throughout, the dependence on τ will be understood but not exhibited explicitly.
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A.1 Trihedral momentum conservation

The trihedral eMGFs in (A.1) satisfy the following analogue of the dihedral momentum-
conservation identities (2.36)

R1∑
j=1
C+
[
A−Sj
B
Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

=
R2∑
j=1
C+
[
A
B
Z

∣∣∣∣ C−SjD
Y

∣∣∣∣ EFX
]

=
R3∑
j=1
C+
[
A
B
Z

∣∣∣∣ CDY
∣∣∣∣E−SjF

X

]
R1∑
j=1
C+
[

A
B−Sj
Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

=
R2∑
j=1
C+
[
A
B
Z

∣∣∣∣ C
D−Sj
Y

∣∣∣∣ EFX
]

=
R3∑
j=1
C+
[
A
B
Z

∣∣∣∣ CDY
∣∣∣∣ E
F−Sj
X

]
(A.5)

where we again use the notation Sj = [0, · · · 0, 1, 0, · · · , 0] for the array with non-vanishing
entry j. Similarly, the trihedral generalization of translation invariance in (2.36) is given by

C+
[ a1 ... aR1
b1 ... bR1
z1 ... zR1

∣∣∣∣ c1 ... cR2
d1 ... dR2
y1 ... yR2

∣∣∣∣ EFX
]

= C+
[ a1 ... aR1

b1 ... bR1
z1−w ... zR1−w

∣∣∣∣ c1 ... cR2
d1 ... dR2

y1+w ... yR2+w

∣∣∣∣ EFX
]

(A.6)

A.2 Two-point HSR in trihedral eMGFs

By inserting the Fay identity (3.17) among the Kronecker-Eisenstein coefficients f (a) into
the integral representation (A.2) of trihedral eMGFs, we obtain the following generalization
of (3.19) for two-point holomorphic subgraphs

C+
[
a1 a2 A
0 0 B
z1 z2 Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

= (−1)a2 D+[ a0
0 ](z12) C+

[
A
B
Z

∣∣∣ CD
Y

∣∣∣ EF
X

]
(A.7)

−
(a0−1
a1

)
C+
[
a0 A
0 B
z2 Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

+
a1∑
k=1

(a0−1−k
a1−k

)
D+[ k

0
]
(z12) C+

[
a0−k A

0 B
z2 Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

−
(a0−1
a2

)
C+
[
a0 A
0 B
z1 Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

+
a2∑
k=1

(a0−1−k
a2−k

)
D+[ k

0
]
(z21) C+

[
a0−k A

0 B
z1 Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

where a0 = a1 + a2 ≥ 3 and z12 = z1−z2 6= 0. The coincident limit z1 → z2 can again be
taken by isolating the singular behavior D+[ 1

0 ](z12|τ)→ − Im τ
z12

of the k = 1 terms in (A.7)
and Taylor expanding the coefficients of the simple pole around z1 = z2. Accordingly, the
relation in (3.21) straightforwardly generalizes to the trihedral case by carrying out the
following substitution

C+
[
... A
... B
... Z

]
→ C+

[
... A
... B
... Z

∣∣∣ CD
Y

∣∣∣ EF
X

]
(A.8)

in each term.

A.3 Three-point HSR in trihedral eMGFs

While (A.7) resolves two-point holomorphic subgraphs within trihedral eMGFs, an inde-
pendent HSR is needed for three-point holomorphic subgraphs that correspond to cycles
D+[ a0 ] (z1−z) D+[ c0 ] (y1+z−w) D+[ e0 ] (x1 +w) in the integrand of (A.2). By applying the
Fay identity (3.17) to the first two factors (assuming that a, c 6= 0)

D+[ a0 ](z1−z)D+[ c0 ] (y1+z−w) = (−1)a+cD+[ a+c
0
]
(w−z1−y1)

− (−1)a
(a+c−1

a

)
D+[ a+c

0
]
(y1+z−w)− (−1)c

(a+c−1
c

)
D+[ a+c

0
]
(z1−z)
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+ (−1)a
a∑
k=1

(a+c−k−1
a−k

)
D+[ k

0
]
(w−z1−y1)D+[ a+c−k

0
]
(y1+z−w) (A.9)

+ (−1)c
c∑

k=1

(a+c−k−1
c−k

)
D+[ k

0
]
(w−z1−y1)D+[ a+c−k

0
]
(z1−z)

one arrives at one out of three possible resolutions of the three-point holomorphic subgraph

C+
[
a1 A
0 B
z1 Z

∣∣∣∣ c1 C
0 D
y1 Y

∣∣∣∣ e1 E
0 F
x1 X

]
= (−1)a+c C+

[
A
B
Z

∣∣∣∣ CDY
∣∣∣∣ a1+c1 e1 E

0 0 F
−y1−z1 x1 X

]
− (−1)a1

(a1+c1−1
a1

)
C+
[
A
B
Z

∣∣∣∣ a1+c1 C
0 D
y1 Y

∣∣∣∣ e1 E
0 F
x1 X

]
− (−1)c1

(a1+c1−1
c1

)
C+
[
a1+c1 A

0 B
z1 Z

∣∣∣∣ CDY
∣∣∣∣ e1 E

0 F
x1 X

]
(A.10)

+ (−1)a1
a1∑
k=1

(a1+c1−k−1
a1−k

)
C+
[
A
B
Z

∣∣∣∣ a1+c1−k C
0 D
y1 Y

∣∣∣∣ k e1 E
0 0 F

−y1−z1 x1 X

]

+ (−1)c1
c1∑
k=1

(a1+c1−k−1
c1−k

)
C+
[
a1+c1−k A

0 B
z1 Z

∣∣∣∣ CDY
∣∣∣∣ k e1 E

0 0 F
−y1−z1 x1 X

]

Every term on the right-hand side is free of three-point holomorphic subgraphs, and the
terms in the first, fourth and fifth line feature two-point holomorphic subgraphs which can
be resolved via (A.7). One can repeat this procedure in different ways of performing the Fay
identity (A.9) on two out of three factors D+[ a0 ] (z1−z)D+[ c0 ] (y1+z−w)D+[ e0 ] (x1 + w)
in the integrand of (A.2): equating (A.10) with the two alternative expressions (obtained
from permutations of the three groups of labels) is a convenient source of identities among
eMGFs. For MGFs, this method of generating identities has been used in setting up a
database of identities [11], see [8] for the analogous trihedral HSR.

A.4 Fay identities beyond three-point HSR

Even in absence of holomorphic subgraphs, the Fay identity (A.9) can be imported to the
integrand of (A.2) to yield identities among trihedral eMGFs with two vanishing entries in
different parts of the graph (see [8] for the analogous identity among MGFs)

C+
[
a1 A
0 B
z1 Z

∣∣∣∣ c1 C
0 D
y1 Y

∣∣∣∣ EFX
]

= (−1)a+c C+
[
A
B
Z

∣∣∣∣ CDY
∣∣∣∣ a1+c1 E

0 F
−y1−z1 X

]
− (−1)a1

(a1+c1−1
a1

)
C+
[
A
B
Z

∣∣∣∣ a1+c1 C
0 D
y1 Y

∣∣∣∣ EFX
]

− (−1)c1
(a1+c1−1

c1

)
C+
[
a1+c1 A

0 B
z1 Z

∣∣∣∣ CDY
∣∣∣∣ EFX
]

(A.11)

+ (−1)a1
a1∑
k=1

(a1+c1−k−1
a1−k

)
C+
[
A
B
Z

∣∣∣∣ a1+c1−k C
0 D
y1 Y

∣∣∣∣ k E
0 F

−y1−z1 X

]

+ (−1)c1
c1∑
k=1

(a1+c1−k−1
c1−k

)
C+
[
a1+c1−k A

0 B
z1 Z

∣∣∣∣ CDY
∣∣∣∣ k E

0 F
−y1−z1 X

]
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B Differential identities of two-point component integrals

In this appendix, we shall list a variety of further examples of the differential equa-
tions (4.25) and (4.37) of two-point component integrals Y (a|b)

ij defined in (4.5). In this
appendix, we will use the shorthand notation

f̃
(a)
ij = (τ−τ̄)af (a)

ij = (τ−τ̄)af (a)(zi−zj |τ) (B.1)
G̃k = (τ−τ̄)kGk(τ) = −f̃ (k)(0|τ) , k ≥ 4

B.1 z0-derivatives

The simplest examples of the z0-derivatives (4.25) include (4.26) as well as

∇z0Y
(1|0)

11 = −s02f̃
(2)
01 Y

(0|0)
11 − s02f̃

(1)
01 Y

(1|0)
11 − s02Y

(2|0)
11 + s02f̃

(1)
01 Y

(1|0)
12 − s02Y

(2|0)
12

∇z0Y
(0|1)

11 = −s02Y
(1|1)

12

∇z0Y
(2|0)

11 = s02f̃
(3)
01 Y

(0|0)
11 − s02f̃

(1)
01 Y

(2|0)
11 − 2s02Y

(3|0)
11

− s02f̃
(2)
01 Y

(1|0)
12 + s02f̃

(1)
01 Y

(2|0)
12 − s02Y

(3|0)
12

∇z0Y
(2|2)

11 = s02f̃
(3)
01 Y

(0|2)
11 − s02f̃

(1)
01 Y

(2|2)
11 − 2s02Y

(3|2)
11

− s02f̃
(2)
01 Y

(1|2)
12 + s02f̃

(1)
01 Y

(2|2)
12 − s02Y

(3|2)
12 (B.2)

and

∇z0Y
(1|0)

12 = s12f̃
(2)
01 Y

(0|0)
11 + s12f̃

(1)
01 Y

(1|0)
11 + s12Y

(2|0)
11 − s12f̃

(1)
01 Y

(1|0)
12 + s12Y

(2|0)
12

∇z0Y
(2|0)

12 = s12f̃
(3)
01 Y

(0|0)
11 + s12f̃

(2)
01 Y

(1|0)
11 + s12f̃

(1)
01 Y

(2|0)
11

+ s12Y
(3|0)

11 − s12f̃
(1)
01 Y

(2|0)
12 + 2s12Y

(3|0)
12

∇z0Y
(2|2)

12 = s12f̃
(3)
01 Y

(0|2)
11 + s12f̃

(2)
01 Y

(1|2)
11 + s12f̃

(1)
01 Y

(2|2)
11 + s12Y

(3|2)
11

− s12f̃
(1)
01 Y

(2|2)
12 + 2s12Y

(3|2)
12 + Y

(2|1)
12 (B.3)

B.2 τ -derivatives

The simplest examples of the τ -derivatives (4.37) include (4.38) as well as

−4π∇τY (1|0)
11 = −2s02f̃

(3)
01 Y

(0|0)
11 − s02f̃

(2)
01 Y

(1|0)
11 + s02Y

(3|0)
11 + s02f̃

(2)
01 Y

(1|0)
12 − s02Y

(3|0)
12

−4π∇τY (0|1)
11 = −s12Y

(2|1)
11 − s02Y

(2|1)
12

−4π∇τY (2|0)
11 = 3s02f̃

(4)
01 Y

(0|0)
11 − 3s12G̃4Y

(0|0)
11 − s02f̃

(2)
01 Y

(2|0)
11 + 3s02Y

(4|0)
11

+ 2s12Y
(4|0)

11 − 2s02f̃
(3)
01 Y

(1|0)
12 + s02f̃

(2)
01 Y

(2|0)
12 − s02Y

(4|0)
12

−4π∇τY (2|2)
11 = 3s02f̃

(4)
01 Y

(0|2)
11 − 3s12G̃4Y

(0|2)
11 − s02f̃

(2)
01 Y

(2|2)
11

+ 3s02Y
(4|2)

11 + 2s12Y
(4|2)

11 − 2s02f̃
(3)
01 Y

(1|2)
12

+ s02f̃
(2)
01 Y

(2|2)
12 − s02Y

(4|2)
12 + 2Y (3|1)

11

−4π∇τY (4|0)
11 = 5s02f̃

(6)
01 Y

(0|0)
11 − 5s12G̃6Y

(0|0)
11 − 4s02f̃

(5)
01 Y

(1|0)
12 − 2s02f̃

(3)
01 Y

(3|0)
12

+ 3s02f̃
(4)
01 Y

(2|0)
12 − 3s12G̃4Y

(2|0)
11 − s02f̃

(2)
01 Y

(4|0)
11 + s02f̃

(2)
01 Y

(4|0)
12

+ 10s02Y
(6|0)

11 + 9s12Y
(6|0)

11 − s02Y
(6|0)

12 (B.4)
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and

−4π∇τY (1|0)
12 = 2s12f̃

(3)
01 Y

(0|0)
11 + s12f̃

(2)
01 Y

(1|0)
11 − s12Y

(3|0)
11 − s12f̃

(2)
01 Y

(1|0)
12 + s12Y

(3|0)
12

−4π∇τY (2|0)
12 = 3s12f̃

(4)
01 Y

(0|0)
11 − 3s02G̃4Y

(0|0)
11 + 2s12f̃

(3)
01 Y

(1|0)
11 + s12f̃

(2)
01 Y

(2|0)
11

− s12Y
(4|0)

11 − s12f̃
(2)
01 Y

(2|0)
12 + 2s02Y

(4|0)
12 + 3s12Y

(4|0)
12

−4π∇τY (2|2)
12 = 3s12f̃

(4)
01 Y

(0|2)
11 − 3s02G̃4Y

(0|2)
11 + 2s12f̃

(3)
01 Y

(1|2)
11

+ s12f̃
(2)
01 Y

(2|2)
11 − s12Y

(4|2)
11 − s12f̃

(2)
01 Y

(2|2)
12

+ 2s02Y
(4|2)

12 + 3s12Y
(4|2)

12 + 2Y (3|1)
12 (B.5)

C Singular two-point component integrals

This appendix is dedicated to the two-point component integrals Y (1|1)
ij defined by (4.5)

which have kinematic poles or singular z0 → 0 limits.

C.1 Treatment of kinematic poles

By the singularity of f (1)(z)f (1)(z) ∼ 1
|z|2 when z → 0, the component integrals Y (1|1)

11

and Y (1|1)
22 have kinematic poles in s12 and s02, respectively. The representation of Y (1|1)

11
in (4.10) which exposes its kinematic pole can be attained by splitting the Koba-Nielsen
factor in its definition via (4.5)

Y
(1|1)

11 = Im τ

π

∫
Σ

d2z2
Im τ

es12g(z12|τ)( es02g(z02|τ) − es02g(z01|τ)︸ ︷︷ ︸
(i)

+ es02g(z01|τ)︸ ︷︷ ︸
(ii)

)
f

(1)
12 f

(1)
12 (C.1)

The integrand of the first part (i) no longer has the 1
|z12|2 singularity since the factor of

es02g(z02|τ) − es02g(z01|τ) vanishes as z2 → z1. Hence, the α′-expansion can be performed at
the level of the integrand, and we obtain the first line of (4.10),

Y
(1|1)

11
∣∣
(i) = Im τ

π

∑
`≥0

∑
k≥1

sk02s
`
12

k! `!

∫
Σ

d2z2
Im τ

(g(z12|τ))`
(
g(z02|τ)k − g(z01|τ)k

)
f

(1)
12 f

(1)
12 (C.2)

In the second part of (C.1), the factor of es02g(z01|τ) does not depend on the integration vari-
able z2, and one can integrate by parts after identifying f (1)

12 e
s12g(z12|τ) = 1

s12
∂z2e

s12g(z12|τ)

Y
(1|1)

11
∣∣
(ii) = Im τ

π
es02g(z01|τ)

∫
Σ

d2z2
Im τ

1
s12

(
∂z2e

s12g(z12|τ))f (1)
12

= − Im τ

πs12
es02g(z01|τ)

∫
Σ

d2z2
Im τ

es12g(z12|τ)∂z2f
(1)
12 (C.3)

= − 1
s12

es02g(z01|τ)
∫

Σ

d2z2
Im τ

es12g(z12|τ)

In passing to the last line, we have used ∂z2f
(1)
12 = π( 1

Im τ − δ2(z12)), where the delta
function does not contribute in presence of es12g(z12|τ). The last line of (C.3) is amenable
to α′-expansion at the level of the integrand and reproduces the second line of (4.10).
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C.2 α′-expansion of Y (1|1)
ij

Based on the splitting of Y (1|1)
ij into (C.2) and (C.3), we shall now assemble the α′-expansion

to the subsubleading order. Based on standard MGF techniques, the polar part gives rise to

Y
(1|1)

11
∣∣
(ii) = − 1

s12

{
1 + s02g(z01|τ) + 1

2s
2
02g(z01|τ)2 + 1

2s
2
12E2(τ) +O(s3

ij)
}

(C.4)

The regular part (C.2) in turn only receives a single contribution at these orders in α′,

Y
(1|1)

11
∣∣
(i) = s02I11 +O(s2

ij) (C.5)

I11 = Im τ

π

∫
Σ

d2z2
Im τ

[
g(z02|τ)− g(z01|τ)

]
f

(1)
12 f

(1)
12

and the integral I11 can be determined by similar methods as in (C.3): identifying f (1)
12 =

∂z2g(z12|τ) and integrating by parts yields

I11 = Im τ

π

∫
Σ

d2z2
Im τ

g(z12|τ)
{(

π

Im τ
− πδ2(z12)

)[
g(z01|τ)− g(z02|τ)

]
− f (1)

02 f
(1)
12

}
(C.6)

The delta function drops out by the vanishing of g(z12|τ)
[
g(z01|τ)−g(z02|τ)

]
as z2 → z1, and

the contributions from g(z01|τ) and −g(z02|τ) integrate to 0 and −g2(z01|τ), respectively.
The last term can be further simplified by identifying f

(1)
12 g(z12|τ) = 1

2∂z̄2g(z12|τ)2 and
integrating by parts. After using ∂z̄2f

(1)
02 = π( 1

Im τ − δ
2(z02)) and taking the delta function

into account, we finally arrive at

I11 = −g2(z01|τ) + 1
2E2(τ)− 1

2g(z01|τ)2 (C.7)

In combination with (C.4), the leading orders in the α′-expansion of (4.10) are found to be

Y
(1|1)

11 = − 1
s12
− s02
s12

g(z01)− 1
2

(
s2

02
s12

+ s02

)
g(z01)2

− s02g2(z01) + 1
2(s02 − s12)E2 +O(s2

ij) (C.8)

The analogous α′-expansion of Y (1|1)
12 can be obtained along the same lines, or by exploit-

ing (C.8) and the integration-by-parts identity (4.14):

Y
(1|1)

12 = g(z01) + 1
2(s02+s12)

[
g(z01)2 − E2

]
+O(s2

ij) (C.9)

However, we note that this α′-expansion does not commute with the z0 → z1 limit: on the
one hand, already the leading term in (C.9) exhibits a logarithmic divergence as z0 → z1.
On the other hand, the integrand f (1)

02 f
(1)
12 of Y (1|1)

12 coincides with the one of Y (1|1)
11 as z0 →

z1, so performing the limit before integration and α′-expansion would yield the kinematic
pole in (C.8). We will rely on the α′-expansion (C.9) obtained from the integration-by-parts
relation (4.14) since the latter is essential for the derivation of the differential equations of
the generating series Yij .
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D Derivation of the commutation relations among R~η

This appendix provides intermediate steps in deriving the commutation relations of the
operators R~η(·) in the differential equations (4.23), (4.34) of two-point and (5.14) of n-
point generating series of eMGFs. In an n-point context, commutativity of the z0- and
τ -derivatives in (5.14) implies that

0 = [−4π∇τ ,∇z0 ]Y (MN |KL )

=
∑
P,Q

( ∞∑
k=2

(k−1)(τ−τ̄)kf (k)
01 R~η([x0, xk−1])−

∞∑
k=0

(τ−τ̄)kf (k)
01 R~η([xk, ε0])

+
∞∑
`=0

(τ−τ̄)`f (`)
01

∞∑
k=4

(1−k)(τ−τ̄)kGkR~η([x`, εk]) (D.1)

+
∞∑

1≤a<b
(τ−τ̄)a+b+1(bf (a)

01 f
(b+1)
01 − af (a+1)

01 f
(b)
01 )R~η([xa, xb])

+ 2πi(η̄L−η̄Q)
[
−R~η(ε0) +

∞∑
k=2

(k−1)(τ−τ̄)kf (k)
01 R~η(xk−1)

])
K
L

∣∣P
Q

Y (MN |
P
Q )

In obtaining the last line of (D.1), we have used that (η̄L−η̄Q)R~η(εk≥4)K
L

∣∣P
Q

= 0: it can

be seen from (4.42) of [28] that all the nonzero matrix entries of the derivations R~η(εk≥4)
preserve {L} = {Q} as sets (i.e. R~η(εk≥4)K

L

∣∣P
Q
6= 0 only if L is a permutation of Q). Once

the factor of bf (a)
01 f

(b+1)
01 − af (a+1)

01 f
(b)
01 in (D.1) is simplified via

bf
(a)
01 f

(b+1)
01 − af (a+1)

01 f
(b)
01

= (b−a)(a+b+1)!
(a+1)!(b+1)! f

(a+b+1)
01 − (−1)b(a+b)Ga+b+1

+ aGa+1θ(a−3)f (b)
01 − bGb+1θ(b−3)f (a)

01

+
a∑
k=4

(
a+b−k
b−1

)
(k−1)Gkf (a+b+1−k)

01 −
b∑

k=4

(
a+b−k
a−1

)
(k−1)Gkf (a+b+1−k)

01 (D.2)

one can read off the commutation relations of sections 4.4 and 5.3 from the coefficients of
f

(k)
01 and f (`)

01 Gk:

• Imposing the coefficients of (τ−τ̄)k+wGkf
(w)
01 in (D.1) with k ≥ 4 to vanish implies

the relations (5.20) that hold in identical form for the open-string operators r~η(·).

• The coefficients of (τ−τ̄)kf (k)
01 in (D.1) vanish by virtue of (5.21) which necessitates

the terms ∼ 2πi(w−1)(η̄L−η̄Q) specific to the closed-string generating series.

Note that the step functions θ(c) in the second line of (D.2) are taken to be 1 for c ≥ 0
and zero for c < 0, e.g. aGa+1θ(a−3) = 3G4 if a = 3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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