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ABSTRACT: The diurnal cycle of solar radiation represents the strongest energetic forcing and dominates the exchange of

heat and mass of the land surface with the atmosphere. This diurnal heat redistribution represents a core of land–

atmosphere coupling that should be accurately represented in land surface models (LSMs), which are critical parts of

weather and climate models. We employ a diagnostic model evaluation approach using a signature-based metric that de-

scribes the diurnal variation of heat fluxes. The metric is obtained by decomposing the diurnal variation of surface heat

fluxes into their direct response and the phase lag to incoming solar radiation. We employ the output of 13 different LSMs

driven with meteorological forcing of 20 FLUXNET sites (PLUMBER dataset). All LSMs show a poor representation of

the evaporative fraction and thus the diurnal magnitude of the sensible and latent heat flux under cloud-free conditions. In

addition, we find that the diurnal phase of both heat fluxes is poorly represented. The best performing model only repro-

duces 33% of the evaluated evaporative conditions across the sites. The poor performance of the diurnal cycle of turbulent

heat exchange appears to be linked to how models solve for the surface energy balance and redistribute heat into the

subsurface.We conclude that a systematic evaluation of diurnal signatures is likely to help to improve the simulated diurnal

cycle, better represent land–atmosphere interactions, and therefore improve simulations of the near-surface climate.

KEYWORDS: Atmosphere-land interaction; Heat budgets/fluxes; Land surface model; Model comparison; Model

evaluation/performance; Diurnal effects

1. Introduction

a. Background and motivation

Land surface models simulate distinct diurnal cycles of tur-

bulent heat fluxes, but they also show systematic deviations

from observations, which were reported in early (Henderson-

Sellers et al. 1995; Chen et al. 1997) and more recent model

intercomparison studies (Holtslag et al. 2013; Best et al. 2015).

Best et al. (2015) used observational meteorological forcing to

drive and evaluate state-of-the-art models at 20 different flux

towers. A striking finding of Best et al. (2015) was that simple

linear regression models with solar radiation as a predictor

variable outcompeted all land surface models when evaluated

with standard statistical metrics. The simple linear response

seen in observations can be regarded as a signature of complex

land–atmosphere interactions, which are known to simplify the

response of turbulent fluxes at certain scales (Jarvis and

McNaughton 1986; De Bruin and Holtslag 1982). Hence, these

land surface models, which include many different process pa-

rameterizations, may not represent diurnal land–atmosphere

interaction well. This is important because land–atmosphere

feedbacks propagate to larger scales and may ultimately affect

model sensitivity to global change (Miralles et al. 2019). Here,

we employ a diagnostic model evaluation based on diurnal sig-

natures of surface heat fluxes to quantify the performance of

LSMs specifically for diurnal heat redistribution processes and

point toward parameterizations that need to be improved.

b. Signatures of diurnal land–atmosphere exchange

The response of turbulent heat fluxes to solar radiation at the

subdaily time scale represents a signature of heat redistribution
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processes and is at the core of local land–atmosphere interac-

tions. The diurnal imbalance of solar heating of the surface is

redistributed into the lower atmosphere and into the subsur-

face, which is well constrained by the energy balance of the

whole system (Kleidon and Renner 2018). Heat redistribution

into the lower atmosphere is achieved by turbulent heat

transfer driving the atmospheric boundary layer development

(Oke 1987), while subsurface heat redistribution includes the

conduction and storage of heat in the soil and canopy. These

processes are linked through the surface energy balance [in

simplified form following Ohmura (2014)]

R
sd
2R

su
1R

ld
2H2 lE2dU

s
/dt5 �

s
sT4 , (1)

where Rsd is the incoming and Rsu the reflected solar radiation

at the surface, Rld is downwelling longwave radiation, and H

and lE are the turbulent heat fluxes of sensible and latent heat,

respectively. The term dUs/dt summarizes heat storage fluxes

at and into the subsurface such as the soil heat flux G or the

change in biomass heat storage. The emission of longwave

radiation from the surface �ssT
4 on the right-hand side of

Eq. (1) responds passively to the fluxes on the left-hand side.

Here, T refers to the surface temperature, s is the Stefan–

Boltzmann constant, and �s is the emissivity of the surface.

While downward solar radiation can be regarded as an in-

dependent driver (at subdaily time scale), all other terms are

influenced by surface properties and the exchange with the

atmosphere. Hence, the resulting diurnal course of turbulent

heat fluxes is an outcome of the response to the distinct

diurnal course of solar radiation, influenced by land–

atmosphere interaction and biophysical properties of the

surface. Although many studies focus on turbulent heat

fluxes as key heat fluxes in terms of local land–atmosphere

interaction (Best et al. 2015; Haughton et al. 2016; Zhou

and Wang 2016; Dirmeyer et al. 2018), there has been rel-

atively little focus on the diurnal signal itself. Exceptions

are Wilson et al. (2003) and Nelson et al. (2018), who used

the diurnal centroid as a measure of timing of turbulent

heat fluxes, and Renner et al. (2019b), who analyzed the

diurnal magnitude and phase lag of turbulent fluxes to solar

radiation in observations and evapotranspiration schemes.

The diurnal magnitude of turbulent heat fluxes is related to

the partitioning into sensible and latent fluxes, which is con-

trolled by many processes, especially the redistribution of

water (Dirmeyer et al. 2018). The phase lag of the turbulent

heat fluxes to solar radiation is influenced by diurnal heat

storage changes in the land–atmosphere system (Renner et al.

2019b). Although the absorption of solar radiation at the

surface comprises a dominant diurnal forcing, the land–

atmosphere system appears to be well buffered (Taylor 2012)

through the exchange of turbulent heat and radiation within

the lower atmosphere and heat conduction with the sub-

surface (Kleidon and Renner 2018). Heat storage changes at

some depth in the soil, within vegetation and the lower atmo-

sphere are relatively slow and typically show large lags to solar

radiation (Renner et al. 2019b). The heat fluxes that arise from

the instantaneous surface heating by absorption of solar radia-

tion redistribute heat into and interact with the larger heat res-

ervoirs of the soil and the atmosphere. Land surface model

parameterizations must resolve these interactions through the

(i) surface energy balance solution (Viterbo and Beljaars 1995),

and the subgrid-scale parameterizations of the (ii) surface or

canopy conductance (Monteith 1965; Medlyn et al. 2011), (iii)

the turbulent exchange in the surface layer (Monin and

Obukhov 1954; Businger et al. 1971; Maronga and Reuder

2017), and (iv) the planetary boundary layer (Baklanov et al.

2011). These subgrid-scale parameterizations are critical for

accurate simulation of the surface climate (Baklanov et al.

2011; Heidkamp et al. 2018), including heat andmass exchange

with atmosphere. Therefore, an evaluation of the diurnal phase

lag of simulated turbulent heat fluxes can identify important

model deficiencies and point toward improvements.

c. Research questions and design

Here we aim to assess the performance of LSMs at the

subdaily time scale when driven with meteorological observa-

tions. In particular, we address the open question of why the

complex land surface models can be outcompeted by simple

FIG. 1. Illustration of the signature-based metric of the phase lag. (a) A diurnal cycle of solar radiation Rsd and

two variables; Y1 is in phase with Rsd while Y2 is lagging Rsd. (b) The variables plotted as a function of Rsd. The

variable Y1 shows a linear relationship, but the lagged variable reveals a counterclockwise hysteresis loop. This

variation can be decomposed into a direct response dY/dRsd and a second-order response of dY/(›Rsd/›t) that can

be expressed as a phase lag in time units.
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linear regression models and point toward key parameteriza-

tions of heat redistribution processes that can be improved

given the information on observed diurnal signatures.

To assess the performance of current state of the art LSMs,

we use the signature basedmetric of the phase lag of heat fluxes

to solar radiation following Renner et al. (2019b). This method

has important advantages to standard model observation

evaluations. First, as a signature approach it does not evaluate

the variability over time, but the response to a common reference

variable such as solar radiation. Second, the approach effectively

decomposes diurnal variability into two metrics whose statistical

significance can be tested and which can be directly interpreted.

Wewill employ the PLUMBERdataset, whichwas established by

the Land Surface Model Benchmarking Evaluation Project pub-

lished by Best et al. (2015). The PLUMBER dataset includes 13

different land surfacemodels at 20 different FLUXNETsites. This

dataset thus represents a wide range of observations and includes

key land surface models used in climate and weather models.

In the following we will describe themetric and the sampling

design. The results will first focus on the observed variations

and controls of the phase lags and then report on the LSM

performance. In the discussion we focus on the suitability of

the phase lags as a signature and then diagnose which of the

LSM components may cause the observed discrepancies.

2. Methods

a. Diurnal signatures

The diurnal course of solar radiation is a dominant forcing

of the land–atmosphere exchange fluxes and has already

been identified as the dominant forcing of turbulent heat

fluxes over land (Kleidon and Renner 2013; Renner et al.

2016; Kleidon and Renner 2018). This motivated the devel-

opment of two related metrics to evaluate the diurnal varia-

tion of surface energy balance components and near-surface

atmospheric variables in reference to the variation in solar

radiation (Renner et al. 2019b). This method is briefly ex-

plained next.

Timing differences between variables that exhibit large di-

urnal magnitudes can be difficult to discern in time series plots.

However, when plotted against each other systematic devia-

tions can be seen directly. This is illustrated for solar radiation

Rsd and two variablesY1 andY2 in Fig. 1 as a time series plot in

Fig. 1a and hysteresis loop plot in Fig. 1b. The example shows a

variable Y1 that has a different magnitude than Rsd but is

perfectly in phase with Rsd. This results in a linear relationship

as illustrated in Fig. 1b. In contrast, variable Y2 has a time lag

with respect to Rsd. This time lag results in a counterclockwise

hysteresis loop when plotted against Rsd, see Fig. 1b. Such a

time lag is difficult to identify from a time series plot.

The diurnal variation of variable Y(t) can be decomposed

into a direct response to solar radiation and a response to its

time derivative ›Rsd(t)/›t:

Y(t)5b
1
R

sd
(t)1b

2

›

›t
R

sd
(t)1b

0
1 �(t) . (2)

This form of regression is known as the Bernardi–Camuffo

formula (Camuffo and Bernardi 1982). The regression coeffi-

cient b1 corresponds to the direct response of variableY toRsd.

The second coefficient b2 reflects the width of the hysteresis

loop, b0 is the intercept, and �(t) represents the residuals. The

regression has the benefit that the significance of the coeffi-

cients can be statistically determined and tested. Assuming

that both variables,Y and Rsd, can be represented by harmonic

functions, one can link the two coefficients b1 andb2 to obtain a

measure of the phase lag in time units (Renner et al. 2019b):

f5 tan21

�
b
2
v

b
1

�
, (3)

with the angular frequencyv5 (2p)/nd, wherend is the number of

time steps per day. Equation (3) eliminates the units of the two

FIG. 2. Map of the FLUXNET sites used in this study. Further information of the sites can be found in Table 1.
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variables Y and Rsd and allows easy transformation into time

units. This way one can compare the phase lag of different vari-

ables such as temperatures or heat fluxes (Renner et al. 2019b).

b. Data stratification

Conditional sampling of the datawas applied to isolate diurnal

heat exchange processes and to meaningfully compare the phase

lag ofmodels and observations. First, datawere filtered for cloud-

free days to avoid the influence of clouds on the diurnal cycle of

turbulent fluxes. Second, the daily evaporative fraction was used

to select days of similar evaporative conditions to avoid influ-

ences of biases from modeling of water redistribution processes.

Cloud-free dayswere determined bydays that havemore than

80% of the daily sum of surface clear-sky solar radiation Rsd,cs.

Half-hourly values of Rsd,cs were determined using the method

by Renner et al. (2019a). This method only requires measure-

ments of observed total incoming shortwave radiation Rsd and

shortwave incoming shortwave radiation at the top of atmo-

sphere Rs,in as input. The latter can be calculated with infor-

mation of location, date and time. The method estimates the

fractional transmission of solar radiation under cloud-free con-

ditions from monthly subsets of half-hourly data by quantile

regression of observedRsd against the theoretical maximum that

is set by Rs,in. Using a quantile of 80% for the regression was

found to yield the best agreement to the standard method of

Long and Ackerman (2000), which requires additional data of

diffuse radiation at a temporal resolution of minutes. Since such

data are not commonly available, even at FLUXNET sites, we

used the quantile regression approach of Renner et al. (2019a).

Renner et al. (2019b) found that evaporative conditions can

alter the phase lag of turbulent heat fluxes at a grassland site.

Therefore, we avoid a comparison of the phase lag on a day-by-

day basis. Instead we compare the distribution of daily phase

lag estimates for a given site and a given range of evaporative

fraction (EF). Daily EF was estimated by linear regression of

half-hourly values of lE(t) and H(t) for each day:

lE(t)5EF[H(t)1 lE(t)]1b
0
1 �(t) . (4)

The slope of this regression represents the daily evapo-

rative fraction. This method is more robust than a simple

ratio of daily average values of turbulent heat fluxes

[EF5lE/(H1lE)] because it can handle a few outliers

and its significance can be tested.

We then use the daily EF estimates and stratify the data into

10% bins of EF for each site. Since models and observations

differ in the estimated EF (see section 4) there are different

sample sizes between models and observations. We choose a

minimum of five samples for further statistical analysis of the

phase lag per EF bin and site. The agreement of themodels was

assessed with a test for the center of the distributions. Since the

models should be able to reproduce the phase lag of both the

sensible and the latent heat fluxes, we use the two-sample

Hotelling T2 test (Hotelling 1931). This is a two-dimensional

Student’s t test, which evaluates differences in the center of two

linked distributions.We use the implementation ‘‘rrcov::T2.test’’

in the R programming language (R Core Team 2015) within the

package ‘‘rrcov’’ (Todorov and Filzmoser 2009). We choose a

minimum requirement of five samples, and we then count the

frequency of nonrejections at a conservative significance level

a 5 0.01 per site and EF bin to assess model agreement.

3. Data

The analysis is based on the PLUMBER dataset published

by Best et al. (2015). It contains site observations from the

TABLE 1. FLUXNET sites used in this study. Column names are the site codes used throughout the manuscript, the respective

FLUXNET ID, duration of data used in this study, longitude and latitude, elevation above sea level, theKöppen climate classification, and

vegetation cover following IGBP. Annual average air temperature and precipitation are also reported.

Site code Code Duration Lon (8) Lat (8) Elev (m) Köppen Vegetation Ta (8C) P (mmyr21)

Amplero IT-Amp 2006–06 13.61 41.90 991 Cfa Croplands 9.6 742

Blodgett U.S.-Blo 2000–06 2120.63 38.90 1280 Csb Open needleleaf forest 11.2 1383

Bugac HU-Bug 2003–04 19.60 46.69 106 Cfb Croplands 9.8 549

ElSaler ES-ES1 1999–2006 20.32 39.35 1 Csa Permanent wetlands 17.4 560

ElSaler2 ES-ES2 2005–06 20.32 39.28 7 Csa Croplands 17.3 586

Espirra PT-Esp 2002–05 28.60 38.64 90 Csa Woody savannas 16.0 660

FortPeck U.S.-FPe 2000–06 2105.10 48.31 638 BSk Grasslands 5.7 392

Harvard U.S.-Ha1 1994–2001 272.17 42.54 353 Dfb Deciduous broadleaf forest 8.3 1080

Hesse FR-Hes 2001–06 7.07 48.67 293 Cfb Deciduous broadleaf forest 10.2 940

Howard AU-How 2003–05 131.15 212.50 41 Aw Savannas 26.4 1896

Howlandm U.S.-Ho1 1996–2004 268.74 45.20 72 Dfb Deciduous broadleaf forest 6.6 817

Hyytiala FI-Hyy 2001–04 24.30 61.85 185 Dfc Closed needleleaf forest 4.1 459

Kruger ZA-Kru 2002–03 31.50 225.02 357 BSh Savannas 22.0 271

Loobos NL-Loo 1997–2006 5.74 52.17 25 Cfb Closed needleleaf forest 10.2 943

Merbleue CA-Mer 1999–2005 275.52 45.41 65 Dfb Permanent wetlands 5.9 844

Mopane BW-Ma1 1999–2001 23.56 219.92 950 BSh Savannas 22.4 288

Palang ID-Pag 2002–03 114.04 22.35 52 Af Evergreen broadleaf forest 26.6 2078

Sylvania U.S.-Syv 2002–05 289.35 46.24 539 Dfb Deciduous broadleaf forest 4.3 491

Tumba AU-Tum 2002–05 148.15 235.66 932 Cfb Evergreen broadleaf forest 9.1 1285

UniMich U.S.-UMB 1999–2000 284.71 45.56 228 Dfb Deciduous broadleaf forest 7.5 618
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FLUXNET La Thuile dataset (https://fluxnet.fluxdata.org/

data/la-thuile-dataset/) and LSM simulations using the mete-

orological forcing of these sites. A brief overview is presented

below, but the reader is referred to the PLUMBER publica-

tions for further detail (Best et al. 2015; Haughton et al. 2016).

a. Observations

PLUMBER contains 20 sites distributed across continents

with different climate and land cover conditions, see the map in

Fig. 2 and details in Table 1. For the analysis of the observations

we removed data that did not pass quality control provided by

the PLUMBER dataset (see Best et al. 2015). Further data

screening for the present analysis revealed unrealistic values

for Rsd in some years and at some sites. In particular, daily

maximumRsd showed drifts at sites Amplero, UniMich, Mopane,

andKruger, and these yearswhere excluded from further analysis.

Single outliers at some sites were set to missing.

The data have been filtered for a set of criteria. First, we only

sampled cloud-free days that range between 93 days per year in

Loobos and 246 days per year in Blodgett. Since the number of

cloud-free days varies across sites this leads to a slightly im-

balanced dataset. Second, we restricted the analysis to days

with high potential solar radiation of more than 300Wm22.

Further days were excluded that have fewer than 30 observa-

tions per day, show nonsignificant slopes in determining EF [Eq.

(4)] or nonsignificant slopes of sensible and latent heat fluxes to

Rsd [Eq. (2)]. We also exclude days where the Bernardi–

Camuffo regression explains less than 50% of the diurnal vari-

ation in H and lE. These filter criteria help to exclude atypical

conditions. After applying the filter criteria, the dataset con-

tained between 83 days at Amplero (with one year of data) and

973 days at Blodgett (spanning 7 years of data), see Table 3.

The energy balance requires that the observedheat fluxes should

be balanced by the net radiation budget. However, most eddy

TABLE 2. Overview of the land surface models and reference models of the PLUMBER dataset, taken from Best et al. (2015) and

Haughton et al. (2016). The column ‘‘surface layer’’ indicates if a skin layer approach or the top soil layer is used to solve for the surface

energy balance.

Model ID Institution, model name, and details

Surface

layer Version Reference

CABLE CSIRO, Community Atmosphere

Biosphere Land Exchange

Top soil 2 Wang et al. (2011)

CABLE_SLI CABLE Soil–Litter–Iso Top soil 2.0_SLI 1.0 Haverd and Cuntz (2010)

CHTESSEL Tiled ECMWF Scheme for Surface

Exchanges over Land uncoupled

version

Skin layer 2 Balsamo et al. (2009) and Boussetta et al. (2013)

COLA-SSiB Center for Ocean–Land–Atmosphere

Studies Simplified SiB

Skin layer 1.0 Guo and Dirmeyer (2013)

ISBA-3 L CNRM, Interactions between Soil,

Biosphere, and Atmosphere–

Surface Externalisée

Top soil 3L-7.3 Masson et al. (2013)

ISBA_dif 14-layer soil moisture–temperature

model (Richard’s equation, heat

diffusion, root profile)

Top soil dif-7.3 Decharme et al. (2011) and Masson et al. (2013)

JULES Met Office, Joint U.K. Land

Environment Simulator

Top soil 3.1 Best et al. (2011)

JULES_altP Alternative (sub) surface

parameterizations

Top soil 3.1_alp Best et al. (2011)

Mosaic NASA, used in NLDAS-2 Top soil 1 Koster and Suarez (1992, 1994)

Noah2.7.1 NCAR, Community Noah land

surface model

Skin layer 2.7.1 Ek et al. (2003)

Noah3.2 Updated schemes Skin layer 3.2 www.ral.ucar.edu/

Noah3.3 Same as Noah3.2 but time varying

roughness

Skin layer 3.3 www.ral.ucar.edu/

ORCHIDEE IPSL, Organizing Carbon and

Hydrology in Dynamic Ecosystems

Top soil Trunk rev.

1401

Krinner et al. (2005)

Penman–Monteith FAO grass reference, no water stress — Best et al. (2015)

Manabe bucket Simple bucket (Manabe 1969) no

surface resistance

— Best et al. (2015)

1lin Linear regression using solar

radiation (Rsd)

— Best et al. (2015)

2lin Multiple linear regression using

Rsd, Tair

— Best et al. (2015)

3km27 Nonlinear regression usingRsd, Tair, rH — Best et al. (2015)

Observation FLUXNET La-Thuile free fair-use

subset

https://fluxnet.fluxdata.org/data/la-thuile-dataset/
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covariance measurement sites show a systematic underestimation

of the turbulent heat fluxes (Foken 2008; Stoy et al. 2013) and an

energybalance correction is oftenapplied to theobserved turbulent

heat fluxes. The energy balance correction is strongly debated since

(i) the magnitude of heat storage changes in the canopy and soil is

difficult to assess (Moderowet al. 2009; Eshonkulov et al. 2019) and

(ii) it is unclear how the gap should be partitioned between the

sensible and the latent heat flux (e.g., Roo et al. 2018). For a broad

assessment of the closure gap we used the Bowen ratio correction

(Twine et al. 2000), where the energy balance closure gap Qgap 5
Rn 2 (H1 lE1 dUs/dt) is partitioned to sensible and latent heat

fluxes by the Bowen ratioBr. We used the daily EF estimates [Eq.

(4)] to correct the latent and sensible heat fluxes.

However, note that the energy balance closure gap may itself

show a distinct phase shift to solar radiation. This could easily be

caused by errors in estimated heat storage. In this case the

Bowen ratio correction will add this phase shift to the corrected

turbulent heat fluxes. Therefore, the main part of the analysis of

this paper focuses on the uncorrected values, which is also true

for the previous publications using the PLUMBER dataset

(Best et al. 2015; Haughton et al. 2016; Nearing et al. 2018).

b. Land surface models

The PLUMBER dataset contains output from eight differ-

ent core models with multiple model versions for some such

that 13 different LSMs are finally compared (see Table 2). All

models were run with meteorological forcing data from each

site including Rsd, incoming longwave radiation Rld, near sur-

face air temperature Ta, wind speed u, relative humidity rH,

and precipitation P, all at half-hourly resolution (Best et al.

2015; Nearing et al. 2018). The vegetation type, vegetation

height and reference height of each site were used. Otherwise,

default parameter values were used with soil parameters from

internal routines. The models differ substantially in their struc-

ture and have thus different simulated output variables. Sensible

H and latent heat lE fluxes where reported for all models, which

is why we focus on these surface heat fluxes. For further inter-

pretation in terms of surface energy balance, we also included

net radiation balance Rn and the soil heat flux of these models. In

TABLE 3. Statistics of observed data for each site, with the number of years, the number of cloud-free days per year, and the number of

days after filtering was applied. Also reported are the 10th, 50th, and 90th percentiles of the daily EF estimates. The median of the daily

energy balance closure from a linear regression of the total turbulent heat fluxes against available energy is reported in columnEB closure.

The phase lags f are reported in minutes relative to incoming solar radiation.We report the median for the phase lag of net radiation and

the energy balance closure gap QGap and the 10th, 50th, and 90th percentiles for the latent and the sensible heat fluxes.

Site code nyr nyr,cf nfilter EFq10 EFq50 EFq90 EB closure fRn flE,q10 flE,q50 flE,q90 fH,q10 fH,q50 fH,q90 fQgap,q50

Amplero 1 174 83 0.52 0.57 0.69 0.73 4.2 21.1 6.6 26.5 237.5 211.9 0.1 12.6

Blodgett 7 246 973 0.32 0.45 0.61 0.78 0.0 27.3 7.9 23.2 9.9 30.2 42.2 297.5

Bugac 2 155 143 0.18 0.44 0.65 0.77 23.5 222.0 1.0 16.1 216.9 20.7 11.0 252.1

ElSaler 8 219 784 0.18 0.26 0.37 0.93 21.5 228.1 1.1 27.8 25.3 9.9 27.9 228.9

ElSaler2 2 230 227 0.27 0.70 0.82 0.55 22.2 28.4 14.7 50.0 240.3 10.9 41.3 215.7

Espirra 4 209 420 0.15 0.37 0.50 — 24.6 239.0 18.6 59.0 26.2 41.8 99.6 —

FortPeck 7 179 455 0.10 0.31 0.62 0.82 28.3 212.7 10.3 29.9 217.5 20.4 9.5 2134.0

Harvard 8 146 471 0.13 0.42 0.65 — 3.6 214.8 11.1 28.9 231.1 28.1 9.1 —

Hesse 6 121 348 0.14 0.47 0.65 0.61 24.0 1.7 22.0 50.5 235.7 25.0 15.9 226.1

Howard 3 201 393 0.32 0.55 0.75 0.87 21.8 211.6 11.8 32.3 215.3 5.2 29.1 231.8

Howlandm 9 140 543 0.15 0.38 0.49 0.90 21.6 0.0 18.4 51.0 28.3 1.7 16.8 229.9

Hyytiala 4 101 140 0.23 0.39 0.53 — 21.5 3.2 16.0 30.4 24.3 7.0 28.0 —

Kruger 2 178 70 0.09 0.23 0.45 — 24.3 220.0 4.3 21.0 0.1 8.1 24.6 267.9

Loobos 10 93 355 0.26 0.36 0.47 0.76 21.0 212.8 7.8 23.5 24.1 6.1 17.4 229.0

Merbleue 7 133 381 0.32 0.54 0.66 0.75 23.1 8.9 24.8 51.8 220.8 2.0 16.9 252.3

Mopane 3 217 345 0.05 0.16 0.51 0.71 24.3 240.0 22.4 17.2 22.0 6.8 18.5 235.7

Palang 2 168 288 0.64 0.71 0.76 — 29.2 0.1 9.7 21.8 228.2 214.0 20.2 —

Sylvania 4 130 190 0.14 0.48 0.60 0.62 7.5 1.7 21.2 48.2 227.6 25.7 10.4 22.2

Tumba 4 187 402 0.29 0.42 0.52 0.81 33.3 214.0 4.9 25.3 25.6 7.1 20.5 101.6

UniMich 2 150 170 0.11 0.48 0.67 — 1.4 28.4 11.4 34.4 29.8 3.5 19.9 —

Average 5 169 359 0.23 0.43 0.60 0.80 1.9 211.2 11.1 33.4 215.3 4.7 22.9 231.0

FIG. 3. Bar plot of the number of days matching the observed

evaporative fraction within the filtered dataset. Green bars show the

number of days with correct evaporative fraction, light blue refers to

too dry (lowEF), and dark blue toowetmodel simulation.A binwidth

of 0.1 was used to evaluate if a model is correct, too low, or too high.
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addition to the LSMs, Best et al. (2015) included benchmark ap-

proaches consisting of the physical benchmarks, the Manabe

bucket model and the Penman–Monteith potential evapotranspi-

ration (no water limitation), as well as three empirical benchmarks

that include a simple linear regression to Rsd, a multiple-linear re-

gressionwithRsd andTa (2lin), and a cluster-based regression using

relative humidity as a third variable (3km27). These regressions

were established out-of-sample and not for each site specifically.

4. Results

a. Evaporative conditions

The PLUMBER dataset provides a wide range of evaporative

conditions, expressed by the daily EF [Eq. (4)]. The dataset con-

tains rather dry sites likeMopane andKruger with amedian EF#

0.23, and ratherwet sites likePalang andElsalerwithmedianEF5
0.7. Thewetter sites show less variation inEF on the order of 20%,

while drier sites show variations on the order of 50%, see Table 3.

The fractional energy balance closure of the sites was ob-

tained by linear regression of the sum of the sensible and

latent heat fluxes against the available energy for each day.

Available energywas derived from the differenceof net radiation

and soil heat flux data, when available. The median energy bal-

ance closure is on average 80%.However, it ranges between 55%

at the site Elsaler2 (irrigated cropland) and 93% at the neigh-

boring site Elsaler, which is classified as a wetland, see Table 3.

Next, we evaluate the LSM ability to predict the evaporative

fraction for a given day, cut into 10% bins. We find very low

agreement of about 20% for the LSMs, see Fig. 3. While the

LSMs show seasonal variation in EF, the empirical bench-

marks show rather constant EF across season and sites, since

these have been obtained from an out-of-sample fit using the

remaining 19 sites. The Penman–Monteith physical bench-

mark, which predicts potential evapotranspiration, clearly

overestimates EF agreeing in only about 5% of all days in the

filtered dataset.

FIG. 4. Boxplot of observed daily phase lags of the latent heat flux lE for different EF bins and aggregated by land-cover classes. Small

numbers at the bottom of each panel show the number of samples per bin.
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The poor agreement of simulated EF is directly related

to the response of the sensible and latent heat fluxes to solar

radiation, since the sum of the turbulent heat fluxes is

strongly and almost linearly related to solar radiation

(Kleidon and Renner 2018; Conte et al. 2019). Here, daily

EF explains 79% of the slope of the latent heat flux to solar

radiation in the observations. The response is strongly

linked to the diurnal magnitude of the turbulent heat fluxes.

The model error in EF and the error in the diurnal magni-

tudes of the latent heat flux (derived from the diurnal range)

is strongly linearly related with an explained variance of

69% across all models. Therefore, the poor performance in

EF is in line with the poor simulation of the diurnal mag-

nitude of the sensible as well as the latent heat fluxes by the

LSMs and the benchmarks.

b. Phase lag of observations

Phase lags of the sensible and latent heat fluxes (fH and flE,

respectively) were computed for each day and are evaluated

for the filtered days, see Table 3. The Bernardi–Camuffo re-

gression is able to explain the dominant variation of the diur-

nal cycle of the latent heat flux (average across all sites

R2 5 0.91, lowest median R2 5 0.75 at Kruger) and the

sensible heat flux (average across all sites R2 5 0.95, lowest

medianR25 0.91 at Howard and Hyytiala). This emphasizes

the strong control of incoming solar radiation on turbulent

heat fluxes and the statistical robustness of our signature

approach. On average, the phase lag of H is about 15 min,

while lE has a lag of 111 min relative to Rsd. There is con-

siderable variation of site median values and within each

site. Generally, fH and flE show different patterns whereby

flE is larger than fH for 14 out of 20 sites. Systematically

larger phase lags of the sensible heat flux are found at

Blodgett, Espirra, El-saler, Kruger, Tumba, andMopane, all

being rather dry ecosystems.

To investigate the effects of water availability on the diurnal

turbulent heat exchange we separated the days by bins of 0.1 of

the daily evaporative fraction. We also grouped the sites by the

FIG. 5. Boxplot of daily phase lags of sensible heat fluxes H for different EF and aggregated by IGBP land-use classes.
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land-cover characteristics following the IGBP standards, see

Fig. 4 for flE and Fig. 5 for fH. We find that flE shows a

significant effect of wetness at open vegetation sites (grass-

lands, cropland, wetlands, and savannas; Fig. 4). Under dry

conditions a smaller phase lag (around 0) exists, which in-

creases with EF to about 20min. For the site Espirra, which is

classified as woody savanna, this effect of water availability is

further enhanced. Interestingly, forest ecosystems do not show

such a reduction of the phase lag flE when dry (see Fig. 4) and

remain rather stable with positive phase lags. The pattern for

the phase lag of the sensible heat flux appears to be rather

different, see Fig. 5. Under dry conditions (EF , 0.5) we find

phase lags around 0 for most sites, except at Espirra and

Blodgett, which show rather large positive phase lags at around

30min. Under wetter conditions with EF . 0.6, fH becomes

negative at the grassland, cropland, wetland and broadleaf

forest sites. At needleleaf forest sites fH remains relatively

stable across different EF.

As a reference we also computed the phase lag of net radi-

ation fRn (Table 3). Net radiation comprises incoming and

outgoing longwave as well as shortwave radiation and balances

the turbulent heat fluxes and heat storage fluxes such as the

ground heat flux. Usually, incoming shortwave radiation

dominates the diurnal variation of Rn, since longwave ra-

diation has much smaller diurnal amplitude but typically

with positive phase lags with respect to shortwave radiation

(Renner et al. 2019b). Therefore, we expect fRn ’ 0.

It appears that this is violated at sites Palang and Tumba,

which show a lag of 30 min, most likely a timing offset in the

radiation data. The timing of the turbulent heat fluxes,

however, appears to be correct.

c. Ranking model performance with phase lags

The Bernardi–Camuffo regression also explains a large part

of the diurnal cycle of heat fluxes simulated by the LSMs. To

quantify the performance of the models to reproduce the ob-

served phase lags of the turbulent fluxes, we evaluated the

distribution of phase lags of both the sensible and the latent

heat flux for a given site and bin of EF. Model agreement was

assessed with the two-sample Hotelling’s T2 test at a signifi-

cance level a 5 0.01. Figure 6 shows the frequency of agree-

ment for each model aggregated across all sites and bins of EF.

The LSMs are ordered by agreement, with the highest per-

formance of the Mosaic model with 33% agreement. Models

with more than 15% agreement are the versions of the JULES

models, CABLE and CHTESSEL. The empirical benchmark

with three input variables (3km27), including humidity, shows

relatively good performance, while the other two empirical

benchmarks show no agreement since these have no lag by

definition (1lin) or very small lags and hence a very small

variation. A range of LSMs show rather poor agreement and

fall between that of the physical model benchmarks, namely,

the Penman–Monteith and Manabe bucket models. This in-

cludes all the Noah3.2 LSM, ORCHIDEE, and COLA-SSiB

models as well as the two versions of the ISBA LSM.

The evaluation of the models was done with the observed

turbulent heat fluxes without the energy balance correction.

Applying a correction relies on an accurate estimation of the

available energy and heat storage fluxes. As a preliminary

assessment of whether energy balance played a role in our

results, we reevaluated the models with the Bowen ratio

correction of the turbulent heat fluxes, using site net radiation

and soil heat flux estimates. Other heat storage terms could

not be included, since the observational dataset does not

contain sufficient data. It appears that the closure gap itself

showed large phase lags at many sites (see Table 3). Such a

phase lag in the closure gap changes the diurnal course of the

corrected fluxes. In some cases this resulted in significantly

different phase lags of both fluxes. However, we find that for

most models the agreement with corrected observations is

much lower (see Fig. 6). Hence we will focus on the uncor-

rected fluxes in the following.

The ability to reproduce phase lags at the site level is

rather mixed. We ordered the performance per model and

site in a model performance matrix, shown in Fig. 7. Some

sites are easier to predict like Amplero and Kruger, while

only the Mosaic model achieves some agreement at the sites

Tumba and Blodgett.

Next, we evaluated whether the models tend to over or un-

derestimate the observed phase lags. Therefore, we assessed the

mean difference in phase lags for each site and evaporative con-

ditions. The boxplot in Fig. 8 shows that all LSMs tend to over-

estimate flE. The median bias ranges between110 and130min

for the poorer models. The three empirical benchmarks under-

estimate both flE and fH, because solar radiation is used as the

key predictor variable and there is no energy balance constraint.

The bestmodels (Mosaic, CABLE, and the two JULES versions),

show a large variation, but no overall bias in fH. The models

with a medium rank in the T2 statistics (CHTESSEL, CABLE-

SLI, the Noah LSMs) show systematic underestimation of fH.

COLA-SSiB overestimates both flE and fH. The LSMs with

poorest ranks show systematically large flE on the order of

FIG. 6. Ranking of model performance for phase lags of sensible

and latent heat by frequency of agreement across all sites and

evaporative conditions. The agreement is tested by aHotelling’sT2

test based on the distribution of phase lags of bothfH andflE for a

given site and 10% bin of EF. Dark blue bars show the statistics

without correction for energy balance in observations and light

blue shows with Bowen ratio correction.
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30min, whereby the ISBA models also show a systematic over-

estimation of the sensible heat flux.

We also evaluated the phase lag of the soil heat flux, which

shows large discrepancies with the observed values (see Fig. 8). All

models show a negative phase lag, i.e., higher values during the

morning than in the afternoon. The differences are on the order of

90min and can be as large as 3h. A bias in the phase lag of the

modeled soil heat flux will also influence the turbulent heat fluxes

in a LSM because of the surface energy balance constraint. The

effect on the turbulent fluxes, however, is only large when the

magnitude of the soil heat flux is also large. Therefore, we assessed

the diurnal magnitude of the soil heat fluxes, through the daily

range between the minimum and maximum soil heat flux. The

results are shown in aggregated form for short vegetation, savanna,

and forest inFig. 9. This shows that the observed soil heat fluxes are

much smaller than the modeled fluxes at forest and short vegeta-

tion sites. For savannas there is no clear systematic bias across all

the models. Hence, the modeled soil heat fluxes have rather large

magnitudes and a different sign for the phase lags, which reveals a

potential misrepresentation of heat storage changes.

d. Diurnal composites

To illustrate the performance of models at the diurnal cycle

we classified the sites into short vegetation (three sites) and

forest vegetation (four sites). Then hourly composites of the

data were computed using the median for a given bin of EF

(bin width 0.1). In Fig. 10 we show examples of these com-

posites for two poor performing models and two relatively well

performing models in short vegetation and forests. The figure

shows the latent, sensible, and soil heat fluxes against the ob-

served solar radiation. Under dry conditions at sites with short

vegetation, the observations show a rather linear response of

the turbulent heat fluxes without a distinct hysteresis (Figs. 10a,c).

Only the soil heat flux shows an anticlockwise hysteresis that is

smaller in the morning than in the afternoon, which corresponds

to a positive phase lag.

Figure 10a shows the corresponding results for CABLE,

which reveals a much too large anticlockwise hysteresis of the

sensible heat flux while the almost linear response of the latent

heat flux corresponds well to the observations. The large hys-

teresis of the sensible heat flux is linked to clockwise hysteresis

of the soil heat flux, which is higher in the morning than in the

afternoon. The discrepancies of the phase lags of H are linked

to the high diurnal magnitude of the soil heat flux of CABLE

(Fig. 9) and its negative phase lag (Fig. 8). Results for the

JULES model are shown in Fig. 10c for short vegetation under

dry conditions. The JULES model exhibits a very small hys-

teresis of the heat fluxes and corresponds much better to ob-

servations. Only the phase lag of the latent heat flux is slightly

overestimated.

As a further example, we chose forests sites under ample

moisture conditions (Figs. 10b,d). Observations show rather

large hysteresis loops for the turbulent heat fluxes, where the

latent heat flux shows a pronounced anticlockwise hysteresis,

which is compensated by a smaller clockwise hysteresis of the

sensible heat flux. Observations of the soil heat flux in forests

show very small values both inmagnitude and in terms of phase

lag. However, there is no assessment of the heat storage terms

FIG. 7. Model performance matrix of phase lags of sensible and latent heat per model and

site. Models are ordered by their overall performance across sites. Sites are ordered by their

relative agreement from high at the left to low at the right side. The color represents the

relative agreement between nonrejected Hotelling’s T2 tests and the number of tests applied

per site. The total number of tests differs betweenmodels and sites. This is because theEF of a

modelmay have no agreement with the EF in observations, e.g., Penman–Monteith at the dry

site Kruger. These missing conditions are shown with white color.
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in the biomass, which can be quite large (Meier et al. 2019).

Figure 10b shows the ISBA-dif model that exhibits a large

clockwise hysteresis and magnitude of the soil heat flux, a

common issue of this model (Figs. 8 and 9). For these reasons

the ISBA-dif model produces very large hysteresis loops for

the turbulent heat fluxes. Their direction, however, corre-

sponds well with the observations. Figure 10d shows the

ORCHIDEE LSM, which better reproduces the diurnal

patterns. This is related to a smaller hysteresis loop of the soil

heat flux, see also Fig. 8. ORCHIDEE, however, consistently

overestimates the hysteresis of the latent heat flux, which

results in poor agreement when evaluated at the site level,

see Fig. 7.

5. Discussion

We employed the approach of diagnostic signatures (Gupta

et al. 2008) to evaluate complex models by a typical behavior

that can be quantified both from observations and models. As

diagnostic signature we employed the metric of a phase lag of

heat fluxes to solar radiation at the subdaily time scale. In the

following we discuss the typical signatures obtained from ob-

servations, and discuss the LSM performance to diagnose

which process representations need to be improved.

a. Phase lag in observations

We focused on the diurnal variation of the turbulent heat

fluxes that were obtained from eddy covariance observations

from the FLUXNET La-Thuile synthesis dataset. The diurnal

variation of turbulent heat fluxes can be rather well captured

by its direct response to solar radiation and its time derivative,

explaining more than 90% of subdaily variation under the

cloud-free, summertime conditions evaluated here. This

emphasizes the strong control of solar radiation for land–

atmosphere exchange but also highlights the presence of

heat storage effects that are captured by the phase lags.

Both can be well identified on a daily basis. Our results

further show significant temporal variation in the phase

lags as well as differences between sites. Still we find con-

vergence of phase lag behavior within broad vegetation cate-

gories, consisting of forests, savannas and short vegetation.

Short vegetated sites show a significant influence of water

limitation on the diurnal course of the turbulent fluxes. Under

amplemoisture supply and high EF there is a positive phase lag

in the latent heat flux and a tendency for negative phase lags of

the sensible heat flux. Under drier conditions the positive

phase lag of the latent heat flux is reduced toward zero. This

behavior is consistent with a recent analysis of turbulent heat

fluxes at a grassland site by Renner et al. (2019b), who

showed a reduction of phase lags during a dry-down.

The savanna type ecosystems show an enhanced response of

flE to EF with negative phase lags under very dry conditions

(EF, 0.2). This behavior is in agreementwithNelson et al. (2018),

who used the method of diurnal centroids (Wilson et al. 2003) on

the FLUXNET2015 dataset. The forest ecosystems evaluated

here, however, show no response of flE to EF. Needleleaf forests

also show no response offH to EF, while broadleaf forests show a

decline toward negative fH under high EF.

The positiveflE can be regarded as a response to the diurnal

cycle of the vapor pressure deficit (VPD) of the air as a driver

of evapotranspiration. The diurnal cycle of VPD is strongly

related to air temperature and both variables show large pos-

itive phase lags with respect to solar radiation. This is due to the

heat storage changes in the lower, well mixed atmosphere.

Hence we argue that VPD, which is highest during early af-

ternoon, enhances lE leading to a positive flE (Renner et al.

2019b). This explanation is in line with the phase lag obser-

vations in forests and under wet conditions in short vegetation

and savannas. The significant reduction of flE in short vege-

tation and savannas toward water limited conditions can be

related to the enhanced surface resistance to evapotranspi-

ration leading to a decoupling of the surface from the

FIG. 8. Average difference of the simulated minus observed phase lags for the latent, sensible, and soil heat fluxes. Data are based on the

average per EF bin and site. Note that not all sites have soil heat flux observations.
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atmosphere (McNaughton and Jarvis 1983). As a result,

surface skin temperature increases more strongly than air

temperature (Mildrexler et al. 2011; Panwar et al. 2019), which

also enhances subsurface heat storage changes. This decoupling

is typical for sites with short vegetation or an open canopywhere

the ground is not sufficiently shaded from solar radiation.

Negative phase lags of lE observed under very dry conditions

could also be related to water saving strategies of plants that

control gas exchange by stomata and close under very highVPD

conditions leading to a morning shift of lE (Nelson et al. 2018).

The pattern of the phase lag of the sensible heat flux is

strongly coupled to the phase lag of the latent heat flux. For

most sites there is only a small phase lag of the sensible heat

flux and this explains the good performance of the simple linear

regression benchmark (1lin) used byBest et al. (2015). The shift to

negative phase lags under wet conditions can be explained by a

compensation due to the positive phase lags of the latent heat flux

to keep the surface energy balance. A deviation of this explana-

tion is found for Blodgett and Espirra that show relatively large

positive phase lags of the sensible heat flux throughout. Both sites

have a relatively open canopy (Blodgett was reforested at that

time, Misson et al. 2005) and we speculate that these patterns are

induced by relatively large diurnal soil heat fluxes.

b. Energy balance closure

One of the key assumptions of this work is that the turbu-

lence measurements correctly capture the diurnal cycle of the

sensible and latent heat fluxes. The sites studied in this analysis

achieve an energy balance closure between 55% and 93% of

available energy (Rn 2 dUs/dt), assuming that reported soil

heat fluxes capture heat storage components. The estimated

energy balance closure gap revealed significant phase shifts for

many sites (Table 3), with the implication that the phase lag of

the corrected fluxes also changed. Comparison with themodeled

phase lags revealed an even poorer comparison than without

correction (Fig. 6). We believe that the unaccounted heat stor-

age in the subsurface and canopy are a crucial limitation of the

energy balance correction. These heat storage components, such

as in the upper soil layer, can have significant diurnalmagnitudes

and phase shifts. Therefore, the diurnal cycle and especially the

phase lag of the corrected heat fluxesmay not be reliable.On the

other hand, we have no reason to believe that there are sys-

tematic measurement errors with a time lag in eddy covariance

measurements, since these are based on the instantaneous tur-

bulent fluctuations of wind speed, temperature and moisture.

Given the lack of further data to calculate these heat storage

components, we cannot further assess this issue within the

scope of this paper. However, we strongly recommend a de-

tailed measurement of subsurface and canopy heat storage

components, which are important for the diurnal heat redis-

tribution (Moderow et al. 2009; Gao et al. 2017; Heidkamp

et al. 2018; Meier et al. 2019; Eshonkulov et al. 2019).

Furthermore, alternative measurement technologies should be

used in parallel to assess the validity of the diurnal cycle of

eddy covariance turbulence measurements.

c. Diurnal cycle of simulated heat fluxes

All LSMs and benchmarks have been driven with meteo-

rological forcing data specific to each site. Prescribing near

surface meteorological states such as air temperature and hu-

midity strongly constrains the model response and thus focusses

on the partitioning of the surface energy balance terms.

FIG. 9. Distribution of observed and modeled diurnal range of the soil heat fluxes of the filtered data, aggregated by sites belonging to

broad land-cover groups.
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All LSMs and benchmarks show large discrepancies in

the simulated magnitude of the diurnal cycle of the sensible

and latent heat fluxes. This is apparent from the poor sim-

ulation of evaporative fraction (Fig. 3), which is strongly

influenced by water redistribution processes and the large

memory of soil moisture. The poor performance of the

PLUMBER models in terms of EF was noted by Ukkola

et al. (2016) and is also a key issue in coupled model simu-

lations and reanalysis (Dirmeyer et al. 2018). Therefore, we

focused on the phase lag of turbulent heat fluxes, which is

influenced by the LSM parameterizations that control heat

redistribution.

Common to all models is a tendency to overestimate the

phase lag of flE, while there is no common bias for the

sensible heat flux, see Fig. 8. When we evaluated both phase

lags, the model performance was rather low (Figs. 6 and 7).

Hence, although the models evaluated in PLUMBER show

distinct diurnal cycles, these are shifted in time and thus do

not capture heat redistribution processes adequately.

Although there is incomplete observational data on the

soil heat storage for the sites in the PLUMBER dataset, we

find very large discrepancies for diurnal magnitude and the

phase lag of the soil heat flux. In particular, the models show a

negative phase lag of the soil heat flux, with higher values

during the morning than in the afternoon. This does not

correspond with the observations, which show positive phase

lags. Consequently, the phase lag in the soil heat flux is

compensated by the turbulent heat fluxes since net radiation

does not show large phase lags, see Table 3. In addition, the

models overestimate the diurnal magnitude of the soil heat

flux compared to the observations. A higher magnitude of

the soil heat flux then enhances this effect on the turbulent

fluxes. This is readily seen, for example, for the CABLE

model in Fig. 10a.

FIG. 10. Model to observation comparison based on diurnal composites of median diurnal cycles. Composites are

derived for a specific bin of EF aggregated over a set of sites (a),(c) with short vegetation under dry conditions and

(b),(d) for forested sites under moist conditions. Panels (a) and (b) show typical LSMs, which strongly overestimate

the phase lag of turbulent heat fluxes. Panels (c) and (d) show better performingmodels.Arrows show the rising flux

during morning hours.
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d. Model diagnostics with phase lags

In general the diurnal phase lag signature will be sensi-

tive to the following parameterizations of LSMs: (i) the

method to solve the surface energy balance, (ii) the dy-

namic parameterization of surface/canopy conductance,

and (iii) the parameterization of surface layer exchange of

heat, moisture and momentum. Since the soil heat flux

seems to be the main cause for the observed biases we

believe that the way in which the surface energy balance is

solved is of greatest importance to improve the modeled

diurnal cycles.

1) SURFACE ENERGY BALANCE SOLUTION

The surface energy balance is the central component of any

LSM. It links all different parameterizations particularly the

transfer of heat into the subsurface and into the atmosphere.

This partitioning is critical for the phase lags as it relates the

strong diurnal variation of solar radiation to storage changes

below and above the surface.

The key state variable is surface (skin) temperature, which

is often part of the other parameterizations such as for soil

heat transfer but also for canopy and surface layer exchange.

There are two different approaches to solve this nonlinear

problem. One way is to use the temperature of the upper soil

layer. This layer has a large heat capacity and dampens the

temporal variation of the surface temperature depending on

the depth of the layer. The second approach is to use a skin

layer that has no heat capacity but requires iteration to get a

stable solution (Viterbo and Beljaars 1995; Best et al. 2005;

Heidkamp et al. 2018).

2) TOP SOIL VERSUS SKIN LAYER APPROACH

Next we illustrate the impact of surface energy balance

schemes on the phase lags of the heat fluxes using output of two

different versions of the JSBACH model, which is the LSM

scheme of the ECHAM climate model. Heidkamp et al. (2018)

used the JSBACHmodel in an offline mode and simulated the

diurnal cycle with the reference version of the JSBACHmodel

(i.e., with upper soil layer to solve the surface energy balance)

and the new version with a skin layer (JSBACH-Skin). For

illustration Heidkamp et al. (2018) used observational data

from the Diurnal Land/Atmosphere Coupling Experiment

(DICE, http://appconv.metoffice.com/dice/dice.html) project.

This is based on the well-known CASES99 campaign at the

SouthernGreat Plains sites in theUnited States over crop land.

These simulations are ideal to illustrate the impact of these

schemes on the phase lags of the heat fluxes. We obtained the

simulation output data from Heidkamp et al. (2018) and

compared the hysteresis patterns. Figure 11a shows the hys-

teresis on a single day for the observations and the reference

model. The observations reveal the linear response of the

turbulent heat fluxes under dry conditions (EF5 0.17) as seen

in the PLUMBER dataset (Fig. 10a). The JSBACH-Reference

model, however, shows a large phase lag in the simulated

sensible heat flux as well as in the soil heat flux. In contrast, the

new model version with a skin layer does not show such large

hysteresis of any fluxes and corresponds much better to ob-

servations, see Fig. 11b. This highlights the impact of how the

surface energy balance is solved on the phase lag of heat fluxes.

Although Heidkamp et al. (2018) show that the skin layer

approach is superior for the JSBACH model, we do not find

that PLUMBER models that use a skin layer approach

(CHTESSEL, COLA, Noah LSMs) are generally superior to

models that use the top soil layer (see Table 2). Figure 10

highlights that the JULES model performs well on average

even though it employs a top soil layer approach. However,

JULES uses a soil heat transfer scheme in which the vertical

layers are optimized to account for the diurnal to annual

FIG. 11. Simulations and observations of turbulent heat fluxes during DICE. (a) Simulations with the reference

JSBACH land surface model using the upper soil layer to solve for the surface energy balance. (b) The new version

of the JSBACH model with a Skin layer. Data are obtained from Heidkamp et al. (2018) and DICE (http://

appconv.metoffice.com/dice/dice.html).
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frequencies of the atmospheric forcings (Best et al. 2005, 2011).

The optimized vertical discretization scheme includes four

layers with thinner layers on top and is based on solutions of

the soil heat diffusion equation (Best et al. 2005).

3) POTENTIAL BIAS ON PLANETARY BOUNDARY LAYER

DYNAMICS

To illustrate how biases in the diurnal cycle of turbulent heat

fluxes propagate when coupled to the atmosphere we used the

two cases of Heidkamp et al. (2018) and looked at what these

imply for the diurnal development of the convective planetary

boundary layer. Using a simple bulk mixed layer scheme we

simulated the growth of the boundary layer given the sensible

heat flux as an input. Example results are shown for the two

days of the DICE dataset, for which the height of the boundary

layer was estimated by radio soundings (Steeneveld et al.

2008). Figure 12 shows the sensible heat fluxes whereby the

JSBACH-Reference model has a damped diurnal cycle and

lags the simulated growth of the PBL compared to JSBACH-

Skin. In contrast the simulated PBL growth for the observed

and the simulated sensible heat flux from JSBACH-Skin agree

well with the observed height.

This case study highlights the importance of how and where

the diurnal forcing of solar radiation is buffered in the land–

atmosphere system. Misrepresentation of heat storage changes,

such as in the subsurface, directly affect the exchange of heat

and water with the atmosphere. Systematic offsets cannot only

influence the diurnal cycle of heat fluxes, but also affect

temperature and will propagate into the lower atmosphere

in coupled models (Heidkamp et al. 2018). Offsets in

boundary layer height affect the mixing of heat, momentum

and moisture and potentially the timing of the development

of boundary layer clouds (de Arellano et al. 2014). While

modeling these interactive processes is a challenge, the

strong local coupling of the land–atmosphere system also

leads to simple emergent relationships such as the almost

linear response of the sensible heat flux to solar radiation,

which can serve as a valuable signature to evaluate land–

atmosphere feedbacks represented in complex models.

6. Conclusions

We performed a diagnostic signature based analysis of state-

of-the-art land surface models. We focused on the simulated

diurnal cycle of the turbulent heat fluxes and used the phase lag

to solar radiation as a metric to quantify the model’s ability to

resolve a signature that is characteristic of the diurnal cycle.

The evaluation is based on a set of 20 FLUXNET sites with

diverse climatic and land surface conditions. As known from

previous assessments the models show a poor ability to resolve

the partitioning of sensible and latent heat fluxes, which di-

rectly affects the diurnal magnitude of these fluxes. This issue is

related to difficulties in simulating water redistribution pro-

cesses. Hence we focus on the phase lag of the heat fluxes,

which is influenced by diurnal heat redistribution processes and

found to be influenced by vegetation type and water limitation.

We find that all models tend to overestimate the phase lag of

the latent heat flux, combined with varying biases in the sen-

sible heat flux. These biases appear to be systematic and thus

provide a further reason for the poor performance of the

PLUMBER LSMs found in earlier studies (Best et al. 2015;

Haughton et al. 2016; Nearing et al. 2018).

Modeled soil heat fluxes have much larger diurnal magni-

tudes than the available observations and their phase lags to

solar radiation are strongly biased. These larger diurnal fluxes

and large phase lags propagate to the phase lag of turbulent

heat fluxes. We argue that this is related to issues in jointly

solving the surface energy balance and soil heat transfer.

Our findings have important implications: 1) the models are

not able to accurately capture diurnal heat exchange processes

that are at the core of land–atmosphere interactions. The

biases will propagate into the lower atmosphere when coupled

and to longer time scales when aggregated. 2) The phase lags of

the turbulent heat fluxes appear to be quite sensitive to biases

FIG. 12. Sensible heat fluxes (continuous lines) and derived planetary boundary layer

height (dashed) for two days of the DICE experiment. Sensible heat flux data are obtained

from Heidkamp et al. (2018), DICE (http://appconv.metoffice.com/dice/dice.html), and

radio-sounding data of PBL height is taken from Steeneveld et al. (2008).

JANUARY 2021 RENNER ET AL . 91

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 01/21/21 09:18 AM UTC

http://appconv.metoffice.com/dice/dice.html


induced by the surface energy balance scheme including sub-

surface heat transfer. 3) After resolving these issues, we expect

that the diurnal signature of the phase lag can help to identify

and calibrate important subgrid-scale parameterizations of the

canopy and surface layer, enabling the use of the large set of

available data at the diurnal time scale to better constrain

complex model parameterizations.
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