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Combining the technologies of quantum optics and magnonics, we find that the circularly polarized
laser can dynamically realize the quasiequilibrium magnon Bose-Einstein condensates (BEC). The
Zeeman coupling between the laser and spins generates the optical Barnett field, and its direction
is controllable by switching the laser chirality. We show that the optical Barnett field develops the
total magnetization in insulating ferrimagnets with reversing the local magnetization, which leads
to the quasiequilibrium magnon BEC. This laser-induced magnon BEC transition through optical
Barnett effect, dubbed the optomagnonic Barnett effect, provides an access to coherent magnons in
the high frequency regime of the order of terahertz. We also propose a realistic experimental setup
to observe the optomagnonic Barnett effect using current device and measurement technologies as
well as the laser chirping. The optomagnonic Barnett effect is a key ingredient for the application
to ultrafast spin transport.

I. INTRODUCTION

For a fast and flexible manipulation of magnetic sys-
tems, inventing methods to handle magnetism is a central
task in the field of spintronics. Since the seminal works in
1915 by Barnett, Einstein, and de Haas [1–3], the trans-
fer of angular momentum from mechanical rotations to
spin angular momentum and its reciprocal phenomenon,
dubbed the Barnett effect and the Einstein-de Haas ef-
fect, respectively, have been intensively investigated. Re-
cent progresses are the observations of the Barnett effect
in paramagnets [4] and in nuclear spin systems [5, 6].
Another important advance in the manipulation of mag-
netism is the utilization of laser-matter coupling [7–10],
and the reversal of magnetization is achieved experimen-
tally by means of the optical method [11–15]. Thus the
interdisciplinary field between optics and spintronics [16–
20] attracts a broad interest of both experimentalists and
theorists.

The well-known phenomenon for the laser-induced
magnetization is the inverse Faraday effect [14, 15, 21].
The applied laser introduces the coupling to the optical
polarization and induces an emergent effective magnetic
field. The magnitude of the effective field is proportional
to a square of the laser field. Another approach to de-
velop the uniform magnetization is to use the Zeeman
coupling between the circularly polarized laser and spin
systems [12, 13, 22, 23]. The spin-photon coupling in-
duces an effective magnetic field in the direction perpen-
dicular to the laser polarization plane, which gives rise to
the magnetization. Since it is analogous to the generation
of magnetization by mechanical rotations through spin-
rotation coupling, i.e., the Barnett effect [1, 2, 24–31],
the emergence of magnetization through the spin-photon
coupling is dubbed as the optical Barnett effect [12, 13].
The effective magnetic field induced by laser, an analog
of the conventional Barnett field, is called the optical
Barnett field [12, 13]. In contrast to the inverse Fara-
day effect, the optical Barnett field is independent of the

FIG. 1. Schematic picture of the optomagnonic Barnett
effect in the insulating ferrimagnet.

laser field strength, while it is proportional to the laser
frequency [12, 13, 22, 23].

In this paper, we investigate an application of circu-
larly polarized laser to insulating ferrimagnets, follow-
ing the scheme to introduce a uniform magnetization by
laser in quantum spin systems [22, 23]. We find that the
induced optical Barnett field reverses the local magne-
tization and develops the uniform magnetization, which
leads to the formation of the quasiequilibrium magnon
Bose-Einstein condensates (BEC). We give a microscopic
description of this magnon BEC transition in insulating
ferrimagnets. We numerically show that the magnetiza-
tion makes a precession with the frequency same as the
laser. Hence the optical Barnett effect provides an access
to coherent magnons in the high frequency regime of the
order of terahertz. Since this result arises from the com-
bination of quantum optics and magnon spintronics (i.e.,
magnonics), we refer to this optical Barnett effect espe-
cially as the optomagnonic Barnett effect. Thus the op-
tomagnonic Barnett effect enables us to control magnons
coherently in much faster time scale than the conven-
tional microwave pumping. We also propose a realistic
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TABLE I. Comparison between the mechanical and optical
Barnett effects.

Mechanical Barnett Optical Barnett

Induced by Mechanical rotation Circularly polarized laser

Coupling Spin-rotation Spin-photon

Barnett field ∝ Angular velocity ∝ Laser frequency

experimental setup using ferrimagnetic insulators and the
chirping technique of circularly polarized laser. Our find-
ings play a role of building blocks for the application to
ultrafast spin transport.

This paper is organized as follows. In Sec. II we
quickly review the mechanism of the optical Barnett ef-
fect, and find the optomagnonic Barnett effect in Sec. III.
In Sec. IV, we discuss the experimental feasibility. Fi-
nally, we remark on several issues in Sec. V and sum-
marize in Sec. VI. Technical details are described in the
Appendices.

II. OPTICAL BARNETT EFFECT

In this section, we quickly review the mechanism that
the Zeeman coupling between circularly polarized laser
and spins induce an effective magnetic field perpendic-
ular to the laser polarization plane, which develops the
uniform magnetization [22, 23]. We explain the analogy
between this phenomenon, the optical Barnett effect, and
the Barnett effect caused by mechanical rotations. Here-
after we use the terminology mechanical Barnett effect
(field) to mean the conventional Barnett effect (field) by
the mechanical rotation in order to distinguish it from
the optical one. The comparison between the optical and
mechanical Barnett effects is summarized in Table I.

Let us consider quantum spin systems described by the
Hamiltonian H0. We take the polarization plane as the
xy plane and the z axis as the direction perpendicular to
it. We assume that H0 has the U(1) symmetry about the
z axis for simplicity. Here we focus on the magnetic in-
sulator with a large electronic gap, and only consider the
Zeeman coupling between the spins and magnetic compo-
nent of laser. The time-periodic Hamiltonian is written
as [22, 23]

H(t) = H0 −B0[Sxtot cos(Ωt) + ηSytot sin(Ωt)], (1)

where B0 > 0 and Ω > 0 are respectively the magnetic
field amplitude and the frequency, i.e., photon energy,
of the laser. The sign η = +(−) represents the left

(right) circular polarization, and S
x(y,z)
tot :=

∑
j S

x(y,z)
j is

the summation over spin operators on all the spin sites.
Through the Floquet theory or the unitary transforma-
tion H(t)→ eiηΩtSz

tot(H(t)−i~∂t)e−iηΩtSz
tot , we derive an

effective static Hamiltonian [22, 23] (Appendix A)

Heff = H0 − η~ΩSztot +O(B0). (2)

Here we consider the case of weak laser field B0 � ~Ω,
and the B0S

x
tot term is negligibly small. From Eq. (2),

we see that the circularly polarized laser introduces the
effective coupling −η~ΩSztot, which plays the same role
as the mechanical Barnett field [24–31] obtained from the
spin-rotation coupling (Table I). This effective coupling
is recast into the Zeeman-type interaction −η~ΩSztot =
−η~γBSztot with the gyromagnetic ratio γ and we refer
to

B := Ω/γ (3)

as the optical Barnett field [12, 13]. This optical Barnett
field develops the total magnetization and plays an es-
sential role in the optical Barnett effect. The direction
of the optical Barnett field is controllable through the
change of the laser chirality, i.e., circular polarization,
η = ± [22, 23].

We remark that Eq. (2) holds for a general U(1) sym-
metric spin Hamiltonian H0, which indicates that essen-
tially any kind of magnets, e.g., electron and nuclear spin
systems, even paramagnets, can exhibit the optical Bar-
nett effect. Moreover, the induced term η~ΩSztot is in-
dependent of material parameters such as g factor, and
only depends on the laser parameters. In that sense,
we can say that the optical Barnett effect is a universal
phenomenon. Note that the circularly polarization is the
key ingredient of the optical Barnett effect. Since the lin-
early polarized laser does not develop magnetization [22],
it neither produces the optical Barnett field.

While we treat the laser as a classical electromag-
netic field in the above, we can explain the same phe-
nomenon through the spin-photon coupling. Since the
photon has spin ±1 depending on the circular polar-
ization of laser η = ±, the Hamiltonian is given as

H = H0 − gs-ph

∑
j(ajS

η
j + a†jS

−η
j ) + ~Ω

∑
j a
†
jaj , where

S± := Sx ± iSy, a† and a are the bosonic creation
and annihilation operators of photons, and gs-ph is the
spin-photon coupling constant, which is proportional to
B0. Noting that the total spin angular momentum

η
∑
j a
†
jaj + Sztot is conserved, we substitute

∑
j a
†
jaj =

const. − ηSztot into the Hamiltonian and obtain H =

H0 − η~ΩSztot − gs-ph

∑
j(ajS

η
j + a†jS

−η
j ). In the case

of B0 � ~Ω, this Hamiltonian coincides with Eq. (2).
Thus the spin angular momentum of photon is trans-
ferred to the magnet in the optical Barnett effect, and
we can understand it analogously with the mechanical
Barnett effect (Table I).

III. OPTOMAGNONIC BARNETT EFFECT

In this paper we discuss the formation of the quasiequi-
librium magnon BEC provoked by the optical Barnett ef-
fect, which we call the optomagnonic Barnett effect. As a
platform, we consider the laser application to insulating
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(c) (d)

(a) (b)

Optical Barnett Effect

FIG. 2. The classical spin configuration that minimizes the
energy ε [Eq. (5)]. (a) mz

tot, (b) mz
A(B), and (c) mx

A(B) are

shown as a function of Ω̃ = ~Ω/(z0J). The direction of the
optical Barnett field depends on the laser chirality η. The
parameters are SA = 4, SB = 5/2, DA/J = 17.5 × 10−3,
and DB/J = 1.5× 10−3 following the experimental values for
Er3Fe5O12 [32–34] (J = 0.2 meV). The lower and upper crit-

ical frequencies are Ω̃c1 = 1.54 and Ω̃c2 = 6.49, respectively.
(d) Summary of the optical Barnett effect and the magnetiza-
tion reversal on the sublattice B for both circular polarization
of laser.

ferrimagnets (Fig. 1),

H0 =J
∑

〈i∈A,j∈B〉

SA,i · SB,j

−DA

∑
i∈A

(SzA,i)
2 −DB

∑
j∈B

(SzB,j)
2, (4)

where SA(B),i(j) = (SxA(B),i(j), S
y
A(B),i(j), S

z
A(B),i(j)) repre-

sents the spin at the i(j)-th site on the sublattice A(B)
having the spin quantum number SA(B), J > 0 is the ex-
change interaction between the nearest neighbor spins
〈i ∈ A, j ∈ B〉, and DA(B) > 0 is the easy-axis sin-
gle ion anisotropy for the sublattice A(B) that ensures
a magnetic order in the z direction. In the systems
with anisotropy, we can realize the dynamical magneti-
zation curve by modulating the laser frequency Ω slowly
enough [23], which is the experimental technique called
chirping [35, 36].

We remark that in antiferromagnets (SA = SB) with
easy-axis anisotropy, the spin-flop transition happens in
the low field regime associated with the Néel magnetic
order when the static external field is increased [37]. The
spin-flop transition is of the first order and the change
of the state is drastic. In the case of laser application,
the dynamical state cannot follow this sudden change,
and the optical Barnett effect does not take place. In

ferrimagnets (SA 6= SB), however, the spin-flop transition
is absent [38], and that is why we consider ferrimagnets
in this paper.

A. Classical theory

First we analyze the optical Barnett effect in the clas-
sical case. Since the effective Hamiltonian Eq. (2), where
H0 is Eq. (4), has the U(1) symmetry, we assume that
the spins reside in the xz plane, SA,i = (mx

A, 0,m
z
A) and

SB,j = (mx
B, 0,m

z
B). The classical energy normalized by

the number of spins is given as

ε =
z0J

2
SA · SB −

DA

2
(SzA)2 − DB

2
(SzB)2 − η~Ω

2
(SzA + SzB),

(5)

where z0 is the coordination number. We numerically ob-
tain the classical spin configuration that minimizes the
energy [Eq. (5)], and show the result in Fig. 2. Here
we consider the cubic lattice with z0 = 6. The magne-
tization curve induced by the optical Barnett field, i.e.,
mz

tot := mz
A + mz

B as a function of the normalized fre-

quency Ω̃ := ~Ω/(z0J), is shown in Fig. 2(a). When the

frequency Ω̃ is small, the spin configuration is unchanged
and aligned along the z direction due to the anisotropy.
Above the lower critical frequency Ω̃c1, the total magneti-
zation along the z axis starts to grow. In this optical Bar-
nett effect, mz

tot increases continuously and attains full

polarization at the upper critical frequency Ω̃c2. Fig. 2(b)
shows the change of mz

A and mz
B with increasing Ω. This

indicates that the spins on the sublattice B are reversed
from −ηSB to ηSB. The controllability for the direction
of the optical Barnett field by the laser chirality η = ±
provides a handle to design optomagnonic functionalities
in various magnets, e.g., electron and nuclear spin sys-
tems, even paramagnets. From Fig. 2(c), we see that
both mx

A and mx
B change continuously and take nonzero

value in Ω̃c1 < Ω̃ < Ω̃c2.
Those results of the optical Barnett effect and the mag-

netization reversal in the insulating ferrimagnet are sum-
marized in Fig. 2(d). The explicit form of Ω̃c1(c2) is given
in the Appendix B.

B. Spin wave theory

The absence of the first order transition, i.e., jump of
mz

tot, in the vicinity of Ω̃c1 and Ω̃c2 ensures the validity of
the description in terms of the magnon picture. Hence we
move to the analysis by the spin wave theory next, and
see that Ω̃c1 and Ω̃c2 become the magnon BEC transition
points.

We first consider increasing the frequency Ω from be-
low Ω̃c1, where the ground state has an alternating struc-
ture of up and down spins [Figs. 2(b) and 2(d)]. From the
spin wave theory, elementary excitations are two kinds of
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magnons [32, 39] designated by the index σ = ± having
the spin angular momentum δSz = −ησ1. The Hamil-
tonian [Eqs. (2) and (4)] can be recast into the diagonal
form due to the U(1) symmetry as

Heff =
∑
σ=±,k

(~ω[α]
σ,k + ∆[α]

σ + σ~Ω)α†σ,kασ,k, (6)

where ∆
[α]
σ +σ~Ω is the magnon gap in laser and ~ω[α]

σ,k is

the energy dispersion of the σ magnon annihilated (cre-

ated) by the bosonic operator α
(†)
σ,k with [ασ,k, α

†
σ′,k′ ] =

δσ,σ′δk,k′ . For the details of the calculation and the ex-

plicit forms of ∆
[α]
σ and ω

[α]
σ,k, see the Appendix C. With

increasing Ω, the energy band of σ = − magnon goes
down, while that of σ = + magnon goes up due to the
σ~Ω term. The former touches the zero energy at

ΩBEC1 := ∆
[α]
− /~, (7)

and the second order phase transition happens from the
proliferation of magnons. This is the quasiequilibrium
magnon BEC induced by the optical Barnett field, which
we call the optical magnon BEC. ΩBEC1 coincides with
Ωc1. This optical magnon BEC is the macroscopic co-
herent state with the transverse magnetization associ-
ated with the spontaneous U(1) symmetry breaking [40],
and thus the total magnetization along the z axis grows
(Fig. 2). Therefore this optical Barnett effect can be ob-
served as the phenomenon induced by the optical magnon
BEC transition, and we refer to this behavior in insulat-
ing ferrimagnets especially as the optomagnonic Barnett
effect.

Next we consider decreasing the frequency Ω from
above Ω̃c2, where spins are full polarized in the ground
state [Figs. 2(b) and 2(d)]. Again there are two kinds of
magnons designated by the index σ = ± due to SA 6= SB,
but in contrast to the ΩBEC1 case, both magnons have
the same spin angular momentum δSz = −η1 since spins
on both sublattices are polarized in the same direction.
We can derive the Hamiltonian in the diagonal form

Heff =
∑
σ=±,k

(~ω[β]
σ,k + ∆[β]

σ + ~Ω)β†σ,kβσ,k, (8)

where ∆
[β]
σ + ~Ω is the magnon gap in laser and ~ω[β]

σ,k is

the energy dispersion of the σ magnon annihilated (cre-

ated) by the bosonic operator β
(†)
σ,k with [βσ,k, β

†
σ′,k′ ] =

δσ,σ′δk,k′ . For the explicit forms of ∆
[β]
σ (≤ 0) and ω

[β]
σ,k,

see the Appendix C. With decreasing Ω, the energy band
of both σ = ± magnon goes down due to the ~Ω term,
and the lower band touches the zero energy at

ΩBEC2 := −∆
[β]
− /~. (9)

In the same way as the ΩBEC1 case, the second order
phase transition happens at ΩBEC2 and magnons form
the quasiequilibrium BEC. ΩBEC2 coincides with Ωc2.
Thus the optomagnonic Barnett effect is induced in the
regime ΩBEC1 < Ω < ΩBEC2.

(a) (b)

FIG. 3. The magnetization dynamics for the laser chirality
η = + calculated by the TDMF theory. Time evolution of (a)
mz

tot and (b) xy components of sublattice magnetization are
shown. The result clearly shows the condensation of magnons
and the precession of magnetization around the z axis.

C. Magnetization dynamics

Finally, to investigate the dynamics of the opto-
magnonic Barnett effect, we numerically solve the equa-
tion of motion derived from the time-dependent mean
field (TDMF) theory and calculate the time evolution
of sublattice magnetization (Appendix D). The TDMF
theory can well capture the magnetization dynamics [41].
The parameters are the same in Fig. 2, SA = 4, SB = 5/2,
z0 = 6, DA/J = 17.5 × 10−3, and DB/J = 1.5 × 10−3.
We use the laser with polarization η = + represented as
B0(cosϑ(t), sinϑ(t), 0), where the amplitude is B0/J =
0.2 and the frequency is chirped as ϑ(t) = Ω0t + vt2/2
with the normalized chirping speed ~2v/J2 = 10−5

and ~Ω0/J = 9. The normalized instantaneous fre-

quency is defined as Ω̃(t) := ~(dϑ(t)/dt)/(z0J) = (~Ω0 +
~vt)/(z0J). We calculate the dynamics in the time region

0 ≤ tJ/~ ≤ 105, which corresponds to 1.5 ≤ Ω̃(t) ≤ 1.66
in the frequency regime. Figure 3(a) shows the time
evolution of mz

tot = mz
A + mz

B. We can see that mz
tot

starts to grow from SA − SB = 3/2 when Ω̃(t) exceeds

Ω̃BEC1 = 1.54. In Fig. 3(b), we show the time evolu-
tion for the xy components of sublattice magnetization
around Ω̃(t) = 1.6 in the time interval of 0 ≤ t̃ ≤ 2,
where t̃ := tJ/~ − 6 × 104 is the normalized time. The
result clearly shows that magnetization on both sublat-
tices precesses around the z axis with the instantaneous
frequency, same as the laser Ω̃(t), and the xy components
of A and B sublattice magnetization are in the opposite
direction. The period of this spin precession is O(1) ps.

IV. EXPERIMENTAL FEASIBILITY

We make an estimate for an insulating ferrimagnet
Er3Fe5O12 [32–34], and give the magnetization curve and
the experimental parameter values in Fig. 2 and its cap-
tion, respectively. We find that the magnon BEC tran-
sition points are ΩBEC1 = 1.85 THz and ΩBEC2 = 7.8
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THz [42], and the optical Barnett field amounts to B =
O(10) T for Ω = O(1) THz. Our proposal is within the
experimental reach with current device and measurement
technologies, e.g., nuclear magnetic resonance [5, 6, 43]
for the optical Barnett field, magneto-optical Kerr ef-
fect [44] for the magnetization reversal in the optical Bar-
nett effect, Brillouin light scattering [45] for the optical
magnon BEC, and terahertz spectroscopy [46, 47] for the
spin dynamics of the order of picoseconds. Since magnons
are induced by laser and not by thermal fluctuation in the
present setup, our findings are realizable at low temper-
ature [48–51] where phonon degrees of freedom cease to
work.

We emphasize the importance of modulating the laser
frequency adiabatically [22, 23] by the chirping tech-
nique [35, 36]. Otherwise, the deviation from the magne-
tization curve happens due to a nonadiabatic transition
from the Landau-Zener tunneling [52, 53]. To avoid this
effect, a large magnetic anisotropy and a strong laser field
is advantageous [22]. In addition, the laser chirping sup-
presses heating effects drastically.

V. DISCUSSION

First, the laser application without chirping can be
studied by the Floquet theory with inverse frequency ex-
pansion [54–56]. This analysis also supports the gener-
ation of the optical Barnett field in the high frequency
regime (Appendix E).

Second, we remark that the optical Barnett field
through the chirping is proportional to the laser fre-
quency B ∝ Ω [22, 23]. Hence Ω = O(1) THz amounts

to B = O(10) T, which provides a platform to explore
the phenomena at high magnetic field O(10) T or more
in the tabletop setup.

Third, optomagnonic cavities for implementing co-
herent photon-magnon coupling have been theoretically
studied in Refs. [57–61].

Last, as an application of the optomagnonic Barnett
effect, it will be intriguing to investigate the magnon
Josephson effect in a junction [62, 63]. We leave it for
a future study.

VI. CONCLUSION

We applied the optical Barnett effect to insulating
ferrimagnets and showed that quasiequilibrium magnon
BEC can be realized using the spin-wave theory. This
optomagnonic Barnett effect provides an access to co-
herent magnons in the frequency regime of the order of
terahertz, which is much faster time scale than the con-
ventional microwave pumping. Our findings are expected
to become a building block for the application to ultrafast
spin transport.
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Appendix A: Effective static Hamiltonian

In this section starting from the time-periodic Hamiltonian

H(t) = H0 −B0[Sxtot cos(Ωt) + ηSytot sin(Ωt)], (A1)

we derive the effective static Hamiltonian Eq. (2) in the main text. We apply the time-dependent unitary transform,

U := eiηΩtSz
tot , (A2)

to H(t) as

H(t)→ U [H(t)− i~∂t]U−1 =: Heff . (A3)

Then we obtain the effective static Hamiltonian as

Heff = H0 − η~ΩSztot −B0S
x
tot. (A4)

In the case of weak laser field B0 � ~Ω, the B0S
x
tot term is negligibly small. Thus we reach the effective static

Hamiltonian Eq. (2) in the main text.
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Appendix B: Classical theory

In this section, we derive the lower (upper) critical frequency Ωc1(c2). The classical spin configuration is determined
in the way that the energy

ε =
z0J

2
SA · SB −

DA

2
(SzA)2 − DB

2
(SzB)2 − η~Ω

2
(SzA + SzB) (B1)

takes minimum. Since Eq. (B1) has the U(1) symmetry, we assume that SA and SB are in the xz plane. We
parametrize the spins as SA = (SA sin θA, 0, ηSA cos θA) and SB = (−SB sin θB, 0, ηSB cos θB). Then Eq. (B1) can be
rewritten as

ε =
z0JSASB

2
cos(θA + θB)− DAS

2
A

2
cos2 θA −

DBS
2
B

2
cos2 θB −

~Ω

2
(SA cos θA + SB cos θB). (B2)

From the conditions for the energy minimum, ∂ε/∂θA = 0 and ∂ε/∂θB = 0, we obtain

−z0JSB sin(θA + θB) + 2DASA cos θA sin θA + ~Ω sin θA =0, (B3)

−z0JSA sin(θA + θB) + 2DBSB cos θB sin θB + ~Ω sin θB =0. (B4)

1. Around Ω = Ωc1

We consider the frequency just above Ωc1, where sin θA ' θA, sin θB ' π − θB, cos θA ' 1, cos θB ' −1, θA 6= 0,
and π − θB 6= 0. Then Eqs. (B3) and (B4) become

− z0JSB(−θA + π − θB) + 2DASAθA + ~Ωc1θA = 0⇔ z0JSB(π − θB)/θA = z0JSB + 2DASA + ~Ωc1,

− z0JSA(−θA + π − θB)− 2DBSB(π − θB) + ~Ωc1(π − θB) = 0⇔ z0JSAθA/(π − θB) = z0JSA + 2DBSB − ~Ωc1.

Thus

(~Ωc1 + z0JSB + 2DASA)(~Ωc1 − z0JSA − 2DBSB) = −z2
0J

2SASB

⇔[{~Ωc1 − z0J(SA − SB)/2 +DASA −DBSB}+ {z0J(SA + SB)/2 +DASA +DBSB}]
× [{~Ωc1 − z0J(SA − SB)/2 +DASA −DBSB} − {z0J(SA + SB)/2 +DASA +DBSB}] = −z2

0J
2SASB

⇔~Ωc1 = z0J(SA − SB)/2−DASA +DBSB ±
√
−z2

0J
2SASB + [z0J(SA + SB)/2 +DASA +DBSB]2.

From Ωc1 > 0, we obtain

~Ωc1 = z0J(SA − SB)/2−DASA +DBSB +
√
−z2

0J
2SASB + [z0J(SA + SB)/2 +DASA +DBSB]2. (B5)

2. Around Ω = Ωc2

We consider the frequency just below Ωc2, where sin θA ' θA, sin θB ' θB, cos θA ' 1, cos θB ' 1, θA 6= 0, and
θB 6= 0. Then Eqs. (B3) and (B4) become

− z0JSB(θA + θB) + 2DASAθA + ~Ωc2θA = 0⇔ z0JSBθB/θA = −z0JSB + 2DASA + ~Ωc2,

− z0JSA(θA + θB) + 2DBSBθB + ~Ωc2θB = 0⇔ z0JSAθA/θB = −z0JSA + 2DBSB + ~Ωc2.

Thus

(~Ωc2 − z0JSB + 2DASA)(~Ωc2 − z0JSA + 2DBSB) = z2
0J

2SASB

⇔[{~Ωc2 − z0J(SA + SB)/2 +DASA +DBSB}+ {z0J(SA − SB)/2 +DASA −DBSB}]
× [{~Ωc2 − z0J(SA + SB)/2 +DASA +DBSB} − {z0J(SA − SB)/2 +DASA −DBSB}] = z2

0J
2SASB

⇔~Ωc2 = z0J(SA + SB)/2−DASA −DBSB ±
√
z2

0J
2SASB + [z0J(SA − SB)/2 +DASA −DBSB]2.

From Ωc2 > 0, we obtain

~Ωc2 = z0J(SA + SB)/2−DASA −DBSB +
√
z2

0J
2SASB + [z0J(SA − SB)/2 +DASA −DBSB]2. (B6)
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Appendix C: Spin wave theory

In this section, we derive the magnon BEC transition point ΩBEC1(BEC2) and see that it coincides with the lower
(upper) critical frequency Ωc1(c2). We consider the system

Heff = J
∑

〈i∈A,j∈B〉

SA,i · SB,j −DA

∑
i∈A

(SzA,i)
2 −DB

∑
j∈B

(SzB,j)
2 − η~Ω

(∑
i∈A

SzA,i +
∑
j∈B

SzB,j

)
. (C1)

The boundary condition is periodic, and the number of sites is N ; N/2 sites for the A and B sublattice.

1. Around Ω = ΩBEC1

The ground state is ferrimagnetic SA = (0, 0, ηSA) and SB = (0, 0,−ηSB). We perform the Holstein-Primakoff
transformation,

ηSzA,i = SA − nA,i, SxA,i + ηiSyA,i =
√

2SA

(
1− nA,i

2SA

)1/2

bA,i, SxA,i − ηiS
y
A,i =

√
2SAb

†
A,i

(
1− nA,i

2SA

)1/2

,

ηSzB,j = −SB + nB,j , SxB,j + ηiSyB,j =
√

2SBb
†
B,j

(
1− nB,j

2SB

)1/2

, SxB,j − ηiS
y
B,j =

√
2SB

(
1− nB,j

2SB

)1/2

bB,j ,

where b†j and bj are creation and annihilation operators for bosons (magnons), and n(A,B),j ≡ b†(A,B),jb(A,B),j is the

number operator. We make an expansion and retain up to the second order in terms of b and b†,

ηSzA,i = SA − nA,i, SxA,i + ηiSyA,i =
√

2SAbA,i, SxA,i − ηiS
y
A,i =

√
2SAb

†
A,i,

ηSzB,j = −SB + nB,j , SxB,j + ηiSyB,j =
√

2SBb
†
B,j , SxB,j − ηiS

y
B,j =

√
2SBbB,j .

Using magnon operators, the Hamiltonian (C1) is rewritten as

Heff =J
√
SASB

∑
〈i∈A,j∈B〉

(bA,ibB,j + H.c.) + z0JSB

∑
i∈A

nA,i + z0JSA

∑
j∈B

nB,j

+ 2DASA

∑
i∈A

nA,i + 2DBSB

∑
j∈B

nB,j + ~Ω
(∑
i∈A

nA,i −
∑
j∈B

nB,j

)
, (C2)

where the constant terms are dropped. We consider the cubic lattice and the coordination number is z0 = 6. After
the Fourier transform

bA,k =

√
2

N

∑
i∈A

e−ik·ribA,i, b†A,k =

√
2

N

∑
i∈A

eik·rib†A,i, nA,k = b†A,kbA,k,

bB,k =

√
2

N

∑
i∈B

eik·ribB,i, b†B,k =

√
2

N

∑
i∈B

e−ik·rib†B,i, nB,k = b†B,kbB,k,

(ri is the positional vector), we obtain

Heff =J
√
SASB

∑
k

2[cos(kxa0) + cos(kya0) + cos(kza0)](bA,kbB,k + H.c.)

+ (z0JSB + 2DASA + ~Ω)
∑
k

nA,k + (z0JSA + 2DBSB − ~Ω)
∑
k

nB,k,

where a0 is the lattice constant. We perform the Bogoliubov transformation(
α+,k

α†−,k

)
=

(
cosh θk sinh θk
sinh θk cosh θk

)(
bA,k
b†B,k

)
,
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with the angle

tanh 2θk =
2f(k)

C1 + C2
,

where

f(k) =2J
√
SASB[cos(kxa0) + cos(kya0) + cos(kza0)],

C1 =z0JSB + 2DASA + ~Ω,

C2 =z0JSA + 2DBSB − ~Ω.

Then the Hamiltonian becomes

Heff =
∑
k

(
− f(k) sinh 2θk +

C1 − C2

2
+
C1 + C2

2
cosh 2θk

)
α†+,kα+,k

+
∑
k

(
− f(k) sinh 2θk −

C1 − C2

2
+
C1 + C2

2
cosh 2θk

)
α†−,kα−,k

=
∑
k

[C1 − C2

2
+

√
−f(k)2 +

(C1 + C2

2

)2]
α†+,kα+,k

+
∑
k

[
− C1 − C2

2
+

√
−f(k)2 +

(C1 + C2

2

)2]
α†−,kα−,k, (C3)

where the constant terms are dropped. We can rewrite the Hamiltonian in the form

Heff =
∑
σ=±,k

(~ω[α]
σ,k + ∆[α]

σ + σ~Ω)α†σ,kασ,k, (C4)

where ~ω[α]
σ,k is the energy dispersion and ∆

[α]
σ + σ~Ω is the magnon gap in laser represented as

~ω[α]
±,k =

√
−f(k)2 + [3J(SA + SB) +DASA +DBSB]2 −

√
−f(0)2 + [3J(SA + SB) +DASA +DBSB]2,

∆
[α]
± =∓ [3J(SA − SB)−DASA +DBSB] +

√
−f(0)2 + [3J(SA + SB) +DASA +DBSB]2,

noting that f(k) takes the maximum at k = 0. Therefore, when Ω is increased from the small value, the magnon

created by α†−,k=0 condensates at

~ΩBEC1 = ∆
[α]
− = 3J(SA − SB)−DASA +DBSB +

√
−36J2SASB + [3J(SA + SB) +DASA +DBSB]2, (C5)

which agrees with ~Ωc1 [Eq. (B5)].

2. Around Ω = ΩBEC2

The ground state is ferromagnetic SA = (0, 0, ηSA) and SB = (0, 0, ηSB). We perform the Holstein-Primakoff
transformation,

ηSzA,i = SA − nA,i, SxA,i + ηiSyA,i =
√

2SA

(
1− nA,i

2SA

)1/2

bA,i, SxA,i − ηiS
y
A,i =

√
2SAb

†
A,i

(
1− nA,i

2SA

)1/2

,

ηSzB,j = SB − nB,j , SxB,j + ηiSyB,j =
√

2SB

(
1− nB,j

2SB

)1/2

bB,j , SxB,j − ηiS
y
B,j =

√
2SBb

†
B,j

(
1− nB,j

2SB

)1/2

,

where b†j and bj are creation and annihilation operators for bosons (magnons), and n(A,B),j ≡ b†(A,B),jb(A,B),j is the

number operator. We make an expansion and retain up to the second order in terms of b and b†,

ηSzA,i = SA − nA,i, SxA,i + ηiSyA,i =
√

2SAbA,i, SxA,i − ηiS
y
A,i =

√
2SAb

†
A,i,

ηSzB,j = SB − nB,j , SxB,j + ηiSyB,j =
√

2SBbB,j , SxB,j − ηiS
y
B,j =

√
2SBb

†
B,j .
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Using magnon operators, the Hamiltonian (C1) is rewritten as

Heff =J
√
SASB

∑
〈i∈A,j∈B〉

(b†A,ibB,j + H.c.)− z0JSB

∑
i∈A

nA,i − z0JSA

∑
j∈B

nB,j

+ 2DASA

∑
i∈A

nA,i + 2DBSB

∑
j∈B

nB,j + ~Ω
(∑
i∈A

nA,i +
∑
j∈B

nB,j

)
, (C6)

where the constant terms are dropped. We consider the cubic lattice and the coordination number is z0 = 6. After
the Fourier transform

bA,k =

√
2

N

∑
i∈A

e−ik·ribA,i, b†A,k =

√
2

N

∑
i∈A

eik·rib†A,i, nA,k = b†A,kbA,k,

bB,k =

√
2

N

∑
i∈B

e−ik·ribB,i, b†B,k =

√
2

N

∑
i∈B

eik·rib†B,i, nB,k = b†B,kbB,k,

(ri is the positional vector), we obtain

Heff =J
√
SASB

∑
k

2[cos(kxa0) + cos(kya0) + cos(kza0)](b†A,kbB,k + H.c.)

+ (−z0JSB + 2DASA + ~Ω)
∑
k

nA,k + (−z0JSA + 2DBSB + ~Ω)
∑
k

nB,k,

where a0 is the lattice constant. We perform the transformation(
β+,k

β−,k

)
=

(
cos θk − sin θk
sin θk cos θk

)(
bA,k
bB,k

)
,

with the angle

tan 2θk = − 2f(k)

C1 − C2
,

where

f(k) =2J
√
SASB[cos(kxa0) + cos(kya0) + cos(kza0)],

C1 =− z0JSB + 2DASA + ~Ω,

C2 =− z0JSA + 2DBSB + ~Ω.

Then the Hamiltonian becomes

Heff =
∑
k

(
− f(k) sin 2θk +

C1 + C2

2
+
C1 − C2

2
cos 2θk

)
β†+,kβ+,k

+
∑
k

(
f(k) sin 2θk +

C1 + C2

2
− C1 − C2

2
cos 2θk

)
β†−,kβ−,k

=
∑
k

[C1 + C2

2
+

√
f(k)2 +

(C1 − C2

2

)2]
β†+,kβ+,k

+
∑
k

[C1 + C2

2
−
√
f(k)2 +

(C1 − C2

2

)2]
β†−,kβ−,k. (C7)

We can rewrite the Hamiltonian in the form

Heff =
∑
σ=±,k

(~ω[β]
σ,k + ∆[β]

σ + ~Ω)β†σ,kβσ,k, (C8)
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where ~ω[β]
σ,k is the energy dispersion and ∆

[β]
σ + ~Ω is the magnon gap in laser represented as

~ω[β]
+,k =

√
f(k)2 + [3J(SA − SB) +DASA −DBSB]2 − |3J(SA − SB) +DASA −DBSB|,

~ω[β]
−,k =

√
f(0)2 + [3J(SA − SB) +DASA −DBSB]2 −

√
f(k)2 + [3J(SA − SB) +DASA −DBSB]2,

∆
[β]
+ =− 3J(SA + SB) +DASA +DBSB + |3J(SA − SB) +DASA −DBSB|,

∆
[β]
− =− 3J(SA + SB) +DASA +DBSB −

√
f(0)2 + [3J(SA − SB) +DASA −DBSB]2,

noting that f(k) takes the maximum at k = 0. Therefore, when Ω is decreased from the large value, the magnons

created by β†−,k=0 condensate at

~ΩBEC2 = −∆
[β]
− = 3J(SA + SB)−DASA −DBSB +

√
36J2SASB + [3J(SA − SB) +DASA −DBSB]2, (C9)

which agrees with ~Ωc2 [Eq. (B6)]. Note that ∆
[β]
σ takes the negative value ∆

[β]
σ ≤ 0.

We remark that in the case of an insulating ferromagnet, the application of the circularly polarized laser increases
the magnon gap and the optical magnon BEC does not occur.

Appendix D: Time-dependent mean field theory

In this section, we discuss the time evolution of sublattice magnetization. To this end, we numerically simulate the
dynamics of the system using the time-dependent mean field theory and recasting the equation of motion into the
form

dmA

dt
= mA ×HMF

A ,
dmB

dt
= mB ×HMF

B . (D1)

We treat mA and mB as classical vectors, then Eq. (D1) is nothing but the two-body Landau-Lifshitz-Gilbert equation.
Here we assume the laser-induced phenomena is much faster than magnetization damping, and neglect the Gilbert
term. From the time-dependent Hamiltonian,

H(t) = J
∑

〈i∈A,j∈B〉

SA,i · SB,j −DA

∑
i∈A

(SzA,i)
2 −DB

∑
j∈B

(SzB,j)
2 −B0[Sxtot cos(Ωt) + ηSytot sin(Ωt)], (D2)

we can derive the mean fields as

HMF
A =

−z0Jm
x
B +B0 cos(Ωt)

−z0Jm
y
B +B0 sin(Ωt)

−z0Jm
z
B + 2DAm

z
A

 , HMF
B =

−z0Jm
x
A +B0 cos(Ωt)

−z0Jm
y
A +B0 sin(Ωt)

−z0Jm
z
A + 2DBm

z
B

 .

Appendix E: The optical Barnett field without chirping

In this section, we discuss the laser application without chirping. In order to study the application of circularly
polarized laser without chirping, the framework of the Floquet theory and the inverse frequency expansion can be
utilized. This method is applicable for the high frequency region. The total Hamiltonian

H(t) = H0 −
B0

2
(e−iΩtSηtot + eiΩtS−ηtot ), (E1)

is temporally periodic and can be written in the form of

H(t) =
∑
m∈Z

Hme
imΩt, (E2)

where

H0 = H0, H±1 = −B0

2
S∓ηtot , H|m|≥2 = 0.
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In the inverse frequency expansion up to the 1/Ω order, the Floquet effective Hamiltonian in the high frequency
regime is provided as

HHF =H0 +
1

~Ω

∞∑
m=1

[Hm, H−m]

m
+O(Ω−2), (E3a)

=H0 −
ηB2

0

2~Ω
Sztot +O(Ω−2). (E3b)

Thus the optical Barnett field,

BHF =
B2

0

2~2γΩ
, (E4)

is proportional to 1/Ω and B2
0 . This analysis indicates that although the induced field is small, the optical Barnett

effect still occurs in the high frequency region away from the adiabatic regime considered in the main text.
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