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Fig. 1. Using our perception-motivated model, we analyze different ways to distribute screen-space error in Monte Carlo rendering, showing one such
approach here. We start with a noisy image and some auxiliary data (surface normals and albedo). Average image (leftmost) is rendered with 16 samples per
pixel (spp). Our method uses varying spp from the set: {4, 8, 12, 16}spp. (a) Our approach exhibits both visually pleasing screen-space error distribution (see
Section 4.1 for details) while keeping less samples per pixel. Our energy model uses a guiding image, or surrogate, which can be created easily from the noisy
estimate. We also show our method using the ground truth (GT) image as the guide. (b) To demonstrate the impact of error distribution on denoising, we
apply Intel’s Open Image Denoiser [int 2018] on the images in (a): the white-noise distribution results in conspicuous artifacts, which are avoided when
the error has a blue-noise distribution (as in our results). (c) The corresponding tiled power spectrum (32 × 32 pixels per tile) of the error images from (a),
confirming that our approach distributes error with a locally blue-noise spectrum.

Realistic image synthesis involves computing high-dimensional light trans-
port integrals which in practice are numerically estimated using Monte
Carlo integration. The error of this estimation manifests itself in the image
as visually displeasing aliasing or noise. To ameliorate this, we develop a
theoretical framework for optimizing screen-space error distribution. Our
model is flexible and works for arbitrary target error power spectra. We
focus on perceptual error optimization by leveraging models of the human
visual system’s (HVS) point spread function (PSF) from halftoning literature.
This results in a specific optimization problem whose solution distributes
the error as visually pleasing blue noise in image space. We develop a set
of algorithms that provide a trade-off between quality and speed, showing
substantial improvements over prior state of the art. We perform evaluations
using both quantitative and perceptual error metrics to support our analysis,
and provide extensive supplemental material to help evaluate the perceptual
improvements achieved by our methods.
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1 INTRODUCTION
Using (quasi) Monte Carlo (MC) sampling for rendering produces
approximation error. This error can result in visually displeasing
artifacts in the image, unless care is taken to control the correla-
tion of the samples used to obtain the individual pixel estimates. A
standard approach is to decorrelate these estimates by randomly
assigning sample sets to pixels, turning potential structured artifacts
into white noise.
In digital halftoning, the error induced by quantizing continu-

ous tone images has been studied extensively. These studies have
shown that a blue-noise distribution of the quantization error is
perceptually optimal [Ulichney 1987] and can achieve substantially
higher fidelity than a white-noise distribution. Recent works have
proposed ways to transfer these ideas empirically to image syn-
thesis [Georgiev and Fajardo 2016; Heitz and Belcour 2019; Heitz
et al. 2019]. This is achieved by carefully re-introducing negative
pixel correlation, exploiting the local smoothness present in typical
images.

We propose a theoretical formulation of perceptual error for ren-
dering which unifies previous methods in a common theoretical
framework and justifies the need for blue-noise error distribution.
We start by extending the comparatively simpler problem of digital
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halftoning [Sullivan et al. 1991; Analoui and Allebach 1992; Pappas
and Neuhoff 1999] to the substantially more complex one of MC
image synthesis. Our formulation bridges the gap between halfton-
ing and rendering by interpreting the error distribution problem as
a general extension of non-uniform multitone energy minimization
halftoning, where the MC estimates are taken to be the admissible
quantization levels in the halftoning setting. Through this insight
virtually any halftoning method can be adapted to work with MC
rendering. We demonstrate this by adapting representative methods
from the three main classes of halftoning algorithms: dither matrix
halftoning, error diffusion halftoning, iterative energy minimization
halftoning.

Previous methods [Georgiev and Fajardo 2016; Heitz and Belcour
2019; Heitz et al. 2019] work by distributingMC error via target error
masks which are produced by minimizing an energy involving a pre-
chosen kernel. The kernel, typically a Gaussian, can be interpreted
as an approximation to the human visual system’s (HVS) point
spread function (PSF) [Daly 1987; Pappas and Neuhoff 1999]. We
revisit the kernel-based perceptual model from halftoning [Sullivan
et al. 1991; Analoui and Allebach 1992; Pappas and Neuhoff 1999]
and reformulate it for MC rendering. The resulting energy can be
optimized for MC error distribution without any explicit mask. By
providing a formal analysis, we make the hidden assumptions of
previous methods explicit and quantify their limitations. Notably, all
previous methods can be seen as variants of dither matrix halftoning
introducing varying degrees of bias. In summary:

● Our formulation unifies both a-priori and a-posteriori methods.
This removes the necessity of using empirically motivated en-
ergies, making all assumptions explicit, and prescribing general
guidelines for devising new a-priori and a-posteriori methods in
a principled manner.● All a-posteriori methods in our framework can be seen as meth-
ods, which can be used to decrease the bias of a rendered biased
image. This provides a continuous spectrum between the fully
unbiased estimates (white noise error distribution) and highly
biased such (high quality blue noise distribution). This insight
makes the limitations of a-posteriori methods quantifiable.● We demonstrate our theoretical results through several experi-
ments that showcase that we can substantially improve the error
distribution in rendering compared to all previous state of the art
methods (Section 7) which aim to redistribute the error as blue
noise. Notably, this is achieved while using the exact same render-
ing data as previous methods. These results include but are not
limited to: suppressing fireflies, removing visually objectionable
hallucinated artifacts from a denoiser, producing images closer
to the ground truth after convolution, achieving a high quality
blue noise error distribution in animations even in the presence
of large temporal discontinuities.

Following an overview of relevant prior work (Section 2), we present
necessary background and motivation in Section 3.1. We then devise
our perceptual error formulation for image synthesis (Section 3.2)
and present our algorithms for solving the proposed optimization
problem (Section 4). We discuss extensions to our base model in
Section 6, and demonstrate the benefits on several realistic scenes

in Section 7. We conclude with an outline of promising directions
for future research (Section 8).

2 RELATED WORK
Our work draws from diverse research in imaging, rendering, and
perception. We begin our exposition with a structured survey of
relevant prior work in these fields.

2.1 Digital halftoning
Digital halftoning [Stoffel and Moreland 1981] involves creating
the illusion of continuous-tone images through the arrangement of
binary elements; various algorithms target different display devices.
Bayer [1973] developed the widely used dispersed-dot ordered dither
patterns. Allebach and Liu [1976] introduced the use of randomness
in clustered-dot ordered dithering. Ulichney [1987] introduced blue-
noise patterns that yield better perceptual quality. Mitsa and Parker
[1991] mimic those patterns to produce ordered dither arrays for
given spatial frequency domain characteristics. In 1993, Ulichney
proposed the void-and-cluster algorithm which uses a Gaussian
kernel to create dither masks with isotropic blue-noise distribu-
tion. Sullivan et al. [1991] capitalized on this kernel-based approach
and developed an energy function in the Fourier domain to obtain
visually optimal halftone patterns. Analoui and Allebach [1992]
designed a spatial-domain interpretation of Sullivan et al.’s model,
in order to develop a practical algorithm for blue-noise dithering.
Their approach was later refined by Pappas and Neuhoff [1999].

Motivated byUlichney’s [1993] approach, various structure-aware
halftoning algorithms were developed in graphics [Ostromoukhov
2001; Pang et al. 2008; Chang et al. 2009]. In this work, we lever-
age the kernel-based model [Analoui and Allebach 1992; Pappas
and Neuhoff 1999] in the context of Monte Carlo rendering [Kajiya
1986].

2.2 Quantitative error assessment in rendering
In rendering, the light transport integral estimation error (ℒ1, MSE,
or RMSE) is usually reported as a single value evaluated over the
whole image or a set of images. Since these metrics often do not ac-
curately reflect the visual quality, equal-time visual comparisons are
also commonly reported. Various theoretical frameworks have been
developed in the spatial [Niederreiter 1992; Kuipers and Niederreiter
1974] and Fourier [Singh et al. 2019] domains to understand the
error reported through these metrics. Numerous variance reduc-
tion algorithms like multiple importance sampling [Veach 1998],
and control variates [Loh 1995; Glasserman 2004] improve the er-
ror convergence of light transport renderings. Recently, Celarek
et al. [2019] proposed error spectrum ensemble (ESE), a tool for
measuring the distribution of error over frequencies. ESE reveals
correlation between pixels and can be used to detect outliers, which
offset the amount of error substantially.
Many denoising methods [Zwicker et al. 2015] employ these

metrics to optimize over noisy images to get noise-free renderings.
Even if the most advanced denoising techniques driven by such
metrics can efficiently steer adaptive sampling [Chaitanya et al.
2017; Kuznetsov et al. 2018; Kaplanyan et al. 2019], they emphasize
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on the local sample density, and are incapable of indicating the
optimal sample layout in screen space.
Contrary to aforementioned metrics, we develop a perceptual

model for rendered images that focuses on the perceptually optimal
distribution of error, i. e., with respect to the human visual system’s
(HVS) modulation transfer function (MTF) [Daly 1987; Sullivan
et al. 1991]. Our theoretical framework argues that the screen-space
sample layout is crucial for perceptual fidelity, which the most
commonly used error metrics do not capture.

2.3 Perceptual error assessment in rendering
Although substantial progress in the study of HVS is continuously
made, well understood are mostly the early stages of the visual
pathways from the eye optics, through the retina to the visual cor-
tex. This limits the scope of existing computational models of the
HVS that are used in imaging and computer graphics. Such models
should additionally be computationally efficient and generalize over
simplistic stimuli that have been used in their derivation through
psychophysical experiments.

Contrast sensitivity function. The contrast sensitivity function (CSF)
is one of the core HVS models that fulfills those conditions and com-
prehensively characterizes overall optical [Westheimer 1986; Deeley
et al. 1991] and neural processes [Souza et al. 2011] in detecting
contrast visibility as a function of spatial frequency. While origi-
nally it is modeled as a band-pass filter [Barten 1999; Daly 1993],
its shape changes towards a low-pass filter with retinal eccentricity
[Robson and Graham 1981; Peli et al. 1991] and reduced luminance
adaptation in scotopic andmesopic levels [Wuerger et al. 2020]. Low-
pass characteristics are also inherent for chromatic CSFs [Mullen
1985; Wuerger et al. 2020; Bolin and Meyer 1998]. In many practical
imaging applications, e.g., JPEG compression [Rashid et al. 2005],
rendering [Ramasubramanian et al. 1999], or halftoning [Pappas and
Neuhoff 1999], the CSF is modeled as a low-pass filter, which also
allows for a better control of image intensity. By normalizing such a
CSF by the maximum contrast sensitivity value, a unitless function
akin to the MTF can be derived [Daly 1987; Mannos and Sakrison
1974; Mantiuk et al. 2005; Sullivan et al. 1991; Souza et al. 2011] that
after transforming from frequency to spatial domain results in the
Point Spread Function (PSF) [Analoui and Allebach 1992; Pappas
and Neuhoff 1999]. Following Pappas and Neuhoff [1999] we ap-
proximate such a PSF by a suitable Gaussian filter, where the error
of such approximation becomes practically negligible for sample
density of 300 dpi and the viewer distance to the screen beyond
60 cm.

Advanced quality metrics. More costly, and often less robust, model-
ing of the HVS beyond the CSF is performed at advanced quality
metrics [Lubin 1995; Daly 1993; Mantiuk et al. 2011] that have been
adapted to rendering where they guide the computation to the im-
age regions where the visual error is most perceived [Bolin and
Meyer 1995, 1998; Ramasubramanian et al. 1999; Ferwerda et al.
1996; Myszkowski 1998; Volevich et al. 2000]. An important appli-
cation is visible noise reduction in ray and path tracing by content

Table 1. List of commonly used notations throughout the paper.

Symbol Meaning

∐︀⋅, ⋅̃︀, ⊙, ∗ inner product, element-wise product, convolution∏︁⋅∏︁2 2-norm
𝑔𝑔𝑔, 𝑔𝑔𝑔, ⋃︀𝑔𝑔𝑔⋃︀2 convolution kernel, its Fourier and power spectra
𝐼𝐼𝐼 ,𝑄𝑄𝑄 , 𝜖𝜖𝜖 =𝑄𝑄𝑄−𝐼𝐼𝐼 reference image, estimated image, error image
𝑆𝑖 , 𝑆𝑆𝑆 sample set for pixel 𝑖 , sample sets for all pixels

adaptive sample density control [Bolin and Meyer 1995, 1998; Rama-
subramanian et al. 1999]. Our framework enables further significant
reduction of the noise visibility for the same sample budget.

Sampling in rendering. Sample correlations [Singh et al. 2019] di-
rectly affect the error in rendering. Quasi-Monte Carlo samplers [Hal-
ton 1964; Sobol 1967] preserve correlations (i. e., stratification) well
in higher dimensions, which makes them a perfect candidate for
rendering problems [Keller 2013]. However, imposing perceptual
control over these samplers is not well studied. On the other hand,
stochastic samplers are shown to have direct resemblance to the
cone layout in the human eye [Yellott 1983]. This has inspired the
development of various stochastic sample correlations in render-
ing [Cook 1986; Dippé and Wold 1985; Mitchell 1991], e. g., blue
noise. In this work, we do not focus on construction of blue-noise
point sets, but develop a theoretical framework to obtain percep-
tually pleasing distribution of error in screen space for rendering
purposes.

Blue-noise error distribution. Mitchell [1991] observed that blue
noise is a desirable property for spectrally optimal ray tracing.
Georgiev and Fajardo [2016] were the first to apply results from
halftoning literature to screen space-error redistribution for path
tracing. The resulting perceptual quality improvements are substan-
tial for smooth enough integrands.
Motivated by the results of Georgiev and Fajardo [2016], Heitz

and Belcour [2019] devised a technique aiming to directly optimize
the error distribution instead of operating on sample distributions.
Their pixel permutation strategy fits the initially white-noise pixel
intensities to a prescribed blue-noisemask. This approach scales well
with sample count and dimensionality, though the error distribution
quality is limited by the fitting to a specific mask and degrades
to white noise near geometry discontinuities, unlike the methods
of Georgiev and Fajardo [2016] and Heitz et al. [2019].

We propose a perceptual error framework based on an expressive
model that unifies these prior methods, providing insight into their
(implicit) assumptions and guidelines to alleviate some of their
drawbacks. Our general perceptual error formulation does not rely
on a target (blue-noise) mask.

3 PERCEPTUAL ERROR MODEL
Our goal is to produce Monte Carlo renderings that, at a fixed sam-
pling rate, are perceptually as close to the ground truth as possible.
This requires formalizing the perceptual image error along with an
optimization problem that minimizes it. In this section, we build
a perceptual model upon the extensive studies done in halftoning
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Image Image spectrum Kernel spectrum Product spectrum

𝜖𝜖𝜖w ⋃︀𝜖𝜖𝜖w⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⊙ ⋃︀𝜖𝜖𝜖w⋃︀2

𝜖𝜖𝜖b ⋃︀𝜖𝜖𝜖b⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⊙ ⋃︀𝜖𝜖𝜖b⋃︀2
Fig. 2. Error images 𝜖𝜖𝜖w and 𝜖𝜖𝜖b with respective white-noise, ⋃︀𝜖𝜖𝜖w⋃︀2, and blue-
noise, ⋃︀𝜖𝜖𝜖b⋃︀2, power spectra. For a low-pass kernel 𝑔𝑔𝑔 modeling the PSF of the
HVS (here a Gaussian with std. dev. 𝜎 = 1), the product of its spectrum⋃︀𝑔𝑔𝑔⋃︀2 with ⋃︀𝜖𝜖𝜖b⋃︀2 has lower magnitude than the product with ⋃︀𝜖𝜖𝜖w⋃︀2. This corre-
sponds to lower perceptual sensitivity to 𝜖𝜖𝜖b, even though 𝜖𝜖𝜖w has the same
amplitude as it is obtained by randomly permuting the pixels of 𝜖𝜖𝜖b.

literature. We will discuss how to efficiently solve the resulting
optimization problem in Section 4.

Given a ground-truth image 𝐼𝐼𝐼 and its quantized or noisy approxi-
mation𝑄𝑄𝑄 , we denote the signed error image by:

𝜖𝜖𝜖 =𝑄𝑄𝑄 − 𝐼𝐼𝐼 . (1)
It is useful to quantify the error as a single number. A common
approach is to take the ℒ1, ℒ2, or ℒ∞ norm of 𝜖𝜖𝜖 . Such vector norms
are permutation-invariant, i. e., they account for the magnitudes of
individual pixel errors but not for their distribution over the image.
This distribution is an important factor for the perceived fidelity,
since contrast perception is an inherently spatial characteristic of
the HVS (Section 2.3).

3.1 Motivation
Several metrics have been proposed in halftoning literature to cap-
ture the human perception of image error. Such metrics model the
processing done by the HVS as a convolution of the error image 𝜖𝜖𝜖
with a kernel 𝑔𝑔𝑔 (see notation in Table 1):

𝐸 = ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖∏︁22 = ∏︁𝑔𝑔𝑔 ⊙ 𝜖𝜖𝜖∏︁22 = ∐︀⋃︀𝑔𝑔𝑔⋃︀2 , ⋃︀𝜖𝜖𝜖 ⋃︀2̃︀. (2)
The convolution is equivalent to the element-wise product of the
corresponding Fourier spectra 𝑔𝑔𝑔 and 𝜖𝜖𝜖 , whose 2-norm is in turn
equal to the inner product of the power spectra images ⋃︀𝑔𝑔𝑔⋃︀2 and⋃︀𝜖𝜖𝜖 ⋃︀2. Sullivan et al. [1991] minimized the error (2) w.r.t. a kernel
𝑔𝑔𝑔 that approximates the HVS’s modulation transfer function ⋃︀𝑔𝑔𝑔⋃︀
(MTF) [Daly 1987]. Analoui and Allebach [1992] used a similar
model in the spatial domain where the kernel approximates the PSF
of the human eye.

Convolving the error image with a kernel incorporates both the
magnitude and the distribution of the error into the resulting metric
𝐸. In general, the kernel 𝑔𝑔𝑔 can have arbitrary form and charac-
teristics; we assume it represents the HVS PSF. As we discuss in
Section 2.3, the HVS sensitivity to a spatial signal can be well ap-
proximated by a low-pass filter. Optimizing the error image 𝜖𝜖𝜖 to

𝜎 = 0 𝜎 = 0.25 𝜎 = 0.5 𝜎 = 1

Fig. 3. The appearance of blue noise (left images) converges to a constant
image faster than white noise (right images) with increasing observer dis-
tance, simulated here by the standard deviation 𝜎 of a Gaussian kernel.

minimize the cost (2) w.r.t. a low-pass kernel would then naturally
yield a blue-noise1 error distribution (see Fig. 2). Consequently,
such a distribution can be seen as a byproduct of such optimization,
which pushes the spectral components of the error to frequencies
least visible to the human eye. To better understand the spatial as-
pects of contrast sensitivity in the HVS, the MTF (magnitude of the
PSF Fourier transform) is usually modeled over a range of viewing
distances [Daly 1993]. This is done to account that with increasing
viewer distance, spatial frequencies in the image are projected into
higher spatial frequencies in the retina. These eventually become
invisible, filtered out by the PSF that expands its corresponding
kernel in image space. We recreate this experiment to understand
the impact of distance over the nature of the error distribution (blue
vs. white noise). In Fig. 3, we convolve white- and blue-noise dis-
tributions with a Gaussian kernel. Increasing the kernel’s standard
deviation corresponds to increasing the distance between observer
and screen. The blue-noise distribution reaches a homogeneous
state (where the image tone is indiscernible) faster compared to
white noise. In the context of rendering, this is equivalent to blue-
noise error becoming indiscernible at smaller distances (or smaller
denoising low-pass filters) compared to white-noise error. Conse-
quently, a smaller kernel (i. e., viewing distance) allows preserving
more image details while removing the noise, for an optimized error
distribution.

3.2 Our model
In rendering, the value of each pixel 𝑖 is estimated via point sampling.
Its signed error is thus a function of the sample set 𝑆𝑖 used for its
estimation: 𝜖𝑖(𝑆𝑖) = 𝑄𝑖(𝑆𝑖) − 𝐼𝑖 , where 𝑄𝑖 is the pixel estimate and
𝐼𝑖 is the reference (i. e., ground-truth) pixel value. The error of the
entire image can be written in matrix form, similarly to Eq. (1):

𝜖𝜖𝜖(𝑆𝑆𝑆) =𝑄𝑄𝑄(𝑆𝑆𝑆) − 𝐼𝐼𝐼 , (3)

where 𝑆𝑆𝑆 = {𝑆1, . . . , 𝑆𝑁 } is an “image” containing the sample set for
each of the 𝑁 pixels. With these definitions, we can express the
perceptual error in Eq. (2) for the case of Monte Carlo rendering as
a function of the sample-set image 𝑆𝑆𝑆 :

𝐸(𝑆𝑆𝑆) = ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖(𝑆𝑆𝑆)∏︁22, (4)

where 𝑔𝑔𝑔 is a given kernel, e. g., the PSF of the HVS.
Our goal is to minimize the energy in Eq. (4). We formulate it as

an optimization problem:

1The term “blue noise” is often used loosely to refer to any spectrum with minimal
low-frequency content and no concentrated energy spikes.
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argmin
𝑆𝑆𝑆∈ΩΩΩ ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖(𝑆𝑆𝑆)∏︁22 . (5)

The solution 𝑆𝑆𝑆 produces an image estimate𝑄𝑄𝑄(𝑆𝑆𝑆) that is closest to
the reference 𝐼𝐼𝐼 w.r.t. the kernel 𝑔𝑔𝑔. The search space ΩΩΩ is the set of
all possible locations for every sample of every pixel.
Note that the classical MSE metric corresponds to using a zero-

width (i. e., one-pixel) kernel𝑔𝑔𝑔 in Eq. (4). However, the MSE accounts
only for the magnitude of the error 𝜖𝜖𝜖 , while using wider kernels
(such as the PSF) accounts for both magnitude and distribution.
Consequently, while the MSE can be minimized by optimizing pixels
independently, minimizing the perceptual error requires spatial
coordination. In the following section, we devise practical strategies
for solving this optimization problem.

4 DISCRETE OPTIMIZATION
The search space in Eq. (5) for each sample set of every pixel is a high-
dimensional unit hypercube. Each point in this so-called primary
sample space maps to a light transport path in the scene [Pharr et al.
2016]. Optimizing for the sample-set image 𝑆𝑆𝑆 thus entails evaluating
the contributions𝑄𝑄𝑄(𝑆𝑆𝑆) of all corresponding paths. This evaluation
is costly, and for any non-trivial scene,𝑄𝑄𝑄 is an unpredictable func-
tion with many discontinuities. This precludes us from studying all
(uncountably infinite) sample locations in practice.

To make the problem tractable, we restrict the search in each
pixel to a finite number of (pre-defined) sample sets.]2 We devise
two variants of the resulting discrete optimization problem, which
differ in their definition of the search space ΩΩΩ. In the first variant,
each pixel has a separate list of sample sets to choose from (“ver-
tical” search space). The setting is similar to that of (multi-tone)
halftoning [Lau and Arce 2007], which allows us to import clas-
sical optimization techniques from that field, such as mask-based
dithering, error diffusion, and iterative minimization. In the second
variant, each pixel has one associated sample set, and the search
space comprises permutations of these assignments (“horizontal”
search space). We develop a greedy iterative optimization method
for this second variant.

In contrast to halftoning, in our setting the ground-truth image 𝐼𝐼𝐼 ,
required to compute the error 𝜖𝜖𝜖 during optimization, is not readily
available. We describe our algorithms assuming the ground truth is
available, and then discuss how to substitute it with a surrogate to
make the algorithms practical.

4.1 Vertical search space
Our first variant considers a vertical search space where the sample
set for each of the 𝑁 image pixels is one of𝑀 given sets:

ΩΩΩ = {𝑆𝑆𝑆 = {𝑆1, . . . , 𝑆𝑁 } ∶ 𝑆𝑖 ∈ {𝑆𝑖,1, . . . , 𝑆𝑖,𝑀}} . (6)

The objective is to find a sample set for every pixel such that all
resulting pixel estimates together minimize the perceptual error (4).
This is equivalent to directly optimizing over the 𝑀 possible es-
timates 𝑄𝑖,1, . . . ,𝑄𝑖,𝑀 for each pixel 𝑖 , with 𝑄𝑖, 𝑗 = 𝑄𝑖(𝑆𝑖, 𝑗). These
estimates can be obtained by, e. g., rendering a stack of 𝑀 images

2A more general formulation could operate on individual samples, without grouping
them into per-pixel sets; we leave this study to future work.

𝑄𝑄𝑄 𝑗 = {𝑄1, 𝑗 , . . . ,𝑄𝑁,𝑗}, with 𝑗 = 1..𝑀 . The resulting minimization
problem reads

argmin
𝑂𝑂𝑂 ∶𝑂𝑖∈ {𝑄𝑖,1,...,𝑄𝑖,𝑀}∏︁𝑔𝑔𝑔 ∗ (𝑂𝑂𝑂 − 𝐼𝐼𝐼)∏︁

2
2 . (7)

𝑂1𝑂1𝑄1,𝑀𝑄1,𝑀

𝑂2𝑂2

𝑄2,1𝑄2,1
𝑂3𝑂3𝑄3,2𝑄3,2

The problem in Eq. (7) is al-
most identical to that in mul-
titone halftoning. The only
difference is that in our set-
ting the “quantization levels”,
i. e., the pixel estimates, are non-uniform and differ from pixel to
pixel as they are not pre-defined but are the result of point-sampling
a spatially varying light-transport integral. This similarity allows
us to directly apply existing optimization techniques from halfton-
ing [Lau and Arce 2007]. We consider three such methods, which
we outline in Alg. 1 and describe next.

Iterative minimization. Some halftoning methods aim to solve the
problem (7) directly via iterative greedy minimization [Analoui and
Allebach 1992; Pappas and Neuhoff 1999]. After initializing each
pixel to a random quantization level, our implementation traverses
the image in serpentine order (as is standard practice in halfton-
ing) and for each pixel picks the level that minimizes the energy.
Several full-image iterations are performed; in our experiments con-
vergence to a local minimum is achieved within 10–20 iterations. As
a further improvement, the optimization can be terminated when
the perceptual error reduction rate falls below a certain threshold
or when no estimates are updated within one full iteration. Random
pixel traversal order allows terminating at any point but converges
slightly slower.

Error diffusion. A classical halftoning algorithm, error diffusion
scans the image pixel by pixel, snapping each to the closest quanti-
zation level and distributing the resulting error to yet unprocessed
nearby pixels according to a given diffusion kernel 𝜅𝜅𝜅 [Floyd and
Steinberg 1976]. In our setting, this can be interpreted as using a ker-
nel (𝜅𝜅𝜅) that is learned over a specific class of functions, such that the
result of error diffusion approximately implies minimizing Eq. (7)
[Hocevar and Niger 2008]. For color images, the Euclidean distance
in a relevant color space can be used to find the closest quantization
level. .

Dither masks. An efficient halftoning approach is to quantize pixel
values using thresholds stored in a pre-computed dither mask (or
matrix) [Spaulding et al. 1997]. For each pixel, the closest lower and
higher (in terms of brightness) quantization levels to the reference
value are found, and one of the two is chosen based on the thresh-
old associated with the pixel. This aims to transfer the spectral
characteristics of the mask to the error distribution of the dithered
image. In a blue-noise mask, neighboring pixels have very different
thresholds, leading to a visually pleasant high-frequency output
error distribution. Following Eq. (7), here the minimization involves
two parts. First, the pre-processing step (performed offline) that
involves minimizing argmin𝐵𝐵𝐵 ∏︁𝑔𝑔𝑔 ∗ 𝐵𝐵𝐵∏︁2 to obtain a mask 𝐵𝐵𝐵 using
𝑔𝑔𝑔, which is equivalent to the problem in Eq. (7) with a linear inte-
grand and 𝐼𝐼𝐼 = 000. Secondly, the simplified energy ∏︁𝑂𝑂𝑂 − 𝐼𝐼𝐼 − 𝑓 (𝐵𝐵𝐵)∏︁ is
minimized, which can be done efficiently through sorting. Here 𝑓
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Algorithm 1. Three algorithms to (approximately) solve the problem as-
sociated with a vertical search space (7), producing an output image
𝑂𝑂𝑂 = {𝑂1, . . . ,𝑂𝑁 } given a reference image 𝐼𝐼𝐼 and a stack of initial estimates
𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 . Our iterative minimization scheme updates pixels repeatedly,
for each picking the estimate that minimizes the perceptual error (4). Error
diffusion quantizes each pixel to the closest estimate, distributing the error
to its neighbours based on a kernel𝜅𝜅𝜅 . Dithering quantizes each pixel in 𝐼𝐼𝐼
based on thresholds in a dither mask 𝐵𝐵𝐵 (optimized w.r.t. the kernel 𝑔𝑔𝑔).

1: function IterativeMinimization(𝑔𝑔𝑔, 𝐼𝐼𝐼 ,𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 ,𝑂𝑂𝑂 , 𝑇 )
2: 𝑂𝑂𝑂 ← {𝑄1,rand, . . . ,𝑄𝑁,rand} ←←← Init each pixel to random estimate

3: for 𝑇 iterations do
4: for pixel 𝑖 = 1..𝑁 do ←←← E. g., random or serpentine order
5: for estimate 𝑄𝑖, 𝑗 ∈ {𝑄𝑖,1, . . . ,𝑄𝑖,𝑀} do
6: if 𝑂𝑖 = 𝑄𝑖, 𝑗 reduces ∏︁𝑔𝑔𝑔 ∗ (𝑂𝑂𝑂 − 𝐼𝐼𝐼)∏︁22 then
7: 𝑂𝑖 ← 𝑄𝑖, 𝑗 ←←← Update estimate

8: function ErrorDiffusion(𝜅𝜅𝜅, 𝐼𝐼𝐼 ,𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 ,𝑂𝑂𝑂)
9: 𝑂𝑂𝑂 ← 𝐼𝐼𝐼 ←←← Initialize solution to reference
10: for pixel 𝑖 = 1..𝑁 do ←←← E. g., raster or serpentine order

11: 𝑂old
𝑖 ← 𝑄𝑖

12: 𝑂𝑖 ∈ argmin𝑄𝑖,𝑗
∏︁𝑂old

𝑖 −𝑄𝑖, 𝑗∏︁22
13: 𝜖𝑖 ← 𝑂old

𝑖 −𝑂𝑖 ÆÆÆ Diffuse error 𝜖𝑖 to yet unprocessed neighbors
14: for unprocessed pixel 𝑘 within support of 𝜅𝜅𝜅 around 𝑖 do
15: 𝑂𝑘 ← 𝑂𝑘 + 𝜖𝑖 ⋅ 𝜅𝑘−𝑖
16: function Dithering(𝐵𝐵𝐵, 𝐼𝐼𝐼 ,𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 ,𝑂𝑂𝑂)
17: for pixel 𝑖 = 1..𝑁 do ÆÆÆ Find tightest interval (︀𝑄 low

𝑖 ,𝑄
high
𝑖 ⌋︀

18: 𝑄 low
𝑖 ← argmax𝑄𝑖,𝑗 ∶ ⋃︀𝑄𝑖,𝑗 ⋃︀ ≤ ⋃︀𝐼𝑖 ⋃︀ ⋃︀𝑄𝑖, 𝑗 ⋃︀ containing 𝐼𝑖

19: 𝑄
high
𝑖 ← argmin𝑄𝑖,𝑗 ∶ ⋃︀𝑄𝑖,𝑗 ⋃︀ > ⋃︀𝐼𝑖 ⋃︀ ⋃︀𝑄𝑖, 𝑗 ⋃︀

20: if ⋃︀𝐼𝑖 ⋃︀ − ⋃︀𝑄 low
𝑖 ⋃︀ < 𝐵𝑖 ⋅ (⋃︀𝑄high

𝑖 ⋃︀ − ⋃︀𝑄 low
𝑖 ⋃︀) then

21: 𝑂𝑖 ← 𝑄 low
𝑖 ÄÄÄQuantize 𝐼𝑖 to𝑄 low

𝑖 or𝑄high
𝑖 using threshold 𝐵𝑖

22: else
23: 𝑂𝑖 ← 𝑄

high
𝑖

is a monotonic mapping, and different choices result in different
algorithms (see more details in Section 7 in the supplemental).

4.2 Horizontal search space

We now describe the second horizontal dis-
crete variant of our minimization formula-
tion (5). It considers a single sample set 𝑆𝑖
assigned to each of the 𝑁 pixels, all repre-
sented together as a sample-set image 𝑆𝑆𝑆 . The
search space comprises all possible permuta-
tions Π(𝑆𝑆𝑆) of these assignments:

ΩΩΩ = Π(𝑆𝑆𝑆), with 𝑆𝑆𝑆 = {𝑆1, . . . , 𝑆𝑁 }. (8)

The goal is to find a permutation 𝜋(𝑆𝑆𝑆) that minimizes the perceptual
error (4). The optimization problem (5) thus takes the form

argmin
𝜋(𝑆𝑆𝑆)∈Π(𝑆𝑆𝑆)𝐸(𝜋(𝑆𝑆𝑆)) = argmin

𝜋(𝑆𝑆𝑆)∈Π(𝑆𝑆𝑆)∏︁𝑔𝑔𝑔 ∗ (𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁22 . (9)

Algorithm 2. Given a convolution kernel 𝑔𝑔𝑔, a reference image 𝐼𝐼𝐼 , an initial
pixel sample-set assignment 𝑆𝑆𝑆 , and an image estimated with that assign-
ment𝑄𝑄𝑄(𝑆𝑆𝑆), our greedy sample relocation algorithm iteratively swaps pixel
assignment to minimize the perceptual error 𝐸ΔΔΔ (10), producing a permuta-
tion 𝜋 of the sample-set assignment.

1: function IterativeMinimization(𝑔𝑔𝑔, 𝐼𝐼𝐼 , 𝑆𝑆𝑆 ,𝑄𝑄𝑄(𝑆𝑆𝑆), 𝑇 , 𝑅, 𝜋 )
2: 𝜋 ← identity permutation ←←← Initialize solution permutation
3: for 𝑇 iterations do
4: for pixel 𝑖 = 1..𝑁 do ←←← E. g., random or serpentine order
5: 𝜋 ′ ← 𝜋 ÆÆÆ Find best pixel in neighborhood to swap with
6: for pixel 𝑗 in (2𝑅+1)2 neighborhood centered at 𝑖 do
7: if 𝐸ΔΔΔ(𝜋𝑖⇆ 𝑗(𝑆𝑆𝑆)) < 𝐸ΔΔΔ(𝜋 ′(𝑆𝑆𝑆)) then ←←← Eq. (10)
8: 𝜋 ′ ← 𝜋𝑖⇆𝑗 ←←← Accept swap as current best
9: 𝜋 ← 𝜋 ′

We can explore the permutation spaceΠ(𝑆𝑆𝑆) by swapping the sample-
set assignments between pixels. The minimization requires updat-
ing the image estimate 𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) for each permutation 𝜋(𝑆𝑆𝑆), i. e.,
after each swap. Such updates are costly as they involve multiple
ray-tracing operations for each of potentially millions of swaps. We
need to eliminate these extra rendering invocations during the opti-
mization to make it practical. To that end, we observe that for pixels
solving similar light-transport integrals, swapping their sample sets
gives a similar result to swapping their estimates. We therefore
restrict the search space to permutations that can be generated
through swaps between such pixels. This enables efficient optimiza-
tion by directly swapping the pixel estimates of an initial rendering
𝑄𝑄𝑄(𝑆𝑆𝑆).
Error decomposition. Formally, we express the estimate produced
by a sample-set permutation in terms of permuting the pixels of the
initial rendering:𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) = 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆))+ΔΔΔ. The errorΔΔΔ is zero when
the swapped pixels solve the same integral(s). Substituting into
Eq. (9), we can approximate the perceptual error by (see derivation
in Appendix A)

𝐸(𝜋(𝑆𝑆𝑆)) = ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼 + ΔΔΔ)∏︁22 (10)

≈ ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁22 + ∏︁𝑔𝑔𝑔∏︁21∑
𝑖
𝑑(𝑖, 𝜋(𝑖)) = 𝐸ΔΔΔ(𝜋(𝑆𝑆𝑆)).

In the approximation 𝐸ΔΔΔ, the term 𝑑(𝑖, 𝜋(𝑖)) measures the dissim-
ilarity between pixel 𝑖 and the pixel 𝜋(𝑖) it is relocated to by the
permutation. The purpose of this metric is to predict how different
we expect the result of re-estimating the pixels after relocating their
sample sets to be compared to directly relocating their initial esti-
mates. It can be constructed based on assumptions or knowledge
about the image, e. g., coming from auxiliary buffers (depth, normals,
etc).

Local similarity assumption. In our implementation we use a simple
binary dissimilarity function returning zero when 𝑖 and 𝜋(𝑖) are
within some distance 𝑟 and infinity otherwise. We set 𝑟 between
1 and 3; it should ideally be locally adapted to the image smooth-
ness/regularity. This allows us to restrict the search space Π(𝑆𝑆𝑆) only
to permutations that swap adjacent pixels where it is more likely
that ΔΔΔ is small.
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Iterative minimization. We devise a greedy iterative minimization
scheme for this variant similar in spirit to the iterative minimization
in Alg. 1. Given an initial image estimate 𝑄𝑄𝑄(𝑆𝑆𝑆) produced by ran-
domly assigning a sample set to every pixel, our algorithm iterates
over all pixels and for each considers swaps within a (2𝑅+1)2 neigh-
borhood; we use 𝑅 = 1. The swap that brings the largest reduction
in the perceptual error 𝐸ΔΔΔ is accepted. Several full-image iterations
are performed. Algorithm 2 provides pseudo code. We use 𝑇 = 10
iterations in our experiments. The algorithm could be terminated
based on the perceptual error or swap reduction rate. Additionally,
the algorithm can be sped up considerably by using optimizations
applicable to our energy (see supplemental Section 5).
The parameter 𝑅 controls the trade-off between the cost of one

iteration and the amount of exploration it can do. Note that this
parameter is different from the maximal relocation distance 𝑟 in the
dissimilarity metric, and also 𝑅 ≤ 𝑟 .
Due to the pixel (dis)similarity assumptions, the optimization

can produce some mispredictions, i. e., it may swap the estimates
of pixels for which swapping the sample sets produces a signif-
icantly different result. Thus 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) cannot be used as a final
image estimate. We therefore re-render the image with the opti-
mized permutation 𝜋 to obtain the final estimate𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)).
4.3 Discussion
Practical algorithms can be classified based on the choice of search
space (horizontal versus vertical) and optimization strategy (itera-
tive, error diffusion, dithering). The above choices affect the overall
quality and speed of algorithms.

Search space. Discretizing the search space ΩΩΩ makes the optimiza-
tion problem (5) tractable. To make it truly practical, it is necessary
to avoid repeated image estimation (i. e.,𝑄𝑄𝑄(𝑆𝑆𝑆) evaluation) during
the search for the solution 𝑆𝑆𝑆 . Our vertical (7) and horizontal (9)
optimization variants are formulated specifically with this goal in
mind. All methods in Algs. 1 and 2 operate on pre-generated image
estimates that constitute the solution search space.

Our vertical formulation takes a set of𝑀 input estimates {𝑄𝑖, 𝑗 =
𝑄𝑖(𝑆𝑖, 𝑗)}𝑀𝑗=1 for every pixel 𝑖 , one for each sample set 𝑆𝑖, 𝑗 . Noting
that 𝑄𝑖, 𝑗 are MC estimates of the true pixel value, this set can be
cheaply expanded to a size as large as 2𝑀 − 1 by also considering
the average of the estimates in each of its subsets (excluding the
empty subset). In practice only a fraction of these subsets can be
used, since the size of the power set grows exponentially with𝑀 .

In contrast, our horizontal formulation builds a search space given
just a single input estimate 𝑄𝑖 per pixel 𝑖 . We consciously restrict
the space to permutations between nearby pixels, so as to lever-
age local pixel similarity and avoid repeated pixel evaluation. The
disadvantage of this approach is that it requires re-rendering the im-
age after optimization, with unpredictable results (mispredictions)
that can lead to local degradation of image quality. Additionally,
while some halftoning methods (iterative energy minimization and
versions of dither matrix halftoning) can be adapted to this search
space, it is non-trivial to find straightforward reformulations for
other algorithms (e. g., error diffusion).

It is also possible to combine our two formulations into a hybrid
one that takes one input estimate per pixel but considers a separate

search space for each pixel, constructed by borrowing neighboring
estimates.

Optimization strategy. Another important design decision is the
choice of optimizationmethod. For the vertical formulation, iterative
methods provides the most flexibility, control, and quality, but are
most computationally expensive. In contrast, error diffusion and
dither-mask halftoning can be seen as only approximately solving
the optimization problem (7), yielding results of a lower quality. An
important difference between classical halftoning and our extension
is the fact that quantization levels differ between pixels. This makes
the gap in quality between image-adaptive (iterative, error diffusion)
and non-adaptive (dither-mask halftoning) methods even larger.
Additionally, in the classical MC rendering setting, iterative and
error-diffusion methods handle color natively, while dither-mask
halftoning requires greyscale input. While this can be mitigated
by modifying the renderer or by extending the dithering through
algorithms such as bipartite Euclidean matching, this comes at both
a performance and quality cost compared to iterative and error
diffusion algorithms. The main advantage of dither-mask halftoning
over error diffusion in our setting is that the former involves the
kernel 𝑔𝑔𝑔 explicitly, while error diffusion relies on a diffusion kernel
𝜅𝜅𝜅 that cannot be related directly to 𝑔𝑔𝑔.

Surrogate for reference image. All our formulations depend on the
reference image 𝐼𝐼𝐼 which is unknown, unlike in halftoning. To that
end, the reference can be substituted with an approximation, i. e.,
surrogate image, 𝐼 ′𝐼 ′𝐼 ′, which can be obtained, e. g., via (ideally feature-
preserving) filtering of an estimate𝑄𝑄𝑄 . We will discuss surrogates in
more detail in Sections 7.1 and 7.3, but it is important to point out
that all existing methods rely on a surrogate whether explicitly or
implicitly.

5 A-POSTERIORI & A-PRIORI METHODS
In our framework, the histogram sampling approach of Heitz and
Belcour [2019] classifies as a vertical method, and their permutation
approach as a horizontal method. Both these methods employ vari-
ants of dither-mask halftoning. We next show that in both cases,
their algorithms rely on implicitly constructed surrogates.

5.1 Implicit surrogates in a-posteriori approaches
All existing error distribution methods rely on an implicit surrogate.
For the histogram method of Heitz and Belcour [2019], since the
mean value of the blue-noise mask maps to the median of the esti-
mates, the implicit surrogate is the median of the sorted estimates in
each pixel. Furthermore, the histogram method can pick any of the
estimates within a pixel—unlike classical halftoning that samples
the closest lower and higher quantization level [Spaulding et al.
1997]—which results in a higher error amplitude. Consequently,
pixels for which the mask value deviates strongly from the mean
value could end up with outliers leading to fireflies in the rendered
image, even if those were not present in the averaged image (Fig. 7).

The permutationmethod of Heitz and Belcour [2019], on the other
hand, has a piecewise constant implicit surrogate. We show this
formally in the supplemental document (supplemental, Section 7). In
words, the permutation method uses a sorting pass which minimizes
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Input (white noise) Low-pass (blue noise) Band-stop (green noise) High-pass (red noise) Band-pass (violet noise) Low-pass anisotropic Spatially varying

Fig. 4. Using our formulation (5), the distribution of an input error image can be optimized w.r.t. arbitrary kernels. Here we have modified our relocation
algorithm (Section 4.2) to directly swap the pixels of the input image. Insets show the power spectra of the kernels (top right) and the images (bottom left).

theℒ2 distance between the pixel values and the dither mask within
each tile. This transfers the blue-noise characteristics of the dither
mask to the signal. However, the actual goal is to transfer these
spectral characteristics to the error, not the signal. For the two to be
equivalent, the signal within each tile needs to be assumed constant.
And indeed, a constant offset does not change the minimizer of
the energy which sorting minimizes. This implies that the implicit
surrogate in this case is a piecewise constant function within each
tile. Our framework, however, uses an explicit surrogate that allows
full control over the quality of error distribution.

5.2 A-priori methods
By making simplifying assumptions about 𝐼𝐼𝐼 and𝑄𝑄𝑄 , our sample re-
location algorithm could be used with no actual knowledge about
the image. For example, assuming that every pixel solves the same
integral turns 𝐼𝐼𝐼 into a constant image and makes the error term
ΔΔΔ in Eq. (10) vanish. This allows us to swap any two pixels and
simplifies the perceptual error to 𝐸(𝜋(𝑆𝑆𝑆)) = ∏︁𝑔𝑔𝑔 ∗ 𝜋(𝜖𝜖𝜖(𝑆𝑆𝑆))∏︁22. Fur-
ther assuming a simple analytic shape for the pixel integrand, the
per-pixel error image 𝜖𝜖𝜖(𝑆𝑆𝑆) can be quickly rendered once and the
perceptual optimization performed by simply swapping its pixels.
In this formulation, prior methods correspond to using a (family of)
step function(s) [Heitz et al. 2019] or a class of functions mapping
far away samples to far away values [Georgiev and Fajardo 2016]
for the integrand, respectively. This approach, coined “a-priori” by
Heitz and Belcour [2019], is practical but its output fidelity is limited
by lack of adaptivity resulting from its strong assumptions.
Our framework unifies the a-priori and a-posteriori approaches,

showing that the two lie on a continuum (supplemental Section 2).
In our framework, the “a-priori” method of Heitz et al. [2019] tries
to simultaneously minimize for a large number of simple integrands
while the search space is restricted to the ranking and scrambling
keys of a Sobol sequence. This roughly corresponds to a vertical
and horizontal search space, respectively. At the same time, we note
that the energy that is used is empirically motivated, but it can be
made to agree with our perceptually motivated energy by simply
absorbing the Gaussian convolution within the ℒ2 norm.

Similarly, the method of Georgiev and Fajardo [2016] consisting
of toroidally shifting a sequence by a mask, can also be cast in our
framework provided that the mask is optimized w.r.t. our energy
with an appropriate set of integrands. Even if motivated purely
empirically, the energy in the paper can be related to our energy if
a whole class of integrands is considered where faraway samples
are mapped into faraway values. We also note that the toroidal shift

[Näsänen 1984][Näsänen 1984] [González et al. 2006][González et al. 2006]

OursOurs

ℎℎℎ = 𝑔𝑔𝑔ℎℎℎ = 𝑔𝑔𝑔 ℎℎℎ = 𝛿𝛿𝛿ℎℎℎ = 𝛿𝛿𝛿
(a) Kernel comparison (b) Sharpening effect

Fig. 5. (a) Comparison of our Gaussian kernel 𝑔𝑔𝑔 against those of Näsä-
nen [1984] and González et al. [2006]. (b) Sharpening effect of setting the
reference-image kernelℎℎℎ to the zero-width Kronecker 𝛿𝛿𝛿 kernel in Eq. (13).

degrades the quality of the optimized mask and consequently the
quality of the blue noise (see supplemental Section 8).

6 EXTENSIONS
Our perceptual error formulation (4) considers some image dis-
tortions due to the CSF but not all. The HVS applies additional,
localized and non-linear processing to the input signal. We ana-
lyze different aspects of the model and devise three extensions that
capture more effects.

Kernels and PSFs. In Fig. 5a, we compare different PSF models
(i. e., low-pass kernels) from halftoning literature [Näsänen 1984;
González et al. 2006]. In our experiments, we use a binomial kernel
that approximates a Gaussian kernel [Papoulis and Pillai 2002]; it is
cheap to evaluate and performs on par with these state-of-the-art
PSFs.

We further analyze kernels with band-stop, high-pass, band-pass,
and anisotropic spectral characteristics in Fig. 4. Starting from a
white-noise error distribution (i. e., with a uniform random value
in (︀−0.5, 0.5⌋︀ assigned to each pixel), our horizontal iterative min-
imization algorithm is able to optimize the shape of the noise to
produce the inverse behaviour to the kernel in the spectral domain.
The rightmost image in Fig. 4 illustrates the result from using such
a spatially varying kernel produced from the convex combination
of a binomial and an anisotropic high-pass kernel, with the in-
terpolation parameter varying horizontally across the image. Our
algorithm can well adapt the noise shape based on the kernel.
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Tone reproduction. Considering that the rendered image will be
viewed on a medium with limited dynamic range (e. g., screen or
paper), we can incorporate a tone mapping operator 𝒯 into the
perceptual error:

𝐸 (𝑆𝑆𝑆) = ∏︁𝑔𝑔𝑔 ∗ (𝒯 (𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝒯 (𝐼𝐼𝐼))∏︁22 . (11)

Doing this also bounds the per-pixel error: 𝜖𝜖𝜖(𝑆𝑆𝑆) = 𝒯 (𝑄𝑄𝑄(𝑆𝑆𝑆))−𝒯 (𝐼𝐼𝐼),
suppressing pixel outliers and making the optimization more robust
in scenes with high dynamic range.

Chromatic noise. While the HVS reacts more strongly to luminance
compared to color, ignoring chromaticity entirely can have a nega-
tive effect on the distribution of color noise in the image. To mitigate
this, one can penalize each color channel 𝑐 separately:

𝐸 (𝑆𝑆𝑆) = ∑
𝑐 ∈{r,g,b}𝜆𝑐∏︁𝑔𝑔𝑔𝑐 ∗ (𝑄𝑄𝑄𝑐(𝑆𝑆𝑆) − 𝐼𝐼𝐼𝑐)∏︁

2
2 . (12)

where 𝜆𝑐 is a weight parameter. In our experiments (Section 7),
we set 𝜆𝑐 = 1 and use the same kernel 𝑔𝑔𝑔𝑐 for every channel. It
is, however, possible to consider a more appropriate color space
than RGB (e. g., YCbCr). In such case, per-channel kernels may
differ [Sullivan et al. 1991].

Observer-screen distance. Being based on the perceptual models
of the HVS [Sullivan et al. 1991; Analoui and Allebach 1992], our
formulation (4) assumes that the estimate𝑄𝑄𝑄 and the reference 𝐼𝐼𝐼 are
viewed from the same (range of) distance(s). The viewing distances
can be decoupled by applying different kernels to𝑄𝑄𝑄 and 𝐼𝐼𝐼 :

𝐸(𝑆𝑆𝑆) = ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄(𝑆𝑆𝑆) −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁22 . (13)

Minimizing this error makes𝑄𝑄𝑄 appear, from some distance 𝑑𝑔𝑔𝑔 , simi-
lar to 𝐼𝐼𝐼 seen from a different distance 𝑑ℎℎℎ . The special case of using a
Kronecker delta kernelℎℎℎ = 𝛿𝛿𝛿 (i. e., with the reference 𝐼𝐼𝐼 seen from up
close) yields 𝐸(𝑆𝑆𝑆) = ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄(𝑆𝑆𝑆) − 𝐼𝐼𝐼∏︁22, which has been shown to have
an edge enhancing effect in halftoning [Anastassiou 1989; Pappas
and Neuhoff 1999]. We demonstrate this effect in Fig. 5b. We use
ℎℎℎ = 𝛿𝛿𝛿 for all our experiments in Section 7.

7 EXPERIMENTS
In this section, we detail our testing methodology and present empir-
ical results employing our proof-of-concept algorithms. We render
several scenes using our iterative energy minimization, error diffu-
sion, and dither matrix halftoning approaches and compare against
the histogram and permutation methods of Heitz and Belcour [2019].
The quantitative analysis is performed in Table 2 over all the meth-
ods, and the runtime for the optimization can be found in Table 3.

7.1 Setup

Energy formulation. We use the perceptual model ∏︁𝑔𝑔𝑔∗𝑄𝑄𝑄(𝑆𝑆𝑆)−ℎℎℎ∗𝐼𝐼𝐼∏︁22
with ℎℎℎ = 𝛿𝛿𝛿 from Eq. (13). In our implementation, we tone map
(Eq. (11)) the images to match the display and consider all (RGB)
channels (Eq. (12)) for both iterative and error diffusion methods.
The dithering approach, however, requires solving a bipartite Eu-
clidean matching problem to take into account different channels,
thus we consider it only in the greyscale setting, since this allows
using sorting for the optimization.

Kernel𝑔𝑔𝑔. In all our experiments (except where explicitly mentioned),
we use a 3 × 3 binomial kernel 𝑔𝑔𝑔 which approximates a Gaussian
kernel [Lindeberg 1990] with standard deviation 𝜎 = 1⇑⌋︂2. More
sophisticated kernels may be used if desired, however, we found
that our Gaussian approximation gives satisfactory results (Fig. 5a)
in all experiments. The optimal viewing distance corresponding to
our kernel is approximately 90cm for a screen with 218DPI (136
pixels per visual degree).

Rendering setup. All scenes are rendered in PBRTv3 [Pharr et al.
2016] using the path integrator and, occasionally, the bidirectional
path tracing integrator. Our methods do not depend on the dimen-
sionality of the problem, however, in order to keep the rendering
time reasonable we set the maximum path depth to 5 for all scenes.
The reference images are generated using a Sobol sampler with
sample counts greater than 1024 samples per pixel. All other images
are rendered using a random sampler. In all scenes (except in the an-
imations), we shoot primary rays through the center of the pixel in
order to separate the geometry integration from the light transport
integration. We also provide animation results in the supplementary
data on the following scenes: Utah Teapot (360 frames),Modern Hall
(120 frames), San Miguel (120 frames), Bathroom (120 frames).

Surrogate construction. To construct a surrogate for our methods, we
denoise the averaged image with the Intel Open Image Denoiser [int
2018]. The denoiser’s input is the averaged image, a normal buffer,
and a buffer containing the base color of materials where applicable.
Heitz and Belcour’s methods use implicit surrogates. We analyze the
effect of various surrogates in Fig. 10, and showcase the surrogates
generated from the Intel Denoiser in Fig. 11.

Perceptual error metrics. We also evaluate the quality of our results
using perceptual metrics like S-CIELAB [Zhang and Wandell 1997]
(see supplemental) and HDR-VDP-2 [Mantiuk et al. 2011], with pa-
rameters matching our kernel. Among these, HDR-VDP-2 quantifies
best the considerable visual improvement due to a-posteriori meth-
ods. We also include a metric, dubbed perceptual MSE (pMSE). It
is derived by normalizing our perceptual error Eq. (4) by the pixel
count multiplied by the number of channels (with ℎℎℎ = 𝛿𝛿𝛿). Addition-
ally, to analyze the local blue-noise quality we provide tiled Fourier
power spectra (Fig. 1, see supplemental results) of the signed error
𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝐼𝐼𝐼 in order to showcase the quality achieved for the dis-
tribution of the error as blue noise. The image is split into tiles of
size 32 × 32 and the power spectrum is computed for each tile. For
visualization purposes, a logarithmic transform is applied within
each tile and the resulting values are normalized so that the highest
value is (1, 1, 1). Note that the power spectrum is computed for
the error w. r. tthe reference image 𝐼𝐼𝐼 and not the surrogate, which
quantifies the blue noise distribution objectively.

7.2 Rendering comparisons
Vertical approaches. We compare all three different class of verti-
cal methods (Alg. 1): dithering-based, error diffusion using Floyd-
Steinberg kernel 𝜅𝜅𝜅 [Floyd and Steinberg 1976] and the iterative
minimization approach using our kernel 𝑔𝑔𝑔.
We first compare our iterative minimization approach against

the histogram sampling method [Heitz and Belcour 2019] in Fig. 6.
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Histogram (1/16) Ours (1/4) Histogram (1/64)

Average 4sppAverage 4spp

Fig. 6. Vertical methods. In the top row, we compare our iterative approach with Histogram sampling method [Heitz and Belcour 2019] over three different
scenes: Modern Hall, San Miguel, Bathroom. One estimate from a histogram of 16 (left) or 64 (right) different 1spp estimates is used to render the histogram
method. Our approach (middle) uses only 4 primary estimates as search space following Eq. (7) and outperforms both histograms. Bottom row shows a
cropped region of the baseline averaged image with 4spp. Please zoom-in (or see HTML viewer in the supplement) to appreciate the quality difference.

The histogram sampling approach performs suboptimally compared
to our iterative minimization approach even when it is provided
with 16 times more samples. This goes to illustrate the fact that
it is neither theoretically nor practically optimal, mainly because
its dithering and implicit surrogate are suboptimal (see Section 5.1,
and supplemental Section 7). In Fig. 7, we perform an equal sam-
ple comparison for all vertical methods. All our vertical methods
consistently outperform the histogram sampling method. This also
seems to match the probability of detection map from HDR-VDP-2
shown in the bottom row of the figure.
In Fig. 1, we illustrate that denoising artifacts can be removed

through our optimization. A white noise image denoised with the
Open Intel Image Denoiser results in objectionable artifacts, while
performing our optimization subsequently and then denoising, re-
moves those artifacts entirely. In Fig. 1, the denoised version of the
averaged image results in conspicuous unpleasant artifacts. Using
this image as a surrogate for our method, the optimization finds a
subset of unbiased estimates that match the surrogate well in terms
of pMSE. Clearly the new image even if constructed from previously
unbiased estimates is not fully unbiased, however, the introduced
bias allows for more regularity. This regularity pays off since the
subsequent denoising does not produce the artifacts which were
inherent to the denoised results using the averaged image (where
the error distribution was white noise).

Overall, vertical approaches generally rank in the following order
of increasing visual quality: histogram sampling, our dithering, our
error diffusion, our iterativeminimizationwith a stack of 4 estimates,
and our iterative minimization with the powerset of the estimates
(Table 2). For more details and full-size image comparisons we refer
the reader to our supplementary HTML material.

Horizontal approaches. We consider two horizontal approaches: our
iterative energy minimization approach (Alg. 2) and Heitz and Bel-
cour’s permutation approach. For our relocation method, we use a
search radius 𝑅 = 1 (Alg. 2) and we allow pixels to travel within a
disk neighbourhood centered around the initial pixel location. We
set the disk radius 𝑟 to 1 pixel (Alg. 2), which approximately corre-
sponds to tile size 3 for Heitz and Belcour’s permutation method.
For the permutation approach we consider tiles sizes 2 and 8.
Comparisons on the Modern Hall, White Room, and the Bath-

room scenes can be found in Fig. 8. The scenes are rendered over 16
frames, and retargeting is applied for Heitz and Belcour’s approach.
The scenes are intentionally kept static in order to achieve optimal
results for [Heitz and Belcour 2019], nevertheless, the permutation
approach’s results remain substantially closer to white noise in dis-
tribution. For non-static animation results we refer the reader to the
supplementary videos where we have provided several animations.
We have tested the permutation approach at tile sizes 2 and 8 and we
always include the better image. In all cases the pMSE is 20 to 40 per-
cent lower for our approach compared to the permutation approach
(see Table 2), which also agrees with our perceptual evaluation of
the images. The error in our images is a lot closer in distribution to
high quality blue noise, while in the permutation approach it has
stronger white noise characteristics.
In Fig. 9, we perform an equal sample comparison of our verti-

cal methods with Heitz and Belcour’s permutation approach on
the scenes: Living Room, Classroom, and Grey Room. Our vertical
methods consistently outperform the permutation approach both in
terms of perceptual metrics (Table 2) and our subjective perceptual
evaluation.
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(0.09 sec) (0.04 sec) (15.2 sec) (0.08 sec)

(a) White noise (b) Averaged (c) Dithering (Ours) (d) Error-diffusion (Ours) (e) Iterative (Ours) (f) Histogram method [2019]
MSE: 1.88 × 10−2 8.88 × 10−3 7.80 × 10−3 6.87 × 10−36.87 × 10−36.87 × 10−3 1.05 × 10−2 1.88 × 10−2
pMSE: 7.79 × 10−3 5.59 × 10−3 5.36 × 10−3 5.08 × 10−3 4.45 × 10−34.45 × 10−34.45 × 10−3 6.69 × 10−3

Fig. 7. Vertical method comparisons where for each pixel one primary estimate is picked from 4 primary estimates. We compare our three variants: dithering
(c), error-diffusion (d) and iterative approach (e) with Histogram sampling method [Heitz and Belcour 2019] (f). Our iterative approach in (e) gives very high
quality blue-noise error distribution, marked by the lower pMSE. Our error-diffusion based approach in (d) is computationally fast and has quality comparable
to the iterative approach in (e). Our dithering approach (c) shows minor improvement but is still better than the histogram sampling method in (f). Note that
most of our variants also reduce overall MSE compared to the baseline averaged image (4spp) even though they do not directly optimize for it. Bottom row
shows the detection probability [Mantiuk et al. 2011] which indicates how likely it is for a human observer to notice the difference w.r.t. the reference image
(blue refers to lower error) when viewed from the appropriate distance.

Timings. Optimization timings for all approaches can be found in
Table 3. Here we discuss some peculiarities of the approaches which
affect the runtime. Our error diffusion approach (Alg. 1) is compa-
rable in terms of optimization runtime to dither matrix halftoning
based approaches like Heitz and Belcour’s histogram sampling and
permutation approaches. In the absence of parallelism, it can often
outperform those, since no sorting is required. There are also paral-
lel variants of error diffusion in the literature [Metaxas 2003]. At
the same time, the quality of the approach is often comparable to
the quality of our iterative energy minimization method.

The methods that provide the best quality and control are also the
slowest: our iterative energy minimization approaches. For iterative
vertical methods we have chosen a maximum of 100 iterations,
while usually those converge in about 20. The iterative horizontal
approach generally cannot fully converge in less than a hundred
iterations thus we limit the iterations to𝑇 = 10 (see the supplemental
for an insight on this difference in convergence). This limit does
not affect the quality greatly as mispredictions dominate the error
for horizontal methods. Both methods can be made several orders
of magnitude faster if additional optimisations are implemented
[Analoui and Allebach 1992; Koge et al. 2014], and we have derived
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Frame 1

[Heitz and Belcour 2019][Heitz and Belcour 2019] Horizontal (Ours)Horizontal (Ours)

Frame 1 Frame 1

Frame 16 Frame 16 Frame 16

Fig. 8. We compare our horizontal iterative energy minimization (Alg. 2) with Heitz and Belcour’s permutation approach (with retargeting) over a sequence
of 16 frames. Top row shows the 1st frame and the bottom row shows the 16-th frame over three different scenes. Our horizontal approach consistently
outperforms Heitz and Belcour’s permutation approach both qualitatively and quantitatively in terms of pMSE and MSE (see Table 2).

such optimizations in our supplemental (supplemental Section 5).
We also note that the runtime scales linearly in the number of pixels
of the image multiplied by the number of pixels of the kernel. On
the other hand, it doesn’t increase based on the number of samples
or the dimensionality of the integrand.
Except for the time required for optimizing the sample sets as-

signment, our methods rely on an explicit surrogate constructed
through the Open Intel Image Denoiser in most of the considered
experiments, which for 512 × 512 images takes about half a second.
The surrogate can be constructed through other means as we discuss
next.

7.3 Bias analysis
In order to achieve a blue noise error distribution, a-posteriori meth-
ods introduce varying degrees of bias. For instance, Heitz and
Belcour’s approaches can be fully unbiased only if a white noise
mask is used. However, the resulting error distribution, in that case,
would also be white (MC) noise. Making the mask correlated (or
non-random) allows for a better error distribution at the cost of
introducing bias in the end result. Due to the implicit surrogate,

these approaches do not allow for explicit control over the bias,
other than modifying the mask to include varying degrees of ran-
domness. Conversely, our approach relies on an explicit surrogate
which allows full control over the bias.

We propose different ways to control the amount of bias by:
modifying the energy (Appendix B), restricting the search space
and limiting the number of iterations for iterative methods. Our
iterative energy minimization approaches are able to fit very closely
to a surrogate, however, if that surrogate is suboptimal this may
be undesirable. In Fig. 10, we perform experiments with several
surrogates and extend the energy of Alg. 1 to provide control over
the bias (see Appendix B). We can observe that perceptually optimal
results are achieved for differing amounts of bias to the surrogate
depending on how it was constructed. Notably, with the reference
the best result is achieved when maximum bias is allowed. On the
other hand, our method with the piecewise tile-constant surrogate
requires the amount of bias to be limited in order to remove artifacts
due to the surrogate, as can be seen from the third row.
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Dithering (Ours) Error Diffusion (Ours)

Iterative (Ours)Heitz and Belcour [2019]Heitz and Belcour [2019]

Average 4sppAverage 4spp

Fig. 9. Quality comparison at equal sample count between our three variants of vertical methods (1⇑4spp) against Heitz and Belcour’s permutation approach
with retargeting (4spp). Since their permutation approach improves visual quality over a sequence of frames, we show the 16-th frame from the sequence. To
get better blue-noise error distribution we consider 8 × 8 tile size for their method. Our vertical methods, however, show improvements from the first frame as
shown here. Particularly, our error-diffusion method outperforms their approach in both quality and speed (see Table 2 and Table 3). Bottom row shows the
baseline averaged (4spp) image.

Surrogate image: Reference Surrogate image: Gaussian convolved average Surrogate image: Piecewise-constant

Su
rr
og

at
e

𝒞=
0

𝒞=
0.
5

Histogram [2019]Histogram [2019]

𝒞=
1

Fig. 10. Bias analysis. We design different surrogates to analyze their impact on the error distribution. Each column uses a different surrogate. From top to
bottom, we vary the bias control parameter: 𝒞 = 0 implies perfect fit to a surrogate whereas 𝒞 = 1 implies otherwise. This showcases that, for poor surrogates,
our methods can avoid fitting too closely. We place Heitz and Belcour’s histogram method (in the middle) next to the image that approximately resembles its
visual quality. All other images are rendered using one out of the 4 primary estimates per pixel using the iterative vertical method. Zoom-in recommended to
see the quality difference.

, Vol. 0, No. 0, Article 0. Publication date: December 2020.



0:14 • Vassillen Chizhov, Iliyan Georgiev, Karol Myszkowski, and Gurprit Singh

Fig. 11. Here we show the surrogates used for all the scenes. For each scene,
the surrogates are generated by denoising the underlying noisy estimate
using the Intel Open Image denoiser [int 2018].

8 CONCLUSION AND FUTURE WORK
Our theoretical framework makes an important step towards a
formal understanding of the optimality of sample distributions not
just w.r.t. numerical integration error but also human perception.
We transfer a perceptual kernel-based model from halftoning and
adapt it to the context of Monte Carlo rendering.
We formulate an optimization problem that can leverage prior

information about the scene. This may be knowledge about the
light transport, its dimensionality and smoothness, geometry and
textures, or post-processing kernels (e. g., the HVS PSF, or spatially
varying denoising kernels). It also provides valuable insights and
a formal mathematical framework in which the problem can be
studied further.

Our optimization is robust and can also be used to create artistic
noise distributions with custom target
Fourier power spectra, here showing
the SIGGRAPH logo as an example on
the right. To obtain the correspond-
ing spatial kernel, we make the logo
(greyscale, downscaled) image conju-
gate symmetric, which ensures that its
inverse Fourier transform contains only
real values. That inverse, divided by
its maximum value, is our optimization
kernel 𝑔𝑔𝑔.
Our method is also applicable for progressive and adaptive per-

ceptually optimal rendering, which has only been explored in an
a-priori context [Heitz et al. 2019]. Particularly, vertical methods
can trivially handle a varying number of samples per pixel. Addi-
tionally, if samples are sequentially added to the various sample sets
from which vertical methods choose, then progressive rendering
only requires running the optimization every time new samples are
introduced.

One promising avenue for future research is incorporating more
complex perceptual effects into our error formulation (4), such as
visual masking [Bolin and Meyer 1998; Ramasubramanian et al.
1999], as well as more robust metrics than the squared ℒ2 norm of
a convolution (possibly including nonlinear relationships).

It is also interesting to study the various interactions between our
formulation and denoising methods. Ideally, the shape of the (spa-
tially varying) denoising kernels and the error distribution (w.r.t.
these kernels) would be optimized simultaneously in a loop, to
achieve better image reconstruction for a given sample budget
(Fig. 1).

The discrete nature of optimization methods prevents them from
exploring the entire, continuous sample space. This seems possible
for a-priori methods, which could potentially optimize the samples
w.r.t. a suitably chosen smooth pixel integrand, e. g., via gradient de-
scent. The same can be done for a-posteriori methods if assumptions
on the integrands are made, or approximation of the integrands are
constructed based on point samples and a class of reconstruction
functions. In an a-posteriori setting it would also be interesting to
investigate the use of differentiable rendering [Loubet et al. 2019;
Zhang et al. 2020].
Finally, we have discussed: energies, search spaces, and opti-

mization strategies for a-priori methods as an extension of our
formulation for a-posteriori methods. We have not evaluated those
experimentally however. A promising direction for future research
is learning a set of integrands typical for a specific class of scenes.
Then those integrands can be used directly in our proposed a-priori
energy to optimize sequences with desirable integration and spectral
properties.
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A ERROR DECOMPOSITION
For pixels solving similar light transport integrals, swapping their
samples gives a similar result to swapping their estimates:𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) =
𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆))+ΔΔΔ. The errorΔΔΔ is zero when the swapped pixels solve the
same integral. Substituting into Eq. (9), we can bound the perceptual
error using the triangle inequality, the discrete Young convolution
inequality [Hewitt and Ross 1994], and the Cauchy–Schwarz in-
equality:

𝐸(𝜋(𝑆𝑆𝑆)) = ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼 + ΔΔΔ)∏︁22 (14a)

= ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁22 + ∏︁𝑔𝑔𝑔 ∗ΔΔΔ∏︁22+ 2∐︀𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼),𝑔𝑔𝑔 ∗ΔΔΔ̃︀ (14b)

≤ ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁22 + ∏︁𝑔𝑔𝑔∏︁21∏︁ΔΔΔ∏︁22
+ 2∏︁𝑔𝑔𝑔∏︁21∏︁𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼∏︁2∏︁ΔΔΔ∏︁2 . (14c)

The first summand in Eq. (14b) involves pixel permutations in the
readily available estimated image 𝑄𝑄𝑄(𝑆𝑆𝑆). In the second and third
summands we ideally want to use an approximation for the terms
involving ΔΔΔ that forgoes rendering invocations:

𝐸(𝜋(𝑆𝑆𝑆)) ≈ ∏︁𝑔𝑔𝑔∗(𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆))− 𝐼𝐼𝐼)∏︁22 + ∏︁𝑔𝑔𝑔∏︁21∑
𝑖
𝑑(𝑖, 𝜋(𝑖)) = 𝐸ΔΔΔ(𝜋,𝑆𝑆𝑆).

(15)
We approximate the terms involving ∏︁ΔΔΔ∏︁2 with a dissimilarity metric
𝑑(𝑖, 𝑗) between any two pixels 𝑖 and 𝑗 . The purpose of this metric is
to predict how different we expect the result of swapping the sample
sets of 𝑖 and 𝑗 to be, compared to only swapping their pixel values
𝑄𝑖 and 𝑄 𝑗 . It can be constructed based on assumptions or prior
knowledge about the image coming from, e. g., auxiliary buffers
(depth, normals, etc).

In our implementation we use a simple binary dissimilarity func-
tion returning zero when 𝑖 and 𝑗 are within distance 𝑟 and infinity
otherwise; 3 we set 𝑟 between 1 and 3. This allows us to restrict
the search space Π(𝑆𝑆𝑆) only to permutations that swap adjacent
pixels such that it is more likely that ΔΔΔ is small. More elaborate
heuristics can be devised in the future to better account for pixel
(dis)similarity.

B HANDLING BIAS TOWARDS SURROGATE
The trade-off between white noise and bias towards a surrogate
can be controlled by modifying the original energy to also include
a data term that penalizes large deviations from the initial unbi-
ased white noise image𝑄𝑄𝑄(𝑆𝑆𝑆) (for a derivation see Section 3 in the
3The radius should ideally depend on the image smoothness/regularity, and can be
locally adapted.

supplemental):⌈︂
𝐸𝑐(𝑆𝑆𝑆′) = 𝑐∏︁𝑔𝑔𝑔∏︁1∏︁𝑄𝑄𝑄(𝑆𝑆𝑆′) −𝑄𝑄𝑄(𝑆𝑆𝑆)∏︁2 (16)

+ (1 − 𝑐)∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄(𝑆𝑆𝑆′) −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁2 . (17)
Our original formulation is retrieved for 𝑐 = 0, while the initial
image is enforced for 𝑐 = 1, and the parameter can be varied in(︀0, 1⌋︀ to achieve different levels of bias. The parameter 1 − 𝑐 is a
smoothness/bias parameter describing how much one trusts the
surrogate (or equivalently the quality of the surrogate). For greater
control 𝑐 may be defined per-pixel, in which case it can be multiplied
componentwise with the vector inside the norm ∏︁⋅∏︁2.
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Table 2. MSE and pMSE metrics for various methods on different scenes rendered at 4 samples per pixel. All methods aim to minimize the pMSE. We note
that our methods consistently outperform current state of the art [Heitz and Belcour 2019]. Notably, every method is superior to the histogram sampling
approach, and all of our methods except for dithering are better that the permutation approach. The occasional better performance of horizontal methods can
be explained by the fact that they always choose from 4spp estimates, while vertical methods choose from 1spp estimates (except for 2𝑁 which uses estimates
with 1-4spp). The scene for horizontal approaches is kept static and the metrics for the 16th frame are presented. Thus this is the ideal scenario for such
methods, so metrics there may even have an unfair advantage over vertical ones, since generally the scene cannot be assumed to be static in an animation
sequence.

Method Bathroom Classroom Grey Room Living Room Modern Hall San Miguel Staircase White Room

MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE×10−2 ×10−3 ×10−2 ×10−3 ×10−2 ×10−2 ×10−2 ×10−3 ×10−2 ×10−2 ×10−2 ×10−3 ×10−3 ×10−3 ×10−2 ×10−3
nonoptimized 1 spp 3.58 8.19 7.13 16.03 11.45 6.81 5.76 12.91 11.44 4.09 6.85 18.93 18.82 7.79 5.75 18.23
nonoptimized 4 spp 1.40 3.15 3.13 7.91 7.91 3.02 3.37 5.61 5.22 1.70 3.58 8.92 8.88 5.60 2.78 7.98

Dither (Ours) 1.31 3.31 4.36 11.63 8.46 5.07 2.27 4.43 5.25 1.80 3.74 11.19 7.80 5.36 2.51 7.95
Error diffusion (Ours) 1.22 2.27 4.91 7.03 8.76 2.82 2.08 2.31 4.86 1.33 5.07 8.50 6.87 5.08 2.19 5.16
Iterative vertical (Ours) 2.32 2.02 6.00 6.10 9.07 2.97 4.32 1.86 7.15 1.29 5.51 7.05 10.50 4.45 3.98 5.00
Iterative vertical 2𝑁 (Ours) 1.26 1.66 3.12 4.91 7.53 2.82 2.46 1.13 4.55 1.18 3.31 5.85 7.08 4.31 2.26 4.58
Histogram [2019] 3.58 6.29 7.11 13.08 11.49 6.67 5.75 9.88 11.43 3.60 6.84 16.52 18.90 6.69 5.75 14.09

Relocation (Ours, frame 16) 1.52 2.06 3.83 5.31 8.34 2.41 3.59 1.59 5.46 1.18 3.94 7.31 7.67 4.30 2.93 4.72
Permutation [2019] (frame 16) 1.40 2.79 3.15 7.25 7.90 2.84 3.38 3.14 5.21 1.51 3.59 8.51 8.87 5.40 2.72 6.73

Table 3. Timings for the minimization of the energy for various methods on different scenes rendered at 4 samples per pixel. Note that the timings do not
include the construction of the surrogate. We see that our error diffusion approach is consistently the fastest method, since it doesn’t require any sorting. Our
dithering approach is comparable to Heitz and Belcour’s approaches in terms of speed, since those use a similar minimization strategy relying on sorting.
Finally, our iterative minimization methods are the slowest. We note that those were not optimized, and based on [Analoui and Allebach 1992; Koge et al.
2014] a speed-up of 300× can be expected (for larger kernels and images the speed-up can be even larger). Additional optimization strategies are discussed in
the supplemental.

Method Bathroom Classroom Grey Room Living Room Modern Hall San Miguel Staircase White Room

Dither (Ours) 0.07 0.08 0.07 0.07 0.02 0.12 0.09 0.07
Error diffusion (Ours) 0.04 0.03 0.04 0.04 0.01 0.06 0.04 0.04
Iterative vertical (Ours) 18.44 111.41 12.82 15.26 5.43 29.09 15.21 19.45
iterative vertical 2𝑁 (Ours) 95.09 404.12 59.69 83.41 23.93 137.89 35.39 102.05
Histogram [2019] 0.06 0.07 0.11 0.06 0.02 0.09 0.08 0.06

Relocation (Ours, frame 16) 23.04 21.57 22.00 30.08 8.48 36.36 23.78 22.76
Permutation [2019] (frame 16) 0.10 0.10 0.10 0.11 0.03 0.21 0.10 0.14

Table 4. MSE and pMSE metrics for various methods on different scenes rendered at 16 samples per pixel. All methods aim to minimize the pMSE. We note
that our methods consistently outperform current state of the art [Heitz and Belcour 2019]. Notably, every method is superior to the histogram sampling
approach.

Method Bathroom Classroom Grey Room Living Room Modern Hall San Miguel Staircase White Room

MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE×10−3 ×10−3 ×10−2 ×10−3 ×10−2 ×10−2 ×10−2 ×10−3 ×10−2 ×10−3 ×10−2 ×10−3 ×10−3 ×10−3 ×10−2 ×10−3
nonoptimized 4 spp 14.03 3.13 3.15 7.92 7.88 3.02 3.38 5.62 5.24 17.06 3.53 8.73 7.18 4.53 2.78 7.96
nonoptimized 16 spp 4.94 1.47 1.55 4.89 3.77 1.04 1.23 2.18 2.14 8.02 1.10 4.67 3.39 3.78 1.35 3.62

Dither (Ours) 4.97 1.52 1.15 4.69 4.12 1.36 1.09 1.82 1.93 8.30 1.49 5.38 3.09 3.73 0.91 2.98
Error diffusion (Ours) 4.07 1.20 0.94 3.85 4.00 0.87 0.86 1.07 1.68 6.57 1.33 4.70 2.76 3.69 0.73 2.13
Iterative vertical (Ours) 9.03 1.10 2.03 3.35 5.17 0.84 2.30 0.84 3.03 6.39 2.39 4.02 4.46 3.14 1.75 1.99
Histogram [2019] 13.98 2.37 3.12 6.20 7.88 2.72 3.36 3.57 5.23 14.78 3.52 6.82 7.13 4.09 2.77 5.77
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1 OVERVIEW
In the current supplemental we discuss various details related to
our general formulation from the main paper. We start with a de-
scription of the extension of our framework to the a-priori setting
(Section 2). Then we show how the reference image substitution
with a surrogate can be translated to a more general problem (Sec-
tion 3), which also allows optimizing how close the result fits to the
surrogate. In Section 4 we describe a way in which textures can be
accounted for in our horizontal approach, so that mispredictions due
to multiplicative (and additive) factors are eliminated. In Section 5
we describe ways in which the runtime of iterative energy minimiza-
tion methods can be improved considerably. Notably, an expression
is derived allowing the energy difference due to trial swaps to be
evaluated in constant time (no scaling with image size or kernel
size). In the remaining sections we analyze how current a-posteriori
[Heitz and Belcour 2019] and a-priori [Georgiev and Fajardo 2016;
Heitz et al. 2019] state of the art approaches can be related to our
framework. Interpretations are discussed, major sources of error are
identified, and the assumptions of the algorithms are made explicit.

2 OUR A-PRIORI APPROACH
We extend our theory to the a-priori setting and discuss the main
factors affecting the quality. The quality of a-priori approaches is
determined mainly by three factors: the energy, the search space,
and the optimization strategy. We discuss each of those briefly in
the following paragraphs.

Our energy. We extend the a-posteriori energy from the main
paper in order to handle multiple estimators involving different
integrands:𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑇 , with associated weights𝑤1, . . . ,𝑤𝑇 :

𝐸(𝑆𝑆𝑆) = 𝑇∑
𝑡=1𝑤𝑡 ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆) − 𝐼𝐼𝐼𝑡 ∏︁2 . (1)

In the above 𝑔𝑔𝑔 would typically be a low-pass kernel (e. g., Gauss-
ian), and 𝐼𝐼𝐼𝑡 is the integral of the function used in the estimator𝑄𝑄𝑄𝑡 .
Through this energy a whole set of functions can be optimized for,
in order for the sequence to be more robust to different scenes and
estimators, that do not fit any of the considered integrands exactly.

Authors’ addresses: Vassillen Chizhov, MIA Group Saarland University,, Max-Planck-
Institut für Informatik, Saarbrücken, Germany; Iliyan Georgiev, Autodesk, United
Kingdom; Karol Myszkowski, Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many; Gurprit Singh, Max-Planck-Institut für Informatik, Saarbrücken, Germany.

We note that the derived optimization in Section 5 is also applicable
to the minimization of the proposed energy.

Search space. The search space plays an important role towards
the qualities which the optimized sequences exhibit. A more re-
stricted search space provides more robustness and may help avoid
overfitting to the considered set of integrands.

For instance, sample sets may be generated randomly within each
pixel. Then, their assignment to pixels may be optimized over the
space of all possible permutations. This is the setting of horizontal
methods. If additionally this assignment is done within each dimen-
sion separately it allows for an even better fit to the integrands in
the energy. The scrambling keys’ search space in [Heitz et al. 2019]
is a special case of the latter applied for the Sobol sequence.
Constraining the search space to points generated from low-

discrepancy sequences provides further robustness and guarantees
desirable integration properties of the considered sequences. Simi-
larly to [Heitz et al. 2019], we can consider a search space of Sobol
scrambling keys in order for the optimized sequence to have a low
discrepancy.
Ideally, such integration properties should arise directly from

the energy. However, in practice the scene integrand cannot be
expected to exactly match the set of considered integrands, thus
extra robustness is gained through the restriction. Additionally,
optimizing for many dimensions at the same time is costly as noted
in [Heitz et al. 2019], thus imposing low-discrepancy properties also
helps in that regard.
Finally, by imposing strict search space constraints a severe re-

striction on the distribution of the error is imposed. This can be
alleviated by imposing the restrictions through soft penalty terms
in the energy. This can allow for a trade-off between blue noise
distribution and integration quality for example.

Progressive rendering. In order to make the sequence applicable in
progressive rendering, subsets of samples should be considered in
the optimization. Given a sample set 𝑆𝑖 for pixel 𝑖 we can decompose
it in sample sets of 1, . . . , 𝑁 samples: 𝑆𝑖,1 ⊂ . . . ⊂ 𝑆𝑖,𝑁 ≡ 𝑆𝑖 . We denote
the respective images of sample sets 𝑆𝑆𝑆1, . . . ,𝑆𝑆𝑆𝑁 .
Then an energy that also optimizes for the distribution of the

error at each sample count is:

𝐸(𝑆𝑆𝑆) = 𝑇∑
𝑡=1

𝑁∑
𝑘=1𝑤𝑡,𝑘∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆𝑘) − 𝐼𝐼𝐼𝑡 ∏︁

2 . (2)

If𝑤𝑖,𝑘 are set to zero for 𝑘 < 𝑁 then the original formulation is
recovered. The more general formulation imposes additional con-
straints on the samples, thus the quality at the full sample count
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may be compromised if we also require a good quality at lower
sample counts.

Choosing samples from 𝑆𝑖 for 𝑆𝑖,1, . . . , 𝑆𝑖,𝑁−1 (in each dimension)
constitutes a vertical search space analogous to the one discussed
in the main paper for a-posteriori methods. The ranking keys’ opti-
misation in [Heitz et al. 2019] is a special case of this search space
for the Sobol sequence.

Adaptive sampling can be handled by allowing a varying number
of samples per pixel, and a corresponding energy derived from the
one above. Note that this poses further restrictions on the achievable
distribution.

Optimization strategies. Typically the energies for a-priori meth-
ods have been optimized through simulated annealing [Georgiev
and Fajardo 2016; Heitz et al. 2019]. Metaheuristics can lead to very
good minima especially if the runtime is not of great concern, which
is the case since the sequences are precomputed. Nevertheless, the
computation still needs to be tractable. The energies in previous
works are generally not cheap to evaluate. On the other hand, our
energies, especially if the optimizations in Section 5 are considered,
can be evaluated very efficiently. This is beneficial for keeping the
runtime of metaheuristics manageable, allowing for more complex
search spaces to be considered.

Implementation details. Implementation decisions for a renderer,
such as how samples are consumed, or how those are mapped to
the hemisphere and light sources affect the estimator 𝑄𝑄𝑄 . This is
important, especially when choosing𝑄𝑄𝑄 for the described energies to
optimize a sequence. It is possible that very small implementation
changes make a previously ideal sequence useless for a specific
renderer. It is important to keep this in mind when optimising
sequences by using the proposed energies and when those are used
in a renderer.

3 SURROGATE SUBSTITUTION
For practical algorithms we substitute the reference image 𝐼𝐼𝐼 with a
surrogate 𝐼 ′𝐼 ′𝐼 ′. It is instructive to consider error bounds in relation to
that, and subsequently extend the formulation to one that allows
control over the amount of bias towards the surrogate. We denote
𝑄𝑄𝑄0 = 𝑄𝑄𝑄(𝑆𝑆𝑆), and 𝑄𝑄𝑄′ = 𝑄𝑄𝑄(𝑆𝑆𝑆′), where we want to optimize for the
latter, and𝑄𝑄𝑄0 remains fixed.

∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 =
∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′ +ℎℎℎ ∗ (𝐼 ′𝐼 ′𝐼 ′ − 𝐼𝐼𝐼)∏︁2 ≤
∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁2 + ∏︁ℎℎℎ ∗ (𝐼 ′𝐼 ′𝐼 ′ − 𝐼𝐼𝐼)∏︁2

(3)

The above bound results in the original formulation when consider-
ing only the first term. We can also bound the error through a term
involving𝑄𝑄𝑄0:

∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 =
∏︁𝑔𝑔𝑔 ∗ (𝑄𝑄𝑄′ −𝑄𝑄𝑄0) + (𝑔𝑔𝑔 ∗𝑄𝑄𝑄0 −ℎℎℎ ∗ 𝐼𝐼𝐼)∏︁2 ≤
∏︁𝑔𝑔𝑔∏︁1∏︁𝑄𝑄𝑄′ −𝑄𝑄𝑄0∏︁2 + ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄0 −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 .

(4)

Combining the two with weights 𝑐 and (1 − 𝑐), for 𝑐 ∈ (︀0, 1⌋︀ yields:
∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 ≤

𝑐∏︁𝑔𝑔𝑔∏︁1∏︁𝑄𝑄𝑄′ −𝑄𝑄𝑄0∏︁2 + (1 − 𝑐)∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁2+
𝑐∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄0 −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 + (1 − 𝑐)∏︁ℎℎℎ ∗ (𝐼 ′𝐼 ′𝐼 ′ − 𝐼𝐼𝐼)∏︁2 .

(5)

We assume 𝑔𝑔𝑔, ℎℎℎ, 𝐼𝐼𝐼 , 𝐼 ′𝐼 ′𝐼 ′, 𝑄𝑄𝑄0, and 𝑐 to be fixed, and our optimization
variable to be𝑄𝑄𝑄′. Then the optimization problem simplifies to:

min
𝑄𝑄𝑄′ 𝑐∏︁𝑔𝑔𝑔∏︁1∏︁𝑄𝑄𝑄′ −𝑄𝑄𝑄0∏︁2 + (1 − 𝑐)∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁2 (6)

The standard energy that we use is retrieved for 𝑐 = 0 in which case:

argmin
𝑄𝑄𝑄′ ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁2 = argmin

𝑄𝑄𝑄′ ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄′ −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁22 . (7)

4 TEXTURE DEMODULATION FOR OUR HORIZONTAL
APPROACH

Our iterative energy minimization algorithms (Alg. 1, Alg. 2) directly
work with the original energy formulation, unlike error diffusion
and dither matrix halftoning which only approximately minimize
our energy. This allows textures to be handled more robustly com-
pared to the permutation approach of Heitz and Belcour.

Reducing misprediction errors. Our horizontal approach relies on
a dissimilarity metric 𝑑(⋅, ⋅) which approximates terms involving
the difference ΔΔΔ due to swapping sample sets instead of pixels. This
difference can be decreased, so that 𝑑 is a better approximation, if
additional information is factored out in the energy: screen-space
varying multiplicative and additive terms. Specifically, if we have
a spatially varying multiplicative image 𝛼𝛼𝛼 , and a spatially varying
additive image 𝛽𝛽𝛽 :

𝑄𝑄𝑄 = 𝛼𝛼𝛼𝑄𝑄𝑄′ + 𝛽𝛽𝛽 (8)

ΔΔΔ′(𝜋) = 𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝜋(𝑆𝑆𝑆)) −𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) (9)
ΔΔΔ(𝜋) =𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) =

𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝜋(𝑆𝑆𝑆)) + 𝛽𝛽𝛽 − 𝜋(𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝑆𝑆𝑆) + 𝛽𝛽𝛽), (10)

we can make use of this in our formulation:

𝐸(𝜋) = ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁22 (11)⌈︂
𝐸(𝜋) ≤ ∏︁𝑔𝑔𝑔 ∗ (𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽) −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 + ∏︁𝑔𝑔𝑔 ∏︁1∏︁ΔΔΔ′∏︁2 . (12)

Contrast this to the original formulation where 𝛼𝛼𝛼 and 𝛽𝛽𝛽 are not
factored out:⌈︂

𝐸(𝜋) ≤ ∏︁𝑔𝑔𝑔 ∗ 𝜋 (𝛼𝛼𝛼 ⊙𝑄𝑄𝑄′(𝑆𝑆𝑆) + 𝛽𝛽𝛽) −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 + ∏︁𝑔𝑔𝑔 ∏︁1∏︁ΔΔΔ∏︁2 . (13)

With the new formulation it is sufficient that𝑄𝑄𝑄′(𝜋(𝑆𝑆𝑆)) = 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆))
for ΔΔΔ′ to be zero, while originally both 𝛼𝛼𝛼 and 𝛽𝛽𝛽 play a role in ΔΔΔ
becoming zero. Intuitively this means that screen space integrand
differences due to additive and multiplicative factors do not result in
mispredictions with the new formulation, if the integrand is assume
to be the same (locally) in screen space.

Comparison to demodulation. In the method of Heitz and Belcour
the permutation is applied on the albedo demodulated image. This
preserves the property that the global minimum of the implicit
energy can be found through sorting. Translated to our framework

, Vol. 0, No. 0, Article 0. Publication date: December 2020.



Perceptual Error Optimization for Monte Carlo Rendering: Supplemental document • 0:3

Input Ours Heitz and Belcour [2019]

m
ul
tip

lic
at
iv
e

ad
di
tiv

e

No Demodulation Demodulation
demodulation w/ tilesize 8 w/o tiling

Fig. 1. We demonstrate the importance of the extension presented in Sec-
tion 4. A high-frequency sinusoidal texture is corrupted by white noise
(leftmost column) multiplicatively (top row) and additively (bottom row).
Contrary to Heitz and Belcour’s method, our optimization distributes error
as a high-quality blue-noise distribution (see the power-spectrum insets).
The reference images for the top/bottom image are respectively a flat grey
and a sinusoidal image.

this can be formulated as (𝐵𝐵𝐵 is a blue noise mask optimized for a
kernel 𝑔𝑔𝑔):

𝐸𝐻𝐵𝑃(𝜋) = ∏︁𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) − 𝐼 ′𝐼 ′𝐼 ′ −𝐵𝐵𝐵∏︁22 ≈ ∏︁𝑔𝑔𝑔 ∗ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) −𝑔𝑔𝑔 ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁22 . (14)
We have assumed that 𝛽𝛽𝛽 is zero, but we can also extend the method
to handle an additive term 𝛽𝛽𝛽 as in our case. The more important
distinction is that while the albedo demodulated image𝑄𝑄𝑄′ is used
in the permutation, it is never remodulated (𝛼𝛼𝛼 ⊙ ⋅ is missing). Thus,
this does not allow for proper handling of textures, even if it allows
for modest improvements in practice. An example of a fail case
consists of an image 𝛼𝛼𝛼 that is close to white noise. Then the error
distribution will also be close to white noise due to the missing 𝛼𝛼𝛼 ⊙⋅
factor. More precisely, even if 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) − 𝐼 ′𝐼 ′𝐼 ′ is distributed as 𝐵𝐵𝐵, this
does not imply that 𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) − 𝐼 ′𝐼 ′𝐼 ′ will be distributed similarly.
Dropping 𝛼𝛼𝛼 ⊙ ⋅ is, however, a reasonable option if one is restricted
to sorting as an optimisation strategy.

We propose a modification of the original approach (and energy)
such that not only the demodulated estimator values are used, but
the blue noise mask 𝐵𝐵𝐵 is also demodulated. To better understand
how it is derived (and how 𝛽𝛽𝛽 may be integrated) we study a bound
based on the assumption that 𝛼𝑖 ∈ (︀0, 1⌋︀, and ΔΔΔ′ = 0

𝐸(𝜋) = ∏︁𝑔𝑔𝑔 ∗ (𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽) −𝑔𝑔𝑔 ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁22 ≈ (15)

∏︁𝛼𝛼𝛼 ⊙ 𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽 − 𝐼 ′𝐼 ′𝐼 ′ −𝐵𝐵𝐵∏︁22 = (16)

∑
𝑖
𝛼2𝑖 ((𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)))𝑖 + 𝛽𝑖 − 𝐼 ′𝑖 − 𝐵𝑖

𝛼𝑖
)2 ≤ (17)

∏︁𝜋(𝑄𝑄𝑄′(𝑆𝑆𝑆)) + 𝛽𝛽𝛽 − 𝐼 ′𝐼 ′𝐼 ′ −𝐵𝐵𝐵
𝛼𝛼𝛼

∏︁22 . (18)

The global minimum of the last energy (w.r.t. 𝜋 ) can be found
through sorting also, since there is no spatially varying multiplica-
tive factor 𝛼𝛼𝛼 in front of the permutation.

Sinusoidal Textures. To demonstrate texture handling (multiplica-
tive term𝛼𝛼𝛼), in the top row of Fig. 1, a white-noise texture𝑊 is multi-
plied to a sine-wave input signal: 𝑓 (𝑥,𝑦) = 0.5∗(1.0 + sin(𝑥 +𝑦))∗
𝑊 (𝑥,𝑦). The reference is a constant image at 0.5. Heitz and Belcour

proposed to handle such textures by applying their method on the
albedo-demodulated image.While this strategymay lead to amodest
improvement, it ignores the fact that the image is produced by re-
modulating the albedo, which can negate that improvement. Instead,
our horizontal iterative minimization algorithm can incorporate the
albedo explicitly using the discussed energy.
The bottom row demonstrates the effect of a non-flat signal on

the error distribution (additive term 𝛽𝛽𝛽). Here𝑊 is added to a sine-
wave input signal: 𝑓 (𝑥,𝑦) = 0.5∗ (1.0 + sin(𝑥 +𝑦)) +𝑊 (𝑥,𝑦). The
reference image is 0.5 ∗ (1 + sin(𝑥 +𝑦)). Our optimization is closer
to the reference suggesting that our method can greatly outperform
the current state of the art by properly accounting for auxiliary
information, especially in regions with high-frequency textures.

Dimensional decomposition. The additive factor 𝛽𝛽𝛽 can be used to
motivate splitting the optimization over several dimensions, since
the Liouville–Neumann expansion of the rendering equation is ad-
ditive [Kajiya 1986]. If some dimensions are smooth (e. g., lower
dimensions), then a screen space local integrand similarity assump-
tion can be encoded in 𝑑(⋅, ⋅) and it will approximate ΔΔΔ better for
smoother dimensions. If the optimization is applied over all dimen-
sions at the same time, this may result in many mispredictions due
to the assumption being violated for dimensions in which the in-
tegrand is less smooth in screen space (e. g., higher dimensions).
We propose splitting the optimization problem starting from lower
dimensions and sequentially optimizing higher dimensions while
encoding a local smoothness (in screen space) assumption on the
integrad in 𝑑(⋅, ⋅) (e. g., swaps limited to a small neighbourhood
around the pixel). This requires solving several optimization prob-
lems, but potentially reduces the amount of mispredictions. Note
that it does not require more rendering operations than usual.

5 ITERATIVE METHODS OPTIMIZATION
The main cost of iterative minimization methods is computing the
energy for each trial swap, more specifically the required convolu-
tion and the subsequent norm computation. In the work of Analoui
and Allebach an optimisation has been proposed to efficiently eval-
uate such trial swaps, without recomputing a convolution or norm
at each step, yielding a speed up of more than 10 times. The opti-
misation relies on the assumption that the kernel 𝑔𝑔𝑔 is the same in
screen space (the above optimization is not applicable for spatially
varying kernels). We extend the described optimisation to a more
general case, also including spatially varying kernels. We also note
some details not mentioned in the original paper.

5.1 Horizontal swaps
We will assume the most general case: instead of just swapping
pixels, we consider swapping sample sets from which values are
generated through𝑄𝑄𝑄 . It subsumes both swapping pixel values and
swapping pixel values in the presence of a multiplicative factor 𝛼𝛼𝛼 .

Single swap. The main goal is to evaluate the change of the energy
𝛿 due to a swap between the sample sets of some pixels 𝑎,𝑏. More
precisely, if the original sample set image is 𝑆𝑆𝑆 then the new sample
set image is 𝑆𝑆𝑆′ such that 𝑆′𝑎 = 𝑆𝑏 , 𝑆′𝑏 = 𝑆𝑎 , and 𝑆′𝑖 = 𝑆𝑖 everywhere
else. This corresponds to images:𝑄𝑄𝑄 = 𝑄𝑄𝑄(𝑆𝑆𝑆) and𝑄𝑄𝑄′ = 𝑄𝑄𝑄(𝑆𝑆𝑆′). The
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two images differ only in the pixels with indices 𝑎 and 𝑏. Let:

𝛿𝑎 = 𝑄′𝑎 −𝑄𝑎 = 𝑄𝑎(𝑆𝑏) −𝑄𝑎(𝑆𝑎) (19)

𝛿𝑏 = 𝑄′𝑏 −𝑄𝑏 = 𝑄𝑏(𝑆𝑎) −𝑄𝑏(𝑆𝑏). (20)

We will also denote the convolved images 𝑄̃𝑄𝑄 = 𝑔𝑔𝑔∗𝑄𝑄𝑄 and 𝑄̃𝑄𝑄′ = 𝑔𝑔𝑔∗𝑄𝑄𝑄′,
and also 𝜖𝜖𝜖 = 𝑄̃𝑄𝑄 − 𝐼𝐼𝐼 . Specifically:

𝑄̃𝑖 = ∑
𝑗∈Z2𝑄 𝑗𝑔𝑖−𝑗 , 𝑄̃

′
𝑖 = 𝑄̃𝑖 + 𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏 . (21)

We want to be able to efficiently evaluate 𝛿 = ∏︁𝑄̃𝑄𝑄′ − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄̃𝑄𝑄 − 𝐼𝐼𝐼∏︁2,
since in the iterative minimization algorithms the candidate with the
minimum 𝛿 is kept. Using the above expressions for 𝑄̃′𝑖 we rewrite
𝛿 as:

𝛿 = ∏︁𝑄̃𝑄𝑄′ − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄̃𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (22)

∑
𝑖∈Z2 ∏︁𝑄̃𝑖 − 𝐼𝑖 + 𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏∏︁

2 − ∏︁𝑄̃𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (23)

2 ∑
𝑖∈Z2∐︀𝑄̃𝑖 − 𝐼𝑖 , 𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏̃︀ + ∑𝑖∈Z2 ∏︁𝛿𝑎𝑔𝑖−𝑎 + 𝛿𝑏𝑔𝑖−𝑏∏︁

2 = (24)

2∐︀𝛿𝑎, ∑
𝑖∈Z2 𝜖𝑖𝑔𝑖−𝑎̃︀ + 2∐︀𝛿𝑏 , ∑𝑖∈Z2 𝜖𝑖𝑔𝑖−𝑏̃︀+∐︀𝛿2𝑎, ∑

𝑖∈Z2 𝑔𝑖−𝑎𝑔𝑖−𝑎̃︀ + ∐︀𝛿
2
𝑏 , ∑
𝑖∈Z2 𝑔𝑖−𝑏𝑔𝑖−𝑏̃︀+

2∐︀𝛿𝑎𝛿𝑏 , ∑
𝑖∈Z2 𝑔𝑖−𝑎𝑔𝑖−𝑏̃︀ =

(25)

2∐︀𝛿𝑎,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑎)̃︀ + 2∐︀𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑏)̃︀+
∐︀(𝛿2𝑎 + 𝛿2𝑏),𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(0)̃︀ + 2∐︀𝛿𝑎𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑏 − 𝑎)̃︀, (26)

where 𝐶𝑓 ,ℎ(𝑥) = ∑𝑖∈Z2 𝑓 (𝑖 − 𝑥)ℎ(𝑖) is the cross-correlation of 𝑓
and ℎ. We have reduced the computation of 𝛿 to the sum of only 4
terms. Assuming that𝐶𝑔𝑔𝑔,𝑔𝑔𝑔 is known (it can be precomputed once for
a known kernel) and that 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 is known (it can be recomputed after
a sufficient amount of swaps have been accepted), then evaluating
a trial swap takes constant time (it does not scale in the size of the
image or the size of the kernel).

Multiple accepted swaps. It may be desirable to avoid recomputing
𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 even upon accepting a trial swap. For that purpose we extend
the strategy from [Analoui and Allebach 1992] for computing 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 ,
where 𝜖𝜖𝜖𝑛 is the error image after 𝑛 swaps have been accepted:

{(𝛿𝑎1 , 𝛿𝑏1), . . . , (𝛿𝑎𝑛 , 𝛿𝑏𝑛)}. (27)

This implies: 𝑄̃𝑛𝑖 = 𝑄̃ + ∑𝑛𝑘=1(𝛿𝑎𝑘𝑔𝑖−𝑎𝑘 + 𝛿𝑏𝑘𝑔𝑖−𝑏𝑘 ), and conse-
quently:

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = (28)

∑
𝑖∈Z2

⎛⎝𝑄̃𝑖 − 𝐼𝑖 +
𝑛∑
𝑘=1(𝛿𝑎𝑘𝑔𝑖−𝑎𝑘 + 𝛿𝑏𝑘𝑔𝑖−𝑏𝑘 )

⎞⎠𝑔𝑖−𝑥 = (29)

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) + 𝑛∑
𝑘=1(𝛿𝑎𝑘𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑎

𝑘) + 𝛿𝑏𝑘𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑏𝑘)). (30)

This allows avoiding the recomputation of𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 after every accepted
swap, and instead, the delta on the𝑛+1-st swap with trial differences

𝛿𝑎, 𝛿𝑏 is:

𝛿𝑛+1 = ∏︁𝑄𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (31)
2∐︀𝛿𝑎,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎)̃︀ + 2∐︀𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑏)̃︀+

∐︀(𝛿2𝑎 + 𝛿2𝑏),𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(0)̃︀ + 2∐︀𝛿𝑎𝛿𝑏 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑏 − 𝑎)̃︀, (32)

where 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 is computed from 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 and 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔 as derived in Eq. (22).
This computation scales only in the number of accepted swaps
since the last recomputation of 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖 . We also note that 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 −𝑦)
evaluates to zero if 𝑥 − 𝑦 is outside of the support of 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔 . Addi-
tional optimisations have been devised due to this fact [Analoui and
Allebach 1992].

5.2 Vertical swaps
In the vertical setting swaps happen only within the pixel itself,
that is: 𝛿𝑎 = 𝑄𝑎(𝑆′𝑎) − 𝑄𝑎(𝑆𝑎). Consequently, 𝑄̃′𝑖 = 𝑄̃𝑖 + 𝛿𝑎𝑔𝑖−𝑎 .
Computing the difference in the energies for the 𝑛 + 1-st swap:

𝛿𝑛+1 = ∏︁𝑄̃𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄̃𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (33)

∑
𝑖∈Z2 ∏︁𝑄̃

𝑛
𝑖 − 𝐼𝑖 + 𝛿𝑎𝑔𝑖−𝑎∏︁2 − ∏︁𝑄̃𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (34)

2 ∑
𝑖∈Z2∐︀𝑄̃

𝑛
𝑖 − 𝐼𝑖 , 𝛿𝑎𝑔𝑖−𝑎̃︀ + ∑

𝑖∈Z2 ∏︁𝛿𝑎𝑔𝑖−𝑎∏︁
2 = (35)

2∐︀𝛿𝑎, ∑
𝑖∈Z2 𝜖

𝑛
𝑖 𝑔𝑖−𝑎̃︀ + ∐︀𝛿2𝑎, ∑

𝑖∈Z2 𝑔𝑖−𝑎𝑔𝑖−𝑎̃︀ = (36)

2∐︀𝛿𝑎,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎)̃︀ + ∐︀𝛿2𝑎,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(0)̃︀. (37)

The corresponding expression for 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 is:

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) + 𝑛∑
𝑘=1𝛿𝑎𝑘𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑎

𝑘). (38)

5.3 Multiple simultaneous updates
If the search space is ignored and the formulation is analyzed in
an abstract setting it becomes obvious that the vertical approach
corresponds to an update of a single pixel, while the horizontal
approach corresponds to an update of two pixels at the same time.
This can be generalized further. Let 𝑁 different pixels be updated
per trial, and let there be 𝑛 trials that have been accepted since 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖
has been updated. Let the pixels to be updated in the current trial
be: 𝑎𝑛+11 , . . . , 𝑎𝑛+1𝑁 , and the accepted update at step 𝑘 be at pixels:
𝑎𝑘1 , . . . , 𝑎

𝑘
𝑁 . Let𝑄𝑄𝑄0 =𝑄𝑄𝑄 be the original image.We define the sequence

of images:𝑄𝑄𝑄𝑘 ∶ 𝑄𝑘𝑖 = 𝑄𝑘−1𝑖 , 𝑖 ⇑∈ {𝑎𝑘1 , . . . , 𝑎𝑘𝑁 } and otherwise let 𝑄𝑘
𝑎𝑘𝑖

be given. Let 𝛿𝑘𝑖 = 𝑄𝑘𝑎𝑘𝑖 −𝑄𝑘−1𝑎𝑘𝑖
. Using the above notation we arrive

at an expression for 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 :

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) + 𝑛∑
𝑘=1

𝑁∑
𝑖=1𝛿

𝑘
𝑖 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥 − 𝑎𝑘𝑖 ). (39)

The change in the energy due to the 𝑛 + 1-st update is:
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𝛿𝑛+1 = ∏︁𝑄̃𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄̃𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (40)

∑
𝑖∈Z2 ∏︁𝑄̃

𝑛
𝑖 − 𝐼𝑖 + 𝑁∑

𝑗=1𝛿
𝑛+1
𝑗 𝑔𝑖−𝑎𝑛+1𝑗

∏︁2 − ∏︁𝑄̃𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (41)

2 ∑
𝑖∈Z2∐︀𝑄̃

𝑛
𝑖 − 𝐼𝑖 , 𝑁∑

𝑗=1𝛿
𝑛+1
𝑗 𝑔𝑖−𝑎𝑛+1𝑗

̃︀ + ∑
𝑖∈Z2∏︁

𝑁∑
𝑗=1𝛿

𝑛+1
𝑗 𝑔𝑖−𝑎𝑛+1𝑗

∏︁2 = (42)

2
𝑁∑
𝑗=1∐︀𝛿𝑛+1𝑗 , ∑

𝑖∈Z2 𝜖
𝑛
𝑖 𝑔𝑖−𝑎𝑛+1𝑗

̃︀+
𝑁∑
𝑗=1

𝑁∑
𝑘=1∐︀𝛿

𝑛+1
𝑗 𝛿𝑛+1𝑘 , ∑

𝑖∈Z2 𝑔𝑖−𝑎𝑛+1𝑗
𝑔𝑖−𝑎𝑛+1

𝑘
̃︀ =

(43)

2
𝑁∑
𝑗=1∐︀𝛿𝑛+1𝑗 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎𝑛+1𝑗 )̃︀+

𝑁∑
𝑗=1

𝑁∑
𝑘=1∐︀𝛿

𝑛+1
𝑗 𝛿𝑛+1𝑘 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎𝑛+1𝑗 − 𝑎𝑛+1𝑘 )̃︀.

(44)

5.4 Implementation details
Leaky energy. Similar to the original paper [Analoui and Allebach

1992], in our extension 𝛿 was computed for a "leaky energy" which
extended the support of the image by convolution. That is reflected
in the fact that the sums are over Z2. To rectify this, the sum needs
to be limited to the support of 𝐼𝐼𝐼 . This would require clamped sums of
the cross-correlation to be evaluated, which can also be precomputed
but requires extra memory. The same holds for the cross-correlation
with 𝜖𝜖𝜖 , where clamped terms are required near the image boundary.

Reflecting boundary conditions. Another desirable property may
be a convolution such that it acts on the image extended to be
reflected at the boundaries - this avoids artifacts near the borders.
This can be achieved by including the relevant terms including
pixels for which the kernel is partially outside of the support of
𝐼𝐼𝐼 . Care must be taken when expressing 𝑄̃𝑖 , however, since it may
include the same updated pixel numerous times (especially if it is
near the border). The same ideas apply for a toroidally extended
convolution.

Further optimisations. Various other strategies have been pro-
posed in the literature for improving the runtime of iterative error
minimization approaches for halftoning.

In our algorithms we usually use a randomized initial state, how-
ever, it is possibly to initialize the algorithms with the result of
a dither matrix halftoning algorithm or error diffusion algorithm
which would result in faster convergence [Analoui and Allebach
1992].

Another strategy involves partitioning the image in blocks. In-
stead of updating the pixels in raster or serpentine order, the blocks
are updated simultaneously by keeping only the best update per
block in each iteration. This has been reported to run 10+ times
faster [Lieberman and Allebach 1997]. In the same paper [Lieberman
and Allebach 1997], approximating the kernel with box functions
has been proposed yielding a speed up of 6 times. Similarly, if the
kernel is separable or can be approximated by a separable kernel,

the convolution can also be made considerably faster. A speed-up
of an additional 30 times has been reported in [Koge et al. 2014]
through the usage of a GPU.

Finally, several heuristics related to the the order in which pixels
are iterated over have been proposed in [Bhatt et al. 2006].

5.5 Spatially varying kernels
We propose an optimisation for spatially varying kernels also. Let
kernel 𝑔𝑔𝑔𝑖 be associated with pixel 𝑖 . Let pixel 𝑎 be updated to a new
value 𝑄′𝑎 , while everywhere else the images match: 𝑄′𝑖 = 𝑄𝑖 , and
𝛿𝑎 = 𝑄′𝑎 −𝑄𝑎 . We denote 𝑄̃𝑖 = ∐︀𝑔𝑔𝑔𝑖 ,𝑄𝑄𝑄̃︀, 𝑄̃′𝑖 = ∐︀𝑔𝑔𝑔𝑖 ,𝑄𝑄𝑄′̃︀ = 𝑄̃𝑖 + 𝑔𝑖,𝑎𝛿𝑎 .
Our goal is to evaluate the change in the energy due to the update:

𝛿 = ∏︁𝑄̃𝑄𝑄′ − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄̃𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (45)

∑
𝑖∈Z2 ∏︁𝑄̃𝑖 − 𝐼𝑖 + 𝑔𝑖,𝑎𝛿𝑎∏︁

2 − ∏︁𝑄̃𝑄𝑄 − 𝐼𝐼𝐼∏︁2 = (46)

2 ∑
𝑖∈Z2∐︀𝜖𝑖 , 𝑔𝑖,𝑎𝛿𝑎̃︀ + ∑𝑖∈Z2 ∏︁𝑔𝑖,𝑎𝛿𝑎∏︁

2 = (47)

2∐︀𝛿𝑎, ∑
𝑖∈Z2 𝜖𝑖𝑔𝑖,𝑎̃︀ + ∐︀𝛿

2
𝑎, ∑
𝑖∈Z2 𝑔𝑖,𝑎𝑔𝑖,𝑎̃︀. (48)

In the above𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎) = ∑𝑖∈Z2 𝑔𝑖,𝑎𝑔𝑖,𝑎 may be precomputed for every
𝑎, which yields a function with support supp(𝐶𝑔𝑔𝑔,𝑔𝑔𝑔) = ⋃𝑖 supp(𝑔𝑔𝑔𝑖),
and 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑎) = ∑𝑖∈Z2 𝜖𝑖𝑔𝑖,𝑎 can also be recomputed after enough
updates have been accepted.

Multiple accepted updates. Let a set of accepted updates results in
the differences: {𝛿𝑎1 , . . . , 𝛿𝑎𝑛}. And let 𝜖𝜖𝜖𝑛 be the error image after
the updates. We derive an expression for the efficient evaluation of
𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 :

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = ∑
𝑖∈Z2 𝜖

𝑛
𝑖 𝑔𝑖,𝑥 = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) + 𝑛∑

𝑘=1𝛿𝑎𝑘 ∑𝑖∈Z2 𝑔𝑖,𝑎𝑘𝑔𝑖,𝑥 . (49)

An efficient computation of 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 can then be achieved if the
function 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥,𝑦) = ∑𝑖∈Z2 𝑔𝑖,𝑥𝑔𝑖,𝑦 is precomputed. Then, at step
𝑛 + 1 the change in energy is:

𝛿𝑛+1 = ∏︁𝑄̃𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄̃𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (50)

2∐︀𝛿𝑎𝑛+1 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎𝑛+1)̃︀ + ∐︀𝛿2𝑎𝑛+1 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎𝑛+1)̃︀. (51)

Multiple simultaneous updates. We derive an expression where
an update consists of changing 𝑁 pixels simultaneously, and we
assume that 𝑛 such updates have been accepted previously. We
denote the differences of the pixels in update 𝑘 : {𝛿𝑘1 , . . . , 𝛿𝑘𝑁 }. The
expression for the change in the energy is given as:

𝛿𝑛+1 = ∏︁𝑄̃𝑄𝑄𝑛+1 − 𝐼𝐼𝐼∏︁2 − ∏︁𝑄̃𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (52)

∑
𝑖∈Z2 ∏︁𝑄̃

𝑛
𝑖 − 𝐼𝑖 + 𝑁∑

𝑗=1𝛿
𝑛+1
𝑗 𝑔𝑖,𝑎𝑛+1𝑗

∏︁2 − ∏︁𝑄̃𝑄𝑄𝑛 − 𝐼𝐼𝐼∏︁2 = (53)

2
𝑁∑
𝑗=1∐︀𝛿𝑛+1𝑗 ,𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑎𝑛+1𝑗 )̃︀ + 𝑁∑

𝑖=1
𝑁∑
𝑗=1∐︀𝛿𝑛+1𝑖 𝛿𝑛+1𝑗 ,𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎𝑛+1𝑖 , 𝑎𝑛+1𝑗 ̃︀.

(54)
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Where 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑥,𝑦) = ∑𝑖∈Z2 𝑔𝑖,𝑥𝑔𝑖,𝑦 is assumed to be precomputed,
and 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛 can be computed as:

𝐶𝑔𝑔𝑔,𝜖𝜖𝜖𝑛(𝑥) = 𝐶𝑔𝑔𝑔,𝜖𝜖𝜖(𝑥) + 𝑛∑
𝑘=1

𝑁∑
𝑗=1𝛿𝑎𝑘𝑗 𝐶𝑔𝑔𝑔,𝑔𝑔𝑔(𝑎𝑘𝑗 , 𝑥). (55)

6 RELATIONSHIP TO PREVIOUS WORK
We show that the recent publications [Georgiev and Fajardo 2016;
Heitz et al. 2019; Heitz and Belcour 2019] on blue noise error distribu-
tion for path tracing, can be seen as special cases in our framework.
This allows for a novel analysis and interpretation of the results in
the aforementioned works. We also state the necessary assumptions
and approximations necessary to get from our general formulation
to the algorithms presented in the papers.

Classification. The proposed techniques can be divided into a-
priori [Georgiev and Fajardo 2016; Heitz et al. 2019] and a-posteriori
[Heitz and Belcour 2019]. The main difference is that for a-priori
techniques broad assumptions are made on the integrand without
relying on information from renderings of the current scene. The
cited a-priori approaches describe ways for constructing offline
optimized point sets/sequences. We denote the method in [Georgiev
and Fajardo 2016] as BNDS (blue-noise dithered sampling), the
method in [Heitz et al. 2019] as HBS (Heitz-Belcour Sobol), and the
histogram and permutation method in [Heitz and Belcour 2019] as
HBH and HBP respectively (Heitz-Belcour histogram/permutation).

Energy. HBH/HBP both rely on a blue noise dither matrix op-
timised while using a Gaussian kernel (through void-and-cluster
[Ulichney 1993]). This kernel corresponds to the kernel in our frame-
work𝑔𝑔𝑔. The optimisation of this dither matrix happens offline unlike
in our iterative energy minimization algorithms. This imposes mul-
tiple restrictions while allowing for a lower runtime. On the other
hand, the dither matrices in HBS and BNDS are optimized with
respect to empirically motivated energies that cannot be related
directly to what is used as energy in HBH and HBP. In the case of
BNDS the energy does not even introduce an implicit integrand,
and instead it is devised to represent a whole class of integrands.
We propose to substitute those empirically motivated energies with
a modified version of our energy. This allows an intuitive interpre-
tation and relating a-posteriori approaches to a-priori approaches.

Search space. Another notable difference constitute the search
spaces on which the different approaches operate. HBH selects
a subset from a set of precomputed samples in each pixel, HBP
permutes the assignment of sample sets to pixels, BNDS directly
modifies the set of samples in each pixel, and HBS considers a search
space made up of scrambling and ranking keys for a Sobol sequence.
Working on the space of scrambling and ranking keys guarantees
the preservation of the desirable integration qualities of the Sobol
sequence used, and it should be clear that other methods can also
be restricted to such a space. Clearly, a search space restriction
diminishes the achievable blue noise quality. On the other hand, it
makes sequences more robust to integrands for which those were
not optimized.

7 A-POSTERIORI APPROACHES
In this section we analyze the permutation based approach (HBP)
and the histogram sampling approach (HBH) proposed in [Heitz and
Belcour 2019]. The two methods can be classified as dither matrix
halftoning methods in our framework, that operate on a horizontal
and vertical search space respectively. We make the approximations
and assumptions necessary to get from our general formulation to
HBP/HBH explicit.
We also note that a-posteriori methods lead to solutions that

adapt to the current render by exploiting known information (e.g.
previously rendered data, auxiliary buffers). They can generally
produce better results than a-priori methods.

Both HBP and HBH rely on a blue noise dither matrix 𝐵𝐵𝐵. Let 𝐵𝐵𝐵 be
the optimized blue noise dither matrix resulting from the minimiza-
tion of 𝐸(𝐵𝐵𝐵) = ∏︁𝑔𝑔𝑔 ∗𝐵𝐵𝐵∏︁22 over a suitable search space. The kernel 𝑔𝑔𝑔 is
the one used to generate the blue noise images for HBP/HBH. That
is, the Gaussian kernel in the void-and-cluster method [Ulichney
1993]. Our analysis does not rely on the kernel being a Gaussian,
or on the void-and-cluster optimization, this is simply the setting
of the HBP/HBH method. In the more general setting any kernel is
admissible.

7.1 Sorting step for the permutation approach
The permutation approach [Heitz and Belcour 2019] consists of
two main parts: sorting (optimization), and retargeting (correcting
for mispredictions). The sorting step in HBP can be interpreted as
minimizing the energy:

𝐸𝐻𝐵𝑃 (𝜋) = ∏︁𝜋(𝑄𝑄𝑄)−𝑓2(𝐵𝐵𝐵)∏︁22,∀𝑓2 ∶ 𝑎 < 𝑏 Ô⇒ 𝑓2(𝑎) < 𝑓2(𝑏). (56)
A global minimum of the above energy is achieved for a permutation
𝜋 that matches the order statistics of𝑄𝑄𝑄 and 𝐵𝐵𝐵. Thus our goal would
be to get from the minimization of:

𝐸(𝜋) = ∏︁𝑔𝑔𝑔 ∗ (𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁22 = ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆))∏︁22, (57)

to the minimization of Eq. (56) over a suitable search space (in
practice it is limited to permutations within tiles).

We successively bound the error, while introducing the assump-
tions implicit to the HBP method. The bounds are not tight, how-
ever, the different error terms that we consider illustrate the major
sources of error due to the approximation of the more general en-
ergy (Eq. (57)) with a simpler one (Eq. (56)). The substitution of the
kernel convolution 𝑔𝑔𝑔 ∗ ⋅ by a difference with a blue noise mask 𝐵𝐵𝐵
restricts the many possible blue noise error distributions towards
which 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) can go with a single one: 𝐵𝐵𝐵. A global minimizer of
the new simplified energy can thus be found by just sorting.

The closer the distributions of 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) and 𝛼𝐵𝐵𝐵, 𝛼 > 0 are locally,
the lower this restriction error can be made. Notably, for a close
to linear relationship between the samples and the integrand, and
sufficiently many pixels, 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) and 𝛼𝐵𝐵𝐵 can be matched closely
in practice. A different way to reduce the approximation error is
to introduce a sufficient amount of different blue noise images and
pick the one that minimizes the error. We start with the original
energy (Eq. (57)) and bound it through terms that capture the main
assumptions on which the model relies:
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∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆))∏︁2 =
min
𝑓2
∏︁𝑔𝑔𝑔 ∗ (𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵) + 𝑓2(𝐵𝐵𝐵))∏︁2 ≤
min
𝛼>0,𝑓2∏︁𝑔𝑔𝑔∏︁1∏︁𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵)∏︁2+∏︁𝑔𝑔𝑔 ∗ (𝑓2(𝐵𝐵𝐵) − 𝛼𝐵𝐵𝐵 + 𝛼𝐵𝐵𝐵)∏︁2 ≤
min
𝛼>0,𝑓2∏︁𝑔𝑔𝑔∏︁1∏︁𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵)∏︁2+∏︁𝑔𝑔𝑔∏︁1∏︁(𝑓2(𝐵𝐵𝐵) − 𝛼𝐵𝐵𝐵)∏︁2 + 𝛼∏︁𝑔𝑔𝑔 ∗𝐵𝐵𝐵∏︁2 .

(58)

In the above, 𝑓2 is taken over the space of all strictly monotonically
increasing functions, and 𝛼 > 0 is a real value used to provide an
amplitude matching between 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) and 𝐵𝐵𝐵 (this allows for the
second term to go to zero as the pointwise error goes to zero).

7.1.1 Third error term. We note that 𝐵𝐵𝐵 is precomputed offline in
order to approximately minimize 𝐸(𝐵𝐵𝐵) = ∏︁𝑔𝑔𝑔 ∗𝐵𝐵𝐵∏︁2. Thus, the third
term reflects the quality of the blue noise achieved with respect to
𝑔𝑔𝑔 in the offline minimization. This error can be made small without
a performance penalty since the optimization is performed offline.
We factor out a multiplicative scaling factor 𝛼 > 0 in the blue noise
quality term, to allow for the second term to go to zero. With this
change, we can consider 𝐵𝐵𝐵 to be normalized in the range (︀−1, 1⌋︀ and
we can encode the scaling in 𝛼 .

7.1.2 Second error term. The second term reflects the error intro-
duced by substituting a large search space (many local minima) with
a small search space. It introduces the first implicit assumption of
HBP by relating the first and third error terms (by using 𝑓2 and 𝛼
respectively) through the second error term. The assumption is that
there exists a permutation for which 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) can be made close to
𝛼𝐵𝐵𝐵, which would make the second term small. This holds in practice
if the pixel-wise error is zero on average (unbiased estimator within
each pixel), and we have a sufficiently large resolution/tiles: which
results in a higher probability that pixels from 𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) can match
𝐵𝐵𝐵 well. Then the term ∏︁𝑔𝑔𝑔∏︁1∏︁𝑓2(𝐵𝐵𝐵) − 𝛼𝐵𝐵𝐵∏︁2 can be made small. We
note that this is a generalization of the third optimality condition in
[Heitz and Belcour 2019] (correlation-preserving integrand) since an
integrand linear in the samples can also better match 𝐵𝐵𝐵 provided
enough pixels. For a linear integrand the optimal 𝑓2 is also a linear
function (ideal correlation between samples and integrand). The
main difference between a linear integrand and a nonlinear/discon-
tinuous one, is the amount of sample sets/pixels necessary to match
𝑓2(𝐵𝐵𝐵) well, given an initial white noise samples’ distribution. So in
practice there are 4 factors directly affecting the magnitude of the
second term: the number of considered blue noise images, the size of
the tiles, the correlation between samples and integrand (accounted
for by 𝑓2), the bias/consistency of the estimators.
We note that the number of considered pixels depends on the

tile size in HBP, and the practical significance of this has been
demonstrated through a canonical experiment in the main paper.

7.1.3 First error term. Before we proceed we need to further bound
the first error term by substituting 𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) by 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)). As dis-
cussed in the main paper, this is achieved by introducing a difference
term ΔΔΔ(𝜋) = 𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)), and then

⌋︂
𝐸𝐻𝐵𝑃 is recovered.

The error there can be made arbitrarily small through 𝑓2 (it is ac-
counted for in the second term). Thus we only need to study the
remaining error due to ΔΔΔ. In the case of HBP, ΔΔΔ is approximated by
non-overlapping characteristic functions in each tile (𝑑(𝑥,𝑦) = ∞,
for 𝑥,𝑦 in different tiles). This means that the approximation error
is zero within each tile if the integrands are the same within the
tile and permutations act only within the tile, since ΔΔΔ(𝜋) = 000. On
the other hand, if this assumption is violated, mispredictions occur,
usually resulting in white noise.

7.1.4 ΔΔΔ term. HBP partitions screen space into a several tilesℛ1,
. . ., ℛ𝐾 , and permutations are only over the pixel values in a tile.
Having the partition induced by the tiling we can bound the first
term:

∏︁𝜖𝜖𝜖(𝜋(𝑆𝑆𝑆)) − 𝑓2(𝐵𝐵𝐵)∏︁2 ≤ 𝐾∑
𝑘=1∏︁𝜖𝜖𝜖𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵)∏︁2 . (59)

Since additionally the permutations are optimized for the pixel val-
ues instead of the sample sets (which saves re-rendering operations),
then there is an assumption that within each tileℛ𝑘 the following
holds (we denote𝐴𝐴𝐴𝑘 =𝐴𝐴𝐴⋃︀ℛ𝑘

) ∶
𝑄𝑄𝑄𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) = 𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)). (60)

Consequently it follows that 𝐼𝑖 = 𝐼 𝑗 ,∀𝑖, 𝑗 ∈ ℛ𝑘 .
This assumption can be identified with the 4-th optimality con-

dition proposed in [Heitz and Belcour 2019]: screen-space coher-
ence. As discussed, the search space restriction to the tiles cor-
responds to an approximation of the ΔΔΔ term in our framework
by characteristic functions: 𝑑𝑘(𝑥,𝑦) = ∞, 𝑥 ∈ ℛ𝑘 ,𝑦 ⇑∈ ℛ𝑘 and
𝑑𝑘(𝑥,𝑦) = 0, 𝑥,𝑦 ∈ ℛ𝑘 . To account for the actual error when the
assumption is violated we introduce an additional error term per
tile: ΔΔΔ𝑘 =𝑄𝑄𝑄𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) − 𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)), then we have the bound:

∏︁𝜖𝜖𝜖𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 =∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝐼𝐼𝐼𝑘 − 𝑓2(𝐵𝐵𝐵𝑘) +ΔΔΔ𝑘∏︁2 ≤∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝐼𝐼𝐼𝑘 − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 + ∏︁ΔΔΔ𝑘∏︁2 .
(61)

This means that even if all of the previous error terms are made
small, including ∏︁𝜋𝑘(𝜖𝜖𝜖𝑘(𝑆𝑆𝑆𝑘))− 𝑓2(𝐵𝐵𝐵𝑘)∏︁2, the error may still be large
due to ∏︁ΔΔΔ∏︁2. We refer to a large error due to the delta term asmispre-
diction - that is, a mismatch between the predicted error distribution
from the minimization of ∏︁𝜋𝑘(𝜖𝜖𝜖𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 and the actual
error distribution resulting from the above permutation applied to
𝜖𝜖𝜖𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)). The best way to identify mispredictions is to compare
the predicted image 𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) and the image rendered with the
same permutation for the sample sets𝑄𝑄𝑄𝑘(𝜋𝑘(𝑆𝑆𝑆𝑘)). A misprediction
occurring means that the assumption made to approximate ΔΔΔ was
incorrect ( ΔΔΔ𝑘 ≠ 000 for some tile ℛ𝑘 ), equivalently the optimality
condition of screen-space coherence is not satisfied.

Avoiding mispredictions. In practice mispredictions often occur
for larger tile sizes, since it is hard to guarantee that the integrand
remains similar over each tile. On the other hand, larger tiles allow
for a better blue noise as long as ΔΔΔ𝑘 = 0 in each tile, thus larger tiles
are desirable. The method fails even more often near edges, since
even for small tile sizes it allows swapping pixels over an edge. A
straightforward improvement involves partitioning the domain by
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Fig. 2. Here we showcase the effect of tile size on the quality of blue noise.
We also demonstrate the effect of a larger search neighbourhood 𝑅 in our
optimization (Alg. 2). For our case, we consider disk neighbourhoods so that
they are contained within Heitz and Belcour’s tiles in terms of size, but
they can also overlap due to our formulation. From left-to-right, the input
white noise texture is optimized using our relocation algorithm. The last two
columns are from Heitz and Belcour’s [2019] method. The corresponding
power spectra of these optimized images (128 × 128) are also shown.

respecting edges. More involved methods may take into account
normals, depth, textures, etc.

7.1.5 𝐸𝐻𝐵𝑃 error term. The final step involves the minimization
of the energy in Eq. (61). Since different tiles do not affect each
other the minimization can be performed per tile (we adopt the
assumption from HBP ΔΔΔ𝑘 = 000):

𝜋∗𝑘 ∈ argmin
𝜋𝑘

∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝐼𝐼𝐼𝑘 − 𝑓2(𝐵𝐵𝐵𝑘)∏︁2 =
argmin

𝜋𝑘
∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − 𝑓2(𝐵𝐵𝐵𝑘)∏︁22 . (62)

We have dropped the term 𝐼𝐼𝐼𝑘 since it doesn’t affect the set of mini-
mizers (𝐼𝐼𝐼𝑘 is assumed constant in each tile). As discussed in Eq. (56),
a global minimum is given by matching the order statistics of𝑄𝑄𝑄𝑘
to the order statistics of 𝑓2(𝐵𝐵𝐵)) (we note that the order statistics
of 𝐵𝐵𝐵𝑘 do not change from the application of 𝑓2 since it is a strictly
increasing function). This is equivalent to performing the sorting
pass described in [Heitz and Belcour 2019]. A minor optimization
would be to pre-sort 𝐵𝐵𝐵 and instead store the sorted indices.

Tiling effect. In Fig. 2 we compare the effect of the tile size. In our
approach, the “tiles” can be defined per pixel, can have arbitrary
shapes, and are overlapping, the last being crucial for achieving a
good blue noise distribution. We consider white-noise with mean
0.5 (which is an ideal scenario for Heitz and Belcour’s method) and
compare various tile sizes. For a fair comparison, our tile radius 𝑟
corresponds similar tile-size in the permutation [2019] approach.
The power-spectrum profiles confirm the better performance of
our method. Retargeting [2019] cannot improve the quality of the
permutation approach either, since no misprediction can occur (ΔΔΔ =
0). The adverse effect of tiling is exacerbated in practice since, for
images which are not smooth enough in screen space, tiles of smaller
sizes need to be considered.

Custom surrogate. The 𝐼𝐼𝐼𝑘 term doesn’t need to be assumed con-
stant in fact. If it is assumed constant, that is equivalent to picking
a tile-constant surrogate, however, a custom surrogate may be pro-
vided instead. Then one would simply minimize the energy:

∏︁𝜋𝑘(𝑄𝑄𝑄𝑘(𝑆𝑆𝑆𝑘)) − (𝐵𝐵𝐵𝑘 + 𝐼𝐼𝐼𝑘)∏︁22 . (63)

The energy has a different minimizer than the original HBP en-
ergy, but the global minimum can be found efficiently through
sorting once again.

7.2 HBP retargeting
The retargeting pass in HBP achieves two things. It introduces new
possible target solutions through new blue noise images, and it
corrects for mispredictions. The first is not so much a result of the
retargeting, as it is of varying the blue noise image every frame.
Ideally several blue noise images would be considered in a single
frame, and the best image would be chosen per tile (in that case one
must make sure that there are no discontinuities between the blue
noise images’ tiles) in order to minimize the second term in Eq. (58).
Instead, in HBP this is amortized over several frames.

The more important effect of retargeting is correcting for mispre-
dictions, by transferring the recomputed correspondence between
sample set and pixel value (achieved through rerendering) to the
next frame. This allows reducing the error due to the approximation
of ΔΔΔ (when the piecewise-tile constancy assumption on the inte-
grand is violated). Note however, that this is inappropriate if there
is a large temporal discontinuity between the two frames.

Implementation details. Retargeting requires a permutation that
transforms the blue noise image in the current frame into the blue
noise image of the next frame [Heitz and Belcour 2019]. This per-
mutation is applied on the optimized seeds to transfer the learned
correspondence between sample sets and pixel values to the next
frame. Implicitly, this transforming permutation also relies on a
screen space integrand similarity assumption, since there is no
guarantee that the corresponding values from the swap will match,
possibly incurring a misprediction once again (it can be modeled
by an additional ΔΔΔ term). In HBP [Heitz and Belcour 2019] the max-
imum radius of travel of each pixel in the permutation is set to 6
pixels. This has a direct effect on the approximation of ΔΔΔ, as the
travel distance of a pixel is allowed to extend beyond the original
tile bounds. In the worst case scenario a pixel may allowed to travel
a distance of

⌉︂
𝑡2𝑥 + 𝑡2𝑦 + 6 pixels, where 𝑡𝑥 , 𝑡𝑦 are the dimensions

of the tiles. An additional error is introduced since the retargeting
pass does not produce the exact blue noise image used in the next
frame, but some image that is close to it [Heitz and Belcour 2019].
This seems to be done purely from memory considerations since it
allows one blue noise image to be reused by translating it toroidally
each frame to produce the blue noise image for the next frame.

Relationship to our horizontal approach. Our horizontal approach
does not require a retargeting pass. It can directly continue with
the optimized sample sets and pixel values from last frame. There
is also no additional travel distance for a matching permutation as
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in retargeting, which further minimizes the probability of mispre-
diction. Thus, it inherently and automatically produces all of the
advantages of retargeting while retaining none of its disadvantages.

7.3 Histogram sampling approach
The histogram sampling approach from Heitz and Belcour can be
interpreted as both a dithering and a sampling method. We study
the dithering aspect to better understand the quality of blue noise
achievable by the method.

Algorithm analysis. The sampling of an estimate in each pixel by
using the corresponding mask value to the pixel can be interpreted
as performing a mapping of the mask’s range and then quantizing to
the closest estimate. In HBH each estimate is equally likely to be sam-
pled (if a random mask is used), which implies a transformation that
maps equal parts of the range to each estimate. Let𝑄𝑘,1, . . .,𝑄𝑘,𝑁 be
the greyscale estimates in pixel 𝑘 sorted in ascending order. Let the
range of the blue noise mask be in [0,1]. Then the range is split into
𝑁 equal subintervals: (︀0, 1

𝑁 ), . . . , (︀𝑁−1𝑁 , 1⌋︀ which respectively map
to (︀𝑄1,

𝑄1+𝑄2
2 ), . . . , (︀𝑄𝑖−1+𝑄𝑖

2 , 𝑄𝑖+𝑄𝑖+1
2 ), . . . , (︀𝑄𝑁−1+𝑄𝑁

2 ,𝑄𝑁 ⌋︀. If the
quantization rounds to the closest estimate, then the above mapping
guarantees the desired behaviour. We note that since the estimates
in each pixel can have different values, the mapping for each pixel
may be different. We will denote the above mapping through 𝑓𝑓𝑓 .
Then the mapping plus quantization problem in a pixel 𝑘 may be
formulated as:

min
𝑖∈{1,...,𝑁} ⋃︀𝑄𝑘,𝑖 − 𝑓𝑘(𝐵𝑘)⋃︀. (64)

Note that the minimization in each pixel is independent, and
it aims to minimize the distance between the estimates and the
remapped value from the blue noise mask. If the set of estimates are
assumed to be the same across pixels, and are also assumed to be
spaced regularly, then 𝑓 is only a linear remapping, which effectively
transfers the spectral properties of 𝐵𝐵𝐵 onto the optimized image. No-
tably, the former is the screen-space coherence assumption from HBP,
while the latter is the correlation-preserving integrand assumption.
Thus we have seen that for optimal results the HBH method relies
on exactly the same assumption as the HBP method (while our
vertical iterative minimization approach lifts both assumptions).

Disadvantages. One of the key points is that the error distribution
and not the signal itself ought to ideally be shaped as 𝐵𝐵𝐵. This is
actually the case even in the above energy. From the way 𝑓𝑓𝑓 was
chosen it follows that the surrogate is equivalent to 𝑓𝑓𝑓 (0.5)which can
be identified as the image made of the median of the sorted estimates
within each pixel. This is the case since if the target surrogate of 𝐵𝐵𝐵
(during the offline optimization) was assumed to be 0.5, then after
the mapping it is 𝑓𝑓𝑓 (0.5). Generally, this is a very bad surrogate
in the context of rendering, and it generally increases the error
compared to the averaged image, making the method impractical.

Another notable disadvantage is that all estimates are considered
with an equal weight. This means that outliers are as likely to be
picked as estimates closer to the surrogate. This results in fireflies
appearing evenwhen those were not present in the averaged imaged.
Compared to classical halftoning, where only the closest lower and

upper quantization levels are considered, HBH does not minimize
the magnitude of the error to the surrogate.
Finally, the two assumptions of: screen-space coherence and s

correlation-preserving integrand, generally do not hold in practice.
Estimates cannot be assumed to match between pixels (especially
if samples are taken at random), and they cannot be assumed to
be uniformly distributed, which implies that 𝑓𝑓𝑓 is not linear. This
greatly impacts the quality of the result, especially if it is compared
to adaptive approaches such as our vertical error diffusion approach
and our iterative minimization techniques (see the experiments in
the main paper).

Generalization. The method can be generalized to take a custom
surrogate instead of the one constructed by the median of the esti-
mates within each pixel. This is achieved by splitting the per pixel
set of estimates into two parts: (greyscale) estimates greater than the
value of the (greyscale) surrogate in the current pixel, and estimates
lower than it. Then the mapping 𝑓𝑘 for the current pixel 𝑘 maps
values in (︀0, 0.5) to the lower set, and values in (︀0.5, 1⌋︀ to the higher
set, such that 𝑓𝑘(0.5) = 𝐼𝑘 . The original method is recovered if the
surrogate is chosen to be the implicit one for the original histogram
sampling method and if the appropriate corresponding mapping 𝑓𝑓𝑓
is kept.

The approach can be extended further by setting different proba-
bilities for the different estimates. The original histogram sampling
method correspond to setting the same probability for sampling
every estimate, equivalently: equal sized sub-intervals from (︀0, 1⌋︀
map to each estimate. Classical dither matrix halftoning can be
interpreted as setting an equal probability for the closest to the sur-
rogate upper and lower estimates, while every other estimate gets a
zero probability. Equivalently: equal sub-intervals from (︀0, 1⌋︀ map
to the two aformentioned estimates while no part of the interval
maps to the remaining estimates. Generally a custom probability
can be assigned to each estimate: 𝑝1, ..., 𝑝𝑁 , by having the intervals(︀0, 𝑝1), ..., (︀∑𝑁−1𝑘=1 𝑝𝑘 , 1⌋︀ map to 𝑄1, ...,𝑄𝑁 (after quantization). We
note that an unbiased image can be recovered only if there is a map
to every estimate.

8 A-PRIORI APPROACHES
We discuss current state of the art a-priori approaches [Georgiev and
Fajardo 2016; Heitz et al. 2019] and their relation to our framework,
as well as insights regarding those.

8.1 HBS
In Heitz et al.’s work, a scrambling energy and a ranking energy
have been proposed (note that those energies are maximimized and
not minimized):
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𝐸𝑠 = ∑
𝑖, 𝑗

exp(−∏︁𝑖 − 𝑗∏︁22
2𝜎2

)∏︁𝐸𝑖 − 𝐸 𝑗∏︁22 (65)

𝐸𝑟 = ∑
𝑖, 𝑗

exp(−∏︁𝑖 − 𝑗∏︁22
2𝜎2

)(∏︁𝐸1𝑖 − 𝐸1𝑗 ∏︁22 + ∏︁𝐸2𝑖 − 𝐸2𝑗 ∏︁22) (66)

𝐸𝑖 = (𝑒1,𝑖 , . . . , 𝑒𝑇,𝑖) (67)

𝑒𝑡,𝑖(𝑆𝑖) = 1⋃︀𝑆𝑖 ⋃︀
⋃︀𝑆𝑖 ⋃︀∑
𝑘=1 𝑓𝑡 (𝑝𝑖,𝑘) − ∫(︀0,1⌋︀𝐷 𝑓𝑡 (𝑥)𝑑𝑥 (68)

𝑆𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑀𝑖 }. (69)

The upper indices in 𝐸1𝑖 , 𝐸
2
𝑖 indicate that the two energies are

evaluated with different subsets of the sample set 𝑆𝑖 in the pixel
𝑖 . The 𝑓𝑡 are taken from an arbitrary set of functions (in the orig-
inal paper those are random Heaviside functions). The described
form of the energies has been partially motivated by the energy in
[Georgiev and Fajardo 2016]. This doesn’t allow for a straightfor-
ward interpretation or a direct relation to the (implicit) energy used
for a-posteriori approaches in [Heitz and Belcour 2019].

Scrambling energy. Wemodify 𝐸𝑠 in order to relate it to the energy
in our framework and to provide a meaningful interpretation:

𝐸′𝑠 = 𝑇∑
𝑡=1𝑤𝑡 ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆) − 𝐼𝐼𝐼𝑡 ∏︁22, (70)

𝑄𝑡,𝑖(𝑆𝑆𝑆) = 1⋃︀𝑆𝑖 ⋃︀
⋃︀𝑆𝑖 ⋃︀∑
𝑘=1 𝑓𝑡 (𝑝𝑖,𝑘), 𝐼𝑡,𝑖 = ∫(︀0,1⌋︀𝐷 𝑓𝑡 (𝑥)𝑑𝑥 . (71)

We have relaxed the Gaussian kernel to an arbitrary kernel 𝑔𝑔𝑔
and absorbed it into the norm. More importantly we have removed
the heuristic dependence of error terms on their neighbours, and
instead the coupling happens through the kernel itself. Finally, we
have introduced weights𝑤1, . . . ,𝑤𝑇 that allow assigning different
importance to different integrands. Thus, this is a weighted aver-
age of our original energy applied to several different integrands,
matching our a-priori approach (Eq. (1)). Through this formulation
a direct relationship to the a-posteriori methods can be established,
and it can be motivated in the context of both the human visual
system and denoising. Particularly, the scrambling energy 𝐸′𝑠 is over
the space of scrambling keys, which allow permuting the assign-
ment of sample sets. This is in fact the horizontal setting from our
formulation in the main paper. The space can be extended further
if the scrambling keys in each dimension are different (as in HBS).
The same can be done in a-posteriori methods, if the optimization is
performed in each dimension as discussed in Section 4.

Ranking energy. The ranking keys in HBS describe the order in
which samples are consumed. This is useful for constructing pro-
gressive a-priori methods. Notably, the order in which samples will
be introduced can be optimized. Having a sequence of sample sets in
each pixel: 𝑆𝑖,1 ⊂ . . . ⊂ 𝑆𝑖,𝑀 ≡ 𝑆𝑖 and respectively the images formed
by those: 𝑆𝑆𝑆1, . . . ,𝑆𝑆𝑆𝑀 , the progressive energy may be constructed as:

𝐸′𝑟 = 𝑀∑
𝑘=1𝑤𝑘∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄(𝑆𝑆𝑆𝑘) − 𝐼𝐼𝐼∏︁

2
2 . (72)

The quality at a specific sample count corresponding to 𝑆𝑆𝑆𝑘 is
controlled through the weight 𝑤𝑘 . The original energy maximiz-
ing the quality of the full set is retrieved for (𝑤1, . . . ,𝑤𝑀−1,𝑤𝑀) =(0, . . . , 0, 1). Since the sample sets 𝑆𝑖 , . . . , 𝑆𝑖,𝑀 are optimized by choos-
ing samples from 𝑆𝑖 this can be seen as a vertical method. Finally,
the ranking keys can also be defined per dimension, which can be
related to a-posteriori methods through the suggested dimensional
decomposition in Section 4.

8.2 Blue-noise dithered sampling energy
In Georgiev and Fajardo’s work, in order to get an optimized (multi-
channel) blue noise mask, the following energy has been proposed:

𝐸(𝑝1, . . . , 𝑝𝑁 ) = ∑
𝑖≠𝑗 exp(−

∏︁𝑖 − 𝑗∏︁2
𝜎2

) exp⎛⎝−∏︁𝑝𝑖 − 𝑝 𝑗∏︁
𝑑⇑2

𝜎2𝑠

⎞⎠ , (73)

which bears some similarity to the weights of a bilateral filter.
In the above 𝑖, 𝑗 are pixel coordinates, and 𝑝𝑖 , 𝑝 𝑗 are 𝑑-dimensional
vectors associated with 𝑖, 𝑗 , let the image formed by those vectors be
𝑆𝑆𝑆 . The energy aims to make samples 𝑝𝑖 , 𝑝 𝑗 distant (∏︁𝑝𝑖 − 𝑝 𝑗∏︁ must
be large) if they are associated with pixels which are close (∏︁𝑖 − 𝑗∏︁
is small).

Relation to our framework. Even though the energy is heuristically
motivated, we can very roughly relate it to our framework. The
above energy implicitly assumes classes of integrands𝑄𝑄𝑄1, ...,𝑄𝑄𝑄𝑇 ,
such that close samples 𝑝𝑖 , 𝑝 𝑗 are mapped to close values 𝑄𝑖,𝑡 (𝑝𝑖),
𝑄 𝑗,𝑡 (𝑝 𝑗), and distant samples are mapped to distant values. Notably,
the form of the energy doesn’t change over screen-space, so the
same can be implied about the integrands. One such class is the
class of bi-Lipschitz functions. The bound can be used to relate a
modified version of the original energy, to an energy of the form:

𝐸𝑄𝑄𝑄𝑡
= ∑
𝑖≠𝑗 exp(−

∏︁𝑖 − 𝑗∏︁2
𝜎2

) exp⎛⎝−𝐶∏︁𝑄𝑖,𝑡 (𝑝𝑖) −𝑄 𝑗,𝑡 (𝑝 𝑗)∏︁
𝑑⇑2

𝜎2𝑠

⎞⎠ .

(74)
Thus, the original energy can indeed be interpreted as reasonable

for a whole class of sufficiently smooth integrands, instead of an
energy that works very well with one specific integrand.

A similar thing can be achieved in our framework, if the weighted
energy is considered:

𝐸′(𝑆𝑆𝑆) = 𝑇∑
𝑡=1𝑤𝑡 ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄𝑡 (𝑆𝑆𝑆) − 𝐼𝐼𝐼𝑡 ∏︁2 . (75)

The kernel 𝑔𝑔𝑔 can be a Gaussian with standard deviation 𝜎 , as in
the original energy, or it can be relaxed to an arbitrary desired kernel.
𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑇 are representative integrands that satisfy the discussed
smoothness requirements, and𝑤𝑡 are associated weights assigning
different importance to the integrands. Finally, the reference images
are given by the integrals 𝐼𝐼𝐼𝑡 = ∫(︀0,1⌋︀𝑑 𝑄𝑄𝑄𝑡 (𝑥)𝑑𝑥 .
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Random Georgiev and Fajardo [2016] Heitz et al. [2019] Ours Sobol
MSE: 0.118636 0.0921076 0.0787028 0.117336 0.178861

pMSE: 0.0170958 0.011277 0.00869183 0.0119757 0.0126065

Fig. 3. A comparison illustrating that even a sampling sequence formed by a stack of blue noise images (Ours) yields a good distribution (note the tiled error
spectra). The integration error is higher however, degrading the quality. This is the case because the assumed integrand is far from linear in each dimension
(see Extension in Section 8.3). The images use 4 samples per pixel, and the degradation of the spectral properties with the number of samples is clear for
[Georgiev and Fajardo 2016] and even [Heitz et al. 2019], while it is not so much the case for Ours. This demonstrates that different methods offer a different
trade-off between integration error and distribution for arbitrary integrands. Constraining the search space to using toroidal shifts or scrambling and ranking
keys restricts the achievable blue noise distribution.

It should be clear that this is a weighted average constructed from
the standard energy in our framework applied to a set of integrands.
There are a number of benefits of such an explicit formulation. Most
importantly, it allows for a-priori methods to be studied in the same
framework as a-posteriori approaches. Additionally, explicit control
is provided over the set of integrands and the kernel in a manner
that allows for a straightforward interpretation.

8.3 Blue-noise dithered sampling algorithm
The second contribution of Georgiev and Fajardo’s work is a sam-
pler which relies on an image optimized with Eq. (73) and uses
it to achieve a blue noise distribution of the rendering error. We
summarize the algorithm and discuss some details related to it.

Algorithm. Let𝐵𝐵𝐵 be an image (with𝑑-channels) optimized by min-
mizing Eq. (73) over a suitable search space. Let𝒫 = {𝑝1, . . . , 𝑝𝑁 } be
a sequence of 𝑑-dimensional points. Within each pixel 𝑖 the sample
set 𝑆𝑖 is constructed, such that:

𝑝 𝑗 ∈ 𝒫 Ô⇒ 𝑝𝑖, 𝑗 ∈ 𝑆𝑖 ∶ 𝑝𝑖, 𝑗 = (𝑝 𝑗 + 𝐵∗𝑖 ) mod 1. (76)
The sequence 𝒫 can be constructed by using various samplers

(e. g., random, low-discrepancy, blue-noise, etc.). The construction
of the new points for pixel 𝑖 can be interpreted either as toroidally
shifting the sequence 𝒫 by 𝐵𝑖 or equivalently as toroidally shifting
the sequence {𝐵𝑖 , . . . , 𝐵𝑖} by 𝒫 .

The sequences constructed within each pixel are used to estimate
the integral in the usual manner. Since a finite number of dimen-
sions 𝑑 are optimized the suggestion is to distribute the constructed
sequences over smoother dimensions, while other dimensions may
use a standard sampler.

Effect of the toroidal shift. Let us consider a linear one-dimensional
integrand 𝑓 (𝑞) = 𝛼𝑞 + 𝛽 that does not vary in screen space, and a
sequence 𝒫 with a single point 𝑝 . Furthermore, if we assume 𝑝 = 0,
then the error is given by:

𝑄𝑄𝑄(𝐵𝐵𝐵) − 𝐼𝐼𝐼 = 𝛼𝐵𝐵𝐵 + 𝛽𝛽𝛽 − 𝐼𝐼𝐼 . (77)

Since𝑄𝑄𝑄 does not vary in screen space, then 𝐼𝐼𝐼 also doesn’t. Then
the power spectrum of the error (excluding the DC) matches the
power spectrum of 𝐵𝐵𝐵 up to the multiplicative factor 𝛼2. Then, under
the assumption that the integrand is linear, does not vary in screen
space, and there is no toroidal shift, the power spectral properties
of 𝐵𝐵𝐵 are transferred ideally to the error.

On the other hand, if 𝑝 is chosen to be non-zero, then the spectral
characteristics of the image ((𝐵𝐵𝐵 + 𝑝) mod 1) will be transferred
instead. We have empirically verified that even with a very good
quality blue noise image 𝐵𝐵𝐵 the toroidal shift degrades its quality
due to the introduced discontinuities. Thus, even in the ideal case
of a constant in screen space linear 1-D integrand, toroidal shifts
degrade the quality.

Effect of using multiple samples. Let us consider the same inte-
grand 𝑓 (𝑞) = 𝛼𝑞 + 𝛽 , which we have identified as being ideal for
transferring the spectral characteristics of 𝐵𝐵𝐵 to the error. And let
us assume that we are given several samples: 𝒫 = {𝑝1, ..., 𝑝𝑁 }, and
we have constructed the sample set image 𝑆𝑆𝑆 through toroidal shifts
with 𝐵𝐵𝐵. Then the error is:

𝑄𝑖(𝑆𝑖) − 𝐼𝑖 = 𝛼

𝑁

𝑁∑
𝑘=1𝑝𝑘,𝑖 + 𝛽 − 𝐼𝑖 . (78)

The power spectrum of the error thus matches the power spec-
trum of the image 𝐴𝑖 = ∑𝑁𝑘=1 𝑝𝑘,𝑖 (excluding the DC) up to a mul-
tiplicative factor. For a random point sequence 𝒫 the more points
are considered, the closer to white noise 𝐴𝐴𝐴 becomes. This is fur-
ther exacerbated by the discussed discontinuities introduced by the
toroidal shifts.

Extension. Wehave argued that both toroidal shifts and increasing
the number of samples has a negative effect on transferring the
spectral properties of 𝐵𝐵𝐵 even in an ideal scenario. Naturally the
question arises whether this can be improved. Our proposal is the
direct optimisation of point sets without the application of a toroidal
shift.
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For the discussed example this entails constructing a sequence of
𝑁 images 𝐵𝐵𝐵1, . . . ,𝐵𝐵𝐵𝑁 such that𝐴𝐴𝐴𝑘 = ∑𝑘𝑗=1𝐵𝐵𝐵 𝑗 is a blue noise image.
Then the error has the (blue noise) spectral characteristics of𝐴𝐴𝐴𝑘 at
each sample count:

𝑄𝑖(𝐵1,𝑖 , . . . , 𝐵𝑘,𝑖) − 𝐼𝑖 = 𝛼

𝑘

𝑘∑
𝑗=1𝐵 𝑗,𝑖 + 𝛽 − 𝐼𝑖 . (79)

9 EXTRA RESULTS
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Histogram (1/16) Ours (1/4) Histogram (1/64)

Fig. 4. We compare Heitz and Belcour’s histogram sampling method to our vertical iterative minimization on additional scenes. We provide 4 times and 16
times more samples for the histogram method, where each method picks one out of all of its allocated samples in each pixel. Despite the fact that our method
may use 16 times less samples it still outperforms the histogram sampling approach. This is mainly due to the implicit surrogate and the suboptimal dithering
inherent to the histogram sampling approach.

(a) White noise (b) Averaged (c) Dithering (Ours) (d) Error-diffusion (Ours) (e) Optimization (Ours) (f) Histogram method [2019]
MSE: 1.88 × 10−2 8.88 × 10−3 7.80 × 10−3 6.87 × 10−36.87 × 10−36.87 × 10−3 1.05 × 10−2 1.88 × 10−2
pMSE: 7.79 × 10−3 5.59 × 10−3 5.36 × 10−3 5.08 × 10−3 4.45 × 10−34.45 × 10−34.45 × 10−3 6.69 × 10−3

Fig. 5. In the main paper we compare all vertical methods on The Wooden Staircase scene. All of our methods achieve a better pMSE than the baseline (the
averaged image), while the histogram sampling method increases the error both in terms of MSE and pMSE. The tiled error power spectra images confirm the
pMSE ranking and provide a visualization of the local pMSE distribution. We also show S-CIELAB error visualizations which suggest that pointwise error is
heavily weighted in S-CIELAB, which doesn’t make it a very good predictor for the perceptual quality related to the noise distribution, unlike HDR-VDP-2.
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Dithering (Ours) Error Diffusion (Ours)

Optimization (Ours)Heitz and Belcour [2019]Heitz and Belcour [2019]

Fig. 6. Additional scenes comparing our vertical methods against Heitz and Belcour’s permutation approach. The images are rendered at 4 samples per pixel.
The permutation approach uses 16 (static) frames with retargeting to improve mispredictions, however this still does not eliminate all of the mispredictions.
This is especially evident in the Bathroom scene.

Dithering (Ours) Error Diffusion (Ours)

Optimization (Ours)Histogram method [2019]

Fig. 7. All vertical methods from the main paper are compared at 4 samples per pixel. The ranking based on our error metrics is (best last): histogram sampling,
dithering, error diffusion, iterative minimization. This also matches our perceptual evaluation.
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Frame 1

[Heitz and Belcour 2019][Heitz and Belcour 2019] Horizontal (Ours)Horizontal (Ours)

Frame 4 Frame 16

Frame 1 Frame 4 Frame 16

Fig. 8. Additional comparisons for horizontal approaches at 4 samples per pixel. The left side of the images are using Heitz and Belcour’s permutation approach,
while the right side is using our horizontal iterative minimization approach. The achieved blue noise distribution for our approach is consistently better.
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Error power spectra of (a) Error power spectra of (b) Error power spectra of (c)
(a) Original computed per-tile (32x32) (b) Ours (with reference) computed per-tile (32x32) (c) Heitz and Belcour computed per-tile (32x32)

1s
pp

4s
pp

16
sp
p

64
sp
p

Fig. 9. The textured Cornell box scene is compared over different samples per pixel using our texture handling approach in Section 4. The improvements are
visible for all spp over Heitz and Belcour’s permutation approach using demodulation. This is especially apparent when comparing the tiled error spectra.
Note that the spectra are not normalized to 1.
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