
Inferring Lower Runtime Bounds for Integer Programs

FLORIAN FROHN,Max Planck Institute for Informatics, Germany

MATTHIAS NAAF, RWTH Aachen University, Germany

MARC BROCKSCHMIDT,Microsoft Research, UK

JÜRGEN GIESL, LuFG Informatik 2, RWTH Aachen University, Germany

We present a technique to infer lower bounds on the worst-case runtime complexity of integer programs,

where in contrast to earlier work, our approach is not restricted to tail-recursion. Our technique constructs

symbolic representations of program executions using a framework for iterative, under-approximating pro-

gram simplification. The core of this simplification is a method for (under-approximating) program acceler-

ation based on recurrence solving and a variation of ranking functions. Afterwards, we deduce asymptotic
lower bounds from the resulting simplified programs using a special-purpose calculus and an SMT encoding.

We implemented our technique in our tool LoAT and show that it infers non-trivial lower bounds for a large

class of examples.

CCS Concepts: • Theory of computation → Complexity classes; Program analysis; Automated rea-
soning; • Software and its engineering→ Software performance.

Additional KeyWords and Phrases: Integer Programs, Runtime Complexity, Lower Bounds, Automated Com-

plexity Analysis

1 INTRODUCTION

Recent advances in program analysis yield efficient methods to find upper bounds on the com-

plexity of sequential integer programs. Here, one usually considers “worst-case complexity”, i.e.,

for any variable valuation, one analyzes the length of the longest execution starting from that val-

uation. But in many cases, in addition to upper bounds, it is also important to find lower bounds
for this notion of complexity. Together with an analysis for upper bounds, this can be used to

infer tight complexity bounds. Lower bounds also have important applications in security analy-

sis. If one can infer that there exists a family of inputs which lead to unacceptably large runtime

of the program (i.e., a family for which there is a non-linear or probably even exponential lower

bound on the runtime), then this family of inputs represents a possible denial-of-service attack.

Thus, techniques for the computation of lower bounds on the worst-case complexity can be used

to detect such attacks.
1

While worst-case lower bounds are useful to detect attacks or performance bugs, worst-case
upper bounds can prove the absence of such problems. Best-case lower bounds, which have also been
investigated in the literature (see Section 7), are bounds on all program runs, whereas worst-case

lower bounds hold for (usually infinite) families of (expensive) program runs. Thus, best-case lower

bounds can, e.g., be used to decide whether a certain task is expensive enough to compensate the

1
In a joint project CAGE [23, 28] with Draper Inc. (https://www.draper.com) and the University of Innsbruck, we used our

tool LoAT (that implements the techniques described in this paper) together with our tool KoAT [14] (that infers upper

runtime bounds) to analyze the complexity of large Java programs in order to detect vulnerabilities.

Authors’ addresses: Florian Frohn, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E1 4,

66123 Saarbrücken, Germany, florian.frohn@mpi-inf.mpg.de; Matthias Naaf, RWTH Aachen University, Aachen, Ger-

many, naaf@logic.rwth-aachen.de; Marc Brockschmidt, Microsoft Research, Cambridge, UK, mabrocks@microsoft.com;

Jürgen Giesl, LuFG Informatik 2, RWTHAachen University, Ahornstr. 55, 52074 Aachen, Germany, giesl@informatik.rwth-

aachen.de.

ar
X

iv
:1

91
1.

01
07

7v
3

 [
cs

.L
O

]
 2

8
Se

p
20

20

2 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

overhead of executing it remotely. So in general, the use cases of worst-case and best-case bounds

are orthogonal.

We introduce the first technique to infer worst-case lower bounds for integer programs auto-

matically. Besides concrete bounds, our technique can also deduce asymptotic bounds. In general,

concrete lower bounds that hold for arbitrary variable valuations are difficult to express concisely.

In contrast, asymptotic bounds are easily understood by humans and witness possible attacks in

a convenient way.

We first introduce our program model in Section 2. Afterwards, Section 3 shows how to trans-

form arbitrary tail-recursive integer programs into so-called simplified programs without loops.
To this end, in Section 3.1 we introduce a variation of classical ranking functions which we call

metering functions. These metering functions are used to under-estimate the number of iterations

of simple loops, i.e., loops consisting of a single transition without nested loops or branching.

Based on this concept, we present a framework to simplify programs iteratively in Sections 3.2

and 3.3. It transforms tail-recursive programs (with branching and sequences of possibly nested

loops) into programs without loops. To this end, it accelerates and then eliminates simple loops

by (under-)approximating their effect using a combination of metering functions and recurrence

solving. In Section 4 we extend our technique to an automatic approach which also transforms

non-tail-recursive integer programs into simplified programs.

Section 5 introduces techniques which allow us to infer asymptotic lower bounds from simpli-

fied programs. In Sections 5.1 and 5.2 we present a calculus to compute asymptotic bounds by

repeatedly simplifying a limit problem, which is an abstraction of the path condition φ of a sim-

plified program. This abstraction allows us to focus on φ’s behavior in the limit, i.e., we search for

an infinite family of inputs that satisfy φ. In addition, Section 5.3 shows how a limit problem can

be encoded into a quantifier-free first-order formula with integer arithmetic. Then off-the-shelf

SMT solvers can be used to find a model for this formula. This model in turn gives rise to the

desired family of inputs that satisfy φ. Thus, in many cases we can benefit from the power of SMT

solvers instead of applying the rules of our calculus from Section 5.2 heuristically. Note that the

calculus from Section 5.2 can simplify limit problems such that our SMT encoding from Section 5.3

becomes applicable and on the other hand, our SMT encoding can be integrated into the calculus

from Section 5.2, i.e., both techniques complement each other.

Finally, we evaluate our implementation in the tool LoAT in Section 6, discuss related work in

Section 7, and conclude in Section 8.

A preliminary version of this paper was published in [29]. The current paper extends [29] sig-

nificantly with the following novel contributions:

(1) The new Theorem 3.4 integrates an optimization that we proposed in [29] into our notion of

metering functions. The novel insight is that in this way we can infer more expressive “con-

ditional” metering functions of the form ⟦ψ⟧ ·b where b is an ordinary arithmetic expression

and ⟦ψ⟧ is the characteristic function of the arithmetic conditionψ (i.e., ⟦ψ⟧ yields 1 ifψ is

satisfied and 0, otherwise). Such metering functions are also useful to treat terminating and

non-terminating rules in a uniform way in our approach. To ease the use of such metering

functions, in Theorem 3.8 we extend the technique for accelerating loops from [29, Theorem

7] accordingly. Thus, conditional metering functions are now seamlessly integrated into our

framework, resulting in a more streamlined formalization and presentation than in [29].

(2) In Theorem 3.12, we present a technique to eliminate variables from the program. In order

to apply it automatically, the new Lemma 3.15 clarifies how to check a crucial side condi-

tion which requires that certain arithmetic expressions evaluate to integers whenever one

Inferring Lower Runtime Bounds for Integer Programs 3

instantiates their variables with integers. A similar side condition is also needed for the au-

tomation of our calculus for limit problems in Section 5. Moreover, this check could also be

used to ensure that the initial program is “well formed” before starting the analysis. In [29],

the automation of this check has not been discussed.

(3) We lift our approach to non-tail-recursive programs in the new Section 4. In contrast, [29]

was restricted to tail-recursive integer programs. While [29] used a graph-based program

model, in the current paper we propose a different (rule-based) representation of integer

programs. This representation allows an easy formulation of non-tail-recursion, by using

rules whose right-hand sides are multisets of terms.

(4) The SMT encoding from Section 5.3 is completely new and improves the performance of

our approach considerably. In particular, in our experiments of Section 6 it outperformed

the calculus from Section 5.2 on examples with polynomial limit problems.

(5) We provide formal proofs for all lemmas and theorems, which were missing in [29].

(6) Throughout the paper, we added many more examples, discussions, and explanations.

2 PROGRAMMODEL

We consider sequential imperative integer programs, allowing non-linear arithmetic and non-

determinism, whereas heap usage and concurrency are not supported. In [14] we used an equiva-

lent program model, and showed how to deduce upper runtime bounds for integer programs.

Most existing abstractions that transform heap programs to integer programs are “over-approx-

imations”. However, in order to apply our approach to heap programs, we would need an under-

approximating abstraction to ensure that the inference of worst-case lower bounds is sound. As in
most related work, we treat numbers as mathematical integers Z. However, one can use suitable

transformations [24, 42] to handle machine integers correctly, e.g., by inserting explicit normal-

ization steps at possible overflows.

In our program model, we use a rule-based representation of integer programs where integer
program rules are of the form f (x) c−→ T [φ]. The left-hand side f (x) consists of a function symbol
f and a vector of pairwise different variables x . The sets of all function symbols and all variables

are Σ and V , respectively. While Σ is finite, we assume V to be countably infinite, as we rely on

fresh variables to model non-determinism. The arithmetic expression c represents the cost of the
rule, where arithmetic expressions are composed of variables from V , numbers, and pre-defined

operations like +, −, ∗, etc. Annotating rules with costs enables a modular analysis, as it allows us

to summarize a sub-program P into a single rule whose cost is a lower bound on P’s complexity.

To ease readability, we sometimes omit the costs of rules. The guard φ is a constraint overV , i.e.,

a finite conjunction
2
of inequations (built with <, ≤, >, or ≥) over arithmetic expressions, which

we omit if it is empty (i.e., we write f (x) c−→ T instead of f (x) c−→ T [true]). So c is an expression

like x · y + 2
y
and φ is a formula like x · y ≤ 2

y ∧ y > 0, for example. The right-hand side T is a

multiset of terms of the form д(t) where д ∈ Σ and t is a vector of arithmetic expressions. In the

following, the notion of “term” always refers to terms of this specific form. The set of all terms is

T . We use V(·) to denote all variables occurring in the argument expression (e.g., V(t) consists
of all variables occurring in the term t).

Note that as in [14], we do not allow nested calls of function symbols from Σ in right-hand

sides of rules. For that reason, our program model also does not support return values. Instead of

a rule f (x) c−→ f (д(t)) [φ] with f ,д ∈ Σ, one has to represent the result of the inner call д(t) by a

2
Note that negations can be expressed by negating inequations directly, and disjunctions in programs can be expressed

using several rules. We write “s = t ” as syntactic sugar for “s ≥ t ∧ s ≤ t ”.

4 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

fresh temporary variable tv. So one uses a rule f (x) c−→ {д(t), f (tv)} [φ ∧ψ] instead, whereψ may

restrict the possible values of tv by suitable inequations.

We say that a function symbol f has an incoming rule α if f occurs in α ’s right-hand side and f
has an outgoing rule α if f occurs on (the root position of) α ’s left-hand side. Given a rule α , root(α)
denotes the root symbol of α ’s left-hand side lhs(α). Furthermore, cost(α), rhs(α), and guard(α)
denote the cost, the right-hand side, and the guard of α . The number of elements of the multiset

in α ’s right-hand side is called the degree of α . A rule is tail-recursive if its degree is at most 1.
3
For

a rule α with degree 1, let target(α) be the root symbol of the term in rhs(α).
An integer program is a finite set of integer program rules. It is tail-recursive if all of its rules

are tail-recursive.

Example 2.1 (Fibonacci). Consider the following imperative program, which computes the x-th

Fibonacci number and returns 1 if x is negative.

in t f i b (in t x) {

i f (x <= 1) return 1 ;

e l se return f i b (x − 1) + f i b (x − 2) ;

}

A suitable abstraction of this programwould yield the following integer programwhich represents

its recursion pattern. For simplicity, we sometimes write t instead of {t} for singleton (multi)sets

of terms, i.e., in the first rule we write f0(x) 0−→ fib(x) instead of f0(x) 0−→ {fib(x)}. Here, f0 ∈ Σ is

the canonical start symbol, i.e., the entry point of the program.

f0(x) 0−→ fib(x) (1)

fib(x) 1−→ {fib(x − 1), fib(x − 2)} [x > 1] (2)

fib(x) 1−→ ∅ [x ≤ 1] (3)

As the right-hand side of Rule (2) consists of two terms, it is not tail-recursive. Note that the result

of the fib program is not represented in the abstraction.

Using multisets as right-hand sides allows us to express that a function f calls several other

functions f1, . . . , fn . Note that a rule of the form f (. . .) → { f1(. . .), . . . , fn(. . .)} [φ] is not equiv-
alent to the n rules f (. . .) → fi (. . .) [φ] with 1 ≤ i ≤ n: While the former rule expresses that f
invokes all functions f1, . . . , fn , the latter rules mean that f non-deterministically invokes some
function fi . Thus, the recursive fib-rule (2) cannot be replaced by the rules

fib(x) 1−→ fib(x − 1) [x > 1] and (4)

fib(x) 1−→ fib(x − 2) [x > 1] . (5)

These rules would mean that fib(x) either evaluates to fib(x − 1) or to fib(x − 2). In contrast, the

recursive rule (2) expresses that fib(x) evaluates to both fib(x − 1) and fib(x − 2). Thus, the integer
program {(1), (2), (3)} has exponential complexity, but replacing its recursive rule (2) with (4) and

(5) would result in a program with only linear complexity. So the recursion pattern of a non-tail-

recursive program like fib cannot be modeled with rules whose right-hand sides are singleton

sets.

Note that our notion of tail-recursion is a special case of the standard notion, where a procedure

is considered to be tail-recursive if recursive calls are only performed as its last action. The reason

3
Note that rules with right-hand side ∅ can equivalently be transformed to rules with right-hand side “sink” where sink is
a fresh function symbol of arity 0. Thus w.l.o.g., for tail-recursive programs we assume that all rules have degree 1.

Inferring Lower Runtime Bounds for Integer Programs 5

is that in our program model the right-hand side of a rule is considered as a multiset and thus,

there is no order imposed on the evaluation of its elements. Thus, the non-tail-recursive rule

f(. . .) −→ {f(. . .), g(. . .)} [φ]

could correspond to either of the following procedures, where the first one is tail-recursive, but

the second one is not.

f (. . .) {

g (. . .) ;

f (. . .) ;

}

f (. . .) {

f (. . .) ;

g (. . .) ;

}

On the other hand, programs which are tail-recursive w.r.t. our notion of tail-recursion are clearly

also tail-recursive in the usual sense.

The guards of rules restrict the control flow of the program, i.e., a rule f (x) c−→ T [φ] can only be
applied if the current valuation of the variables is a model of φ. As we are concerned with integer

programs, all variables range over Z, such that we only consider models of φ which map variables

to integers.

Definition 2.2 (Substitutions). A substitution σ instantiates variables by arithmetic expressions.

We sometimes denote substitutions σ by finite sets of key-value pairs {y1/t1, . . . ,yk/tk } or {y/t}
for short, wherey is the vector (y1, . . . ,yk) and t is the vector (t1, . . . , tk). This substitution instan-

tiates every variable yi ∈ V by the arithmetic expression ti . Furthermore, it maps each
4 x ∈ V \y

to x , i.e., the domain of σ is dom(σ) = {yi | 1 ≤ i ≤ k,yi , ti } and its range is {xσ | x ∈ dom(σ)}.
Substitutions are homomorphically extended to terms (i.e., σ (t) instantiates all variables x in the

term t by σ (x)) and we usually write tσ instead of σ (t). For two substitutions θ and σ , their com-
position is denoted by θ ◦ σ where t (θ ◦ σ) = tθσ (i.e., θ is applied first).

An integer substitution is a substitution that maps every variable x ∈ dom(σ) to an integer

number. We write σ |= φ for an integer substitution σ if V(φ) ⊆ dom(σ) and σ is a model of φ.

We always assume that Σ contains the canonical start symbol f0 and we are only interested

in program runs that start with terms of the form f0(n) where n ⊂ Z. Note that this is not a

restriction, as we can simulate several start symbols f1, . . . , fk by adding corresponding rules from
f0 to f1, . . . , fk . W.l.o.g., we assume that f0 does not occur on right-hand sides of rules. Otherwise,

one could rename f0 to f ′
0
and add a rule f0(x) 0−→ f ′

0
(x).

Figure 1b shows an example of a tail-recursive integer program, i.e., here every right-hand

side just consists of a single term. Figure 1b corresponds to the pseudo-code in Figure 1a, where

random(x ,y) returns a random integer tv with x < tv < y and ω is the smallest infinite ordinal,

i.e., we have −ω < n < ω for all numbers n ∈ Z. The following definition clarifies how to evaluate

integer programs.

Definition 2.3 (Integer Transition Relation). A configuration is a multiset of terms of the form

f (n) where f ∈ Σ and n ⊂ Z. The set of all configurations is denoted by C.

4
Slightly abusing notation, we sometimes use vectors as sets. So for a vector y = (y1, . . . , yk), V \ y denotes V \
{y1, . . . , yk }.

6 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

f0: y = 0 ;

f1: while (x > 0) {

y = y + x ;

x = x − 1 ;

}

z = y ;

f2: while (z > 0) {

u = z − 1 ;

f3: while (u > 0) {

u = u − random(0,ω) ;
}

z = z − 1 ;

}

(a) Example Integer Program

α0 : f0(x ,y, z,u) 1−→ f1(x , 0, z,u)
α1 : f1(x ,y, z,u) 1−→ f1(x − 1,y + x , z,u) [x > 0]
α2 : f1(x ,y, z,u) 1−→ f2(x ,y,y,u) [x ≤ 0]
α3 : f2(x ,y, z,u) 1−→ f3(x ,y, z, z − 1) [z > 0]
α4 : f3(x ,y, z,u) 1−→ f3(x ,y, z,u − tv) [u > 0 ∧ tv > 0]
α5 : f3(x ,y, z,u) 1−→ f2(x ,y, z − 1,u) [u ≤ 0]

(b) Example Integer Program – Rule Representation

Fig. 1. Different Representations of Integer Programs

Let P be an integer program. For configurations S,T ∈ C and k ∈ R, S evaluates toT with cost k
(S k−→P T) if there is an s ∈ S , a rule α of the form f (x) c−→ Q [φ] ∈ P, and an integer substitution

σ with V(α) ⊆ dom(σ) such that f (x)σ = s ,5 T = (S \ {s}) ∪Qσ ,6 σ |= φ, and cσ = k .
For any integer program rule α and any integer substitution σ , let σ |= α denote that V(α) ⊆

dom(σ) and σ |= guard(α).
We write S k−→α T instead of S k−→P T if P is the singleton set containing α . Moreover,

S0

k−→m
P Sm denotes that S0

k1−→P . . .
km−−→P Sm for k =

m∑
i=1

ki .

Ifm is irrelevant, we write S0

k−→∗
P Sm ifm ≥ 0 and S0

k−→+P Sm ifm > 0. Finally, we sometimes omit

the costs (of both rules and evaluations) if they are not important.

We say that a program is simplified if root(α) = f0 for all rules α , i.e., if all left-hand sides of

rules are constructed with the canonical start symbol f0 which does not occur on right-hand sides.

So any run of a simplified program that starts with a term of the form f0(n) has at most length 1.

Example 2.4 (Evaluation of Integer Programs). Using the rules from Figure 1b, we have, e.g.,

f0(3, 2, 1, 0) 1−→α0

f1(3, 0, 1, 0) 1−→α1

f1(2, 3, 1, 0) 1−→α1

f1(1, 5, 1, 0) 1−→α1

. . .

For the rules Pfib = {(1), (2), (3)} from Example 2.1, we have

f0(3) 0−→Pfib
fib(3) 1−→Pfib

{fib(2), fib(1)} 1−→Pfib
{fib(1), fib(0), fib(1)} 3−→3

Pfib
∅,

where {fib(1), fib(0), fib(1)} 3−→3

Pfib
∅ abbreviates the three steps

{fib(1), fib(0), fib(1)} 1−→Pfib
{fib(0), fib(1)} 1−→Pfib

{fib(1)} 1−→Pfib
∅,

whose combined cost is 1 + 1 + 1 = 3.

5
Throughout this paper, “=” means equality modulo arithmetic and we assume that ground arithmetic expressions and

comparisons are evaluated exhaustively, so we have, e.g., f (2) = f (3 − 1) and 3 − 1 ∈ Z.
6
As usual, S \ {s } means that the number of occurrences of s in the multiset S (if any) is reduced by 1. We lift substitutions

to (multi)sets of terms in the obvious way, i.e., Qσ = {qσ | q ∈ Q }.

Inferring Lower Runtime Bounds for Integer Programs 7

According to our definition, integer programs may also contain rules like f(x) −→ f(x
2
). While

evaluations cannot yield non-integer values (e.g., we cannot evaluate f(1) to f(1

2
), as f(1

2
) is not

a configuration), our technique assumes that arithmetic expressions on right-hand sides of rules

always map integers to integers. Hence, throughout this paper we restrict ourselves towell-formed
integer programs.

Definition 2.5 (Well-Formed Integer Program). An integer program rule α iswell formed if tiσ ∈ Z
for each f (t1, . . . , tk) ∈ rhs(α), for each 1 ≤ i ≤ k , and for each integer substitution σ with σ |= α .
An integer program is well formed if each of its rules is well formed.

Note that for a well-formed rule α we do not require cost(α)σ ∈ Z for integer substitutions σ
with σ |= α .
To ensure that the analyzed program P0 is initially well formed, we just allow integer numbers,

addition, subtraction, and multiplication in P0.
7
Our approach relies on several program trans-

formations, i.e., the initial program P0 is transformed into other programs P1,P2, . . . which may

contain further operations like division and exponentiation. However, all our transformations pre-

serve well-formedness.

To simplify the presentation, throughout this paper, we assume that all function symbols in Σ
have the same arity. Otherwise, one can construct a variant of P where additional unused argu-

ments are added to each function symbol whose arity is not maximal. Moreover, we assume that

the left-hand sides of P only differ in their root symbols, i.e., the argument lists are equal (e.g., in

Figure 1b, the variables on the left-hand sides are consistently named x ,y, z,u). Otherwise, one can
rename variables accordingly without affecting the relation −→P . The variables x on the left-hand

sides are called program variables and for any rule α , all other variables TV(α) = V(α) \ x are

called temporary. These temporary variables are used to model non-deterministic program data.

So in Figure 1b, we have x = (x ,y, z,u) and tv ∈ TV(α4).
In Figure 1, the loop at f1 computes a value fory that is quadratic in the original value of x . Thus,

the loop at f2 is executed quadratically often where in each iteration, the inner loop at f3 may also

be repeated quadratically often. Thus, the program’s (worst-case) runtime is a polynomial of degree

4 in x . In contrast, the best-case runtime of the program is only quadratic in the original value of

x , because then the inner loop at f3 would always set u to a non-positive value immediately. The

goal of our paper is to infer lower bounds for worst-case runtimes automatically.

To formalize the (worst-case) runtime complexity of an integer program,we define the derivation
height of a configuration S to be the cost of the most expensive evaluation starting with S . Here,
for any non-empty set M ⊆ R ∪ {ω}, supM is the least upper bound of M . In the following, let

R≥0 = {k ∈ R | k ≥ 0}.

Definition 2.6 (Derivation Height [44]). Let P be an integer program. Its derivation height func-
tion dhP : C → R≥0 ∪ {ω} is defined as dhP(S) = sup{k ∈ R | S k−→∗

P T for some T ∈ C}.

Clearly, we always have dhP(S) ≥ 0, since
k−→∗

P also permits evaluations with 0 steps. For the

integer programP in Figure 1b, we obtain dhP(f0(0,y, z,u)) = 2 for ally, z,u ∈ Z, since thenwe can
only apply the transitions α0 and α2 once. For all terms f0(x ,y, z,u)with x > 1, α0 is executed once,

then α1 is executed x times. Afterwards,y has the value (x+1)·x
2

. Now α2 is executed once and sets z

to the value
(x+1)·x

2
. The outer loop at f2 is executed z times, where in each iteration, the inner loop

7
One could also allow expressions with non-integer numbers like

1

2
x 2 + 1

2
x in the initial program, as long as every arith-

metic expression in the program evaluates to an integer when instantiating its variables by integers. We will present a

criterion to detect such expressions in Lemma 3.15.

8 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

at f3 is executed z−1 time (in the worst case) and z is decreased by 1 in α5. So overall, α3 and α5 are

both executed z times andα4 is executed (z−1)+(z−2)+. . .+1 =
z ·(z−1)

2
times. Hence, theworst-case

runtime is 1+x+1+z+ z ·(z−1)
2
+z, where z = (x+1)·x

2
, i.e., dhP(f0(x ,y, z,u)) = 1

8
x4+ 1

4
x3+ 7

8
x2+ 7

4
x+2.

Our method will detect that the derivation height of f0(x ,y, z,u) is at least 1

8
x4 + 1

4
x3 + 7

8
x2 + 7

4
x .

From this concrete lower bound, our approach will infer that the asymptotic runtime complexity

of the program is in Ω(n4) where n is the size of the input, i.e., n = |x | + |y | + |z | + |u |. So the size
of the input is measured by the sum of the absolute values of all program variables.

Note that the derivation height can be unbounded even if the integer program terminates.

Example 2.7 (Unbounded Costs without Non-Termination). Consider the integer program P with

the rule f0
tv−→ f where tv is a temporary variable of the rule. By Definition 2.3, every integer

substitution σ with tv ∈ dom(σ) can be used to evaluate f0 to f. Thus, for any n ∈ N we have

f0
n−→ f using an integer substitution σn with tv σn = n. Therefore we obtain dhP(f0) = ω although

the rule has no recursive call.

Similarly, for the program P ′
with the rules f0(x) 0−→ f(tv) and f(x) 1−→ f(x − 1) [x > 0], we also

have dhP′(f0(1)) = ω, although every evaluation of the program is finite.

While dhP is defined on configurations, the complexity of a program is often defined as a func-

tion on N, in particular when considering asymptotic complexity bounds. To bridge this gap, we

use the common definition of complexity as a function of the size of the input. So the runtime
complexity function rcP(n) maps a natural number n to the cost of the most expensive program

run where the size of the input is bounded by n.

Definition 2.8 (Runtime Complexity). Let P be an integer program and let k be the arity of f0.
The runtime complexity function rcP : N→ R≥0 ∪ {ω} of P is defined as

rcP(n) = sup{dhP(f0(n)) | n ∈ Zk , |n | ≤ n},

where for the vector n = (n1, . . . ,nk), we have |n | =
∑k

i=1
|ni |.

For the program P from Figure 1b, recall that the derivation height dhP(f0(x ,y, z,u)) = 1

8
x4 +

1

4
x3+ 7

8
x2+ 7

4
x+2 solely depends on the value of the first argument x of f0. Asn in Definition 2.8 is a

bound on the sum of the absolute values of all arguments (i.e., |x |+ |y |+ |z |+ |u | ≤ n), setting x = n
and y = z = u = 0 maximizes dhP(f0(x ,y, z,u)). Hence, we have rcP(n) = dhP(f0(n, 0, 0, 0)) =
1

8
n4 + 1

4
n3 + 7

8
n2 + 7

4
n + 2.

Obviously, dhP and rcP are not computable in general. Thus, our goal is to find a lower bound on

the runtime complexity of a program P automatically which is as precise as possible (i.e., a lower

bound which is, e.g., unbounded, exponential, or a polynomial of a degree as high as possible).

So for the program in Figure 1b, we would like to derive rcP(n) ∈ Ω(n4), i.e., that the runtime

complexity is asymptotically bounded from below by n4
. As usual, f (n) ∈ Ω(д(n)) means that

there is anm > 0 and an n0 ∈ N such that f (n) ≥ m · д(n) holds for all n ≥ n0. In our example, we

also have rcP(n) ∈ O(n4), i.e., n4
is both an asymptotic lower and upper bound on the (worst-case)

runtime complexity.

Note that according to Definition 2.8, rcP(n) takes all runs into account that start with f0(n)
where the size |n | is n or smaller (i.e., in the definition of rcP(n) we use “|n | ≤ n” instead of “|n | =
n”). This corresponds to the notion of “runtime complexity” used e.g., for complexity analysis

of term rewriting [43] or for complexity analysis of integer transition systems in the International
Termination and Complexity Competition [37]. To see the difference between rcP and the alternative

Inferring Lower Runtime Bounds for Integer Programs 9

definition

rc
′
P(n) = sup{dhP(f0(n)) | n ∈ Zk , |n | = n},

consider a program P with the rule f0(x) x−→ f(x) [x ≥ 0 ∧ x = 2 · tv]. For non-negative numbers

n we have rc
′
P(n) = dhP(f0(n)) = n and rcP(n) = n if n is even, but rc

′
P(n) = dhP(f0(n)) = 0 and

rcP(n) = dhP(f0(n − 1)) = n − 1 if n is odd. As long as one is only interested in (asymptotic) upper

bounds, the difference between rcP and rc
′
P is negligible, since we have both rcP(n) ∈ O(n) and

rc
′
P(n) ∈ O(n). (More precisely, for any program P we have rcP(n) ∈ O(д(n)) iff rc

′
P(n) ∈ O(д(n))

if д is weakly monotonically increasing for large enough n.) But for (asymptotic) lower bounds,

rcP and rc
′
P differ. For our example program we have rcP(n) ∈ Ω(n), but rc

′
P(n) < Ω(n) (we only

have rc
′
P(n) ∈ Ω(1)). Recall that two of our main motivations for the inference of worst-case lower

bounds are

(A) to deduce tight bounds in combination with existing techniques for the inference of worst-

case upper bounds and

(B) to find denial-of-service vulnerabilities (or, more generally, performance bugs),

see Section 1. The example above shows that in order to achieve (A), one should use our definition

of rcP instead of rc
′
P .

8
Regarding (B), note that rcP(n) ∈ Ω(д(n)) means that for large enough n

one can always find inputs whose size is not greater than n, which lead to a runtime of at least

m · д(n). Hence, our notion rcP(n) can indeed be used to find families of program inputs that

lead to runtimes of at least length m · д(n), for all large enough n. So if д is unacceptably large

(e.g., exponential or a high-degree polynomial), then such a family of program inputs witnesses a

performance bug (which might, e.g., be exploited for denial-of-service attacks).

3 SIMPLIFYING TAIL-RECURSIVE INTEGER PROGRAMS

We now show how to transform any tail-recursive integer program P into a simplified program

P ′
such that the runtime complexity of P ′

is smaller or equal to the runtime complexity of P.

Thus, any lower bound for rcP′ is also a lower bound for rcP . In Section 4 we will extend our

transformation to non-tail-recursive integer programs, before inferring asymptotic lower bounds

for the runtime complexity of simplified programs in Section 5.

We first show in Section 3.1 how to under-estimate the number of possible loop iterations for

simple loops α of the form f (x) −→ f (x)µ [φ], where we define update(α) = µ and require dom(µ) ⊆
x . So for instance, the rule

α1 : f1(x ,y, z,u) −→ f1(x − 1,y + x , z,u) [x > 0]

from Figure 1b is a simple loop where update(α1) is the substitution µ = {x/x − 1, y/y +x}. Based
on the under-estimation of possible iterations, Section 3.2 presents our technique to accelerate

simple loops. We introduce a technique to transform more complex loops into simple loops in

Section 3.3.

8
Nevertheless, almost all of our techniques would also work in order to infer a lower bound on rc

′
P instead of rcP . The

only problem is in Section 5 where we search for an infinite family of inputs that satisfy the guard of the program. Here,

it is not required that this family can represent inputs of size n for all large enough n. So in our example, the technique

of Section 5 would infer rcP (2 · n) ∈ Ω(n) (and indeed, we also have rc
′
P (2 · n) ∈ Ω(n)), but the family of inputs “2 · n”

for all n ≥ 0 does not represent all possible large enough numbers. For weakly monotonically increasing functions like

rcP , we present a technique in Section 5 (viz. Lemma 5.8) to transform a lower bound on rcP (2 · n) into a lower bound on
rcP (n), i.e., we show that rcP (2 · n) ∈ Ω(n) implies rcP (n) ∈ Ω(n). But the technique of Lemma 5.8 is not applicable to

rc
′
P , because rc

′
P is not weakly monotonically increasing.

10 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

3.1 Under-Estimating the Number of Iterations

For a simple loop α of the form f (x) −→ f (x)µ [φ], our goal is to infer an arithmetic expression b
such that for all integer substitutions σ with σ |= α , the rule α can be executed at least bσ times,

i.e., there is an integer substitution σ ′
with f (x)σ −→⌈bσ ⌉

α f (x)σ ′
. Here, as usual, ⌈x⌉ is the smallest

integer n with n ≥ x .

To find such estimates, we use an adaptation of ranking functions [6, 9, 13, 56] which we call

metering functions. In the following, we say that a quantifier-free formula φ is valid if we have

σ |= φ for every integer substitution σ with V(φ) ⊆ dom(σ).
Definition 3.1 (Ranking Function). An arithmetic expression b is a ranking function for a simple

loop α with update(α) = µ and TV(α) = ∅ if the following conditions are valid:

guard(α) =⇒ b > 0 (6)

guard(α) =⇒ bµ ≤ b − 1 (7)

So for example, x is a ranking function for the rule α1 in Figure 1b, since both x > 0 =⇒ x > 0

and x > 0 =⇒ x − 1 ≤ x − 1 are clearly valid. If b is a ranking function for a rule α , then for any

integer substitution σ with V(α) ⊆ dom(σ), bσ over-estimates the number of possible iterations

of the loop α : (7) ensures that bσ decreases at least by 1 in each loop iteration (i.e., bµσ ≤ bσ − 1

holds whenever guard(α)σ is true), and (6) requires that bσ is positive whenever the loop can be

executed.

Note that Definition 3.1 would be incorrect for the case TV(α) , ∅. For example, consider the

rule α : f(x) → f(x + 1) [x < tv]. If we omitted the requirement TV(α) = ∅, then tv − x would

be a ranking function for α since guard(α) implies both tv − x > 0 and tv − (x + 1) ≤ tv − x − 1.

However, there are non-terminating evaluations like f(0) −→α f(1) −→α f(2) −→α . . ., since tv can be

instantiated differently in each evaluation step. Thus, tv − x is not a correct over-estimation for

the number of loop iterations.

To cover the case TV(α) , ∅, Definition 3.1 would need to reflect that the values of temporary

variables may change non-deterministically in every iteration. We chose the simple definition

above as it nicely exposes the analogy to our following novel concept of metering functions. In
contrast to ranking functions, metering functions are under-estimates for the maximal number of

iterations of a simple loop.

Definition 3.2 (Metering Function). We call an arithmetic expression b a metering function for a

simple loop α with update(α) = µ if the following conditions are valid:
¬guard(α) =⇒ b ≤ 0 (8)

guard(α) =⇒ bµ ≥ b − 1 (9)

Here, (9) ensures that bσ decreases at most by 1 in each loop iteration, and (8) requires that bσ
is non-positive if the loop cannot be executed. Thus, the loop can be executed at least bσ times

(i.e., bσ is an under-estimate).

In contrast to our definition of ranking functions, Definition 3.2 also covers the case TV(α) , ∅.
As we will show in Theorem 3.3, the reason is that a metering function b for a simple loop α is

a witness that α can be applied at least b times for fixed values of α ’s temporary variables. In

particular, metering functions can also contain temporary variables to express that the number of

loop iterations is unbounded, see Example 3.6.

As an example, for the loop α1 in Figure 1b, x is also a metering function. Condition (8) requires

the validity of ¬(x > 0) =⇒ x ≤ 0 and (9) requires x > 0 =⇒ x − 1 ≥ x − 1. While x is a

Inferring Lower Runtime Bounds for Integer Programs 11

metering and a ranking function,
1

2
x is a metering, but not a ranking function for α1. Similarly, x2

is a ranking, but not a metering function for α1. Theorem 3.3 states that if b is a metering function

for a simple loop α , then α can be executed at least ⌈bσ ⌉ times when starting the evaluation

with lhs(α)σ . Thus, if every rule has the constant cost 1, then dh{α }(lhs(α)σ) ≥ bσ holds for all

integer substitutions σ with V(α) ∪ V(b) ⊆ dom(σ). Recall that we have rhs(α) = lhs(α)µ for

µ = update(α), since α is a simple loop. Hence, the evaluation has the form

lhs(α)σ −→α rhs(α)σ = lhs(α) µ σ −→α rhs(α) µ σ = lhs(α) µ2 σ −→α . . .

Here, for any k ∈ N, µk stands for k applications of µ. So for example, µ3
stands for µ ◦ µ ◦ µ and

µ0
is the identity substitution.

Theorem 3.3 (Metering Functions Under-Estimate Simple Loops). Let b be a metering func-
tion for a well-formed simple loop α with µ = update(α). Then for all integer substitutions σ with
V(α) ⊆ dom(σ) and σ |= b ≥ 0, there is the following evaluation of length ⌈bσ ⌉:

lhs(α)σ −→α lhs(α) µ σ −→α lhs(α) µ2 σ −→α . . . −→α lhs(α) µ ⌈bσ ⌉ σ

where µk ◦ σ |= guard(α) for all 0 ≤ k < bσ .

Proof. For any integer substitution σ with V(α) ⊆ dom(σ), letmσ ∈ N ∪ {ω} be the length
of the longest evaluation of the form lhs(α)σ −→mσ

α lhs(α) µmσ σ where µk ◦ σ |= guard(α) for all
0 ≤ k < mσ . So the loop α can be executedmσ times when starting with lhs(α)σ . We prove that

mσ ≥ bσ .

If mσ = ω, then the claim is trivial. For mσ , ω, we use induction on mσ . In the base case

mσ = 0, we have σ ̸ |= guard(α). Thus, (8) implies bσ ≤ 0 =mσ .

For the induction stepmσ ≥ 1, we must have σ |= guard(α) which implies:

bµσ ≥ bσ − 1 by (9) (10)

lhs(α)σ −→α lhs(α) µ σ (11)

Due to (11), the longest evaluation lhs(α)σ −→mσ
α lhs(α) µmσ σ has the form

lhs(α)σ −→α lhs(α) µ σ −→mµ◦σ
α lhs(α) µmσ σ ,

i.e.,mσ =mµ◦σ+1. SinceV(α) ⊆ dom(µ◦σ) and µ◦σ is an integer substitution (asα is well formed),

the induction hypothesis impliesmµ◦σ ≥ bµσ . Hence, we havemσ = mµ◦σ + 1 ≥ bµσ + 1 ≥ bσ
by (10). □

Note that if one regards a single simple loop f (x) −→ f (x)µ [φ] without any other f -rules
that may lead to non-determinism, then the only remaining possible non-determinism is due to

the temporary variables. So then the number of iterations of the loop in the worst and in the

best case only depends on the instantiation of the temporary variables. Since the requirements (8)

and (9) for the metering function must hold for all instantiations of the variables (i.e., also for all

instantiations of the temporary variables), then a metering function is also a lower bound on the

number of iterations of the loop in the best case. To exploit that we only need lower bounds on the

worst-case runtime of the loop, in Section 3.2 we will present a technique which can instantiate

temporary variables by suitable values which (hopefully) lead to long runtimes.

Our implementation builds upon a well-known transformation based on Farkas’ Lemma [13, 56]

to find linear metering functions. The basic idea is to search for coefficients of a linear template

polynomial b such that (8) and (9) hold for all possible instantiations of the variables V(α). In
addition to (8) and (9), we also require (6) to avoid trivial solutions like b = 0. Here, the coefficients

12 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

of b are existentially quantified, while the variables from V(α) are universally quantified. As in

[13, 56], eliminating the universal quantifiers using Farkas’ Lemma allows us to use standard SMT

solvers to search for b’s coefficients.
9

If guard(α) contains constraints that are irrelevant for α ’s termination (provided that guard(α)
is satisfiable), then one can improve our approach. More precisely, if guard(α) = φ ∧ ψ , then
ψ is irrelevant for termination of the loop α if it always holds after executing the loop (given

that it holds before the loop), i.e., if guard(α) implies ψµ. In this case, one can infer “conditional”

metering functions of the form ⟦ψ⟧ · b. Here, ⟦ψ⟧ is the characteristic function of ψ , i.e., for any
integer substitution σ withV(ψ) ⊆ dom(σ)we have ⟦ψ⟧σ = 1 if σ |= ψ and ⟦ψ⟧σ = 0 otherwise.

So for example, ⟦y + z = 1⟧σ = 1 holds for an integer substitution σ iff yσ + zσ = 1.

Theorem 3.4 (Inferring Conditional Metering Functions). Let α be a simple loop such that
update(α) = µ and guard(α) = φ ∧ψ where guard(α) =⇒ ψµ is valid. If the conditions

¬φ ∧ψ =⇒ b ≤ 0 (12)

φ ∧ψ =⇒ bµ ≥ b − 1 (13)

are valid, then ⟦ψ⟧ · b is a metering function for α .

Proof. If σ |= guard(α), i.e., σ |= φ ∧ ψ , then we extend σ arbitrarily to the variables in ψµ
that do not occur in φ or ψ . Then we have σ |= ψµ as guard(α) implies ψµ. Thus, ⟦ψ⟧ µσ = 1 and

⟦ψ⟧σ = 1. So by (13) we obtain (⟦ψ⟧ · b) µσ = bµσ ≥ bσ − 1 = (⟦ψ⟧ · b)σ − 1, i.e., then ⟦ψ⟧ · b
satisfies (9).

Now we regard the case where σ |= ¬guard(α). If σ |= ¬ψ , then (⟦ψ⟧ ·b)σ = 0, i.e., then ⟦ψ⟧ ·b
satisfies (8). Otherwise, we have σ |= ¬φ and σ |= ψ . Then (12) implies (⟦ψ⟧ · b)σ = bσ ≤ 0, i.e.,

then ⟦ψ⟧ · b also satisfies (8). □

While our implementation of Definition 3.2 was restricted to the search for linear metering

functions b, with Theorem 3.4 our implementation can now also be used to obtain conditional

metering functions of the form ⟦ψ⟧ · b for linear arithmetic expressions b.

Compared to Definition 3.2, Theorem 3.4 weakens the conditions for metering functions: If b
is a metering function according to (8) and (9), then we can also prove that ⟦ψ⟧ · b is a metering

function via Theorem 3.4 (but the converse does not hold). The reason is that in (8) we require

b ≤ 0 whenever ¬(φ ∧ψ) holds, whereas in (12) we only require b ≤ 0 whenever ¬φ ∧ψ holds.

Example 3.5 (Conditional Metering Function). To illustrate the use of conditional metering func-

tions, consider the following rule α :

f(x ,y, z) −→ f(x − y − z,y, z) [x > 0 ∧ y + z = 1] .
Here, we can choose φ to be x > 0 andψ to bey+z = 1, since x > 0∧y+z = 1 implies (y+z = 1) µ
for α ’s update µ = {x/x − y − z}, i.e., it implies y + z = 1. Hence, to infer the metering function

⟦y + z = 1⟧ · x , according to Theorem 3.4 it suffices to show that ¬(x > 0) ∧y + z = 1 =⇒ x ≤ 0

and x > 0∧y + z = 1 =⇒ x −y − z ≥ x − 1 are valid. Using this metering function, our approach

9
Since Farkas’ Lemma is only applicable for linear constraints, for loops with non-linear arithmetic, our implementation

uses simplifications in order to linearize the constraints that have to be satisfied for metering functions: We may substitute

a non-linear term by a fresh variable, provided that the variables of the non-linear term do not appear elsewhere (the

reverse substitution is applied to the metering function afterwards), and we may omit irrelevant non-linear constraints or

updates. For example, if the update of a variable x which does not occur in the guard is non-linear, then we use a linear

template polynomial b without the variable x for the metering function. But if such simplifications are not possible, then

we fail when trying to infer metering functions for loops with non-linear arithmetic.

Inferring Lower Runtime Bounds for Integer Programs 13

can show that the rule can be applied at least linearly often. In contrast, without Theorem 3.4 our

implementation would not be able to generate a useful metering function for this example, since

it would only search for linear arithmetic expressions b that satisfy (8) and (9). However, x is not a

metering function, since Condition (8) would not be satisfied (i.e., ¬(x > 0∧y +z = 1) =⇒ x ≤ 0

is not valid).

In [29], we already sketched a related optimization, which is however weaker than Theorem 3.4.

There the idea was to omit ψ completely when searching for metering functions. So with this

optimization, one would check the implications ¬(x > 0) =⇒ x ≤ 0 and x > 0 =⇒ x − y − z ≥
x − 1 to prove that ⟦y + z = 1⟧ · x is a metering function for the loop of Example 3.5. As the

second implication is not valid, this approach is not sufficient to handle Example 3.5. In contrast,

Theorem 3.4 addsψ to the premise in (12) and (13), i.e., the approach of Theorem 3.4 for inferring

conditional metering functions is strictly more powerful than the optimization from [29].

Conditional metering functions are also particularly useful to integrate the handling of non-

terminating rules in our approach.

Example 3.6 (Unbounded Loops). Let α be a simple loop whose update is µ. If guard(α) =⇒
guard(α)µ is valid and hence the whole guard is irrelevant for α ’s termination, then α does not

terminate (provided that guard(α) is satisfiable). In such cases, we can chooseψ = φ in Theorem 3.4

and thus, (12) and (13) from Theorem 3.4 become

false =⇒ b ≤ 0 and guard(α) =⇒ bµ ≥ b − 1.

This is valid for a fresh temporary variable b = tv. Thus, for

P = {f0(x ,y) 0−→ f(x ,y), α } where α is the rule f(x ,y) y−→ f(x + 1,y) [0 < x] ,

we obtain the metering function ⟦0 < x⟧ · tv. As guard(α) = 0 < x is satisfiable, this indicates that

the runtime of the program is unbounded, i.e., dhP(f(x ,y)σ) ≥ tv σ and thus dhP(f(x ,y)σ) = ω
for all integer substitutions σ with {x ,y, tv} ⊆ dom(σ) and 0 < xσ .

Note that in this example, Theorem 3.4 succeeds when choosing b to be tv (i.e., ⟦0 < x⟧ · tv is a

metering function). In contrast, tv is not a metering function, since (8) does not hold (i.e., ¬(0 < x)
does not imply tv ≤ 0). Thus, conditional metering functions allow us to handle terminating and

non-terminating rules in a uniform way.

3.2 Accelerating Simple Loops

We now define sound processors that simplify integer programs. A sound processor is essentially

a program transformation which preserves lower runtime bounds.

Definition 3.7 (Processor). A processor proc is a partial function which maps integer programs to

integer programs. It is sound if rcP(n) ≥ rc
proc(P)(n) holds for all n ∈ N and all P where proc is

defined.

In our framework, processors are applied repeatedly until the extraction of a concrete lower

bound is straightforward. We first show how to accelerate a simple loop α to a rule which is

equivalent to applying α multiple times (according to a metering function for α). In Section 3.3

we will show that the resulting integer program can be simplified by chaining subsequent rules

which may result in new simple loops. Moreover, we describe a simplification strategy which al-

ternates these steps repeatedly. In this way, we eventually obtain a simplified program without

loops which directly gives rise to a concrete lower bound. Section 3.2 only deals with simple loops

14 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

and in Section 3.3, we consider arbitrary tail-recursive rules α of the form f (x) −→ д(t) [φ] with
update(α) = {x/t} and target(α) = д. We extend our approach to arbitrary rules in Section 4.

First, consider a simple loop α with update(α) = µ and cost(α) = c . To accelerate α , we compute

its iterated update and cost, i.e., a substitution µit that is a closed form of µtv and an arithmetic

expression cit that is an under-approximation of

∑tv−1

i=0
cµi for a fresh temporary variable tv, where

µi again denotes the i-fold composition µ ◦ . . . ◦ µ of the substitution µ. So µit = µtv and cit ≤∑tv−1

i=0
cµi must hold for all tv > 0. If ⟦ψ⟧ ·b is a metering function for α , then we add the accelerated

rule

lhs(α) cit−→ lhs(α) µit [guard(α) ∧ψ ∧ 0 < tv < b + 1]
to the program. It summarizes tv iterations of α , where tv is positive

10
and bounded by ⌈b⌉. Note

that µit and cit may also contain operationswhich are not allowed in the input program like division

and exponentiation (i.e., in this way we can also infer non-polynomial bounds).

For the program variables x = (x1, . . . ,xk), the iterated update µit is computed by solving the

recurrence equations x (1) = xµ and x (tv+1) = xµ {x1/x (tv)
1
, . . . ,xk/x (tv)k } for all x ∈ x . So for the rule

α1 from Figure 1b we get the recurrence equations x (1) = x −1, x (tv1+1) = x (tv1)−1, y(1) = y+x , and
y(tv1+1) = y(tv1) + x (tv1)

. Usually, the resulting equations can easily be solved using state-of-the-art

recurrence solvers, e.g., [8, 41, 61]. In our example, we obtain the closed forms

xµit = x (tv1) = x − tv1 and yµit = y
(tv1) = y + tv1 · x − 1

2
tv2

1
+ 1

2
tv1.

While yµit contains rational coefficients, our approach ensures that µit always maps integers to

integers. Thus, our technique to accelerate loops preserves well-formedness. We proceed similarly

for the iterated cost of a rule, where we may under-approximate the solution of the recurrence

equations c(1) = c and c(tv+1) = c(tv) + c {x1/x (tv)
1
, . . . ,xk/x (tv)k }. For the rule α1 in Figure 1, we get

c(1) = 1 and c(tv1+1) = c(tv1) + 1 which leads to the closed form cit = c
(tv1) = tv1. Hence, when using

α1’s metering function x , it is accelerated to the following rule:

f1(x ,y, z,u) tv1−−→ f1(x − tv1,y + tv1 · x − 1

2
tv2

1
+ 1

2
tv1, z,u) [x > 0 ∧ 0 < tv1 < x + 1] (14)

Here, the guard can be simplified to 0 < tv1 < x + 1. (We will perform such simplifications in all

examples to ease readability.)

Theorem 3.8 (Loop Acceleration). Let P be a well-formed integer program with the program
variables x , let α ∈ P be a simple loop with update(α) = µ and cost(α) = c , let tv be a fresh temporary
variable, and let ⟦ψ⟧ · b be a metering function for α , where b is an arithmetic expression. Moreover,
for all tv > 0, let xµit = xµtv be valid for all x ∈ x , let cit ≤

∑tv−1

i=0
cµi be valid, and let

P ′ = P ∪ {αit} where αit is the rule lhs(α) cit−→ lhs(α) µit [guard(α) ∧ψ ∧ 0 < tv < b + 1] .
Then P ′ is well formed and the processor that maps P to P ′ is sound.

Proof. Let σ be an integer substitution such that σ |= αit, i.e., we have

lhs(α)σ citσ−−−→αit

lhs(α) µit σ . (15)

Note that σ |= 0 < tv < b + 1 implies σ |= 0 < tv ≤ ⌈b⌉ and we have bσ = (⟦ψ⟧ · b)σ ,
because σ |= guard(αit) implies σ |= ψ and thus, ⟦ψ⟧σ = 1. Since σ |= guard(αit) also implies

10
The accelerated rule does not cover the case that α is not applied at all, i.e., it does not cover the case where tv = 0. We

excluded this case in order to ease the inference of the closed forms µit and cit. To see this, consider a loop f(x) → f(0)
with x µ = 0. Here, we would get x µit = 0 if tv > 0 and x µit = x for tv = 0. Hence, even in such simple examples it would

be difficult to express the iterated update in closed form when considering the case tv = 0 as well.

Inferring Lower Runtime Bounds for Integer Programs 15

σ |= ⟦ψ⟧ · b ≥ 0 and ⟦ψ⟧ · b is a metering function for α , by Theorem 3.3 there is the following

evaluation of length tv σ :

lhs(α)σ −→α lhs(α) µ σ −→α . . . −→α lhs(α) µtv σ σ

where µk ◦ σ |= guard(α) for all 0 ≤ k < tv σ . For that reason, the costs of the rule applications
are cσ , cµσ , . . . , cµtv σ − 1σ , i.e.,

lhs(α)σ cσ−−→α lhs(α) µ σ cµσ−−−→α . . .
cµ tv σ − 1σ−−−−−−−→α lhs(α) µtv σ σ . (16)

For soundness, it suffices to show that every evaluation step (15) with αit can be simulated using

a sequence of evaluation steps with α where the costs are at least the same. As α is well formed,

this also implies well-formedness of αit. By definition of µit and cit, xµit = xµtv for all x ∈ x and

cit ≤
∑tv−1

i=0
cµi are valid. Thus, the evaluation (16) indeed simulates the evaluation step (15) with

αit. □

Note that Theorem 3.8 shows that when using conditional metering functions of the form ⟦ψ⟧ ·b
(which we infer via Theorem 3.4) to accelerate loops, the characteristic function ⟦ψ⟧ is not needed
in the accelerated rule. Instead, the condition ψ is simply added to its guard. Thus, whenever the

accelerated rule is applicable, then ⟦ψ⟧ ·b is equal to b and hence, ⌈b⌉ under-estimates the number

of consecutive iterations of the original loop. Clearly, Theorem 3.8 is also applicable if the metering

function is not conditional, i.e., if it is an ordinary arithmetic expression (by choosingψ = true).

The following example illustrates that the iterated update and cost may also contain non-poly-

nomial arithmetic, which may lead to exponential bounds.

Example 3.9 (Non-Polynomial Arithmetic due to Loop Acceleration). Consider the program with

the rule f0(x ,y) 0−→ f(x ,y) and the simple loop f(x ,y) y−→ f(x − 1, 2y) [x > 0]. Here, the update

is µ = {x/x − 1, y/2y} and hence, the resulting iterated update is µit = {x/x − tv, y/2
tv · y}.

Moreover, the cost is c = y and the iterated cost is cit =
∑tv−1

i=0
2
iy = (2tv − 1) · y. Thus, both the

iterated update and the iterated cost are exponential. Accelerating the simple loop via Theorem 3.8

with the metering function x yields f(x ,y) (2tv−1)·y−−−−−−−→ f(x − tv, 2tv · y) [0 < tv < x + 1], where we
again simplified the guard x > 0 ∧ 0 < tv < x + 1 to 0 < tv < x + 1. Using this accelerated rule,

our approach can infer an exponential lower bound for the program’s runtime complexity.

Recall that the fresh variable tv represents the number of loop iterations which are summarized

by an accelerated rule. While tv ranges over the integers, its upper bound b + 1 can be rational, as

the following example shows.

Example 3.10 (Non-Integer Metering Functions). Theorem 3.8 also allows bounds that do not map

to the integers. Consider the program

P = {f0(x) 0−→ f(x), α } where α is the rule f(x) 1−→ f(x − 2) [0 < x] .

Clearly,
1

2
x is a metering function for α , as¬(0 < x) =⇒ 1

2
x ≤ 0 and 0 < x =⇒ 1

2
(x−2) ≤ 1

2
x−1

are valid. For µ = {x/x − 2} we have µit = µtv = {x/x − 2 tv} and we choose cit =
∑tv−1

i=0
1 = tv.

Hence, accelerating α with the metering function
1

2
x yields

f(x) tv−→ f(x − 2 tv)
[
0 < tv < 1

2
x + 1

]
. (17)

Note that 0 < tv < 1

2
x + 1 implies 0 < x as tv ranges over Z. Hence, 0 < x can be omitted in the

resulting guard.

16 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

If a (non-terminating) simple loop has the metering function ⟦φ⟧ · tv where tv is a fresh tempo-

rary variable, then the upper bound b + 1 = tv + 1 on the number of summarized loop iterations

can take arbitrary values.

Example 3.11 (Unbounded Loops Continued). In Example 3.6, ⟦0 < x⟧ · tv is a metering function

for α : f(x ,y) y−→ f(x + 1,y) [0 < x]. The resulting accelerated rule αit is

f(x ,y) tv1 ·y−−−−→ f(x + tv1,y) [0 < x ∧ 0 < tv1 < tv + 1] .
Since tv does not have any upper bound, the value of tv1 is not bounded by the values of the

program variables x and y. Thus, the condition of the rule could be replaced by 0 < x ∧ 0 < tv1,

i.e., we obtain

f(x ,y) tv1 ·y−−−−→ f(x + tv1,y) [0 < x ∧ 0 < tv1] . (18)

After accelerating a simple loop α according to Theorem 3.8 using the metering function ⟦ψ⟧ ·b,
we eliminate the fresh variable tv by instantiating it with b, provided that b maps to Z (i.e., for

every integer substitution σ with σ |= α {tv/b} we have bσ ∈ Z). The reason is that we want

to keep the number of variables small for the sake of efficiency. However, this is just a heuristic

which can also lead to worse results (e.g., if there is a non-terminating run where the original non-

accelerated loop must not be applied more than b − 1 times after each other). If we cannot verify

that bσ ∈ Z holds for every integer substitution σ with σ |= α {tv/b}, then we do not eliminate tv,
but keep the inequation 0 < tv < b + 1 in the accelerated rule.

We apply the following processor for the instantiation of temporary variables.

Theorem 3.12 (Instantiation). Let P be a well-formed integer program, let α ∈ P, let tv ∈
TV(α), let b be an arithmetic expression such that for every integer substitution σ with σ |= α {tv/b}
we have bσ ∈ Z, and let P ′ = P ∪ {α {tv/b}}. Then P ′ is well formed and the processor mapping P
to P ′ is sound.

Proof. To show the soundness of the processor, let σ be an integer substitution with σ |=
α {tv/b} and bσ = m ∈ Z. Then let σ ′

be the integer substitution with dom(σ ′) = dom(σ) ∪ {tv},
σ ′(tv) = m, and σ ′(x) = σ (x) for all x ∈ dom(σ) \ {tv}. Clearly, σ |= guard(α {tv/b}) iff σ ′ |=
guard(α) and moreover, cost(α {tv/b})σ = cost(α)σ ′

. Thus,

lhs(α {tv/b})σ k−→α {tv/b } rhs(α {tv/b})σ implies lhs(α)σ ′ k−→α rhs(α)σ ′.

This shows that every stepwithα {tv/b} can also be donewithα , becausewe have lhs(α {tv/b})σ =
lhs(α){tv/b}σ = lhs(α){tv/m}σ = lhs(α)σ ′

(and rhs(α {tv/b})σ = rhs(α)σ ′
can be derived analo-

gously).

To show that P ′
is well formed, recall that σ |= guard(α {tv/b}) iff σ ′ |= guard(α). If rhs(α)

contains f (t1, . . . , tk), then tiσ
′ ∈ Z holds for all 1 ≤ i ≤ k by well-formedness of P. As tiσ

′ =
ti {tv/b}σ , this implies well-formedness of P ′

. □

Example 3.13 (Instantiation of Fresh Temporary Variables). For our example from Figure 1b, ac-

celerating α1 results in the rule (14). By instantiating its temporary variable tv1 with the metering

function x , the above processor yields

α
1

: f1(x ,y, z,u) x−→ f1(0,y + 1

2
x2 + 1

2
x , z,u) [x > 0] .

In [29, Theorem 10], we presented a processor which can extend the guard of a rule by arbitrary

conjuncts. This processor could be used as an alternative to Theorem 3.12, because instead of

Inferring Lower Runtime Bounds for Integer Programs 17

instantiating tv, one could add the constraint “tv = b” to the guard of α . In practice, however, it is

preferable to instantiate tv in order to keep the number of variables as small as possible.

If we cannot apply Theorem 3.8 for a simple loop α , because our implementation fails to solve

the recurrence equations needed to compute the closed forms µit or cit, or because it cannot find

a useful metering function, then we can simplify α by eliminating temporary variables. To do so,

we fix their values via Theorem 3.12. As we are interested in witnesses for maximal computations,

we use a heuristic that sets tv to a for temporary variables tv where the arithmetic expression a
is a minimal upper or a maximal lower bound on tv’s values, i.e., guard(α) implies tv ≤ a but not

tv ≤ a − 1, or guard(α) implies tv ≥ a but not tv ≥ a + 1. This elimination of temporary variables

is repeated until we find constraints which allow us to apply loop acceleration.

Example 3.14 (Instantiation of Other Temporary Variables). For the rule α4 from Figure 1b,

guard(α4) contains the constraint tv > 0. So guard(α4) implies the bound tv ≥ 1 since tv must

be instantiated by an integer. Hence, we instantiate the rule α4 by replacing tv with 1. Thus, the

update {u/u − tv} of the instantiated rule α ′
4
becomes {u/u − 1}. Hence, now u is a metering func-

tion for α ′
4
(whereas it was not a metering function for α4, as u’s value could decrease by more

than 1 in each application of α4). Thus, α
′
4
can be accelerated similarly to α1, resulting in the rule

f3(x ,y, z,u) tv4−−→ f3(x ,y, z,u − tv4) [0 < tv4 < u + 1] .

Now the temporary variable tv4 that results from loop acceleration can be eliminated by instanti-

ating it with the metering function u. In this way, we obtain

α
4

: f3(x ,y, z,u) u−→ f3(x ,y, z, 0) [u > 0] .

If b is a polynomial, then we can use the following generalization of an observation from [18]

to check the side condition of Theorem 3.12 that b needs to map to Z. Note that this check does

not take the guard of the rule into account. So for the rule

f(x ,y) → f(x − 2,y − 1) [x > 0 ∧ x = 2 · y]

with the metering function
x
2
it would fail to recognize that σ

(x
2

)
is an integer for every model σ

of x > 0 ∧ x = 2 · y.

Lemma 3.15 (Polynomials Mapping to Z). Let f : Zk → R, where f (x1, . . . ,xk) is a polynomial
over the variables x1, . . . ,xk with degrees d1, . . . ,dk w.r.t. x1, . . . ,xk , respectively (i.e., for each 1 ≤
i ≤ k , f (x1, . . . ,xk) can be rearranged to the form

∑di
j=0

pj ·x ji where each pj is a polynomial over the
variables x1, . . . ,xi−1,xi+1, . . . ,xk). If there are numbersn1, . . . ,nk ∈ Z such that f (m1, . . . ,mk) ∈ Z
for allm1, . . . ,mk ∈ Zwithni ≤ mi ≤ ni+di+1, then img(f) ⊆ Z, i.e., thenwe have f (m1, . . . ,mk) ∈
Z for allm1, . . . ,mk ∈ Z.

Proof. We use induction on d =
∑k

i=1
di . If d = 0, then f is a constant and thus the claim is

trivial. If d > 0, then there exists a 1 ≤ j ≤ k with dj > 0. Then д(x1, . . . ,xk) = f (x1, . . . ,x j−1,x j +
1,x j+1, . . . ,xk) − f (x1, . . . ,xk) is a polynomial whose degree w.r.t. x j is dj − 1 and whose degree

w.r.t. all xi with i , j is at mostdi . To see this, note that all monomials that do not contain x j vanish
inд(x1, . . . ,xk). Thus,д(x1, . . . ,xk) is a finite sum of expressions of the formm ·(x j+1)e ·p−m ·xej ·p
wherem ∈ R, e ≤ dj , and p is a product of x1, . . . ,x j−1,x j+1, . . . ,xk where each xi , i , j, occurs at

18 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

most di times. We get:

m · (x j + 1)e · p −m · xej · p
= m ·

(∑e
i=0

(e
i

)
· x ij

)
· p −m · xej · p by the Binomial theorem

= m ·
((e
e

)
· xej + q

)
· p −m · xej · p where q is a univariate polynomial over x j

whose degree is smaller than e
= m · (xej + q) · p −m · xej · p as

(e
e

)
= 1

= m · q · p

Moreover, since f (m1, . . . ,mj + 1, . . . ,mk) ∈ Z and f (m1, . . . ,mj , . . . ,mk) ∈ Z for allm1, . . . ,
mk ∈ Z with nj ≤ mj ≤ nj + dj and ni ≤ mi ≤ ni + di + 1 if i , j, we also have д(m1, . . . ,mk) ∈
Z for these m1, . . . ,mk . Thus, by the induction hypothesis, we obtain img(д) ⊆ Z. This means

that we have f (x1, . . . ,x j−1,x j + 1,x j+1, . . . ,xk) − f (x1, . . . ,xk) ∈ Z for all x1, . . . ,xk ∈ Z. Since
this construction can be done for every 1 ≤ j ≤ k with dj > 0, we have f (x1, . . . ,x j−1,x j +
1,x j+1, . . . ,xk) − f (x1, . . . ,xk) ∈ Z for all 1 ≤ j ≤ k and all x1, . . . ,xk ∈ Z. Thus, we also have

f (x1, . . . ,x j−1,x j −1,x j+1, . . . ,xk)− f (x1, . . . ,xk) ∈ Z for all 1 ≤ j ≤ k and all x1, . . . ,xk ∈ Z. Since
we also have f (n1, . . . ,nk) ∈ Z for some numbers n1, . . . ,nk ∈ Z, this proves img(f) ⊆ Z. □

So ifb is a polynomial, then it suffices to check if instantiating the variables inb by finitely many

integers always results in an integer. More precisely, if the polynomial b contains the variables

x1, . . . ,xk of degrees d1, . . . ,dk , respectively, then we only check if the polynomial maps all argu-

ments from {0, . . . ,d1 + 1} × . . .× {0, . . . ,dk + 1} to integers. So we choose ni = 0 for each ni from
Lemma 3.15. This is not a restriction, because if there is some other n′i such that f (m1, . . . ,mk) ∈ Z
for allm1, . . . ,mk ∈ Zwith n′i ≤ mi ≤ n′i +di +1, then by Lemma 3.15 we have img(f) ⊆ Z, which
implies f (m1, . . . ,mk) ∈ Z for allm1, . . . ,mk ∈ Z with ni = 0 ≤ mi ≤ di + 1 = ni + di + 1.

For instance, to check that the polynomial
1

2
x2 + 1

2
x maps all x ∈ Z to integers, it suffices to

check this for just x ∈ {0, 1, 2, 3}. In contrast, for the polynomial
x
2
, we would check its value for

x ∈ {0, 1, 2} and determine that it does not always yield an integer.

Thus, one can implement Theorem 3.12 using Lemma 3.15 (but, of course, one may also incor-

porate further sufficient criteria). Similarly, as mentioned before, the criterion of Lemma 3.15 can

also be used to check well-formedness of the integer program if we permit non-integer constants

in the initial program.

To simplify the program, we delete the original rules after instantiating or accelerating them.

If acceleration of a rule α still fails after eliminating all temporary variables by instantiating α
repeatedly, then α is removed completely. So in the end, we just keep simple loops that have been

accelerated. The following theorem shows that deleting rules is always sound.

Theorem 3.16 (Deletion). Let P be a well-formed integer program, let α ∈ P, and let P ′ =
P \ {α }. Then P ′ is well formed and the processor mapping P to P ′ is sound.

Proof. Since P is well formed, P ′
is trivially well formed, too. The processor is sound since

every evaluation with P \ {α } is also an evaluation with P. □

Example 3.17 (Ex. 3.13 and 3.14 Continued). After accelerating and instantiating all simple loops

in the program from Figure 1b, we delete the original loops α1 and α4, resulting in the following

Inferring Lower Runtime Bounds for Integer Programs 19

integer program:

α0 : f0(x ,y, z,u) 1−→ f1(x , 0, z,u)
α

1
: f1(x ,y, z,u) x−→ f1(0,y + 1

2
x2 + 1

2
x , z,u) [x > 0]

α2 : f1(x ,y, z,u) 1−→ f2(x ,y,y,u) [x ≤ 0]
α3 : f2(x ,y, z,u) 1−→ f3(x ,y, z, z − 1) [z > 0]
α

4
: f3(x ,y, z,u) u−→ f3(x ,y, z, 0) [u > 0]

α5 : f3(x ,y, z,u) 1−→ f2(x ,y, z − 1,u) [u ≤ 0]

3.3 Chaining Rules

After trying to accelerate all simple loops of a program, we can chain subsequent rules α1,α2 by

adding a new rule α1.2 that represents their combination. Our notion of chaining corresponds to

the standard notion of unfolding [16], adapted to our program model. Afterwards, the rules α1 and

α2 can (but need not) be deleted with Theorem 3.16.

Theorem 3.18 (Chaining for Tail-Recursive Integer Programs). Let P be a well-formed
tail-recursive integer program and let α1,α2 ∈ P where

α1 : f1(x) c1−→ f2(x) µ [φ1] and
α2 : f2(x) c2−→ t [φ2] .

W.l.o.g., let TV(α1)∩TV(α2) = ∅ (otherwise, the temporary variables in α2 can be renamed accord-
ingly). Moreover, let α1.2 be the rule

f1(x) c1+c2µ−−−−−→ tµ [φ1 ∧ φ2µ]

and let P ′ = P ∪ {α1.2}. Then P ′ is well formed and the processor that maps P to P ′ is sound.

Proof. We prove the more general Theorem 4.11 in Section 4. □

One goal of chaining is to eliminate all accelerated simple loops. Therefore, after accelerating

all simple loops, we chain all subsequent rules α ′,α where α is a simple loop and α ′
is not a simple

loop. Afterwards, we delete α . Moreover, once α ′
has been chained with all subsequent simple

loops, then we also remove α ′
, since its effect is now (mostly

11
) covered by the newly introduced

chained rules.

Example 3.19 (Ex. 3.17 Continued). We continue the transformation of the program from Fig-

ure 1b. Now we chain α0 with the accelerated simple loop α
1
, and we chain α3 with the accelerated

simple loop α
4
. This yields the following integer program:

α
0.1 : f0(x ,y, z,u) 1+x−−−→ f1(0, 1

2
x2 + 1

2
x , z,u) [x > 0]

α2 : f1(x ,y, z,u) 1−→ f2(x ,y,y,u) [x ≤ 0]
α

3.4 : f2(x ,y, z,u) z−→ f3(x ,y, z, 0) [z > 1]
α5 : f3(x ,y, z,u) 1−→ f2(x ,y, z − 1,u) [u ≤ 0]

In Rule α
3.4, we simplified the guard z > 0 ∧ z − 1 > 0 to z > 1.

11
Since accelerated rules αit do not cover the case where α is not executed at all (see Footnote 10), chaining α ′

with αit and

deleting these rules afterwards does not cover those original evaluations where α ′
was not followed by any subsequent

application of α . However, since we are only interested in witnesses for maximal evaluations, this does not affect the

soundness of our approach.

20 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

Algorithm 1 Program Simplification for Tail-Recursive Integer Programs

While there is a rule α with root(α) , f0:
1. Apply Deletion to rules whose guard is proved unsatisfiable or whose root symbol is

unreachable from f0.
2. While there is a non-accelerated simple loop α :

2.1. Try to accelerate α .
2.2. If 2.1 succeeded, resulting in α :

2.2.1. Try to instantiate α to eliminate the temporary variable introduced in Step 2.1.

2.2.2. If 2.2.1 succeeded, apply Deletion to α .
2.3. If 2.1 failed and α uses temporary variables:

Try to instantiate α to eliminate a temporary variable.

2.4. Apply Deletion to α .
3. Let S = ∅.
4. While there is an accelerated rule α :

4.1. For each α ′
with root(α ′) , target(α ′) = root(α):

Apply Chaining to α ′
and α and add α ′

to S .
4.2. Apply Deletion to α .

5. Apply Deletion to each rule in S .
6. While there is a function symbol f without simple loops but with incoming and outgoing

rules (starting with symbols f with just one incoming rule):

6.1. Apply Chaining to each pair α ′,α where target(α ′) = root(α) = f .
6.2. Apply Deletion to each α where root(α) = f or target(α) = f .

Chaining also allows us to eliminate function symbols from the program by chaining all pairs

of rules α ′
and α where target(α ′) = root(α) and removing them afterwards. In this way we can

transform loops consisting of several transitions into simple loops. It is advantageous to eliminate

symbols which are the target of just one single rule first. This heuristic avoids eliminating the

entry points of loops, if possible.

Example 3.20 (Ex. 3.19 Continued). So for the program in Example 3.19, it would avoid chaining

α5 and α3.4 where target(α5) = root(α
3.4) = f2, because f2 is also the target of the rule α2. In this

way, we avoid constructing chained rules that correspond to a run from the “middle” of a loop to

the “middle” of the next loop iteration.

Instead, we chain α
0.1 and α2 as well as α3.4 and α5 to eliminate the function symbols f1 and f3.

This leads to the following program.

α
0.1.2 : f0(x ,y, z,u) 2+x−−−→ f2(0, 1

2
x2+ 1

2
x , 1

2
x2+ 1

2
x ,u) [x > 0]

α
3.4.5 : f2(x ,y, z,u) 1+z−−−→ f2(x ,y, z − 1, 0) [z > 1]

Our overall approach for program simplification is shown in Algorithm 1. It transforms any

tail-recursive integer program into a simplified program. Section 5 will show how to analyze the

(asymptotic) complexity of simplified programs. Of course, other strategies for the application of

the processors would be possible, too. Recall that the application of Acceleration, Instantiation, and
Chaining always generates new rules (so, e.g., in Step 2.2.1, instantiating α generates a new rule

α̃ and the original non-instantiated rule α is deleted in Step 2.2.2). The set S in the Steps 3 – 5 is

needed to handle function symbols f with multiple simple loops. The reason is that each rule α ′

with target(α ′) = f should be chained with each of f ’s simple loops before removing α ′
.

Inferring Lower Runtime Bounds for Integer Programs 21

Algorithm 1 terminates: The loop in Step 2 terminates since each iteration either decreases the

number of temporary variables in α or reduces the number of non-accelerated simple loops. In

Step 4, the number of accelerated rules is decreasing and for the loop in Step 6, the number of

function symbols decreases. The overall loop of Algorithm 1 terminates as it reduces the number

of function symbols. The reason is that the program does not have simple loops anymore when

the algorithm reaches Step 6 (as simple loops where acceleration fails are deleted in Step 2.4 and

accelerated rules are eliminated in Step 4). Thus, at this point there is either a function symbol f
which can be eliminated or the program does not have a path of length 2, i.e., all rules have the

root f0.

Example 3.21 (Ex. 3.20 Continued). According to Algorithm 1, in our example we go back to Step

1 and 2 and apply Loop Acceleration to the rule α
3.4.5. This rule has the metering function z − 1

and its iterated update sets u to 0 and z to z − tv for a fresh temporary variable tv. To compute

α
3.4.5’s iterated cost, we have to find an under-approximation for the solution of the recurrence

equations c(1) = 1 + z and c(tv+1) = c(tv) + 1 + z(tv). After computing the closed form z − tv of

z(tv), the second equation simplifies to c(tv+1) = c(tv) + 1 + z − tv, which results in the closed form

cit = c
(tv) = tv · z − 1

2
tv2 + 3

2
tv. Thus, we obtain the accelerated rule

f2(x ,y, z,u)
tv ·z− 1

2
tv2+ 3

2
tv−−−−−−−−−−−→ f2(x ,y, z − tv, 0) [0 < tv < z] .

By instantiating tv with z − 1 in Step 2.2.1 and removing α
3.4.5 in Step 2.4, we obtain the following

program.

α
0.1.2 : f0(x ,y, z,u) 2+x−−−→ f2(0, 1

2
x2+ 1

2
x , 1

2
x2+ 1

2
x ,u) [x > 0]

α
3.4.5

: f2(x ,y, z,u)
1

2
z2+ 3

2
z−2−−−−−−−−→ f2(x ,y, 1, 0) [z > 1]

A final chaining step and deletion of α
0.1.2 and α

3.4.5
yields the simplified program with the fol-

lowing single rule.

α
0.1.2.3.4.5

: f0(x ,y, z,u)
1

8
x 4+ 1

4
x 3+ 7

8
x 2+ 7

4
x−−−−−−−−−−−−−−−→ f2(0, 1

2
x2+ 1

2
x , 1, 0)

[
1

2
x2 + 1

2
x > 1

]
(19)

4 SIMPLIFYING ARBITRARY RECURSIVE INTEGER PROGRAMS

So far, we only considered tail-recursive programs, i.e., programs where all rules have the form

f (x) −→ д(t) [φ]. We now extend our technique to non-tail-recursive programs, i.e., we now also

consider rules where the right-hand side is a multiset of several terms.

Theorems 3.12 and 3.16 are trivially applicable to non-tail-recursive programs aswell, i.e., we can

still instantiate temporary variables and we can still delete rules. However, Theorems 3.8 and 3.18

have to be adapted. In Section 4.1 we extend our notion of metering functions to (non-tail-)recur-

sive rules in order to adapt Theorem 3.8. Similar to the case of tail-recursive programs where we

started with considering simple loops, we first focus on simple recursions, i.e., rules f (x) c−→ T [φ]
whose degree |T | is greater than 1 and where all terms inT have the root symbol f .12 Our extended
notion of metering functions then allows us to accelerate simple recursions in Section 4.2. After-

wards, in Section 4.3 we show how to transform more complex recursions into simple recursions

or simple loops via Chaining and Partial Deletion, a new technique which is specific to non-tail-

recursive integer programs. Based on these techniques, we extend Algorithm 1 to a procedure

which transforms any integer program into a simplified program.

12
The reason for excluding the case |T | = 1 is that in this way, simple recursions give rise to exponential lower bounds,

i.e., we can formulate the corresponding Theorem 4.3 which does not hold if |T | = 1.

22 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

4.1 Under-Estimating the Depth of Recursions

To understand the idea of metering functions for simple recursions, note that repeatedly applying

a simple recursive rule f (x) c−→ T [φ] essentially yields an evaluation tree of termswhere each inner

node has |T | successors. While metering functions for simple loops under-estimate the length of

evaluations, metering functions for simple recursions under-estimate the height up to which such

evaluation trees are complete. Hence, if b is a metering function for a simple recursion α of degree

d , then the maximal number of consecutive applications of α is in Ω(db).

Definition 4.1 (Metering Function for Simple Recursions). Let α be a rule of the form

f (x) c−→ T [φ]

such that T contains no function symbol from Σ except f . We call an arithmetic expression b a

metering function for α if the following conditions are valid:

¬guard(α) =⇒ b ≤ 0 (20)

guard(α) =⇒ b{x/t} ≥ b − 1 for all f (t) ∈ T (21)

Definition 4.1 is a generalization of Definition 3.2, i.e., if α has degree 1, then Definition 4.1 and

Definition 3.2 coincide. Moreover, note that conditional metering functions of the form ⟦ψ⟧ ·b for

simple recursions can be inferred analogously to conditional metering functions for simple loops

(see Theorem 3.4): If guard(α) is φ∧ψ and guard(α) impliesψ {x/t} for all f (t) ∈ T , then it suffices

to check ¬φ ∧ψ =⇒ b ≤ 0 and φ ∧ψ =⇒ b{x/t} ≥ b − 1 for all f (t) ∈ T in order to prove that

⟦ψ⟧ · b is a metering function for α .

Example 4.2 (Metering Function for Fibonacci). According to Definition 4.1,
1

2
x − 1 is a metering

function for the recursive Fibonacci rule (2) from Example 2.1. It satisfies (20), as we have ¬(x >
1) =⇒ 1

2
x − 1 ≤ 0. The recursive call fib(x − 1) satisfies (21), since we have

x > 1 =⇒ 1

2
(x − 1) − 1 = 1

2
x − 3

2
≥ 1

2
x − 2.

Finally, the recursive call fib(x − 2) also satisfies (21), as we have

x > 1 =⇒ 1

2
(x − 2) − 1 = 1

2
x − 2 ≥ 1

2
x − 2.

For a simple loop α , we directly use its metering function as a lower bound for the number of

consecutive applications of α . But for simple recursions we can infer a lower bound that is higher

than its metering function. The reason is that when computing a metering function b for a simple

recursion f (x) → { f (t1), . . . , f (td)} [φ], we proceed as if we had d separate tail-recursive rules

f (x) → f (t1) [φ], . . . , f (x) → f (td) [φ]. However, as the original rule initiates d new evaluations

in each step, we obtain a lower bound on the length of evaluations that is exponential in b. In
other words, since the metering function b under-estimates the height of complete evaluation

trees (where every non-leaf node has d children), the number of edges of the tree is in Ω(db).

Theorem 4.3 (Metering Functions Under-Estimate Simple Recursions). Letb be ametering
function for a well-formed simple recursion α with degree d . Then for all integer substitutions σ with
V(α) ⊆ dom(σ), there is an evaluation lhs(α)σ −→m

α S for some configuration S withm ≥ dbσ −1

d−1
.

Proof. First note that we have d > 1 since α is a simple recursion and hence
dbσ −1

d−1
is well

defined. As in the proof of Theorem 3.3, letmσ ∈ N ∪ {ω} be the length of the longest evaluation

which starts with lhs(α)σ and only applies the rule α repeatedly. We prove thatmσ ≥ dbσ −1

d−1
.

Inferring Lower Runtime Bounds for Integer Programs 23

The casemσ = ω is trivial. Formσ , ω, we use induction onmσ . In the base casemσ = 0, we

have σ ̸ |= guard(α) and thus, (20) implies bσ ≤ 0. Hence,
dbσ −1

d−1
≤ 0 =mσ .

For the induction stepmσ ≥ 1, we must have σ |= guard(α). Let lhs(α) = f (x). Then we obtain

b {x/t} σ ≥ bσ − 1 for all f (t) ∈ rhs(α), by (21) (22)

lhs(α)σ = f (x)σ −→α rhs(α)σ (23)

Let rhs(α) = { f (t1), . . . , f (td)}. Then due to (23), the longest evaluation lhs(α)σ −→mσ
α S has the

form

lhs(α)σ −→α rhs(α)σ = { f (t1)σ , . . . , f (td)σ } −→
m{x/t

1
}◦σ +...+m{x/td }◦σ

α S,

i.e.,mσ =m {x/t1 }◦σ + . . .+m {x/td }◦σ +1. SinceV(α) ⊆ dom({x/ti }◦σ) and {x/ti }◦σ is an integer

substitution (since α is well formed), the induction hypothesis impliesm {x/ti }◦σ ≥ db {x/ti } σ −1

d−1
≥

dbσ−1−1

d−1
by (22) for all 1 ≤ i ≤ d . Hence, we have mσ = m {x/t1 }◦σ + . . . + m {x/td }◦σ + 1 ≥

d · dbσ−1−1

d−1
+ 1 = dbσ −d

d−1
+ 1 = dbσ −1

d−1
. □

Example 4.4 (Under-Estimating Fibonacci). Since 1

2
x − 1 is a metering function for the recursive

Fibonacci rule (2), the term fib(x)σ starts an evaluation of at least length 2

1

2
·xσ−1 − 1 for each

integer substitution σ with x ∈ dom(σ).

4.2 Accelerating Simple Recursions

Using Definition 4.1 and Theorem 4.3, we can now accelerate simple recursions. In contrast to the

acceleration of simple loops in Theorem 3.8, here we disregard the result of the accelerated rule

and replace its result with ∅. The reason is that otherwise the degree of the accelerated rule (i.e.,

the number of elements in its right-hand side) would depend on the instantiation of the variable tv
that represents the height of the evaluation tree. This cannot be expressed in our program model.

Moreover, we cannot compute iterated updates, as a simple recursion α has several updates which
may be applied in arbitrary order when α is applied repeatedly. Since computing the iterated cost

would require the iterated updates, we do not compute the iterated cost anymore, but simply

under-estimate each evaluation step with cost 1. This suffices to infer a lower bound for the cost

of the accelerated rule which is exponential in the metering function.

Theorem 4.5 (Recursion Acceleration). Let P be a well-formed integer program, let α ∈ P be
a simple recursion of degree d such that

guard(α) =⇒ cost(α) ≥ 1 (24)

is valid,13 and let ⟦ψ⟧ · b be a metering function for α . Moreover, let α ′ be the rule

lhs(α) c−→ ∅ [guard(α) ∧ψ] where c = db − 1

d − 1

,

and let P ′ = P ∪ {α ′}. Then P ′ is well formed and the processor that maps P to P ′ is sound.

Proof. Well-formedness is trivial due to the empty right-hand side ∅ of the rule α ′
. To prove

soundness, note that by Theorem 4.3, σ |= α ′
implies lhs(α)σ k−→m

α S with m ≥ dbσ −1

d−1
for some

cost k and some configuration S (since σ |= guard(α ′) implies σ |= ψ which in turn implies

(⟦ψ⟧ · b)σ = bσ). Since guard(α) =⇒ cost(α) ≥ 1 is valid, we get k ≥ m ≥ dbσ −1

d−1
= cσ . Thus, for

every evaluation with α ′
, there is an evaluation with α which has at least the same cost. □

13
If (24) is not valid, then one can simply add the constraint cost(α) ≥ 1 to the guard of the rule, since adding constraints

to the guard is always sound as it can only decrease the derivation height (by disallowing some evaluations).

24 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

Example 4.6 (Accelerating Fibonacci). Since the rule (2) from Example 2.1 has cost 1, (24) is triv-

ially valid. Thus, accelerating the rule (2) yields

fib(x) 2

1

2
x−1−1−−−−−−→ ∅ [x > 1] .

Afterwards, chaining this rule with (1) and deleting all other rules yields the simplified program

with the rule

f0(x) 2

1

2
x−1−1−−−−−−→ ∅ [x > 1] . (25)

4.3 Simplifying Recursive Rules

Section 4.2 showed how to accelerate simple recursions. If our implementation fails in applying

Theorem 4.5 to a simple recursion, then we again try to eliminate temporary variables via Instan-
tiation, as in the case of simple loops. If all temporary variables were eliminated and we still fail

to accelerate a simple recursion, then further simplifications are possible. In particular, we can

remove parts of the right-hand side via Partial Deletion.

Theorem 4.7 (Partial Deletion). Let P be a well-formed integer program and let α ∈ P. More-
over, let α ′ be like α , but rhs(α ′) ⊂ rhs(α), and let P ′ = P ∪ {α ′}. Then P ′ is well formed and the
processor that maps P to P ′ is sound.

Proof. Since P is well formed, P ′
is trivially well formed, too. To prove soundness, we define

S k−→P◦⊇ T if S k−→P ◦ ⊇ T .

So S k−→P◦⊇ T holds if S evaluates to some configuration S ′ with cost k (i.e., S k−→P S ′) and the

configuration T results from S ′ by deleting some terms from T (i.e., S ′ ⊇ T). Then we clearly

have dhP′(S) ≤ sup{k ∈ R | S k−→∗
P◦⊇ T for some T ∈ C}, as each −→P′-sequence is also a −→P◦⊇-

sequence. To finish the proof, we show

sup{k ∈ R | S k−→∗
P◦⊇ T for some T ∈ C} ≤ dhP(S).

This clearly implies rcP′(n) ≤ rcP(n), i.e., it implies that the processor is sound.

Consider an evaluation S0

k1−→∗
P◦⊇ . . .

km−−→∗
P◦⊇ Sm . We prove S0

k1−→∗
P . . .

km−−→∗
P S ′m ⊇ Sm for some

S ′m ∈ C by induction onm. The casem = 0 is trivial. Ifm > 0, the induction hypothesis implies

S0

k1−→∗
P . . .

km−1−−−−→∗
P S ′m−1

⊇ Sm−1 for some S ′m−1
∈ C.

Moreover, Sm−1

km−−→P◦⊇ Sm implies Sm−1

km−−→P S̃m ⊇ Sm for some S̃m ∈ C, i.e., we have s km−−→P Q

and S̃m = (Sm−1 \ {s}) ∪Q for some s ∈ Sm−1 and some Q ∈ C. Since Sm−1 ⊆ S ′m−1
, we get

S ′m−1

km−−→P (S ′m−1
\ {s}) ∪Q = S ′m

and thus S0

k1−→∗
P . . .

km−−→∗
P S ′m with S ′m ⊇ S̃m ⊇ Sm , as desired. □

Example 4.8 (Partial Deletion to Enable Recursion Acceleration). Consider the simple recursion

f(x ,y) −→ {f(x − 1,y), f(x − y,y)} [x > 0 ∧ y > x]. As f(x − y,y) cannot be reduced any further if

y > x , we cannot find a useful metering function for this rule and hence, Recursion Acceleration
fails. By applying Partial Deletion, we obtain the simple loop f(x ,y) −→ f(x − 1,y) [x > 0 ∧ y > x],
which can easily be accelerated via Theorem 3.8. In this way, we can infer that the original non-

tail-recursive rule can be applied at least linearly often.

As shown above, Recursion Acceleration is useful to handle programs with non-linear recursion

like the Fibonacci program, where the result is composed of two recursive calls. However, non-

tail-recursion also occurs when composing a recursive call with the call of an auxiliary function.

Inferring Lower Runtime Bounds for Integer Programs 25

Example 4.9 (Non-Tail-Recursive facSum Program [14]). Consider the following imperative pro-

gram.

in t f a c (in t x) {

i f (x > 1) return x ∗ f a c (x − 1) ;

e l se return 1 ;

}

in t facSum (in t x) {

i f (x > 0) return f a c (x) + facSum (x − 1) ;

e l se return 1 ;

}

Here, fac (x) computes x! and facSum(x) computes 0!+ . . . + x!. The program is not tail-recursive,

because the last action of facSum is not the recursive call, but an addition. The integer program be-

low represents its recursive structure, i.e., it can be obtained from the above program by a suitable

abstraction.

f0(x) 0−→ facSum(x) (26)

facSum(x) 1−→ {fac(x), facSum(x − 1)} [x > 0] (27)

facSum(x) 1−→ ∅ [x ≤ 0]
fac(x) 1−→ fac(x − 1) [x > 1] (28)

fac(x) 1−→ ∅ [x ≤ 1] (29)

To analyze this integer program, we first accelerate and chain the recursive rule (28) as in The-

orem 3.8 and Theorem 3.18.

Example 4.10 (Accelerating fac). Clearly, x − 1 is a metering function for the rule (28). Acceler-

ating it using this metering function yields

fac(x) tv−→ fac(x − tv) [x > 1 ∧ 0 < tv < x] .

Instantiating tv with x − 1 via Theorem 3.12 results in

fac(x) x−1−−−→ fac(1) [x > 1] . (30)

At this point, we would like to chain the recursive facSum-rule (27) with the fac-rule (30).

However, Theorem 3.18 is only applicable to tail-recursive rules. Hence, we now generalize The-

orem 3.18 to arbitrary rules.

Theorem 4.11 (Chaining for Arbitrary Integer Programs). Let P be a well-formed integer
program and let α1,α2 ∈ P where

α1 : f1(x) c1−→ S [φ1] with f2(x) µ ∈ S and
α2 : f2(x) c2−→ T [φ2] .

W.l.o.g., let TV(α1)∩TV(α2) = ∅ (otherwise, the temporary variables in α2 can be renamed accord-
ingly). Moreover, let α1.2 be the rule

f1(x) c1+c2µ−−−−−→ (S \ { f2(x) µ}) ∪T µ [φ1 ∧ φ2µ]

and let P ′ = P ∪ {α1.2}. Then P ′ is well formed and the processor that maps P to P ′ is sound.

26 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

Proof. To prove the soundness of the processor, we show that every evaluation step with α1.2

can be simulated by two evaluation steps with the rules α1,α2 of the same cost. Let σ be an integer

substitution with σ |= α1.2. Then we have

f1(x)σ c1σ+c2µσ−−−−−−−−→α1.2
(Sσ \ { f2(x) µσ }) ∪T µσ .

Since σ |= φ1, we have

f1(x)σ c1σ−−−→α1

Sσ .

Since σ |= φ2µ implies µ ◦ σ |= φ2 we have

f2(x) µσ c2µσ−−−−→α2

T µσ .

As f2(x)µ ∈ S , this implies

Sσ c2µσ−−−−→α2

(Sσ \ { f2(x) µσ }) ∪T µσ .

Thus, we have f1(x)σ c1σ+c2µσ−−−−−−−−→2

P (Sσ \ { f2(x) µσ })∪T µσ , as desired. As α1 and α2 are well formed,

this also proves that P ′
is well formed. □

Note that Theorem 4.11 coincides with Theorem 3.18 if the degree of α1 and α2 is 1. Theorem 4.11

allows us to continue the transformation of the program in Example 4.10.

Example 4.12 (Chaining facSum and fac). Chaining the recursive facSum-rule (27) of Exam-

ple 4.10 with the accelerated fac-rule (30) yields

facSum(x) x−→ {facSum(x − 1), fac(1)} [x > 1] .
Chaining this rule with the non-recursive fac-rule (29) results in

facSum(x) x+1−−−→ facSum(x − 1) [x > 1] .
The iterated update and cost of this rule are xµtv = x − tv and∑tv−1

i=0
(1 + x) µi = ∑tv−1

i=0
(1 + x − i) = x · tv − 1

2
tv2 + 3

2
tv.

Thus, accelerating it via Theorem 3.8 with the metering function x − 1 results in

facSum(x) x ·tv− 1

2
tv2+ 3

2
tv−−−−−−−−−−−→ facSum(x − tv) [0 < tv < x] (31)

since 0 < tv < x implies x > 1. By instantiating tv with x − 1 and chaining (26) with the resulting

rule, we obtain

f0(x)
1

2
x 2+ 3

2
x−2−−−−−−−−→ facSum(1) [1 < x] . (32)

Finally, by deleting all other rules, we obtain a simplified program.

Algorithm 2 shows how Algorithm 1 can be adapted in order to handle non-tail-recursive pro-

grams as well. The first additional step is Step 2, which deletes sinks (i.e., function symbols without

any rules) from right-hand sides of non-tail-recursive rules α . This simplifies the rules and possi-

bly even transforms them into tail-recursive rules.
14
Note that Partial Deletion adds a new rule α ′

with fewer terms in its right-hand side (thus, we then delete the original rule α afterwards).

The second change is that we apply Partial Deletion in Step 3.3 if we failed to accelerate a simple

recursion that does not contain any temporary variables anymore. In this way, the degree of the

simple recursion is reduced, which may simplify its acceleration as in Example 4.8. In our imple-

mentation, we first try all partial deletions which result in rules of degree 2 (if any). If we fail to

14
If the rule is already tail-recursive, i.e., the right-hand side only contains a single term, and this term is a sink, then

deleting this term does not help much to simplify the program. As mentioned in Footnote 3, we transform rules with

empty right-hand side into rules with the right-hand side “sink” to simplify the formalization.

Inferring Lower Runtime Bounds for Integer Programs 27

Algorithm 2 Program Simplification for Arbitrary Integer Programs

While there is a rule α with root(α) , f0:
1. Apply Deletion to rules whose guard is proved unsatisfiable or whose root symbol is

unreachable from f0.
2. While there is a non-tail-recursive rule α whose right-hand side contains a symbol f

without outgoing rules:

2.1. Apply Partial Deletion to an occurrence of f in rhs(α) and apply Deletion to α
afterwards.

3. While there is a simple recursion or a non-accelerated simple loop α :
3.1. Try to accelerate α .
3.2. If 3.1 succeeded, resulting in α , and α is a simple loop:

3.2.1. Try to instantiate α to eliminate the temporary variable introduced in Step 3.1.

3.2.2. If 3.2.1 succeeded, apply Deletion to α .
3.3. If 3.1 failed:

If TV(α) , ∅, then try to instantiate α to eliminate a temporary variable.

Otherwise, if the degree of α is greater than 1, then apply Partial Deletion to α .
3.4. Apply Deletion to α .

4. Let S = ∅.
5. While there is an accelerated rule α :

5.1. For each α ′
where rhs(α ′) contains root(α) and where root(α ′) , root(α):

Apply Chaining to α ′
and α and add α ′

to S .
5.2. Apply Deletion to α .

6. Apply Deletion to each rule in S .
7. While there is a function symbol f without simple recursions or simple loops but with

incoming and outgoing rules (starting with symbols f with just one incoming rule):

7.1. Apply Chaining to each pair α ′,α where root(α) = f occurs in rhs(α ′).
7.2. Apply Deletion to each α where root(α) = f or where rhs(α) contains no function

symbol from Σ except f .

accelerate any of the resulting rules, then we also try all partial deletions which result in rules of

degree 1.

Algorithm 2 terminates and thus it transforms any integer program into a simplified program:

The loop in Step 2 reduces the degree of some rule in each iteration. The loop in Step 3 either

reduces the number of non-accelerated loops or recursions, or it reduces the number of temporary

variables or the degree of some rule in each iteration. In Step 5, the number of accelerated rules

is decreasing. The loop in Step 7 terminates as it reduces the number of function symbols with

outgoing rules in each iteration. Finally, the overall loop of Algorithm 2 terminates as well, because

after having finished Step 7 the first time, the number of function symbols decreases in each further

iteration of the algorithm. To see this, note that there is no simple loop or simple recursion anymore

when the loop of Step 5 terminates. Thus, after finishing the loop of Step 7, the only function

symbol is either f0 (and hence the overall loop terminates) or there is at least one function symbol

f , f0 without incoming or without outgoing rules. Thus, in the next iteration, this function

symbol is removed. The reason is that if f has no incoming rules, then all rules α with root(α) = f
are deleted in Step 1. If f has no outgoing rules, then all occurrences of f in right-hand sides are

deleted in Step 2.

28 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

5 ASYMPTOTIC LOWER BOUNDS

After applying Algorithm 2, all programs are simplified and thus, we assume that P is a simplified

program throughout this section. So all rules α ∈ P have the same left-hand side f0(x). Now for

any integer substitution σ , the derivation height of f0(x)σ in the simplified program P is

dhP(f0(x)σ) = max {cost(α)σ | α ∈ P,σ |= α }, (33)

i.e., (33) is the maximal cost of those rules whose guard is satisfied by σ . Thus, if P results from

the transformation of an integer program P̃, then (33) is a lower bound on dhP̃(f0(x)σ). So for the
program in Figure 1b which was transformed into the simplified program with the only rule

α
0.1.2.3.4.5

: f0(x ,y, z,u)
1

8
x 4+ 1

4
x 3+ 7

8
x 2+ 7

4
x−−−−−−−−−−−−−−−→ f2(0, 1

2
x2+ 1

2
x , 1, 0)

[
1

2
x2 + 1

2
x > 1

]
, (19)

we obtain the lower bound

1

8
x4 + 1

4
x3 + 7

8
x2 + 7

4
x (34)

for all integer substitutions with σ |= 1

2
x2 + 1

2
x > 1. However, in general such bounds do not

provide an intuitive understanding of the program’s complexity and they are also not suitable to

detect possible attacks. The reason is that both cost(α) and guard(α)may be complicated and, even

more importantly, they may be interdependent. Then, it is not sufficient to only regard the cost of a

rule in order to draw conclusions on the resulting complexity. To see this, consider a simplified rule

with cost tv and guard φ. Its complexity can, e.g., be unbounded if φ does not impose any bound

on tv, exponential if φ only implies tv ≤ b for arithmetic expressions b that are exponential in the

program variables, or constant if φ implies tv ≤ e for some e ∈ N. But even without temporary

variables, there can be subtle interdependencies between the cost and the guard of a transition, as

the following example illustrates.

Example 5.1 (Sub-Linear Bounds). Let

P =
{
f0(x ,y) y−→ f(x ,y)

[
x > y2

]}
.

The runtime complexity of this program is sub-linear, even though the cost function y is linear.

The reason is that to achieve a linear increase of the cost y, a quadratic increase of x and thus of

the input size is required. So in general, it is not correct to simply take the cost of a rule as a lower

bound on its runtime (e.g., in this example we have rcP(n) ∈ Ω(
√
n), whereas “rcP(n) ∈ Ω(n)”

would be incorrect).

Hence, we now show how to derive asymptotic lower bounds for simplified programs. These

asymptotic bounds can easily be understood (i.e., a high lower bound can help programmers to

improve their program to make it more efficient) and they identify potential attacks.

To derive asymptotic bounds, we use so-called limit problems, which are introduced in Sec-

tion 5.1. A limit problem is an abstraction of the guard φ of a rule which allows us to analyze

how to satisfy φ, presuming that all variables are instantiated with “large enough” values. More

precisely, a solution of a limit problem is a family of substitutions σn which is parameterized by

a variable n. This family of substitutions satisfies φ for large enough n and can be found using

the calculus presented in Section 5.2. Thus, applying σn to the cost of a rule yields an expression

that only contains the single variable n, even if the rule has a multivariate cost function. Hence,

this allows us to deduce an asymptotic bound. In Section 5.3 we present an alternative approach

to find solutions of limit problems via SMT solving which can be combined with the calculus of

Section 5.2 in order to improve efficiency.

Inferring Lower Runtime Bounds for Integer Programs 29

5.1 Limit Problems

While the derivation height dhP is defined on configurations like f0(x)σ , asymptotic bounds are

usually defined for functions on N like the runtime complexity rcP . Recall that according to Defi-
nition 2.8, rcP(n) is the maximal cost of any evaluation starting with a configuration f0(n) where
the size |n | of the input is at most n. Thus, our goal is to derive an asymptotic lower bound for

rcP from a concrete bound on dhP like (34). So for the program P in (19), we would like to derive

rcP(n) ∈ Ω(n4). However, as discussed above, in general the cost (34) of a rule does not directly

give rise to the desired asymptotic lower bound.

To infer an asymptotic lower bound from a rule α ∈ P, we try to find an infinite family of integer

substitutions σn withV(α) ⊆ dom(σn) (parameterized by n ∈ N) such that there is an n0 ∈ Nwith

σn |= guard(α) for all n ≥ n0. Note that both |xσn | and cost(α)σn are arithmetic expressions that

only contain the single variable n, and we have rcP(|xσn |) ∈ Ω(cost(α)σn), since for all n ≥ n0 we

obtain

rcP(|xσn |) ≥ dhP(f0(x)σn) ≥ cost(α)σn .
For the program P containing only the rule

α
0.1.2.3.4.5

: f0(x ,y, z,u)
1

8
x 4+ 1

4
x 3+ 7

8
x 2+ 7

4
x−−−−−−−−−−−−−−−→ f2(0, 1

2
x2+ 1

2
x , 1, 0)

[
1

2
x2 + 1

2
x > 1

]
, (19)

our approach will infer the family σn with

xσn = n and yσn = zσn = uσn = 0. (35)

So for x consisting of x ,y, z,u, this implies

rcP(|xσn |) = rcP(|xσn | + |yσn | + |zσn | + |uσn |)
= rcP(|n |)
≥ cost(α

0.1.2.3.4.5
)σn

= (34)σn
= 1

8
n4 + 1

4
n3 + 7

8
n2 + 7

4
n.

To find such a family of substitutions σn , we first normalize all constraints in guard(α) such that
they have the form a > 0 or a ≥ 0.

15
Nowwe search for substitutions σn such that for large enough

n ∈ N, σn is a model for a formula of the form “

∧k
i=1

(ai ◦i 0)” where ◦i ∈ {>, ≥}. Obviously,
such a formula is satisfied for large enough n if all expressions aiσn are positive constants or

increase infinitely towardsω. Thus, we introduce a techniquewhich tries to find out whether fixing
the valuations of some variables and increasing or decreasing the valuations of others results in

positive resp. increasing valuations of a1, . . . ,ak . Our technique operates on limit problems of the
form {a•1

1
, . . . ,a•kk } where ai is an arithmetic expression and •i ∈ {+,−,+!,−!} for all 1 ≤ i ≤ k .

Here, a+ (resp. a−) means that a has to grow towards ω (resp. −ω) and a+!
(resp. a−!

) means that a
has to be a positive (resp. negative) constant. So we represent guard(α) by an initial limit problem
{a•1

1
, . . . ,a•kk } where •i ∈ {+,+!} for all 1 ≤ i ≤ k . By choosing •i to be + or +!, a

•i
i means that ai

grows towards ω or it is a positive constant, i.e., this ensures that ai > 0 holds for large enough n.
Our implementation leaves the choice of the •i ∈ {+,+!} in the initial limit problem open as long

as possible and only fixes it when this is needed in order to solve the limit problem (see the end of

Section 5.2 for further details). To solve a limit problem L, we search for a solution σn of L, where
this concept is defined in terms of limits of functions.

15
Note that while the variables range over Z, there may be non-integer expressions in guard(α) which result from non-

integer metering functions. Thus, we allow both constraints of the form a > 0 and a ≥ 0 in normalized guards, since

transforming a > 0 to a − 1 ≥ 0 would be incorrect in general.

30 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

Definition 5.2 (Limit). For each f : N→ R we have limn 7→ω f (n) = ω (resp. limn 7→ω f (n) = −ω)
if for everym ∈ R there is an n0 ∈ N such that f (n) ≥ m (resp. f (n) ≤ m) holds for all n ≥ n0.

Similarly, we have limn 7→ω f (n) = m if for every ε ∈ R with ε > 0 there is an n0 ∈ N such that

| f (n) −m | < ε holds for all n ≥ n0.

Now a family of substitutions σn is a solution for a limit problem {a•1

1
, . . . ,a•kk } if limn 7→ω aiσn

complies with •i for each 1 ≤ i ≤ k .

Definition 5.3 (Solutions of Limit Problems). For any function f : N→ R and any •∈ {+,−,+!,−!},
we say that f satisfies • if:

limn 7→ω f (n) = ω, if • = + ∃m ∈ R. limn 7→ω f (n) =m > 0, if • = +!

limn 7→ω f (n) = −ω, if • = − ∃m ∈ R. limn 7→ω f (n) =m < 0, if • = −!

A family σn of integer substitutions with V(L) ⊆ dom(σn) is a solution of a limit problem L if for

every a• ∈ L, the function λn. aσn satisfies •. For any arithmetic expression a with V(a) ⊆ {n},
“λn. a” is the function from N→ R that maps any n ∈ N to the value of a.

Example 5.4 (Solution of the Limit Problem of the Program (19)). The program (19) has the guard

1

2
x2 + 1

2
x > 1 which normalizes to

1

2
x2 + 1

2
x − 1 > 0. Hence, the resulting initial limit problem

could be {(1

2
x2 + 1

2
x − 1)+}. It is solved by the family of substitutions σn from (35). The reason is

that limn 7→ω (λn. (1

2
x2 + 1

2
x − 1)σn) = ω, i.e., the function λn. (1

2
x2 + 1

2
x − 1)σn satisfies +. Thus,

there is an n0 such that σn |= guard(α
0.1.2.3.4.5

) holds for all n ≥ n0.

In Sections 5.2 and 5.3 we will show how to infer such solutions of limit problems automatically.

The following theorem clarifies how to deduce an asymptotic lower bound from a solution of a

limit problem.

Theorem 5.5 (Asymptotic Bounds for Simplified Programs). Given a rule α of a simplified
program P with the program variables x and guard(α) = (a1 ◦1 0)∧ · · ·∧(ak ◦k 0)where ◦1, . . . , ◦k ∈
{>, ≥}, let the family σn be a solution of an initial limit problem {a•1

1
, . . . ,a•kk } with •1, . . . , •k ∈

{+,+!}. Then rcP(|xσn |) ∈ Ω(cost(α)σn).

Proof. Since σn is a solution of {a•1

1
, . . . ,a•kk }, there is an n0 ∈ N such that for all n ≥ n0, we

have σn |= a1 > 0 ∧ · · · ∧ ak > 0, which implies σn |= guard(α). Hence, for all n ≥ n0, we obtain:

rcP(|xσn |) ≥ dhP(lhs(α)σn)
≥ cost(α)σn as σn |= guard(α)

This implies rcP(|xσn |) ∈ Ω(cost(α)σn). □

Of course, if P has several rules, then we try to take the one which results in the highest lower

bound.

Example 5.6 (Asymptotic Bound for the Program (19)). Wecontinue Example 5.4with the program

P = {(19)}. For x = (x ,y, z,u), according to Theorem 5.5, we get the asymptotic lower bound

rcP(|xσn |) ∈ Ω(cost((19))σn). (36)

Note that cost((19))σn = 1

8
n4 + 1

4
n3 + 7

8
n2 + 7

4
n. Hence, (36) is equivalent to

rcP(|xσn |) ∈ Ω(n4).

Inferring Lower Runtime Bounds for Integer Programs 31

Up to now, we only took the guard

∧k
i=1

(ai ◦i 0) of a rule α into account in the initial limit prob-

lem {a•1

1
, . . . ,a•kk }. This has the disadvantage that solutions of this limit problem do not necessarily

try to maximize the cost of the rule. For example, for the rule

f0(x ,y) x ·y−−→ f(0,y) [x > 0] ,
we would obtain the initial limit problem {x+} which is solved by the family of substitutions

σn = {x/n,y/0}. According to Theorem 5.5, this only allows us to infer rcP(n) ∈ Ω(cost(α)σn),
where cost(α)σn = 0, i.e., it only allows us to infer a constant lower bound. To obtain non-trivial

lower bounds instead, one should extend the initial limit problem {a•1

1
, . . . ,a•kk } of a rule α by

cost(α)+. In this way, one searches for families of substitutions σn where cost(α)σn grows towards
ω, i.e., where cost(α)σn depends on n and is not constant. So in our example, we should start with

the initial limit problem {x+, (x · y)+} which has the solution σn = {x/n,y/n}. By Theorem 5.5,

one now obtains the quadratic lower bound rcP(n) ∈ Ω(n2), since cost(α)σn = n2
.

The costs are unbounded (i.e., they depend on temporary variables) if the initial limit problem

{a•1

1
, . . . ,a•kk , cost(α)+} has a solution σn where xσn is constant for all program variables x . Then

we can even infer rcP(n) ∈ Ω(ω).

Example 5.7 (Unbounded Loops Continued). By chaining the initial rule f0(x ,y) 0−→ f(x ,y) of the
program from Example 3.6 with the accelerated rule

f(x ,y) tv1 ·y−−−−→ f(x + tv1,y) [0 < x ∧ 0 < tv1] (18)

from Example 3.11, we obtain

f0(x ,y) tv1 ·y−−−−→ f(x + tv1,y) [0 < x ∧ 0 < tv1] .
The resulting initial limit problem {x+! , tv+

1
, (tv1 · y)+} has the solution σn = {x/1, y/1, tv1/n},

which implies rcP(n) ∈ Ω(ω).

Theorem 5.5 results in bounds “rcP(|xσn |) ∈ Ω(cost(α)σn)” which depend on the sizes |xσn |.
Let f (n) = rcP(n), д(n) = |xσn |, and let Ω(cost(α)σn) have the form Ω(nk) or Ω(kn) for some

k ∈ N. Moreover for all x ∈ x , let xσn be a polynomial of at most degree d , i.e., let д(n) ∈ O(nd).
Then, based on an observation from [30],

16
we can infer a lower bound for f (n) = rcP(n) instead of

f (д(n)) = rcP(|xσn |). Moreover, if д(n) = |xσn | is constant whereas Ω(cost(α)σn) is not constant,
then the lemma allows us to infer that f (n) = rcP(n) ∈ Ω(ω), as in Example 5.7.

Lemma 5.8 (Bounds for FunctionComposition). Let f : N→ R≥0∪{ω} andд : N→ Nwhere
д(n) ∈ O(nd) for some d ∈ N with d > 0. Moreover, let f (n) be weakly monotonically increasing for
large enough n.

(a) If д(n) is strictly monotonically increasing for large enough n and f (д(n)) ∈ Ω(nk) with k ∈ N,
then f (n) ∈ Ω(n k

d).
(b) If д(n) is strictly monotonically increasing for large enough n and f (д(n)) ∈ Ω(kn) with k > 1,

then f (n) ∈ Ω(e d√n) for some number e ∈ R with e > 1.
(c) If д(n) ∈ O(1) and f (д(n)) < O(1), then f (n) ∈ Ω(ω).

Example 5.9 (Asymptotic Bound for Program (19) Continued). In Example 5.6, for x = (x ,y, z,u),
we inferred rcP(|xσn |) ∈ Ω(n4) where xσn = n and yσn = zσn = uσn = 0. Hence, we have

16
In the second case of Lemma 5.8, we fix a small inaccuracy from [29] where we inadvertently wrote f (n) ∈ Ω(k d√n).

Since Lemma 5.8 is very similar to Lemma 24 from our paper [30], we omit its proof here. The proof can be found in

Appendix A.

32 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

|xσn | = |n | = n ∈ O(n1). By Lemma 5.8(a), we obtain rcP(n) ∈ Ω(n 4

1) = Ω(n4) for the program
P = {(19)}. Due to the soundness of the processors for program simplification in Section 3, we

also have rcP̃(n) ∈ Ω(n4) for the program P̃ in Figure 1b.

In cases like Example 5.1, Lemma 5.8 even allows us to infer sub-linear bounds.

Example 5.10 (Example 5.1 Continued). Reconsider the program from Example 5.1. By Defini-

tion 5.3, the family σn with xσn = n2 + 1 and yσn = n is a solution of the initial limit prob-

lem {(x − y2)+! ,y+}. (Our implementation chooses (x − y2)+!
instead of (x − y2)+ in the initial

limit problem, because in this way, the limit problem can be solved by our technique, see Sec-

tion 5.2.) Due to Theorem 5.5, this proves rcP(|xσn |) ∈ Ω(n) for the program variables x = (x ,y).
As |xσn | = n2 + 1 + n ∈ O(n2), Lemma 5.8(a) results in rcP(n) ∈ Ω(n 1

2) = Ω(
√
n).

If the cost of the rule from Example 5.1 was 2
y
, then σn would still be a solution of the initial

limit problem {(x − y2)+! , (2y)+}. So we would obtain rcP(|xσn |) ∈ Ω(2n) due to Theorem 5.5 and

thus rcP(n) ∈ Ω(e
√
n) for an e > 1 due to Lemma 5.8(b). Intuitively, the exponent

√
n expresses

that the cost grows exponentially w.r.t. y, where the guard x > y2
implies |y | ∈ O(

√
|x |), i.e., y is

bounded by the square root of the input size.

The reason why we cannot specify e in Lemma 5.8(b) is that it depends on the coefficients of

д(n) = |xσn |, but Lemma 5.8 only requires д(n) ∈ O(nd). Thus, a variant of Lemma 5.8 where the

polynomial д is known would allow us to compute e . Our implementation simply reports that the

runtime is at least exponential if Lemma 5.8(b) applies and d = 1.

5.2 Transforming Limit Problems

In order to use Theorem 5.5 (and Lemma 5.8) for the automatic inference of lower bounds, we still

have to show how to find a family of substitutions σn automatically that solves the initial limit

problem of a program’s rule.

A limit problem L is trivial if all expressions in L are variables and there is no variable x with

x•1 ,x•2 ∈ L and •1 , •2. For trivial limit problems L we can immediately obtain a particular

solution σ L
n which instantiates variables “according to L”.

Lemma 5.11 (Solving Trivial Limit Problems). Let L be a trivial limit problem. Then σ L
n is a

solution of L where for all n ∈ N, σ L
n is defined as follows:

xσ L
n =



n if x+ ∈ L

−n if x− ∈ L

1 if x+! ∈ L

−1 if x−! ∈ L

0 otherwise

Proof. If x+ ∈ L (resp. x− ∈ L), then xσ L
n = n (resp. xσ L

n = −n) and thus, limn 7→ω xσn =
limn 7→ω n = ω (resp. limn 7→ω xσn = limn 7→ω −n = −ω), i.e., λn. xσn satisfies + (resp. −). If x+! ∈ L
(resp. x−! ∈ L), then xσ L

n = 1 (resp. xσ L
n = −1). Thus, limn 7→ω xσn = 1 (resp. limn 7→ω xσn = −1),

i.e., λn. xσn satisfies +! (resp. −!). Hence, σ
L
n is a solution of L. □

For instance, ifV(α) = {x ,y, tv} and L = {x+,y−! }, then L is a trivial limit problem and σ L
n with

xσ L
n = n,yσ

L
n = −1, and tv σ L

n = 0 is a solution for L.

Inferring Lower Runtime Bounds for Integer Programs 33

However, in general the initial limit problem L = {a•1

1
, . . . ,a•kk , cost(α)+} is not trivial. There-

fore, we now define a transformation to simplify limit problems until one reaches a trivial

problem. With our transformation, L L′ ensures that each solution of L′ also gives rise to a

solution of L.

If L contains f (a1,a2)• for some standard arithmetic operation f like addition, subtraction, mul-

tiplication, division, or exponentiation, we use a so-called limit vector (•1, •2)with •i ∈ {+,−,+!,−!}
to characterize for which kinds of arguments the operation f is increasing (if • = +), decreasing
(if • = −), or a positive or negative constant (if • = +! or • = −!).

17
Then L can be transformed

into the new limit problem (L \ { f (a1,a2)•}) ∪ {a•1

1
,a•2

2
}.

For example, (+,+!) and (+,−!) are increasing limit vectors for subtraction. The reason is that

a1 − a2 is increasing if a1 is increasing and a2 is a constant. Hence, our transformation allows

us to replace (a1 − a2)+ by a+1 and a+!

2
or by a+

1
and a−!

2
.

Definition 5.12 (Limit Vectors). Let f : R → R be a function and let •1, •2 ∈ {+,−,+!,−!}. We

say that (•1, •2) is an increasing (resp. decreasing) limit vector for f if the function λn. f (д(n),h(n))
satisfies+ (resp.−) for any functionsд andh that satisfy •1 and •2, respectively. Similarly, (•1, •2) is
a positive (resp. negative) limit vector for f if λn. f (д(n),h(n)) satisfies+! (resp.−!) for any functions

д and h that satisfy •1 and •2, respectively.

With this definition, (+,+!) and (+,−!) are indeed an increasing limit vectors for subtraction,

since limn 7→ω д(n) = ω and limn 7→ω h(n) =mwithm > 0 orm < 0 implies limn 7→ω (д(n)−h(n)) = ω.
In other words, if д(n) satisfies + and h(n) satisfies +! or −!, then д(n) − h(n) satisfies + as well. In

contrast, (+,+) is not an increasing limit vector for subtraction. To see this, consider the functions

д(n) = h(n) = n. Both д(n) and h(n) satisfy +, whereas д(n) −h(n) = 0 does not satisfy +. Similarly,

(+!,+!) is not a positive limit vector for subtraction, since for д(n) = 1 and h(n) = 2, both д(n) and
h(n) satisfy +!, but д(n) − h(n) = −1 does not satisfy +!.

Limit vectors can be used to simplify limit problems, as in (A) in the following definition. More-

over, for numbersm ∈ R, one can easily simplify constraints of the formm+!
andm−!

(e.g., 2
+!
is

obviously satisfied since 2 > 0), as in (B).

Definition 5.13 (). Let L be a limit problem. We have:

(A) L ∪ { f (a1,a2)•} L ∪ {a•1

1
,a•2

2
} if • is + (resp. −,+!,−!) and (•1, •2) is an increasing (resp.

decreasing, positive, negative) limit vector for f

(B) L ∪ {m+! } L ifm ∈ R andm > 0, L ∪ {m−! } L ifm ∈ R andm < 0

However, transforming a limit problem with may also result in contradictory limit problems

that contain x•1
and x•2

where •1 , •2, as the following example illustrates.

Example 5.14 (Contradictory Limit Problems – Example 5.10 Continued). The initial limit problem

{(x −y2)+! ,y+} from Example 5.10 cannot be solved with the current transformation rules. While

(+,+!) and (+,−!) are increasing limit vector for subtraction, the only positive limit vector for

subtraction is (+!,−!). Thus, by (A) one obtains {(x −y2)+! ,y+} {x+! , (y2)−! ,y+} which contains

the unsolvable requirement (y2)−!
.

17
To ease the presentation, we restrict ourselves to binary operations f . For operations of arity k , one would need limit

vectors of the form (•1, . . . , •k).

34 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

As an alternative, in Example 5.10 one could regard the initial limit problem {(x − y2)+,y+}
instead. However, here the transformation rules fail as well. We have

{(x − y2)+,y+}
{x+, (y2)+! ,y+} by (A) with the increasing limit vector (+,+!) for subtraction
{x+! ,y+! ,y+} by (A) with the positive limit vector (+!,+!) for multiplication

However, the resulting problem is contradictory, as it contains both y+!
and y+.

Recall that the guard of the rule from Example 5.1 implies x ≥ y2 + 1. If we substitute x with its

lower bound y2 + 1 in the beginning, then we can reduce the initial limit problem {(x −y2)+! ,y+}
to a trivial one. Hence, we now extend by allowing to apply substitutions.

Definition 5.15 (Continued). Let L be a limit problem and let θ be a substitution such that

x < V(xθ) for all x ∈ dom(θ) and θ ◦ σ is an integer substitution for each integer substitution σ
whose domain includes all variables occurring in the range of θ . Then we have:

18

(C) L
θ
Lθ

Example 5.16 (Applying Substitutions to Limit Problems – Example 5.14 Continued). For the initial
limit problem {(x − y2)+! ,y+} from Example 5.10, we now have

{(x − y2)+! ,y+}
{x/y2+1}

{1+! ,y+}
{y+}

i.e., we obtain the trivial limit problem {y+}. Note that, given an integer substitution σ with y ∈
dom(σ), {x/y2 + 1} ◦ σ is an integer substitution as well. By Lemma 5.11, the family σ

{y+ }
n with

yσ
{y+ }
n = n solves the resulting trivial limit problem {y+}. To obtain a solution for the initial limit

problem {(x − y2)+! ,y+} one has to take the substitution {x/y2 + 1} into account that was used

in its transformation. In this way, we get the solution σn = {x/y2 + 1} ◦ σ {y+ }
n for the initial limit

problem where x σn = n2 + 1 and y σn = n. Thus, we obtain rcP(n) ∈ Ω(n 1

2) = Ω(
√
n), as in

Example 5.10.

Although Definition 5.15 requires that θ ◦ σ is an integer substitution whenever σ is an inte-

ger substitution, it is also useful to handle limit problems which contain expressions that do not

evaluate to integer numbers.

Example 5.17 (Non-Integer Metering Functions Continued). By chaining
19
the only initial rule of

the program in Example 3.10 with the accelerated rule (17), we obtain

f0(x) tv−→ f(x − 2tv)
[
0 < tv < 1

2
x + 1

]
. (37)

For the initial limit problem {tv+, (1

2
x + 1 − tv)+! } we get

{tv+, (1

2
x + 1 − tv)+! } {x/2 tv−1} {tv+, 1

2

+! }
{tv+}

by (C) and (B). (Our implementation first leaves it open whether to choose (1

2
x + 1 − tv)+ or

(1

2
x + 1 − tv)+!

, but when transforming the arithmetic expression to
1

2
by (C), it finds out that

one should use (1

2
x + 1 − tv)+!

in order to solve the limit problem. We describe the strategy used

18
The other rules for are implicitly labeled with the identical substitution ∅.

19
Note that we cannot instantiate tv with the metering function that was used to accelerate the loop from Example 3.10,

as it does not map to the integers, i.e., the prerequisites of Theorem 3.12 are not satisfied.

Inferring Lower Runtime Bounds for Integer Programs 35

by our implementation and its heuristic to find suitable substitutions θ for the application of rule

(C) at the end of this subsection.) By Lemma 5.11, the family σ {tv+ }
n with tv σ {tv+ }

n = n solves the

resulting trivial limit problem {tv+}. Again, to obtain a solution for the original initial limit problem

{tv+, (1

2
x + 1 − tv)+! } one has to take the substitution {x/2 tv − 1} into account, resulting in σn

with xσn = 2n− 1 and tv σn = n. Thus, by Theorem 5.5 we have rc{(37)}(|xσn |) = rc{(37)}(2n− 1) ∈
Ω(cost((37))σn) = Ω(tv σn) = Ω(n). As 2n − 1 ∈ O(n), Lemma 5.8(a) implies rc{(37)}(n) ∈ Ω(n). By
the soundness of the processors for program simplification in Section 3, we also have rcP(n) ∈ Ω(n)
for the original program in Example 3.10.

Definition 5.15 requires that θ ◦ σ is an integer substitution for every integer substitution σ
whose domain includes all variables occurring in the range of θ . To check this side-condition

automatically, one can again use Lemma 3.15: If the range of θ consists of polynomials, then for

every x ∈ dom(θ) we only have to check if instantiating the polynomial x θ by finitely many

suitable integers again results in an integer. More precisely, if x θ contains the variables x1, . . . ,xk
of degrees d1, . . . ,dk , respectively, we check if x θ maps all arguments from {0, . . . ,d1 + 1} × . . .×
{0, . . . ,dk + 1} to integers.

However, up to nowwe cannot prove that, e.g., a rule α with guard(α) = x2−x > 0 and cost(α) =
x has a linear lower bound, since (+,+) is not an increasing limit vector for subtraction. To handle

such cases, the following transformation rules allow us to neglect polynomial sub-expressions if

they are “dominated” by other polynomials of higher degree or by exponential sub-expressions.

Definition 5.18 (Continued). Let L be a limit problem, let ± ∈ {+,−}, and let a,b, c be uni-

variate polynomials over the same variable. Then we have:

(D) L ∪ {(a ± b)+} L ∪ {a+} and L ∪ {(a ± b)−} L ∪ {a−} if the degree of a is greater than

the degree of b

(E) L ∪ {(ac ± b)+} L ∪ {(a − 1)+, c+} and L ∪ {(ac ± b)+} L ∪ {(a − 1)+, c+! }

Thus, {(x2−x)+} {(x2)+} = {(x ·x)+} {x+} by (D) and (A) with the increasing limit vector

(+,+) for multiplication. The intuition for (E) is that any exponential expression ac dominates any

polynomial expression b provided that the base a is greater than 1 and the exponent c grows

towards ω.

Example 5.19 (Example 4.6 Continued). We continue Example 4.6, where the Fibonacci program

was simplified to the program consisting just of the rule

f0(x) 2

1

2
x−1−1−−−−−−→ ∅ [x > 1] . (25)

Here, we obtain the initial limit problem {(x − 1)+, (2 1

2
x−1 − 1)+}. We get:

{(x − 1)+, (2 1

2
x−1 − 1)+}

{x+, (2 1

2
x−1 − 1)+} by (D)

{x+, 1+! , (1

2
x − 1)+} by (E)

{x+, 1+! , (1

2
x)+} by (A) with the increasing limit vector (+,+!) for subtraction

{x+, 1+! , (1

2
)+! } by (A) with the increasing limit vector (+!,+) for multiplication

2 {x+} by (B) (twice)

By Lemma 5.11, the family σ {x+ }
n with xσ {x+ }

n = n solves the resulting trivial limit problem

{x+} and hence, it also solves the initial limit problem of Rule (25). Thus, Theorem 5.5 implies

rc{(25)}(|xσn |) = rc{(25)}(n) ∈ Ω(cost((25))σn) = Ω(2 1

2
n−1 − 1) = Ω(2 1

2
n) = Ω(

√
2

n) ⊂ Ω(1.4n). Due

36 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

(A) L ∪ { f (a1,a2)•} L ∪ {a•1

1
,a•2

2
} if • is + (resp. −,+!,−!) and (•1, •2) is an increasing

(resp. decreasing, positive, negative) limit vector for f
(B) L ∪ {m+! } L ifm ∈ R andm > 0, L ∪ {m−! } L ifm ∈ R andm < 0

(C) L
θ

Lθ if x < V(xθ) for all x ∈ dom(θ), and if σ is an integer substitution with

V(range(θ)) ⊆ dom(σ), then θ ◦ σ is also an integer substitution

(D) L ∪ {(a ± b)•} L ∪ {a•} if • ∈ {+,−} and degree(a) > degree(b) for the univariate

polynomials a,b
(E) L ∪ {(ac ± b)+} L ∪ {(a − 1)•, c+} if • ∈ {+,+!} for the univariate polynomials a,b, c

Fig. 2. Definition of our Transformation for a Limit Problem L

to the soundness of the program simplification in Section 3 and Section 4, this also implies that

the runtime complexity of the original Fibonacci program P from Example 2.1 is exponential, i.e.,

rcP(n) ∈ Ω(
√

2

n).

Note that (E) can also be used to handle limit problems like (ac)+ (by choosingb = 0).We summa-

rize the full definition of our transformation of limit problems in Figure 2. Theorem 5.20 states

that our transformation is indeed correct. As already illustrated in Examples 5.16 and 5.17,

when constructing the solution from the resulting trivial limit problem, one has to take the sub-

stitutions into account which were used in the derivation.

Theorem 5.20 (Correctness of). If L θ
L′ and the family σn is a solution of L′, then θ ◦ σn

is a solution of L.

Proof. First assume that the step from L to L′ was done by Definition 5.13 (A). Since σn is a

solution for L′, it is a solution for a•1

1
and a•2

2
, where (•1, •2) is an increasing (resp. decreasing,

positive, or negative) limit vector for f . As σn is a solution for both a•ii , the function λn. aiσn
satisfies •i . By the definition of limit vectors, this implies that λn. f (a1σn ,a2σn) = λn. f (a1,a2)σn
satisfies •. Thus, σn is a solution for f (a1,a2)•.
If the step from L to L′ was done by Definition 5.13 (B), then every solution σn for L′ is also a

solution for L, sincemσn =m holds for anym ∈ R.
If the step from L to L′ was done by Definition 5.15 (C), then let σn be a solution for L′ = Lθ .

Then for every (a θ)• ∈ Lθ , λn. a θσn satisfies • and hence θ ◦ σn is a solution for a•. Thus, θ ◦ σn
is a solution for L.

If the step from L to L′ was done by Definition 5.18 (D), then let σn be a solution for a•. Since
the polynomial a only contains a single variable (say, x), we must have limn 7→ω xσn = ω or

limn 7→ω xσn = −ω. W.l.o.g, let limn 7→ω xσn = ω and • = + (the other cases work analogously).

Then limn 7→ω a σn = ω implies limx 7→ω a = ω. Since the degree of a is greater than the degree of

b, this means limx 7→ω (a ± b) = ω and hence limn 7→ω (a ± b)σn = ω.
For Definition 5.18 (E), the proof is analogous. Here for large enough n, acσn is an exponen-

tial function with a base > 1. Since σn is a solution for c+, we again have limn 7→ω xσn = ω or

limn 7→ω xσn = −ω. Thus acσn is an exponential function which grows faster than b σn for n 7→ ω.
Hence, we obtain limn 7→ω (ac ± b)σn = ω. □

So to find an asymptotic lower bound for the runtime of a simplified program with a rule α ,
we start with an initial limit problem L = {a•1

1
, . . . ,a•kk , cost(α)+} that represents guard(α) and

requires non-constant cost, and transform L with into a trivial limit problem L′, i.e., L
θ

1

Inferring Lower Runtime Bounds for Integer Programs 37

. . .
θm

L′. As mentioned before, for automation one should leave the •i in the initial problem L
open, and only instantiate them by a value from {+,+!} when this is needed to apply a particular

rule of the transformation . Then by Lemma 5.11 and Theorem 5.20, the resulting family σ L′
n of

substitutions gives rise to a solution σn = θ1 ◦ . . . ◦ θm ◦ σ L′
n of L. Thus by Theorem 5.5, we have

rcP(|xσn |) ∈ Ω(cost(α)σn), which leads to a lower bound for rcP(n) with Lemma 5.8.

Our implementation uses the following strategy to apply the rules fromDefinition 5.13, 5.15, and

5.18 for the transformation . Initially, we reduce the number of variables by propagating bounds

implied by the guard of the rule α . For example, if an arithmetic expression a with x < V(a) is a
minimal upper or a maximal lower bound on x (i.e., guard(α) implies x ≤ a but not x ≤ a − 1, or

guard(α) implies x ≥ a but not x ≥ a + 1), then we may apply the substitution {x/a} to the initial
limit problem by the rule (C). Thus, we can, e.g., simplify the limit problem from Example 5.10 by

instantiating x with y2 + 1, see Example 5.16. In the same way, the substitution which is applied

in Example 5.17 can be found automatically. Afterwards, we use (B) and (D) with highest and (E)

with second highest priority. The third priority is trying to apply (A) to univariate expressions

(since processing univariate expressions helps to guide the search). As fourth priority, we apply

(C) with a suitable substitution {x/m} if x+!
or x−!

occurs in the current limit problem. Otherwise,

we apply (A) to multivariate expressions. Since is well founded and, except for (C), finitely

branching, one may also backtrack and explore alternative applications of . In particular, we

backtrack if we obtain a contradictory limit problem. Moreover, if we obtain a trivial limit problem

L′where cost(α)σ L′
n is a polynomial, but cost(α) is a polynomial of higher degree or an exponential

function, thenwe backtrack to search for other solutionswhichmight lead to a higher lower bound.

However, our implementation can of course fail, since solvability of limit problems is undecidable

(due to Hilbert’s Tenth Problem).

Example 5.21 (Solving the Limit Problem of the Program (19)). For the program P = {(19)} that
results from the simplification of the program P̃ in Figure 1b, we obtain the initial limit problem

{(1

2
x2 + 1

2
x − 1)+, (1

8
x4 + 1

4
x3 + 7

8
x2 + 7

4
x)+}. Here, we have:

{(1

2
x2 + 1

2
x − 1)+, (1

8
x4 + 1

4
x3 + 7

8
x2 + 7

4
x)+}

(D)
2 {(1

2
x2)+, (1

8
x4)+} as the degree of

1

2
x2

is greater than the degree of
1

2
x − 1 and

the degree of
1

8
x4

is greater than the degree of
1

4
x3 + 7

8
x2 + 7

4
x

(A)
2 { 1

2

+! , (x2)+, 1

8

+! , (x4)+} using the increasing limit vector (+!,+) for multiplication

(B)
2 {(x2)+, (x4)+}

(A)
2 {x+} using the increasing limit vector (+,+) for multiplication

The resulting trivial limit problem {x+} gives rise to the solution (35) and hence proves rcP(|xσn |) ∈
Ω(n4) for x = (x ,y, z,u), see Example 5.6. As |xσn | ∈ O(n), as in Example 5.9 we get rcP(n) ∈ Ω(n4)
and thus also rcP̃(n) ∈ Ω(n4).

5.3 Solving Limit Problems via SMT

While the calculus presented in Section 5.2 permits a precise analysis of simplified programs, it can

also be quite expensive in practice. The reason is that the next -step is rarely unique and thus

backtracking is often unavoidable in order to find a good lower bound. We now show how limit

problems can be encoded as conjunctions of polynomial inequations. In many cases, this allows

us to use SMT solvers to solve limit problems more efficiently.

38 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

Essentially, the idea is to search for a solution σn (i.e., a suitable family of substitutions) that

instantiates each variable x in the limit problem by a linear polynomial xσn = mx · n + kx . Here,
we leave the integersmx and kx open (i.e., they are abstract coefficients) and we use SMT solving

to find an instantiation of the abstract coefficients by integer numbers such that σn becomes a

solution for the limit problem.

Thus, if a is a polynomial arithmetic expression, then aσn = a {x/(mx · n + kx) | x ∈ V(a)}
is a univariate polynomial over n with abstract coefficients. If a is of degree d , then aσn can be

rearranged to the form ad · nd + . . . + a0 · n0
where the ai are arithmetic expressions over the

abstract coefficients {mx ,kx | x ∈ V(a)} that do not contain n.

Example 5.22 (Encoding the Initial Limit Problem for Program (19)). Consider the initial limit

problem {
(

1

2
x2 + 1

2
x − 1

)+} for the program with the rule (19), see Example 5.4. We use σn with

xσn =mx · n + kx . Therefore, we obtain(
1

2
x2 + 1

2
x − 1

)
σn = 1

2
· (mx · n + kx)2 + 1

2
· (mx · n + kx) − 1

= a2 · n2 + a1 · n + a0

where a2 =
1

2
m2

x , a1 =mx · kx + 1

2
mx , and a0 =

1

2
k2

x +
1

2
kx − 1.

Clearly, we have limn 7→ω aσn = ω (resp. −ω) if and only if ai > 0 (resp. ai < 0) for some i > 0

and aj = 0 for all i + 1 ≤ j ≤ d . Similarly, limn 7→ω aσn is a positive (resp. negative) constant if and

only if ai = 0 for all 1 ≤ i ≤ d and a0 > 0 (resp. a0 < 0). This allows us to translate the solvability

of a limit problem into the satisfiability of an arithmetic formula.

Definition 5.23 (SMT Encoding of Limit Problems). Let a be a polynomial arithmetic expression

of degree d and let σn instantiate each occurring variable x bymx ·n+kx wheremx ,kx are abstract
coefficients. Let aσn = ad · nd + . . . + a0 · n0

where a0, . . . ,ad do not contain n. We define

smt(a•) =



∨d
i=1

(
ai > 0 ∧∧d

j=i+1
aj = 0

)
if • = +∨d

i=1

(
ai < 0 ∧∧d

j=i+1
aj = 0

)
if • = −∧d

j=1
aj = 0 ∧ a0 > 0 if • = +!∧d

j=1
aj = 0 ∧ a0 < 0 if • = −!

We lift smt to limit problems L where a is a polynomial for each a• ∈ L by defining smt(L) =∧
a•∈L smt(a•).
Furthermore, given a polynomial cost c of degree d with cσn = cd · nd + . . . + c0 · n0

where

c0, . . . , cd do not contain n, we define smtc,i (L) = smt(L) ∧ ci > 0 for each 1 ≤ i ≤ d . Finally, for
the program variables x , we define smtω (L) = smt(L) ∧∧

x ∈x mx = 0.

To solve a limit problem L, it suffices to find a solution for smt(L), because then the substitution

that results from instantiating the abstract coefficients of σn accordingly is a solution for the limit

problem L. However, to maximize the cost c , one should try to find a solution for smtω (L) or
smtc,i (L) where i is as large as possible. The reason is that a solution for smtω (L) allows us to
deduce unbounded costs (provided that the initial limit problem contained c+, i.e., the cost is non-
constant for each solution of L), as the corresponding substitution σn maps all program variables

x to constants kx that do not depend on n. A solution for smtc,i (S) allows us to prove a polynomial

lower bound whose degree is at least i via Theorem 5.5 and Lemma 5.8 (since |xσn | ∈ O(n)).
Example 5.24 (Encoding the Initial Limit Problem for Program (19)Continued). Wenow show how

to encode the initial limit problem {
(

1

2
x2 + 1

2
x − 1

)+} from Example 5.4.
20
Since x σn =mx ·n+kx ,

20
For reasons of simplicity, we do not include the cost of the rule in the initial limit problem.

Inferring Lower Runtime Bounds for Integer Programs 39

we have (1

2
x2 + 1

2
x − 1)σn = a2 · n2 + a1 · n + a0 with a2,a1,a0 as in Example 5.22. Thus,

smt

({(
1

2
x2 + 1

2
x − 1

)+})
= (a2 > 0 ∨ (a1 > 0 ∧ a2 = 0)).

Now SMT solvers can easily find a solution like, e.g., {mx/1,kx/0}.

Example 5.25 (Encoding the Initial Limit Problem for Example 5.1). Next we encode the initial

limit problem {(x −y2)+! ,y+} for Example 5.1. Since x σn =mx · n + kx and y σn =my · n + ky , we
have (x −y2)σn =mx · n + kx − (my · n + ky)2 = −m2

y · n2 + (mx − 2 ·my · ky) · n + kx − k2

y . Thus,

smt

(
{(x − y2)+! ,y+}

)
= (−m2

y = 0 ∧mx − 2 ·my · ky = 0 ∧ kx − k2

y > 0 ∧my > 0).

Here, the first three (in)equations are the encoding of (x − y2)+!
and the last inequation is the

encoding of y+. As −m2

y = 0 impliesmy = 0, the overall formula is unsatisfiable. State-of-the-art

SMT solvers can prove unsatisfiability of smt

(
{(x − y2)+! ,y+}

)
within milliseconds. This is not

surprising, since we instantiated x with a non-linear expression in Example 5.16 in order to find a

solution, but Definition 5.23 instantiates x with a linear template polynomial.

Thus, Example 5.25 shows that even if all arithmetic expressions in the analyzed limit problem

are polynomials, is still required, i.e., our SMT-based technique does not subsume the calculus

of Section 5.2.
21
Note that the new SMT-based technique can be integrated into the calculus from

Section 5.2 seamlessly. In other words, one can first simplify a limit problem with the transforma-

tion for a few steps and then apply the SMT-based technique to find a solution for the obtained

limit problem. For instance, the initial limit problem {(x −y2)+! ,y+} in Example 5.25 can easily be

solved via the SMT encoding from Definition 5.23 after applying the substitution {x/y2 + 1} as in
Example 5.16.

The following theorem shows how a solution for the SMT problem smt(L) can be used to obtain

a solution for the limit problem L.

Theorem 5.26 (Solving Limit Problems via SMT). Let L be a limit problem such that each
expression in L is a polynomial and let σ be an integer substitution such that σ |= smt(L). Then

σn ◦ σ = {x/(mxσ · n + kxσ) | x ∈ V(L)}
is a solution for L.

Proof. First note that σn ◦ σ is clearly an integer substitution for each n ∈ N. We have to

show that λn. aσnσ satisfies • for any a• ∈ L. Let d be the degree of a. Then we have aσn =
ad · nd + . . . + a0 · n0

for suitable expressions a0, . . . ,ad over {mx ,kx | x ∈ V(a)} that do not

contain n.

We first consider the case • = + (the case • = − works analogously). Then σ |= smt(L) implies

σ |= smt(a+), i.e., σ |= ∨d
i=1

(ai > 0∧∧d
j=i+1

aj = 0). Hence, there exists an 1 ≤ i ≤ d with aiσ > 0

and we have

aσnσ = aiσ · ni + . . . + a0σ · n0.

Thus, we obtain limn 7→ω aσnσ = ω, i.e., λn. aσnσ satisfies +.

Now we consider the case • = +! (the case • = −! works analogously). Then σ |= smt(L) implies

σ |= smt(a+!), i.e., σ |= ∧d
j=1

aj = 0 ∧ a0 > 0. Hence, we have

lim

n 7→ω
anσnσ = lim

n 7→ω
a0σ = a0σ > 0,

21
We could also use non-linear template polynomials for σn , but in any case the degree of the template polynomials has

to be fixed in advance and thus, it may be insufficient for the problem at hand.

40 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

i.e., λn. aσnσ satisfies +!. □

Example 5.27 (Solving the Initial Limit Problem for Program (19)). In Example 5.24, we saw that

σ = {mx/1,kx/0} |= smt({(1

2
x2 + 1

2
x − 1)+}). Hence, according to Theorem 5.26, σn ◦σ = {x/(mx ·

n+kx)}◦{mx/1,kx/0}with xσnσ = n solves the limit problem {(1

2
x2+ 1

2
x−1)+}. This corresponds

to the solution in (35). As explained in Example 5.9, this proves rcP(n) ∈ Ω(n4) for the program
P = {(19)} and hence, also for the program in Figure 1b.

To integrate Theorem 5.26 into the calculus of Section 5.2, we proceed as follows. Whenever the

current limit problem L for a rule α only contains polynomial arithmetic expressions, one tries to

find a solution for smtω (L) or smtc,i (L) where i is initially set to the degree of the cost c of the

rule α and decremented until the SMT solver finds a solution. As soon as a solution is found, one

can either return the resulting family of substitutions that solves L or keep searching for a better

solution. To this end, one can either backtrack or continue simplifying L via . Similarly, if the

SMT solver does not find a solution one can either backtrack or keep simplifying L via .

Note that the intention of Theorem 5.26 and its integration into is not to add more power

to . Instead, as often as possible one should delegate the search for a solution to SMT solvers

(which are very efficient in solving search problems) instead of relying on heuristics. This may,

of course, also lead to better results in cases where the heuristics used for are not ideal. For

example, consider a simplified rule with cost x · (1 − tv2) and guard −2 < tv < 2. The heuristic

discussed at the end of Section 5.2 would instantiate tv with the bounds implied by the guard,

i.e., it would apply the substitution θ = {tv/1} or θ = {tv/−1}, resulting in the unsolvable limit

problem {(x · (1 − tv2))+} θ = {0+}. In contrast, our SMT encoding allows us to find the solution

{tv/0,x/n} which results in a linear lower bound.

Example 5.28 (Example 4.12 Continued). For the simplified facSum program with the rule (32),

we obtain the initial limit problem

{(x − 1)+,
(

1

2
x2 + 3

2
x − 2

)+}.
Using σn = {x/(mx · n + kx)}, its SMT encoding is

mx > 0 ∧
((
mx · kx + 3

2
mx > 0 ∧ 1

2
m2

x = 0

)
∨ 1

2
m2

x > 0

)
.

An SMT solver can find a model like σ = {mx/1, kx/0}, for example. This results in the solution

σn ◦ σ = {x/(mxσ · n + kxσ)} = {x/n}.
Applying it to the cost

1

2
x2 + 3

2
x − 2 yields

1

2
n2 + 3

2
n − 2 ∈ Ω(n2). By Theorem 5.5, this proves

rc{(32)}(|xσnσ |) = rc{(32)}(n) ∈ Ω(n2). By the soundness of the program simplification in Sections

3 and 4, we obtain rcP(n) ∈ Ω(n2) for the original integer program P from Example 4.9.

6 EXPERIMENTS

To evaluate the performance of our approach, we implemented it in the tool LoAT (“Loop Accel-

eration Tool”)
22
using the recurrence solver PURRS [8] and the SMT solver Z3 [21]. We evaluated

LoAT on the 689 benchmark integer programs from the evaluation [49] of the tool KoAT [14] which
infers upper runtime bounds for integer programs. On average, the ITSs in the collection [49] have

a size of 23.4 rules. In addition, the results of running LoAT on the examples from this paper can

be found at [33].

22
Initially, LoAT stood for “Lower Bounds Analysis Tool”, but we renamed it to reflect that LoAT’s loop acceleration tech-

niques can be used for several purposes, see [32].

Inferring Lower Runtime Bounds for Integer Programs 41

LoAT

B
e
s
t
U
p
p
e
r
B
o
u
n
d

rcP(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) Ω(n5) EXP Ω(ω)
O(1) 135 − − − − − − −
O(n) 41 146 − − − − − −
O(n2) 7 14 54 − − − − −
O(n3) 1 1 − 9 − − − −
O(n4) − − − − 2 − − −
O(n5) − − − 1 − − − −
EXP − − − − − − 13 −
IN F 32 18 2 − − − − 213

Table 1. Best Upper Bound vs. LoAT

Comparison with Upper Bound Provers. As we are not aware of any other tool to compute worst-

case lower bounds for integer programs, we compared our results with the asymptotically smallest

results of the toolsKoAT,CoFloCo [26, 27], Loopus [57], and RanK [6], that compute upper runtime

bounds for integer programs.

The results of running all tools on an Azure F4s v2 instance with a timeout of 60 seconds per

example are shown in Table 1. LoAT inferred non-constant lower bounds for 473 examples. For

135 additional examples, the upper bound rcP(n) ∈ O(1) was proved and thus, the lower bound

Ω(1) inferred by LoAT is optimal. Thus, LoAT finds non-trivial or optimal bounds on 473 + 135

= 608 (88.2 %) of all examples. For 572 examples (83.0 %), the inferred bounds are asymptotically

tight (e.g., lower and upper bounds coincide). Whenever an exponential upper bound was proved,

LoAT also proved an exponential lower bound (i.e., rcP(n) ∈ Ω(kn) for some k > 1). It proved the

existence of executions with unbounded length in 213 cases (this includes both non-terminating

examples and examples whose runtime depends on temporary variables). On average, LoAT re-

quired 2 seconds per example. For 10 of the 689 examples, LoAT could not finish its analysis due

to the timeout. The reason for most timeouts is that the number of rules gets too large during the

program simplification and hence, LoAT fails to compute a simplified program in time.

One reason why the bounds inferred by LoAT do not always coincide with the upper bounds

obtained by other tools may of course be that these upper bounds are not necessarily tight. If the

lower bound is too small, then in our experience the most common reasons for imprecision are

the following: For some loops, LoAT fails to find (non-trivial) metering functions. But if LoAT finds

a metering function, then the precision of the metering function is usually very good. Another

reason for imprecision are unsuitable instantiations of temporary variables. Finally, LoAT heuris-

tically deletes rules from the analyzed program if the number of rules becomes too large, which is

another common source of imprecision. Nevertheless, our experiments show that optimal lower

bounds are inferred for the large majority of examples.

Evaluating Individual Contributions and Comparison with Best-Case Lower Bounds. In a second

experiment, we performed an individual evaluation of the main contributions of this paper that

are new compared to our earlier paper [29]. As baseline, we took LoAT-Basic, the version of LoAT

42 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

Tool Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω) time (s)

LoAT-Basic 269 159 42 2 2 5 210 2.29

LoAT-Cond 268 159 43 3 2 5 209 2.32

LoAT-Rec 227 175 55 6 2 13 211 2.44

LoAT-SMT 263 161 43 2 2 5 213 1.68

LoAT-Just-SMT 263 161 43 2 2 5 213 1.64

LoAT 216 179 56 10 2 13 213 1.91

CoFloCo 454 189 40 6 0 0 0 2.00

Table 2. Evaluating Individual Contributions in LoAT and Comparison with Best-Case Lower Bounds

implementing the techniques in [29].
23

Using LoAT-Basic as a starting point, we considered the

following four variants:

• LoAT-Cond adds support for conditional metering functions, as introduced in Theorem 3.4.

• LoAT-Rec is LoAT-Basic extended by the handling of non-tail-recursive programs (described

in Section 4).

• LoAT-SMT is like LoAT-Basic, but it applies the SMT encoding of limit problems from Sec-

tion 5.3 in addition to the calculus for the transformation of limit problems that is used in

LoAT-Basic. For this combination, we use a strategywhich first simplifies limit problemswith

the calculus if the guard or the cost of the analyzed simplified rule contains non-polynomial

arithmetic. However, the SMT encoding is used whenever it is applicable. Whenever there

was a choice during the application of the calculus, we backtrack afterwards and apply the

calculus again in order to examine the remaining possibilities. The analysis of the rule ter-

minates as soon as LoAT proves a bound which is asymptotically equal to its cost function,

when the timeout specified by the user expires, or when there are no further possibilities to

backtrack (where we use suitable heuristics to ensure that case (C) of our calculus is only

applied with finitely many substitutions). Then the largest bound found so far is returned as

the result.

• LoAT-JUST-SMT is like LoAT-SMT, but in contrast to LoAT-SMT, LoAT-JUST-SMT never ap-

plies the calculus again once the SMT encoding is applicable.

Note that each of these variants only adds one single new contribution to LoAT-Basic, whereas the
other new contributions are disabled. The intention of the last variant is to compare the power

and performance of the calculus from Section 5.2 with the SMT encoding of Section 5.3 (whereas

LoAT-SMT represents the combination of both techniques). However, as the novel SMT encoding

only applies to polynomial limit problems, LoAT-JUST-SMT still uses the calculus from Section 5.2

for non-polynomial limit problems.

The results of our experiments are summarized in Table 2: LoAT-Basic already uses an opti-

mization from [29] which is similar to (but weaker than) the conditional metering functions of

Section 3.1. Conditional metering functions do not only improve the formalization and presenta-

tion of our approach (by integrating the optimization of [29] into our concept of metering func-

tions), but they also lead to a minimal change in power: The detailed experimental results on our

website [33] show that LoAT-Cond deduces better (i.e., larger) asymptotic bounds in eight cases,

23
As we refactored large parts of the code and improved some heuristics since publishing that paper, LoAT-Basic is already

more powerful than the version of LoAT from 2016 that we used in [29].

Inferring Lower Runtime Bounds for Integer Programs 43

whereas LoAT-Basic deduces better asymptotic bounds in four cases. Adding support for arbitrary

recursion allows LoAT to infer non-constant bounds for 41 of the 50 non-tail-recursive examples

in the collection (where a constant upper bound was proved for three of these examples). The full

version of LoAT even obtains non-constant bounds for 44 of these examples. The SMT encoding of

limit problems improves the performance compared to LoAT-Basic by 26%. Moreover, LoAT-SMT
deduces a better asymptotic bound than LoAT-Basic in eight cases, whereas LoAT-Basic infers a bet-
ter asymptotic bound in one case. The configurations LoAT-SMT and LoAT-Just-SMT yield identical
results. So when disregarding limit problems with non-polynomial arithmetic, the calculus from

Section 5.2 is outperformed by the novel SMT encoding from Section 5.3 in our experiments on the

examples from [49]. However, this is not true in general, as shown by Example 5.25. Moreover, the

calculus from Section 5.2 is still required for the analysis of limit problems with non-polynomial

arithmetic, i.e., for all examples where LoAT proves exponential lower bounds. In LoAT (i.e., in the

last line of Table 2), we extended LoAT-Basic by all new contributions. This results in a significant

improvement in both power and runtime.

Finally, in the last row of Table 2 we used the tool CoFloCo [26, 27] to compute best-case lower
bounds. While the asymptotic bounds obtained from LoAT and CoFloCo coincide for 335 of the

689 examples, the results of the two tools are of course not directly comparable, since LoAT in-

fers worst-case lower bounds, but in general, a worst-case lower bound is not a valid best-case

lower bound. Moreover, CoFloCo analyzes different program paths (so-called chains) separately
and infers individual lower bounds for them. However, similar to the experimental evaluation of

CoFloCo in [27], the results in the last row of Table 2 do not take the preconditions of the differ-

ent chains into account, but they are simply the maximum lower bound of all chains. Thus, they

are not always asymptotic best-case lower bounds for the whole program. So the purpose of the

last row is only to indicate that LoAT’s performance is also convincing when comparing it to the

performance of other tools for the inference of (other forms of) lower bounds.

For a detailed experimental evaluation of our implementation as well as a pre-compiled binary

of LoAT we refer to [33]. The source code of LoAT is freely available at [52].

7 RELATEDWORK

While there are many techniques to infer upper bounds on the worst-case complexity of integer

programs (e.g., [1–8, 10, 14, 19, 20, 26, 27, 39, 42, 45–47, 57, 58]), there is little work on lower
bounds. In [7], it is briefly mentioned that their technique could also be adapted to infer lower

instead of upper bounds for abstract cost rules, i.e., integer procedures with (possibly multiple)

outputs. However, this only considers best-case lower bounds instead of worst-case lower bounds

as in our technique. Upper and lower bounds for cost relations are inferred in [4, 27]. Cost rela-

tions extend recurrence equations such that, e.g., non-determinism can be modeled. However, this

technique also considers best-case lower bounds only. A method for best-case lower bounds for

logic programs is presented in [22].

Note that techniques to infer lower bounds on the best-case complexity differ fundamentally

from techniques for the inference of worst-case lower bounds. To deduce best-case lower bounds,

one has to prove that a certain bound holds for every program run. Thus, as in the case ofworst-case

upper bounds, over-approximating techniques are used to ensure that the proven bound covers all

program runs, i.e., even though such techniques under-approximate the runtime of the program,

they over-approximate the set of all program runs.

In contrast, techniques to infer lower bounds on the worst-case complexity have to identify

families of inputs (i.e., witnesses) that result in expensive program runs. Thus, for the inference

44 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

of worst-case lower bounds, over-approximations are usually unsound, since one has to ensure

that the witness of the proven lower bound corresponds to “real” program runs. Thus, under-
approximating techniques have to be used in order to infer lower bounds on the worst-case com-

plexity.

Nevertheless, our approach has certain aspects in common with the technique in [4], since [4]

also uses recurrence solving to compute a closed form for the costs of several consecutive appli-

cations of a cost equation with direct recursion, which corresponds to a simple loop or simple

recursion in our setting. However, as mentioned above, the analyses for best-case lower bounds

from [4, 27] have to reason about all program runs. Thus, there the handling of non-determinism

is challenging as all possible non-deterministic choices have to be taken into account. In contrast,

we can treat temporary variables (which we use to model non-determinism) as constants when

computing the iterated update and cost. Thus, our iterated update and cost only represent eval-

uations where temporary variables are instantiated with the same values in each iteration. This

restriction is sound in our setting, as we only need to prove the existence of a certain family of

program runs, i.e., we do not have to reason about all program runs. To reason about evaluations

where the valuation of the temporary variables changes, we can instantiate themwith expressions

containing program variables via Instantiation (Theorem 3.12).

Since our computation of the iterated update relies on the existence of a single deterministic

update, it is not applicable to simple recursions, which also prevents us from computing iterated

costs when accelerating non-tail-recursive rules in Theorem 4.5. Thus, our handling of simple

recursions may be improved by incorporating ideas from [4, 27] for the inference of bounds of

cost equations with multiple recursive calls.

In [30], we introduced two techniques to infer worst-case lower bounds for term rewrite systems

(TRSs). However, TRSs differ substantially from the programs considered here, since they do not

allow integers and have no notion of a “program start”. Thus, the techniques from [30] are very

different to the present paper.

In contrast to the techniques for the computation of symbolic runtime bounds, [15] presents a

technique to generate test-cases that trigger the worst-case execution time of programs. The idea

is to execute the program for small inputs, observe the required runtime, and then generalize those

inputs that lead to expensive runs. In this way, one obtains generators which can be used to con-

struct larger inputs that presumably result in expensive runs as well. In contrast to the technique

presented in the current paper, [15] operates on Java, i.e., it also supports data structures. However,
[15] does not try to infer symbolic bounds, which is the main purpose of our technique. Never-

theless, ideas from [15] could be integrated into our framework. For example, a similar approach

could be used in order to apply Instantiation (Theorem 3.12) in a way that leads to expensive runs.

The approach from [60] can synthesize worst-case inputs, but the size of the input needs to

be fixed a priori. This approach is fundamentally different from our technique to deduce sym-
bolic worst-case bounds. However, the inputs that are synthesized by the technique from [60] are

provably optimal, whereas our worst-case lower bounds are correct, but not necessarily tight.

Inferring bounds on the runtime of programs has also been investigated for probabilistic pro-

grams. While there exist several approaches to find upper bounds on the expected runtime of such

programs, again there are only very few works that consider the inference of lower bounds on the

expected runtime of probabilistic programs [34, 36, 40, 54].

To simplify programs, we use Loop Acceleration to summarize the effect of applying a simple loop

(or a simple recursion) repeatedly. Acceleration is mostly used in over-approximating settings (e.g.,

[25, 38, 48, 53, 59]), where handling non-determinism is challenging, as loop summaries have to

Inferring Lower Runtime Bounds for Integer Programs 45

cover all possible non-deterministic choices. However, our technique is under-approximating, i.e.,

we can instantiate non-deterministic values arbitrarily.

The under-approximating acceleration technique in [50] uses quantifier elimination, whereas

our acceleration technique relies on metering functions. In [32], we generalized the loop acceler-

ation technique from [50] in order to prove non-termination of integer programs. In future work,

we will examine whether ideas from [32, 50] can also be incorporated into our framework for the

inference of lower runtime bounds.

Another related approach (see, e.g., [11, 12, 35]) accelerates loops whose transitive closure can

be expressed in Presburger Arithmetic. In particular, this is the case for loops whose transition

relation can be described by octagons, i.e., conjunctions of inequations of the form ±x ± y ≤ c
where x ,y are variables and c ∈ Z, and for loops with Presburger-definable guards and affine

updates µ(x) = A · x + c with the finite monoid property, i.e., where the set {Ai | i ∈ N} is finite. In
contrast, our acceleration technique does not necessarily compute the transitive closure of loops

exactly. The reason is that our metering functions may be imprecise and that we approximate non-

determinism by assuming that the values of temporary variables remain unchanged across loop

iterations. On the other hand, our approach can also handle loops where the transitive closure

cannot be expressed in Presburger Arithmetic.

The paper [1] presents a technique to infer asymptotic bounds from concrete bounds with a

so-called context constraint φ, i.e., bounds of the form φ =⇒ rt ≤ e or φ =⇒ rt ≥ e . Here, rt
is the runtime of the program and e is a cost expression. These expressions are orthogonal to the

expressions that are supported by our technique from Section 5 (e.g., e may contain maximum and

logarithm, but negative numbers are only allowed in sub-expressions of the form max(0, . . .)). The
approach in [1] infers multi-variate asymptotic bounds, whereas our technique infers univariate

bounds which are only parameterized in the size of the input. Moreover, [1] does not aim to elimi-

nate the context constraint, i.e., the resulting asymptotic bounds are of the form φ =⇒ rt ∈ O(b)
or φ =⇒ rt ∈ Ω(b). In contrast, eliminating the context constraints φ is one of the main motiva-

tions for our technique to deduce asymptotic bounds from concrete bounds.

Our SMT encoding for limit problems from Section 5.3 inspired parts of the work from [31],

where we used a similar encoding to prove that termination is decidable for a certain class of

integer loops. As in Section 5.3, the underlying idea of [31] is to abstract the loop guard by focusing

on its behavior “for large enough values of n”. In the present work, the variable n is the parameter

of the family of substitutions that solves the limit problem. In [31], n represents the number of

loop iterations. Due to the restricted form of the loops in [31], their SMT encoding only requires

linear integer arithmetic, such that we obtain a decision procedure for termination.

Finally, in [17], our concept of metering functions has been adapted in order to synthesize in-

variants. Note that invariant inference and complexity analysis are closely related: Invariant infer-

ence techniques can be used to compute complexity bounds by introducing an additional counter

that is incremented in each step and deducing an invariant that bounds its value (see, e.g., [57]).

Conversely, complexity analysis techniques can be used to bound the value of any arithmetic ex-

pression b (i.e., to compute invariants) by choosing the costs of transitions in a way that reflects

changes of the value of b (see, e.g., [55, 57]).

8 CONCLUSION AND FUTUREWORK

We introduced the first technique to infer lower bounds on the worst-case runtime complexity of

integer programs, based on a modular program simplification framework. The main simplification

techniques are Loop Acceleration and Recursion Acceleration, which rely on recurrence solving and

46 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

metering functions, an adaptation of classical ranking functions. By eliminating loops and function

symbols via Chaining and Partial Deletion, we eventually obtain simplified programs. We presented

a technique to infer asymptotic lower bounds from simplified programs, which can also be used to

find program vulnerabilities. An experimental evaluation with our tool LoAT demonstrates the

applicability of our technique in practice, see [33, 52].

In comparison to the preliminary version of our paper from [29], we showed how to deduce

conditional metering functions, we improved our program simplification by eliminating variables

from the program, we extended our approach to non-tail-recursive programs, and we improved

our technique to infer asymptotic lower bounds for simplified programs by an SMT encoding. See

Section 1 for a full list of the contributions of the current paper compared to [29].

There are several interesting directions for future work. First of all, one could couple LoATwith

invariant inference techniques to improve its power. Furthermore, LoAT’s heuristics to apply In-
stantiation are relatively simple and should be improved, e.g., by incorporating ideas from [15].

Another interesting question is to what extent LoAT can benefit from more sophisticated tech-

niques to infer metering functions. Possibilities include the inference of logarithmic or super-linear

polynomial metering functions, but one could also adapt the quasi-ranking functions from [51] to

our setting. Apart from that, we plan to investigate if our approach can benefit from alternative

loop acceleration techniques [12, 32, 50]. Moreover, as mentioned in Section 7, ideas from [4, 27]

could be adapted to under-approximate the costs of repeatedly applying simple recursions more

precisely when accelerating them. Finally, one could generalize our program model to improve its

expressiveness. In particular, one could consider the return values of auxiliary function calls (by

allowing terms with nested occurrences of functions). Moreover, one could combine our technique

with ideas from [30] for the inference of lower bounds for term rewrite systems (i.e., programs op-

erating on tree-shaped data structures) to analyze programs whose complexity depends on both

integers and data structures.

ACKNOWLEDGMENTS

We thank Samir Genaim, Jan Böker, and Jera Hensel for discussions and comments. We are also

very grateful to the anonymous reviewers for many helpful suggestions.

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-

tion) - 389792660 as part of TRR 248 (https://perspicuous-computing.science) and by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) - 235950644 (Project GI 274/6-2).

A PROOF OF LEMMA 5.8

Lemma 5.8 is based on Lemma 24 from our paper [30]. However, since the lemmas are slightly

different and since the proof for part (b) was omitted from [30], we provide the proof of Lemma 5.8

in this appendix. Moreover, part (c) of the lemma was not present in [30].

Lemma 5.8 (Bounds for FunctionComposition). Let f : N→ R≥0∪{ω} andд : N→ Nwhere
д(n) ∈ O(nd) for some d ∈ N with d > 0. Moreover, let f (n) be weakly monotonically increasing for
large enough n.

(a) If д(n) is strictly monotonically increasing for large enough n and f (д(n)) ∈ Ω(nk) with k ∈ N,
then f (n) ∈ Ω(n k

d).
(b) If д(n) is strictly monotonically increasing for large enough n and f (д(n)) ∈ Ω(kn) with k > 1,

then f (n) ∈ Ω(e d√n) for some number e ∈ R with e > 1.

Inferring Lower Runtime Bounds for Integer Programs 47

(c) If д(n) ∈ O(1) and f (д(n)) < O(1), then f (n) ∈ Ω(ω).

Proof. For any n0 ∈ N, let N≥n0
= {n ∈ N | n ≥ n0}. For any (total) function h : M → N≥n0

withM ⊆ N whereM is infinite, we define ⌊h⌋(n) : N≥min(M) → N≥n0
and ⌈h⌉(n) : N→ N≥n0

by:

⌊h⌋(n) = h(max{x ∈ M | x ≤ n})
⌈h⌉(n) = h(min{x ∈ M | x ≥ n})

Note that infinity of h’s domain M ensures that there is always an x ∈ M with x ≥ n. Since ⌊h⌋ is
only defined on N≥min(M), there is always an x ∈ M with x ≤ n for any n ∈ N≥min(M).

To prove the lemma, as in the proof of [30, Lemma 24] we first show that if h : M → N≥n0
is

strictly monotonically increasing and surjective, then

⌊h⌋(n) ∈ {⌈h⌉(n), ⌈h⌉(n) − 1} for all n ∈ N≥min(M) (38)

Afterwards, we prove (a) – (c) separately.

Claim 1. (38) holds, i.e., ⌊h⌋(n) ∈ {⌈h⌉(n), ⌈h⌉(n) − 1}
To prove (38), let n ∈ N≥min(M). If n ∈ M , then clearly ⌊h⌋(n) = ⌈h⌉(n). If n < M , then let

ň = max{x ∈ M | x < n} and n̂ = min{x ∈ M | x > n}. Thus, ň < n < n̂. Strict monotonicity

of h implies h(ň) < h(n̂). Assume that h(n̂) − h(ň) > 1. Then by surjectivity of h, there is an

n ∈ M with h(n) = h(ň) + 1 and thus h(ň) < h(n) < h(n̂). By strict monotonicity of h, we obtain
ň < n < n̂. Since n < M and n ∈ M implies n , n, we either have n < n which contradicts

ň = max{ň ∈ M | ň < n} or n > n which contradicts n̂ = min{n̂ ∈ M | n̂ > n}. Hence,
⌊h⌋(n) = h(ň) = h(n̂) − 1 = ⌈h⌉(n) − 1, which proves (38).

Claim 2. Lemma 5.8(a) holds, i.e., f (д(n)) ∈ Ω(nk) implies f (n) ∈ Ω(n k
d)

For the proof of this claim, we slightly adapt the corresponding proof of [30, Lemma 24] to

arbitrary functions f and д. Note that д(n) ∈ O(nd) and f (д(n)) ∈ Ω(nk) imply

∃n0,m,m
′ > 0. ∀n ∈ N≥n0

. д(n) ≤ m · nd ∧m′ · nk ≤ f (д(n)).
We can choose n0 large enough such that f |N≥n

0

is weakly and д |N≥n
0

is strictly monotonically

increasing, where for any function h : N→ N and any M ⊆ N, h |M denotes the restriction of h
to M . Let M = {д(n) | n ≥ n0} and let д−1

: M → N≥n0
be the function such that д(д−1(n)) = n.

Note that д−1
exists, since strict monotonicity of д implies injectivity of д. By instantiating n

with д−1(n), we obtain
∃n0,m,m

′ > 0. ∀n ∈ M . д(д−1(n)) ≤ m · (д−1(n))d ∧m′ · (д−1(n))k ≤ f (д(д−1(n)))
which simplifies to

∃n0,m,m
′ > 0. ∀n ∈ M . n ≤ m · (д−1(n))d ∧m′ · (д−1(n))k ≤ f (n).

When dividing bym and taking the d-th root on both sides of the first inequation, we get

∃n0,m,m
′ > 0. ∀n ∈ M . d

√ n
m ≤ д−1(n) ∧m′ · (д−1(n))k ≤ f (n).

By monotonicity of
d
√ n

m and f (n) in n, this implies

∃n0,m,m
′ > 0. ∀n ∈ N≥д(n0).

d
√ n

m ≤ ⌈д−1⌉(n) ∧m′ · (⌊д−1⌋(n))k ≤ f (n).
Note that д |N≥n

0

is total and hence, д−1
: M → N≥n0

is surjective. Moreover, by strict mono-

tonicity of д |N≥n
0

, M is infinite and д−1
is also strictly monotonically increasing. Hence, by (38)

we get ⌈д−1⌉(n) ≤ ⌊д−1⌋(n) + 1 for all n ∈ N≥д(n0). Thus,

∃n0,m,m
′ > 0. ∀n ∈ N≥д(n0).

d
√ n

m − 1 ≤ ⌊д−1⌋(n) ∧m′ · (⌊д−1⌋(n))k ≤ f (n)

48 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

which implies

∃n0,m,m
′ > 0. ∀n ∈ N≥д(n0). m

′ ·
(
d
√ n

m − 1

)k
≤ f (n).

Therefore, ∃m > 0. f (n) ∈ Ω

((
d
√ n

m − 1

)k)
and thus, f (n) ∈ Ω

(
n
k
d

)
.

Claim 3. Lemma 5.8(b) holds, i.e., f (д(n)) ∈ Ω(kn) implies f (n) ∈ Ω(e d√n) for some e > 1

The proof is analogous to the proof of the case f (д(n)) ∈ Ω(nk), but it was not given in [30].

Here, д(n) ∈ O(nd) and f (д(n)) ∈ Ω(kn) imply

∃n0,m,m
′ > 0. ∀n ∈ N≥n0

. д(n) ≤ m · nd ∧m′ · kn ≤ f (д(n)).
Again, we can choose n0 large enough such that f |N≥n

0

is weakly and д |N≥n
0

is strictly mono-

tonically increasing. As in the proof of the previous claim, let M = {д(n) | n ≥ n0} and let

д−1
: M → N≥n0

be the function such that д(д−1(n)) = n. By instantiating n with д−1(n), we
obtain

∃n0,m,m
′ > 0. ∀n ∈ M . д(д−1(n)) ≤ m · (д−1(n))d ∧m′ · kд−1(n) ≤ f (д(д−1(n)))

which simplifies to

∃n0,m,m
′ > 0. ∀n ∈ M . n ≤ m · (д−1(n))d ∧m′ · kд−1(n) ≤ f (n).

When dividing bym and taking the d-th root on both sides of the first inequation, we get

∃n0,m,m
′ > 0. ∀n ∈ M . d

√ n
m ≤ д−1(n) ∧m′ · kд−1(n) ≤ f (n).

By monotonicity of
d
√ n

m and f (n) in n, this implies

∃n0,m,m
′ > 0. ∀n ∈ N≥д(n0).

d
√ n

m ≤ ⌈д−1⌉(n) ∧m′ · k ⌊д−1 ⌋(n) ≤ f (n).

As in the proof of Claim 2, д |N≥n
0

is total and hence, д−1
: M → N≥n0

is surjective. Moreover,

by strict monotonicity of д |N≥n
0

, M is infinite and д−1
is also strictly monotonically increasing.

Hence, by (38) we get ⌈д−1⌉(n) ≤ ⌊д−1⌋(n) + 1 for all n ∈ N≥д(n0). Thus,

∃n0,m,m
′ > 0. ∀n ∈ N≥д(n0).

d
√ n

m − 1 ≤ ⌊д−1⌋(n) ∧m′ · k ⌊д−1 ⌋(n) ≤ f (n).
Since k > 1, this implies

∃n0,m,m
′ > 0. ∀n ∈ N≥д(n0). m

′ · k d
√

n
m −1 ≤ f (n)

which is equivalent to

∃n0,m,m
′ > 0. ∀n ∈ N≥д(n0).

m′

k · k d
√

n
m ≤ f (n)

Sincem′ > 0 and k > 1, we havem′′ = m′

k > 0 and thus we get

∃n0,m,m
′′ > 0. ∀n ∈ N≥д(n0). m

′′ · k d
√

n
m ≤ f (n)

which is equivalent to

∃n0,m,m
′′ > 0. ∀n ∈ N≥д(n0). m

′′ · k
d√n
d√m ≤ f (n)

Sincem > 0, we have r = d
√
m > 0 and hence:

∃n0, r ,m
′′ > 0. ∀n ∈ N≥д(n0). m

′′ · k
d√n
r ≤ f (n)

Inferring Lower Runtime Bounds for Integer Programs 49

which is equivalent to

∃n0, r ,m
′′ > 0. ∀n ∈ N≥д(n0). m

′′ · r√
k

d√n
≤ f (n)

Finally, k > 1 implies e =
r√
k > 1 and we obtain

∃n0,m
′′ > 0, e > 1. ∀n ∈ N≥д(n0). m

′′ · e d√n ≤ f (n)
which implies

∃e > 1. f (n) ∈ Ω(e d√n)

Claim 4. Lemma 5.8(c) holds, i.e., д(n) ∈ O(1) and f (д(n)) < O(1) implies f (n) ∈ Ω(ω)
Note that f (д(n)) < O(1) means that

∀m ∈ N. ∃n ∈ N. f (д(n)) > m
By д(n) ∈ O(1) we have

∃m′ ∈ N. ∀n ∈ N. д(n) ≤ m′

As f is weakly monotonic, we have f (д(n)) ≤ f (m′) for all n. Hence, we get
∃m′ ∈ N. ∀m ∈ N. f (m′) > m

This implies that f (m′) = ω. By weak monotonicity of f , we obtain

∃m′ ∈ N. ∀n ≥ m′. f (n) = ω
which means f (n) ∈ Ω(ω). □

REFERENCES
[1] Elvira Albert, Diego E. Alonso-Blas, Puri Arenas, Samir Genaim, and Germán Puebla. 2009. Asymptotic Resource

Usage Bounds. In APLAS ’09 (LNCS 5904). 294–310.
[2] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. 2011. Closed-Form Upper Bounds in Static Cost

Analysis. JAR 46, 2 (2011), 161–203.

[3] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. 2012. Cost Analysis of Object-

Oriented Bytecode Programs. TCS 413, 1 (2012), 142–159.
[4] Elvira Albert, Samir Genaim, and Abu N. Masud. 2013. On the Inference of Resource Usage Upper and Lower Bounds.

ACM TOCL 14, 3 (2013), 22:1–22:35.

[5] Elvira Albert, Miquel Bofill, Cristina Borralleras, Enrique Martin-Martin, and Albert Rubio. 2019. Resource Analysis

Driven by (Conditional) Termination Proofs. TPLP 19, 5-6 (2019), 722–739.

[6] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. 2010. Multi-Dimensional Rankings, Program Ter-

mination, and Complexity Bounds of Flowchart Programs. In SAS ’10 (LNCS 6337). 117–133.
[7] Diego E. Alonso-Blas and Samir Genaim. 2012. On the Limits of the Classical Approach to Cost Analysis. In SAS ’12

(LNCS 7460). 405–421.
[8] Roberto Bagnara, Andrea Pescetti, Alessandro Zaccagnini, and Enea Zaffanella. 2005. PURRS: Towards Computer

Algebra Support for Fully Automatic Worst-Case Complexity Analysis. CoRR abs/cs/0512056 (2005).

[9] Amir M. Ben-Amram and Samir Genaim. 2014. Ranking Functions for Linear-Constraint Loops. Journal of the ACM
61, 4 (2014), 26:1–26:55.

[10] Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. 2010. ABC: Algebraic Bound Computation

for Loops. In LPAR ’10 (LNCS 6355). 103–118.
[11] Marius Bozga, Codruta Gîrlea, and Radu Iosif. 2009. Iterating Octagons. In TACAS ’09 (LNCS 5505). 337–351.
[12] Marius Bozga, Radu Iosif, and Filip Konecný. 2010. Fast Acceleration of Ultimately Periodic Relations. In CAV ’10

(LNCS 6174). 227–242.
[13] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear Ranking with Reachability. In CAV ’05 (LNCS

3576). 491–504.
[14] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. 2016. Analyzing Runtime and

Size Complexity of Integer Programs. ACM TOPLAS 38, 4 (2016), 13:1–13:50.

50 Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl

[15] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated Test Generation forWorst-Case Complexity.

In ICSE ’09. 463–473.
[16] Rod M. Burstall and John Darlington. 1977. A Transformation System for Developing Recursive Programs. Journal

of the ACM 24, 1 (1977), 44–67.

[17] Pavel Cadek, Clemens Danninger, Moritz Sinn, and Florian Zuleger. 2018. Using Loop Bound Analysis For Invariant

Generation. In FMCAD ’18. 1–9.
[18] Peter Cameron. 2017. Polynomials Taking Integer Values. https://cameroncounts.wordpress.com/2017/01/31/

polynomials-taking-integer-values/

[19] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compositional Certified Resource Bounds. In PLDI ’15.
467–478.

[20] Quentin Carbonneaux, Jan Hoffmann, Thomas W. Reps, and Zhong Shao. 2017. Automated Resource Analysis with

Coq Proof Objects. In CAV ’17 (LNCS 10427). 64–85.
[21] Leonardo de Moura and Nikolay Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS ’08 (LNCS 4963). 337–340.
[22] Saumya Debray, Pedro López-García, Manuel V. Hermenegildo, and Nai-Wei Lin. 1997. Lower Bound Cost Estimation

for Logic Programs. In ILPS ’97. 291–305.
[23] Complexity Analysis-Based Guaranteed Execution. 2015. https://www.draper.com/news-releases/drapers-cage-

could-spot-code-vulnerable-denial-service-attacks.

[24] Stephan Falke, Deepak Kapur, and Carsten Sinz. 2012. Termination Analysis of Imperative Programs Using Bitvector

Arithmetic. In VSTTE ’12 (LNCS 7152). 261–277.
[25] Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In FMCAD ’15. 57–64.
[26] Antonio Flores-Montoya and Reiner Hähnle. 2014. Resource Analysis of Complex Programs with Cost Equations. In

APLAS ’14 (LNCS 8858). 275–295.
[27] Antonio Flores-Montoya. 2016. Upper and Lower Amortized Cost Bounds of Programs Expressed as Cost Relations.

In FM ’16 (LNCS 9995). 254–273.
[28] Space/Time Analysis for Cybersecurity (STAC). 2015. http://www.darpa.mil/program/space-time-analysis-for-

cybersecurity.

[29] Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and Jürgen Giesl. 2016. Lower Runtime Bounds for

Integer Programs. In IJCAR ’16 (LNAI 9706). 550–567.
[30] Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and Thomas Ströder. 2017. Lower Bounds for Run-

time Complexity of Term Rewriting. JAR 59, 1 (2017), 121–163.

[31] Florian Frohn and Jürgen Giesl. 2019. Termination of Triangular Integer Loops is Decidable. In CAV ’19 (LNCS 11562).
426–444.

[32] Florian Frohn and Jürgen Giesl. 2019. Proving Non-Termination via Loop Acceleration. In FMCAD ’19. 221–230.
[33] Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl. 2020. Empirical Evaluation of “Inferring Lower

Runtime Bounds for Integer Programs”. https://aprove-developers.github.io/its-lowerbounds-journal

[34] Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In VMCAI ’19
(LNCS 11388). 468–490.

[35] Pierre Ganty, Radu Iosif, and Filip Konecný. 2017. Underapproximation of Procedure Summaries for Integer Pograms.

STTT 19, 5 (2017), 565–584.

[36] Jürgen Giesl, Peter Giesl, and Marcel Hark. 2019. Computing Expected Runtimes for Constant Probability Programs.

In CADE ’19 (LNAI 11716). 269–286.
[37] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada. 2019. The Termination

and Complexity Competition. In TACAS ’19 (LNCS 11429). 156–166.
[38] Laure Gonnord and Nicolas Halbwachs. 2006. Combining Widening and Acceleration in Linear Relation Analysis. In

SAS ’06 (LNCS 4134). 144–160.
[39] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. 2009. SPEED: Precise and Efficient Static Estimation of

Program Computational Complexity. In POPL ’09. 127–139.
[40] Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2020. Aiming Low Is Harder – In-

ductive Proof Rules for Lower Bounds on Weakest Preexpectations in Probabilistic Program Verification. PACMPL 4,

POPL (2020), 37:1–37:28.

[41] André Heck. 1996. Introduction to Maple (2. ed.). Springer.
[42] Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder. 2018. Termination and Complexity Analysis for Pro-

grams with Bitvector Arithmetic by Symbolic Execution. JLAMP 97 (2018), 105–130.

[43] Nao Hirokawa and Georg Moser. 2008. Automated Complexity Analysis Based on the Dependency Pair Method. In

IJCAR ’08 (LNAI 5195). 364–379.
[44] Dieter Hofbauer and Clemens Lautemann. 1989. Termination Proofs and the Length of Derivations. In RTA ’89 (LNCS

355). 167–177.

Inferring Lower Runtime Bounds for Integer Programs 51

[45] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Multivariate Amortized Resource Analysis. ACM TOPLAS
34, 3 (2012), 14:1–14:62.

[46] Jan Hoffmann and Zhong Shao. 2015. Type-Based Amortized Resource Analysis with Integers and Arrays. Journal of
Functional Programming 25 (2015).

[47] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In
POPL ’17. 359–373.

[48] Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan. 2014. Abstract Acceleration of General Linear

Loops. In POPL ’14. 529–540.
[49] KoAT Benchmarks 2014. https://github.com/s-falke/kittel-koat/tree/master/koat-evaluation/examples

[50] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. 2015. Under-Approximating Loops in C Programs for Fast

Counterexample Detection. FMSD 47, 1 (2015), 75–92.

[51] Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio. 2013. Proving Termination of Imperative

Programs Using Max-SMT. In FMCAD ’13. 218–225.
[52] LoAT 2019. https://github.com/aprove-developers/LoAT

[53] KumarMadhukar, BjörnWachter, Daniel Kroening,Matt Lewis, andMandayamK. Srivas. 2015. Accelerating Invariant

Generation. In FMCAD ’15. 105–111.
[54] Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.
[55] Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and Jürgen Giesl. 2017. Complexity Analysis for

Term Rewriting by Integer Transition Systems. In FroCoS ’17 (LNAI 10483). 132–150.
[56] Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method for the Synthesis of Linear Ranking Functions.

In VMCAI ’04 (LNCS 2937). 239–251.
[57] Moritz Sinn, Florian Zuleger, and Helmuth Veith. 2017. Complexity and Resource Bound Analysis of Imperative

Programs Using Difference Constraints. JAR 59, 1 (2017), 3–45.

[58] Akhilesh Srikanth, Burak Sahin, and William R. Harris. 2017. Complexity Verification Using Guided Theorem Enu-

meration. In POPL ’17. 639–652.
[59] Jan Strejcek and Marek Trtík. 2012. Abstracting Path Conditions. In ISSTA ’12. 155–165.
[60] Di Wang and Jan Hoffmann. 2019. Type-Guided Worst-Case Input Generation. PACMPL 3, POPL (2019), 13:1–13:30.

[61] Stephen Wolfram. 1992. Mathematica: A System for Doing Mathematics by Computer. SIAM Rev. 34, 3 (1992), 519–
522.

