
PHYSICAL REVIEW B 103, L041401 (2021)
Letter

Quadrupole spin polarization as signature of second-order topological superconductors
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We study theoretically second-order topological superconductors characterized by the presence of pairs
of zero-energy Majorana corner states. We uncover a quadrupole spin polarization at the system edges that
provides a striking signature to identify topological phases, thereby complementing standard approaches based
on zero-bias conductance peaks due to Majorana corner states. We consider two different classes of second-order
topological superconductors with broken time-reversal symmetry and show that both classes are characterized by
a quadrupolar structure of the spin polarization that disappears as the system passes through the topological phase
transition. This feature can be accessed experimentally using spin-polarized scanning tunneling microscopes. We
study different models hosting second-order topological phases, both analytically and numerically, and using
Keldysh techniques we provide numerical simulations of the spin-polarized currents probed by scanning tips.
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Introduction. Over the last two decades, topological in-
sulators (TIs) and superconductors (TSCs) have become a
subject of wide interest in condensed matter physics [1–8].
One of the main attractions of such systems is the existence of
topologically protected gapless (d − 1)-dimensional modes
which emerge at the boundary of a topologically nontrivial
d-dimensional bulk—a phenomenon known as bulk-boundary
correspondence [9–11]. The topological nature of the bound-
ary modes makes them insensitive to external perturbations
and disorder, which is of great importance in the context
of quantum computing [12–14]. Recently, the concept of
bulk-boundary correspondence has been generalized to a new
class of systems, called higher-order topological insulators
and superconductors [15–19]. In contrast to conventional
topological systems, the (d − 1)-dimensional boundary of an
nth order TI/TSC is gapped. Instead, it exhibits protected
gapless modes on (d − n)-dimensional boundaries. The cor-
responding gapless modes are called corner states in the case
n = d � 2.

Pioneering theoretical works on higher-order TIs have
been followed by fast progress from the experimental side
[20–30]. Particular attention has been dedicated to theoreti-
cal investigations of TSCs that host Majorana corner states
(MCSs)—Majorana bound states (MBSs) located at the cor-
ners of the system [31–53]. Nevertheless, the experimental
realization of such systems remains challenging. Usual pro-
tocols to detect MBSs in (higher-order) TSCs are based on a
direct state tomography or detection of specific features, such
as a zero-bias peak in the differential conductance. However,
such probes do not provide a clear way to distinguish between
MBSs and other types of bound states of topologically trivial
nature [54–68], which hinders unambiguous identification of

the topological phases and calls for additional experimental
signatures.

In this work, we propose a solution to the problem de-
scribed above, based on an alternative probe of second-order
TSCs (SOTSCs) with broken time-reversal symmetry, which
can be implemented with the help of scanning tunneling
microscopes (STMs) [69–78]. We consider a subclass of
SOTSCs represented by two simple models: the first one
supports two MCSs at a single pair of two opposite corners
and the second one supports four MCSs–one at every cor-
ner of the setup. The topological phase transition in such
systems is accompanied by a drastic change in the spin po-
larization structure at the system edges, which we denote as a
quadrupolar structure of the spin polarization. The analytical
arguments justifying the emergence of such edge features
are confirmed numerically. We then provide results of nu-
merical simulations of the current flowing between a local
spin-polarized probe (an STM tip) and the sample, making use
of Keldysh techniques. We expect that our approach can also
be applied to probe other higher-order topological phases with
broken time-reversal symmetry. Importantly, the proposed
signatures are stable against weak disorder and do not rely
on any other symmetry than the particle-hole symmetry of the
superconductor.

SOTSCs with two corner states. To begin with, we consider
a class of SOTSCs which supports a single pair of corner
states [31–38]. The starting point of our consideration is a
simple 2D model for a helical TSC [36], described by the
following Hamiltonian in momentum representation:

H0(k) = 2t[2 − cos(kxa) − cos(kya)]ηz − μ0ηz + �ηzτx

+ α[sin(kya)σx− sin(kxa)ηzσy]τz+�scηyσyτz. (1)
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FIG. 1. (a) Spectrum of H calculated in a geometry with OBC
along the y axis for �z = 0 (black lines), �z = 0.05t and θz = 0
(blue lines), as well as �z = 0.05t and θz = π/2 (red dots). We see
that only the x component of the Zeeman field gaps out the helical
edge modes, which are present in the system when �z = 0. (b) Prob-
ability density of the MCSs calculated in a geometry with OBCs
along both x and y axis for �z = 0.05t and θz = π/4. The inset
shows the low-energy spectrum. All the simulations are performed in
the topological regime of the phase diagram with � = 2�sc = α =
0.5t , μ0 = 0, and a = 1.

The Pauli matrices η j act on the particle-hole space, σ j on
the spin space, and τ j on a generic local degree of free-
dom (e.g., an electron orbital). We work in the Nambu basis
(ψ↑1, ψ↓1, ψ

†
↑1, ψ

†
↓1, ψ↑1̄, ψ↓1̄, ψ

†
↑1̄

, ψ
†
↓1̄

), where ψ†
στ creates

an electron of species τ and spin σ . The parameters �sc and
μ0 describe the s-wave superconducting pairing amplitude
and the chemical potential, respectively, while t , α as well as
� depend on the microscopic details of the system and a is
the lattice constant (see Refs. [79–84]). The proposed model
is characterized by a topological phase transition at � = �sc.
The region � < �sc is trivial, while � > �sc corresponds to a
helical TSC, supporting a pair of gapless edge modes. The ex-
istence of these edge modes is protected by the time-reversal
symmetry T = iσyK , obeying TH0(k)T −1 = H0(−k), with
K being the complex conjugation operator. The topological
phase diagram can be checked numerically in a geometry with
open boundary condition (OBC) along one fixed direction [see
Fig. 1(a)]. The resulting spectrum is independent of the par-
ticular choice of the OBC direction as a result of the in-plane
rotational symmetry present in the system.

The helical edge modes can be gapped out by applying an
external Zeeman field, which breaks time-reversal symmetry.
The corresponding contribution to the Hamiltonian can be
expressed as

Hz = �z[cos(θz)ηzσx + sin(θz)σy], (2)

where �z (θz) defines the strength (in-plane orientation) of the
Zeeman field. The total Hamiltonian then becomes H(k) =
H0(k) + Hz. One can easily show both numerically and ana-
lytically that edge modes are gapped out only by the Zeeman
field component that is parallel to the edge, see Fig. 1(a). As
a result, the rotational symmetry is broken down to the inver-
sion symmetry I = ηzτx, which satisfies IH(k)I−1 = H(−k).
When the Zeeman field is smaller than the bulk gap of the
TSC, �z � |� − �sc|, the boundary physics of the system
away from the corners is described by a 2 × 2 Jackiw-Rebbi
Hamiltonian [85,86]

Heff,s(ks) = vFksρz − msρy, (3)

where ρ j act on the space of helical states |�s
0,±〉 belonging to

the edge s ∈ {0, 1, 2, 3} [see Fig. 1(b)], ks denotes the momen-
tum parallel to the edge, vF the Fermi velocity. The strength
of the mass term is given by ms = �z cos(θz − θs) with θs =
sπ/2 (see Ref. [79]). We denote by |�s

0,+〉 (|�s
0,−〉) the states

which move clockwise (anticlockwise). Most importantly, as
a result of the presence of the inversion symmetry, opposite
edges are necessarily described by opposite signs of the mass
term ms (i.e., m0 = −m2 and m1 = −m3). Consequently, in a
finite-size geometry where ms is finite on every edge, there
exist two corners connecting two edges with opposite signs
of ms. Such gap inversion corners host zero-energy states
identified with MCSs of a SOTSC. Numerical evidence of
the existence of MCSs is shown in Fig. 1(b). We note that
such a SOTSC phase remains stable against arbitrary types of
disorder as long as additional perturbations do not close the
surface gap [32–34].

Quadrupolar structure of 〈S⊥〉. At low energies, the physics
of the setup is dictated by the Zeeman term. In particular,
the eigenstates of Heff,s at ks = 0 become spin-polarized and
acquire the form

|�s
±〉 = (∣∣�s

0,+
〉 ∓ i sgn(ms)

∣∣�s
0,−

〉)
/
√

2. (4)

The states |�s
±〉 correspond to the eigenvalues ±|ms| and

have the spin polarization 〈�s
± | S‖ | �s

±〉 = ±|ms|/�z, where
S‖ is the spin operator along the direction of the Zeeman
field. Similarly, one can calculate the expectation values of
the in-plane polarization perpendicular to the applied Zeeman
field, associated with the operator S⊥. In our case, we use
the rotational symmetry of H0 and notice that the gapless
states at the edge s − 1 (where we identify −1 with 3) are
related to the gapless states at the edge s via a π/2-rotation
(see Ref. [79]). Hence, the expectation values of S⊥ in the
basis of states |�s

0,±〉 is exactly equal to the expectation val-
ues of S‖ in the basis |�s−1

0,± 〉, resulting in 〈�s
± | S⊥ | �s

±〉 =
±sgn(ms)ms−1/�z. Taking into account that, restricted by the
inversion symmetry, the sign of ms changes on every second
edge, the sign of the perpendicular component of the spin
polarization of low-energy states changes on every edge. We
refer to this feature as the quadrupolar structure of the spin
polarization.

In Fig. 2, we present the results of a numerical calculation
of the spin polarization, based on the Keldysh formalism [73].
We mimic the STM measurement [74–78] by coupling the
system to a spin-polarized tip with an amplitude κ . We then
calculate the current J that flows between the system and the
tip by summing up the contribution of the states in the energy
window [−V, 0] (see Refs. [79,87–89]), where V corresponds
to the bias voltage of the STM tip. We consider two directions
of the tip polarization: one parallel and one perpendicular to
the Zeeman field. As expected from the analytical argument at
ks = 0, we find that in the topological regime, the expectation
value of S‖ is roughly constant and negative, while for S⊥ it
changes sign on every edge. These features are characteristic
for the SOTSCs close to the topological phase transition.

We note that the magnitude of spin polarization may de-
pend on the model-dependent properties of the states |�s

0,±〉
and the symmetries of H0 (see Refs. [79,90–95]). Neverthe-
less, the quadrupolar structure associated with the sign of the
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FIG. 2. Numerical calculations of the current J through the spin-
polarized STM tip for a system described by H given below Eq. (2).
The polarization of the STM is chosen to be in-plane (a) parallel to
the Zeeman field and (b) perpendicular to the Zeeman field. The out-
of-plane component is trivially zero. We see that while the parallel
component of the polarization is roughly constant and negative along
the entire boundary, the perpendicular component has a quadrupolar
structure, i.e., changes sign on every edge. The parameters of the
simulation are � = 1.75�sc = 0.44t , �z = 0.05t , κ = 2.5 · 10−4t ,
and the contribution to the current is summed over V from 0 to �z.

spin polarization at different edges depends only on the sign
of ms, which are topologically protected quantities. Hence,
observing a quadrupolar structure of the spin-polarization
provides a prominent and unique signature of the system
topology, universal for this class of SOTSCs. Moreover, the
effective edge Hamiltonian Heff,s as well as the argument
justifying the emergence of MCSs are also generally valid for
inversion-symmetric SOTSCs [31–34].

SOTSCs with four corner states. Next, we generalize our
findings to a different class of SOTSCs and consider a SOTSC
hosting a quadruplet of MCSs [39–48]. The basic ingredient
of our construction here is a minimalist version of a 2D
TI [3] proximity coupled to an s-wave superconductor with
amplitude �sc, introduced in Ref. [47]. The corresponding
Hamiltonian reads

H′
0(k) = {� − 2tx[1 − cos(kxa)] − 2ty[1 − cos(kya)]}ηzτz

− μ0ηz + [αx sin(kxa)σzτx − αy sin(kya)ηzτy]

+ �scηyσy, (5)

where Pauli matrices η j , σ j , and τ j play exactly the same role
as in Eq. (1). The parameters tx, ty, αx, αy, and � depend on the
microscopic details of the system (see Ref. [79]). For �sc = 0
the system is characterized by a topological phase transition as
a function of the parameter �. The closing of the gap occurs
at � = 0, independently of the value of αx and αy. The region
� < 0 is topologically trivial, while � > 0 is identified with
a TI phase that supports gapless helical edge modes protected
by the time-reversal symmetry T = iσyK . Again, we verify
the presence of such edge modes by analyzing the model
numerically in a geometry with OBC along one particular
axis. The result of the calculation is shown in Fig. 3(a).

At nonzero �sc, the helical edge modes are gapped out.
However, such a process acts identically on all the edges,
transforming the system into a trivial superconductor. In order
to achieve richer physics, one can apply the in-plane Zeeman
field, described by the Hamiltonian term

H′
z = �zηzσx, (6)

FIG. 3. (a) Spectrum of H′ for �sc = 0. When �z = 0 (black
lines), the system hosts a pair of gapless helical edge modes. A finite
value of �z = 0.1tx gaps out the edge modes in a geometry with
OBC along the y axis (blue lines, ks ≡ kx) but leaves the edge modes
gapless in a geometry with OBC along the x axis (red dots, ks ≡
ky). (b) Probability density of the MCSs calculated in a geometry
with OBCs along both x and y axes in a topological regime of the
phase diagram with �z = 2�sc = 0.1tx . The inset shows the low-
energy spectrum. The remaining parameters are � = ty = tx , αx =
αy = 0.3tx , μ0 = 0, and a = 1.

such that the total Hamiltonian becomes H′(k) = H′
0(k) +

H′
z. The resulting system is invariant under the inversion

symmetry I = τz. We also note that the exact orientation of
the Zeeman field in the xy plane is not important, since the
spectrum is invariant under an arbitrary rotation around the
spin quantization axis. Interestingly, the effect of the in-plane
Zeeman field alone differs strongly depending on the edge
considered. This can be seen by considering two special lines
in the momentum space, corresponding to vanishing kx or
ky, which can be used to describe the physics of the system
in a geometry with OBC along the y or x axis, respectively
(see Ref. [79]). For ky = 0, the Zeeman term leaves the edge
modes gapless, while for kx = 0 it leads to an opening of the
gap of the size �z. As a consequence, the modes propagating
along x edges of the system are gapped, while the ones along
the y edges remain gapless. The numerical verification of this
feature is shown in Fig. 3(a).

By taking into account the effect of both the supercon-
ducting and Zeeman terms, one can construct the low-energy
effective 4 × 4 edge Hamiltonian, which reads

H′
eff,s(ks) = vFksρz + msηzρx + �scηyρy. (7)

Here, we use the same convention as in Eq. (3) and denote
by ρ j the matrices acting on the states |� ′s

0,±〉, associated
with the right- and left-moving modes living on the edge
s ∈ {0, 1, 2, 3} [see Fig. 3(b)]. The matrices η j act in the
particle-hole space and ms denotes the mass originating from
the Zeeman term. The mass vanishes on two y edges: m1 =
m3 = 0, while |m0| = |m2| = �z on two x edges. Moreover,
the effective description of every edge is identical to the
low-energy physics of a topological nanowire [96–100], char-
acterized by the topological phase transition at a critical
point �z = �sc. Hence, if the Zeeman field is strong enough
such that �z > �sc, the two x edges of the system corre-
spond to two wires in the topological regime, while the two
y edges—to two trivial nanowires. As a result, four corners
of the system host four zero energy states, identified with
MCSs. The regime �z < �sc is the topologically trivial phase.
Similarly, the corner states disappear when the system moves
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FIG. 4. Numerical calculation of the current J through the spin-
polarized STM tip for a system described by H′ given below Eq. (6).
The polarization of the STM is chosen to be parallel to the Zeeman
field. (a) In the topological phase with �z = 1.75�sc, the polariza-
tion changes sign on every edge, resulting in a quadrupolar structure
similar to the one of Fig. 2. (b) In the topologically trivial phase with
�z = 0.25�sc, the polarization has the same sign along the entire
system boundary. The signal is weaker along the y edges because less
edge states contribute in the energy window. The remaining parame-
ters of the simulations are � = ty = tx , αy = αx = 0.3tx �sc = 0.1tx ,
and κ = 5 × 10−4tx . The current contributions are summed up over
V = �sc.

into the trivial region of the phase diagram with � < 0. We
also note that the topological description of the present model
does not rely on the presence of the inversion symmetry I .
Instead, the existence of four MCSs is ensured by a particular
spatial structure of the gapping processes ms and �sc generic
to this class of SOTSCs, namely, by the fact that one pair
of opposite edges has |ms| < �sc, while the other one has
|ms| > �sc.

Quadrupolar structure of 〈S‖〉. We show that, again, a spin-
polarized STM [73–78] can be used to probe the topological
phase diagram of H′

eff,s. To show this, we consider the edges
s = 0, 2 and focus on the physics at the Dirac point ks = 0,
where the phase transition occurs. We denote by |� ′s

±〉 two
eigenstates of H′

eff,s associated with two lowest magnitude
eigenvalues ±|ms − �sc|. The states |� ′s

±〉 are eigenstates of
the Zeeman term and are characterized by the polarization
〈� ′s

± | S‖ | � ′s
±〉 = ±1 for �z > �sc. The polarization of these

two states remains constant up to the point �z = �sc, at which
the gap is closed at the edges and the topological phase tran-
sition occurs. Decreasing the Zeeman term further, the spin
polarization of these two states flip, acquiring a new value
〈� ′s

± | S‖ | � ′s
±〉 = ∓1. At the same time, no gap closing occurs

at the edges s = 1, 3. As a consequence, the expectation value
of S‖ grows smoothly as a function of the ratio ratio �z/�sc

without flipping its sign. Hence, the parallel component of the
spin polarization changes sign only on two ms �= 0 edges of
the system as one goes through the topological phase tran-
sition and it acquires the quadrupolar structure only in the

topological phase but not in the trivial one (see Ref. [79]).
The expectation values of perpendicular components of the
spin polarization are zero. This feature allows one to unam-
biguously identify the topological phase transition occurring
in such a system.

These analytical predictions in low-energy approximation
are confirmed by a numerical study of H′, presented in Fig. 4,
where we calculate the current through the spin-polarized
STM tip (see Ref. [79]). When � > 0, we find that the ex-
pectation values of S‖ are always positive along the two y
edges and are positive (negative) when �z < �sc (�z > �sc)
along the two x edges. When � < 0, the description in terms
of Heff,s breaks down and the bulk signal dominates over the
edge signal. As expected, the perpendicular components of the
spin polarization is found to be negligibly small everywhere
except at the system corners. We have also checked that the
proposed feature is stable against weak disorder.

Conclusions. In this work, we analyzed the spin polar-
ization of two-dimensional topological superconductors as
a signature indicating topological phases. In particular, we
showed that a spin-polarized STM can be used to determine
the topological phase diagram in two types of second-order
topological superconductors (SOTSCs) with broken time-
reversal symmetry. In SOTSCs, which host a pair of corner
states, the distinguishing feature of the topological phase is the
quadrupolar structure of the spin polarization perpendicular
to the Zeeman field. Similarly, in SOTSCs with two pairs of
corner states, the spin polarization parallel to the Zeeman field
acquires such a quadrupolar structure only in the topological
phase. This probe can be used in conjunction with the usual
experimental protocols, such as the state tomography and the
measurement of the differential conductance, to verify the
topological nature of bound states and serves as an additional
independent signature of the topological phase transition.
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