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S1. Microscopic details of the models

In this section, we provide microscopic details on the
Hamiltonians H0 and H′0 considered in the main text of
the manuscript. We also describe possible venues for an
experimental realization of corresponding physical sys-
tems.

Firstly, we consider the Hamiltonian

H0(k) = 2t [2− cos(kxa)− cos(kya)] ηz − µ0ηz + Γηzτx

+ α [sin(kya)σx − sin(kxa)ηzσy] τz + ∆scηyσyτz (S1)

from Eq. (1) of the main text. This Hamiltonian was
first introduced in Ref. [1], where it was used to describe
a system composed of two Rashba layers that are tunnel
coupled to each other with an amplitude Γ. Here, t is the
term proportional to the kinetic energy of the electrons,
which is the same in both layers. Moreover, each layer is
assumed to have Rashba spin-orbit interactions with an
amplitude α of opposite signs. In what follows, we con-
sider t, α > 0. The chemical potential µ0 is tuned to the
spin-orbit crossing point at k = 0. Finally, the system is
coupled to a 2D s-wave superconducting Josephson junc-
tion with a phase factor of π, inducing a superconducting
pairing ∆sc via the proximity effect. The Pauli matrices
ηj act on the particle-hole space, σj – on the spin space,
and τj – on the space associated with two Rashba layers.
The lattice spacing is denoted by a.

Secondly, we consider the Hamiltonian

H′0(k) = {Γ− 2tx [1− cos(kxa)]− 2ty [1− cos(kya)]} ηzτz
− µ0ηz + [αx sin(kxa)σzτx − αy sin(kya)ηzτy] + ∆scηyσy

(S2)

from Eq. (5) of the main text. In the regime when tx ∼ ty
and αx ∼ αy, H′0 can be seen as a modified version of
the BHZ Hamiltonian [2], where we neglect the usual ki-
netic term (which does not have any effect on the topo-
logical description), but where we take into account the
anisotropy effect in the xy-plane. In this case, the degrees
of freedom associated with τj correspond to electron/hole
orbitals. The hopping amplitudes tx and ty describe anti-
symmetric components of the kinetic term, while αx and
αy are the spin-orbit interaction amplitudes. In what
follows, all these parameters are assumed to be strictly
greater than zero. The parameter Γ is responsible for
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FIG. S1. Schematic representation of the setup. The spin-
polarized STM tip biased at voltage V is brought close to the
2D sample which realizes a SOTSC. The current measured
using STM allows one to probe the topological phase diagram
of the SOTSC.

the topological phase transition between a trivial insula-
tor and the TI. In a quantum well experimental setup, Γ
depends on the thickness of the quantum well [3–5].

In addition to the BHZ model, H′0 can also be gener-
ated using a coupled wire construction [6, 7] in a strongly
anisotropic regime with ty � tx, αy � αx. In this case,
tx and αx correspond to the kinetic and Rashba terms
along the wire direction, while ty and αy correspond to
the inter-wire couplings, which are much smaller in am-
plitude.

S2. Numerical methods

In an STM measurement, the tip of the microscope,
biased at the voltage V , is brought close to the sample.
This results in a current flowing through the tip into the
sample, the amplitude of which depends on the LDOS
of the sample and on the overlap between the wavefunc-
tions of the sample and the tip. Hence, if the tip is spin-
polarized, the STM measurement will provide additional
information on the spin polarization of the sample. More-
over, the voltage difference between the sample and the
tip determines how many eigenstates contribute to the
current. We note that, alternatively, one can use spin-
polarized quantum dots [8–10], however, they are less
mobile.

In our work, we model the STM measurement and
perform numerical simulations using the Keldysh formal-
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ism [11]. To do this calculation, we consider the following
setup consisting of two parts: the sample, corresponding
to a 2D SOTSC, and the STM tip, are described by the
Hamiltonians Hsam and Htip, respectively. The STM tip
is tunnel coupled to the sample with an amplitude de-
noted by κ (see Fig. S1). The sample is simulated on
a square lattice, and the tunneling between the tip and
the sample is assumed to occur locally at one given site
of the lattice, depending on the position of the tip. The
effect of the applied voltage V induces the difference of
the chemical potential eV between the tip and the sam-
ple, with e – the electron charge. The influence of the tip
is encoded in the induced self-energy which dresses the
bare Green’s function of the sample. The resulting time-
dependent current flowing from the probe reservoir into
the sample at time t can be expressed using the Keldysh
formalism as

J(t) = −e
∫

dt′Tr
{

ΣR(t, t′)G<(t′, t)−G<(t, t′)ΣA(t′, t)
}
,

(S3)
where ΣR/A are the retarded/advanced self-energies of
the STM tip, G≶ are the fully dressed greater/lesser
Green’s functions of the sample, and e is the electron
charge which is assumed to be equal to one. In the wide
band limit and at the equilibrium, the above expression
simplifies to

J = eTr

∫
dω

2π
Σ<(ω)GR(ω)Σ<(ω)GA(ω). (S4)

In the main part of the manuscript, we mostly focus on
the features of the sample close to the boundary, and
show that they provide an alternative way to probe the
topological phase transition in some classes of SOTSCs.
We also present how the result of such a calculation
varies as a function of the tip polarization and the sample
HamiltonianHsam, describing different types of SOTSCs.
In the section“Quadrupolar structure of 〈S⊥〉” the sam-
ple Hamiltonian is taken to be H, while in the section
“Quadrupolar structure of

〈
S‖
〉
” it is H′.

S3. Analytical calculation of edge states
and spin polarization

In this section, we provide details on the analytical
calculation of the wavefunctions associated with heli-
cal states in both models considered in the main text.
We also study the effect of the perturbations, which are
added to the models in order to gap out the helical modes,
and calculate the expectation values of the spin operators
to deduce their spin polarization.

A. SOTSC with two corner states

1. Properties of the s = 0 edge

We start with the model described by the Hamiltonian
H0 from Eq. (1) of the main text [1]. We fix the chemical
potential as µ0 = 0 and take the lattice spacing a to be
equal to one. First, we consider the s = 0 edge localized
at y = 0. We focus on the physics at the point kx = 0,
which describes the solutions uniform along the x axis.
We also linearize the resulting problem around the Fermi
momenta kF,i = 0 and kF,e = arctan(α/t) [12]. In order
to do this, we switch to the basis of slowly varying left
and right movers

ψ̃↑1 = L̃↑1e
−ikF,ey + R̃1↑, ψ̃↓1 = L̃↓1 + R̃↓1e

ikF,ey,

ψ̃↑1̄ = L̃↑1̄ + R̃↑1̄e
ikF,ey, ψ̃1̄↓ = L̃1̄↓e

−ikF,ey + R̃1̄↓,
(S5)

defined such that σ̃ =↑, ↓ denotes the spin projection onto
the x axis. In this new basis, the linearized Hamiltonian
reduces to

H̃0 = αkyδz + Γηz (τxδx − τyδyσ̃z) ηz/2 + ∆scηyσ̃yτzδx,
(S6)

where the Pauli matrices δj act on the space of left and
right movers. The obtained problem can be solved by
substituting ky = −i∂y and imposing vanishing bound-
ary condition at y = 0. We find that in the region
Γ > ∆sc, the system admits two zero-energy solutions
described by the following wavefunctions:

Ψ0
0,+(y) =

1

N
(f1, g1, f

∗
1 , g
∗
1 , f1̄, g1̄, f

∗
1̄ , g
∗
1̄)
T
,

Ψ0
0,−(y) =

1

N
(g∗1 ,−f∗1 , g1,−f1, g

∗
1̄ ,−f

∗
1̄ , g1̄,−f1̄)

T
,

(S7)

where we used Eq. (S5) to go back to the original ba-

sis (ψ↑1, ψ↓1, ψ
†
↑1, ψ

†
↓1, ψ↑1̄, ψ↓1̄, ψ

†
↑1̄, ψ

†
↓1̄). Here N is the

normalization constant, and the functions fτ and gτ are
expressed as

f1 = g1̄ = −if∗1̄ = −ig∗1 = e−y/ξi − eikF,eye−y/ξe , (S8)

with ξi = α/(Γ − ∆sc) and ξe = α/∆sc. As expected
from the Kramers partner of gapless helical modes in
a helical topological superconductor, the two obtained
solutions satisfy T

∣∣Ψ0
0,±
〉

= ±
∣∣Ψ0

0,∓
〉

and P
∣∣Ψ0

0,±
〉

=∣∣Ψ0
0,±
〉
, where P = ηxK is the particle-hole symmetry

operator.
By using the particular form of the solutions at kx = 0,

obtained in Eq. (S7), we can now include perturbatively
the omitted Zeeman term as well as the first order kinetic
term in kx. To begin with, we express the term linear in
kx as 〈

Ψ0
0,±
∣∣−αkxηzσyτz ∣∣Ψ0

0,±
〉

= ±vFkx,〈
Ψ0

0,+

∣∣−αkxηzσyτz ∣∣Ψ0
0,−
〉

= 0, (S9)
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where vF = α∆/Γ is the Fermi velocity of the edge
modes. Similarly, the two components of the Zeeman
term can be expressed as〈

Ψ0
0,±
∣∣∆z cos(θz)ηzσx

∣∣Ψ0
0,±
〉

= 0,〈
Ψ0

0,+

∣∣∆z cos(θz)ηzσx
∣∣Ψ0

0,−
〉

= i∆z cos(θz),〈
Ψ0

0,±
∣∣∆z sin(θz)σy

∣∣Ψ0
0,±
〉

= 0,〈
Ψ0

0,+

∣∣∆z sin(θz)σy
∣∣Ψ0

0,−
〉

= 0. (S10)

Combining these two results, we recover the effective
Jackiw-Rebbi Hamiltonian

Heff,0(kx) = vFkxρz −∆z cos(θz)ρy, (S11)

which describes the low-energy physics of the edge s = 0.

2. Remaining edges and quadrupolar structure of the spin
polarization

Next, we obtain similar results for the three remain-
ing edges of the system by using the rotational symme-
try of the Hamiltonian H0. The rotational symmetry
operator can be explicitly written down as Urot(θ) =
exp [iθ (Lz + Sz)], where Lz = −i(x∂y − y∂x) and Sz =
ηzσz/2 are the z component of the orbital momentum
and the spin, respectively. The non-perturbed Hamil-
tonian satisfies Urot(θ)H0(k)U−1

rot (θ) = H0(k). As a
consequence, the expression of the states at the three
remaining edges can be obtained by using

∣∣Ψs
0,±
〉

=

Urot(θs)
∣∣Ψ0

0,±
〉
, where θs = sπ/2. The Zeeman term is

not invariant under the rotation symmetry transforma-
tion:

U−1
rot (θ)HzUrot(θ) = ∆z [cos(θ − θz)ηzσx + sin(θ − θz)σy] .

(S12)

Combining this with the results of Eq. (S10), we deduce
that the gap opened by the Zeeman term on the edge s
can be expressed as ms = ∆z cos(θz − θs). We note that
this gap, indeed, satisfies m0 = −m2 and m1 = −m3, as
required by the inversion symmetry.

Finally, we calculate the expectation values of the
spin operators S‖ = cos(θz)ηzσx + sin(θz)σy and S⊥ =
cos(θz)σy − sin(θz)ηzσx in the basis of the eigenstates
of the effective Hamiltonian Heff,s at ks = 0. These
states diagonalizeHz and, hence, can be found as

∣∣Φs±〉 =

(
∣∣Ψs

0,+

〉
∓ i
∣∣Ψs

0,−
〉
)/
√

2, in correspondence to the eigen-
values ±ms. By ordering these states according to their
eigenvalues, we recover the two states

∣∣Ψs
±
〉

of the main
text corresponding to the eigenvalues ±|ms|. Trivially,
the parallel component of the spin polarization of these
states is equal to〈

Ψs
±
∣∣S‖ ∣∣Ψs

±
〉

= ±|ms|/∆z = ±| cos(θz − θs)|. (S13)

In order to calculate the perpendicular in-plane compo-
nent of the polarization, we make use of the fact that〈

Φs±
∣∣S⊥ ∣∣Φs±〉 =

〈
Φs±
∣∣Urot(π/2)S‖U

−1
rot (π/2)

∣∣Φs±〉
=
〈
Φs−1
±

∣∣S‖ ∣∣Φs−1
±
〉

= ±ms−1/∆z. (S14)

(b)(a)

FIG. S2. Numerical calculation of the current J through the
spin-polarized STM tip in the topologically trivial phase of
H with Γ = 0.25∆sc = 0.06t. The polarization of the STM
is chosen to be (a) parallel to the Zeeman field and (b) per-
pendicular to the Zeeman field. The remaining parameters
are the same as in Fig. 2 of the main text. The quadrupolar
structure of J is absent for the parallel component of the spin
polarization. We observe the reminiscence of the quadrupo-
lar structure for the perpendicular component, however the
resulting current is several orders of magnitude smaller than
in the topological phase (see Fig. 2)

.

Hence, once the states on the s-edge are ordered, we ob-
tain〈

Ψs
±
∣∣S⊥ ∣∣Ψs

±
〉

= ±sgn(ms)ms−1/∆z

= ±sgn (ms) cos(θz − θs−1). (S15)

These theoretical arguments are confirmed by numer-
ical simulations of a current flowing through the spin-
polarized tip in an STM measurement setup, see Fig. 2 of
the main text for a topological phase with Γ = 1.75∆sc

and Fig. S2 for a topologically trivial phase with Γ =
0.25∆sc. We find that, in the topological phase, the cur-
rent is strongest at the edges. When the tip polarization
is parallel to the direction of the Zeeman field, the current
is approximately uniform and negative along the entire
boundary of the systems. However, when the tip po-
larization is perpendicular to the Zeeman field (but still
lying in the xy plane), the current acquires a quadrupo-
lar structure. In the trivial phase, only bulk states con-
tribute to the current and the resulting signal is a few or-
ders of magnitude smaller than in the topological phase.

B. SOTSC with four corner states

1. Properties of the s = 0 edge

In the second part of this section, we study the low-
energy physics of the model described by the Hamilto-
nian H′0(k), see Eq. (5). Similarly to Section S3 A, we
start by considering the s = 0 edge at kx = 0, corre-
sponding to a uniform solution localized at y = 0. We
fix µ0 = 0 and set a = 1. Moreover, for a moment, we
neglect the superconducting pairing term ∆sc, which we
will include later perturbatively. This allows us to focus
only on electron or hole parts of the spectrum. To de-
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scribe the electron part of the spectrum, we choose the
basis (ψ↑1, ψ↓1, ψ↑1̄, ψ↓1̄). We expand the Hamiltonian
up to second order in ky around ky = 0, which leads us
to

H′0(kx = 0, ky) ≈
(
Γ− tyk2

y

)
τz − αykyτy. (S16)

We proceed by substituting ky = −i∂y and looking for
zero-energy solutions of the resulting equation. After im-
posing vanishing boundary condition at y = 0, we find
two exponentially decaying solutions of the form

Ψ′00,+(y) =
e−y/ξ+ − e−y/ξ−

N
[1, 0, 1, 0]

T
,

Ψ′00,−(y) =
e−y/ξ+ − e−y/ξ−

N
[0, 1, 0, 1]

T
, (S17)

where N is the normalization constant. Such solutions
exist only for Γ > 0, and the parameters ξ± are given by

ξ−1
± =

1

2ty

(
αy ±

√
α2
y − 4Γty

)
. (S18)

The two states are related by the time-reversal symme-
try such that T

∣∣Ψ′00,±〉 = ±
∣∣Ψ′00,∓〉. We note that the

Hamiltonian defined in Eq. (S16) does not contain Pauli
matrices describing the spin space. Hence, the spin quan-
tization axis of the states

∣∣Ψ′00,±〉 could be also chosen
arbitrarily. Here, we decided to choose the form of the
two states as in Eq. (S17), such that it agrees with the
choice of the spin quantization axis from the main text
and the notation for the edge s = 1.

Using the expression of the two states at kx = 0, we
calculate the expectation values of the Zeeman term and
the kinetic term linear in kx. For the latter term, we
obtain 〈

Ψ′00,±
∣∣αxkxσzτx ∣∣Ψ′00,±〉 = ±vFkx,〈

Ψ′00,+
∣∣αxkxσzτx ∣∣Ψ′00,−〉 = 0, (S19)

where vF = αx. The expectation values of the Zeeman
term are 〈

Ψ′00,±
∣∣∆zσx

∣∣Ψ′00,±〉 = 0,〈
Ψ′00,+

∣∣∆zσx
∣∣Ψ′00,−〉 = ∆z. (S20)

In order to take into account the superconducting s-
wave pairing, we introduce a pair of states

∣∣Ψ′0∗0,±
〉
, which

correspond to the particle-hole partners of the states∣∣Ψ′00,±〉. These states belong to the second block of the
Nambu space. This allows us to write the effective low-
energy Hamiltonian describing the system boundary as

H′eff,0(kx) = vFkxρz + ∆zηzρx + ∆scηyρy. (S21)

Here, ηj acts in the particle-hole space and ρj – in the
space of the two edge states. We note that we recover
Eq. (7) from the main text with m0 = ∆z. Next, we
focus again on the physics at momentum kx = 0 and di-
agonalize H′eff,0. It is easy to see that the two eigenstates

corresponding to the two lowest magnitude eigenvalues
±(∆z −∆sc) can be expressed as∣∣Φ′0+〉 =

1

2

(∣∣Ψ′00,+〉+
∣∣Ψ′00,−〉− ∣∣Ψ′0∗0,+

〉
+
∣∣Ψ′0∗0,−

〉)
,∣∣Φ′0−〉 =

1

2

(∣∣Ψ′00,+〉− ∣∣Ψ′00,−〉− ∣∣Ψ′0∗0,+

〉
−
∣∣Ψ′0∗0,−

〉)
. (S22)

From this, we deduce that〈
Φ′0±
∣∣S‖ ∣∣Φ′0±〉 = ±1,

〈
Φ′0±
∣∣S⊥ ∣∣Φ′0±〉 = 0, (S23)

where S‖ = ηzσx and S⊥ = σy are the parallel and per-
pendicular components of the spin polarization, respec-
tively. Finally, we sort the states according to their en-
ergies, from negative to positive, to arrive at

∣∣Ψ′0±〉. The

initial ordering of the states
∣∣Φ′0±〉 is correct in the regime

∆z > ∆sc, but has to be changed when ∆z < ∆sc. Hence,
we deduce that in the basis of new, correctly ordered
states, the expectation values of the spin polarization be-
come equal to

〈
Ψ′0±

∣∣S‖ ∣∣Ψ′0±〉 = ±1 when ∆z > ∆sc and〈
Ψ′0±

∣∣S‖ ∣∣Ψ′0±〉 = ∓1 otherwise.

2. Properties of the s = 1 edge

In the same way as for the edge s = 0, we do the calcu-
lations on the second non-equivalent edge of the system
denoted by s = 1 by considering the physics at ky = 0.
After expanding the HamiltonianH′0(k) [see Eq. (5) from
the main text] to second order in kx, we obtain

H′0(kx, ky = 0) ≈
(
Γ− txk2

x

)
τz + αxkxσzτx. (S24)

By substituting kx = −i∂x and imposing vanishing
boundary condition at x = 0, we find two exponentially
decaying solutions at zero energy which have the form

Ψ′10,+(x) =
e−x/ξ+ − e−x/ξ−

N
[1, 0, i, 0]

T
,

Ψ′10,−(x) =
e−x/ξ+ − e−x/ξ−

N
[0, 1, 0,−i]T , (S25)

where the parameters ξ± are given by

ξ−1
± =

1

2tx

(
αx ±

√
α2
x − 4Γtx

)
. (S26)

Similarly, we find that the kinetic term is diagonal in
the basis of the two states, with〈

Ψ′10,±
∣∣αykyτy ∣∣Ψ′10,±〉 = ±vFky,〈

Ψ′10,+
∣∣αykyτy ∣∣Ψ′10,−〉 = 0, (S27)

where vF = αy. However, unlike on the edge s = 0, here
we find that all expectation values of the Zeeman term
are exactly zero〈

Ψ′10,±
∣∣∆zσx

∣∣Ψ′10,±〉 = 0,〈
Ψ′10,+

∣∣∆zσx
∣∣Ψ′10,−〉 = 0. (S28)
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We note that this feature is independent of the orienta-
tion of the Zeeman field and is crucial to generate four
corner states. Taking into account the proximity induced
superconductivity effect, we can now express the effective
low-energy Hamiltonian as

H′eff,1(ky) = vFkyρz + ∆scηyρy, (S29)

which we immediately identify with the topologically

trivial regime.

In order to find the spin polarization of the edge
states along the edge s = 1, we solve the problem by
explicitly taking into account the kinetic and Zeeman
terms. The new problem is described by the Hamilto-
nian H′0(kx, ky) + ∆zσx. To lowest order in ky and ∆z,
the corresponding solutions can be expressed as

Ψ̃′10,+(x) =
∑
λ=±

λ
e−x/ξ1,λ

N
[1 + f1,λ, 1 + f1,λ, i(1− f1,λ), i(f1,λ − 1)]

T

+
∑
λ=±

λ
e−x/ξ2,λ

N
[1 + f2,λ,−(1 + f2,λ), i(1− f2,λ), i(1− f2,λ)]

T
,

Ψ̃′10,−(x) =
∑
λ=±

λ
e−x/ξ1,λ

N
[1 + f1,λ, 1 + f1,λ, i(1− f1,λ), i(f1,λ − 1)]

T

−
∑
λ=±

λ
e−x/ξ2,λ

N
[1 + f2,λ,−(1 + f2,λ), i(1− f2,λ), i(1− f2,λ)]

T
,

(S30)

with fj,± = (−1)jξj,±αyky/(2αx), ξ̃−1
1,± =(

αx ±
√
α2
x − 4(Γ + ∆z)tx

)
/(2tx), and ξ̃−1

2,± =(
αx ±

√
α2
x − 4(Γ−∆z)tx

)
/(2tx). We verify that

the new solutions reproduce correctly Eq. (S25) in the
limit ∆z = 0 and ky = 0. We also find that under the

effect of the Zeeman field, the condition of the existence
of the edge modes is modified to Γ > |∆z|, such that
the topological phase becomes smaller when the Zeeman
field increases. Moreover, the polarization of the edge
states is defined by the following expression:

〈
Ψ̃′10,±

∣∣∣S‖ ∣∣∣ Ψ̃′10,±〉 = ±4

∑
j Re

[
fj,+ξj,+ + fj,−ξj,− − 4fj,+fj,−/(ξ

−1
j,+ + ξ−1∗

j,− )
]∑

j Re
[
ξj,+ + ξj,− − 4/(ξ−1

j,+ + ξ−1∗
j,− )

] . (S31)

As expected, the parallel component of the spin polar-
ization is zero for ∆z = 0 independently of the value of
ky. The same is true for ky = 0, independently of the
value of ∆z. These features are confirmed numerically
in Fig. S3(a), where we calculate the spin polarization
of the eigenstates of H′ in a geometry with the OBC
(PBC) along the x (y) axis as a function of the momen-
tum ky. Moreover, we find that the spin polarization
changes smoothly as a function of ∆z. We also note that
both perpendicular components of the spin polarization
are exactly zero.

If the superconducting term is taken into account, the
spectrum of states

∣∣Ψ′10,±〉 acquires a finite gap. Never-
theless, we expect that the spin polarization of the edge
states keeps the same sign for different values of the ratio

∆z/∆sc across the entire phase transition. This is con-
firmed by numerical calculations presented in Fig. S3(b).
We also note that for ∆sc 6= 0, the edge states become
spin polarized even at ky = 0.

3. Quadrupolar structure of the spin polarization

Finally, by considering the effect of the inversion
symmetry that maps k to −k, we relate the descrip-
tion of the edge s = 2 (s = 3) to the one of the
edge s = 0 (s = 1). More specifically, we use that
IH′(k)I−1 = H′(−k), where I = τz, which implies
that the mass terms at opposite edges have opposite
signs: m0 = −m2 = ∆z and m1 = −m3 = 0. This
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(a) (b)

FIG. S3. Numerical calculation of the spin polarization of the eigenstates of H′ in a geometry with OBC (PBC) along the x (y)
axis. The color corresponds to

〈
Ψj(ky)

∣∣S‖
∣∣Ψj(ky)

〉
, where |Ψj(ky)〉 is the j-th eigenstate of H′. (a) When ∆sc = 0, the edge

spectrum remains gapless and the spin polarization of the states is zero at ky = 0. (b) When ∆sc = 0.1tx, the edge spectrum is
gapped out and the spin polarization becomes non-zero even at ky = 0. Nevertheless, the sign of the spin polarization remains
the same as in (a). All the remaining parameters are the same as in Fig. 3(b).

(a) (b)

FIG. S4. Numerical calculation of the current J through
the STM tip that is polarized perpendicularly to the Zee-
man field along the y axis (a) in the topological phase with
∆z = 1.75∆sc and (b) in the trivial phase with ∆z = 0.25∆sc.
The remaining parameters of the simulations are the same as
in Fig. 4. The perpendicular component of the spin polariza-
tion is trivially zero everywhere except at the four corners of
the system.

allows us to see that the total boundary of the system is
composed of two pairs of effective Rashba wires forming
an alternating pattern, only one of which is affected
by the Zeeman field. As a result, in the topological
regime ∆z > ∆sc, the system is described by the parallel
component of the spin polarization flipping its sign from
one edge to another, resulting in a quadrupolar spin
structure, which can indeed be observed in Fig. 4 of
the main text. Such a feature is directly associated
with the emergence of MCSs and allows one to probe
the topological phase transition which occurs in the
system. We also verify numerically (see Fig. S4) that
the perpendicular components of the spin polarization
are trivially zero everywhere except at the four corners
of the system, where they acquire some finite value as a
result of the broken translation symmetry along the edge.

S4. Quadrupolar moment

In the main text, we demonstrated that the struc-
ture of the edge spin polarization allows one to detect
the topological phase transition in SOTSCs with broken
time-reversal symmetry. In particular, we found that in
SOTSCs hosting a pair of MCSs at two opposite cor-
ners the sign of the spin polarization perpendicular to the
Zeeman field of low-energy states changes on every edge.
This feature has been denoted as quadrupolar structure
of the spin polarization. Similarly, we observed that a
SOTSC which hosts a MCS at each of the four corners is
described by a quadrupolar structure of the spin polar-
ization parallel to the applied Zeeman field.

Here, we further analyze the quadrupolar structure of
the spin polarization by introducing the energy-resolved
quadrupolar tensor Qµν associated with the STM current
J . Assuming that the sample is a perfect square and by
placing the origin of coordinates in the square center we
can define the following quantity:

Qµν(E) =
∑
i

[2rµ(i)rν(i)− Iµν ] J(ri, E)/N. (S32)

Here rµ(i) denotes the position of the site with the lat-
tice index i and I is the 2× 2 identity matrix. The sum
over i runs over all the sites of the system and N denotes
the total number of sites. The current J(ri, E) refers to
the contribution defined in Eq. (S4) for a small window
[E −∆E/2, E + ∆E/2]. We note here that the spin po-
larization of MCSs [13] does not play a role here as we
focus on the signal to be detected away from the cor-
ners. We calculate this quantity in both models across
the phase transition. We also focus only on the diagonal
component Qxx = −Qyy of the quadrupolar tensor with
the off-diagonal components being trivially zero.

First, we consider the model presented in Section
“SOTSCs with two corner states” [see Fig. S5(a)]. We
assume that the STM tip polarization is perpendicular
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(a) (b)

FIG. S5. Energy-resolved value of the quadrupolar moment
Qxx evaluated across the topological phase transition for the
two models considered in the main text. Insets show the
contribution summed from the blue lines up to the chemi-
cal potential. Black lines separate the contribution coming
from the edges (shown) and the bulk (not shown). (a) The
model is described by the Hamiltonian H and Qxx is calcu-
lated as a function of Γ/∆sc with ∆E = 0.02∆z. All the
remaining parameters are the same as in Fig. 2. The triv-
ial (topological) phase corresponds to zero (finite) value of
the quadrupolar moment. (b) The model is described by the
Hamiltonian H′ and Qxx is calculated as a function of ∆z/∆sc

with ∆E = 0.015∆sc. All the remaining parameters are the
same as in Fig. 4. The spin polarization of the x-edge states
changes sign at the phase transition, while for y-edge states
it slowly increases with ∆z. As a consequence, the integrated
value of Qxx crosses zero close to the topological phase tran-
sition point.

to the Zeeman field and calculate Qxx as a function of
Γ/∆sc. We find that in the topologically trivial phase, the
quadrupolar moment is exactly zero, since no available
edge states are present in the considered energy window.
In the topological phase, on the contrary, Qxx is positive
that can be associated with the quadrupolar structure of
spin polarization at the edges.

Similarly, we consider the model presented in Sec-
tion “SOTSCs with four corner states” with the STM
tip polarization being parallel to the Zeeman field [see
Fig. S5(b)]. We clearly distinguish the contribution com-
ing from different edges: the energy of the x-edge states
increases with ∆z until it reaches zero at the critical point
∆z = ∆sc, after which it starts decreasing again; a large
quadrupolar moment flips sign at the phase transition.
For ∆z > ∆sc, we also observe the emergence of edge
states at lower energies, which live on the x-edge and are
described by the spin polarization of an opposite sign. At
the same time, the energy of the y-edge states as well as
their quadrupolar moment slowly increases with ∆z with-
out flipping its sign. As a result, when integrated over
the energy E, the quadrupolar moment changes sign at
the topological phase transition.

(a) (b)

(c) (d)

FIG. S6. (a) Numerical calculation of the MCS wavefunctions
and (b) the total spin polarization of 40 states below the Fermi
level in the topological phase of the system described by the
Hamiltonian H in a disk geometry. The parameters used are
Γ = 2∆sc = α = 0.5t, µ0 = 0, ∆z = 0.05t, and θz = π/4.
(c,d) The same calculation as before but the system is now
described by the Hamiltonian H′ with Γ = ty = tx, αx = αy =
0.3tx, µ0 = 0, and ∆z = 2∆sc = 0.1tx. As expected, in both
cases, we observe MCSs, emphasizing that the shape of the
sample does not play a substantial role. The corresponding
spin polarization shows the quadrupole structure.

We notice that the precise value of Qxx depends
strongly on the energy E. Nevertheless, the quadrupo-
lar structure, namely the sign change of the spin polar-
ization on the neighboring edges of the system, is typ-
ical for topological phases close to the phase boundary.
Hence, the quadrupolar structure of the spin polarization
remains a prominent probe of the SOTSCs topology as
long as the effective low-energy description stays valid.

Finally, we note that the quadrupolar tensor Qµν(E)
is less suitable for direct experimental observation as it
requires integration of the current signal across the entire
sample. Moreover, the values of Qµν(E) depend on the
sample geometry such as size and shape, as well as on
the choice of coordinate origin in the definition of Qµν ,
since, in general, the total spin polarization and dipole
moments are non-zero.

S5. Stability of quadrupolar polarization

We also provide additional numerical results, demon-
strating the stability of the quadrupolar polarization fea-
ture for the two SOTSC classes considered in the main
text. To do this, we simulate the system in a disc ge-
ometry, which does not have any well defined edges and
corners. Nevertheless, MCSs still emerge in such a geom-
etry. Their position is unambiguously determined by the
symmetries of the system, namely, the inversion symme-
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FIG. S7. (first row) Numerical calculation of the MCS wavefunctions and (second row) the total spin polarization of 40 states
below the Fermi level in the topological phase of a system described by the Hamiltonian H′ for different values of the g-factor
ratio g1̄/g1 (different columns). The remaining parameters are the same as in Fig. 3(b) of the main text. We confirm that the
inversion symmetry between two bands, which gets broken if g-factors are different, is indeed not needed. The MCSs survive
even if the g-factors are substantially different.

try I of the Hamiltonian H from the section “SOTSCs
with two corner states” and the in-plane anisotropy of
the Hamiltonian H′ from the section “SOTSCs with four
corner states” of the main text. In Figs. S6(a) and (b),
we show that, in the model described by H, two cor-
ner states emerge at two opposite extremities of the disc,
aligned with the direction of the Zeeman field. The per-
pendicular component of the spin polarization changes
sign at four equal-sized quadrants delimited by the Zee-
man field vector and the vector normal to it. Similarly,
in Figs. S6(c) and (d), we show that four corner states
emerge in the model described by H′, dividing the disk
into four quadrants. The parallel component of the spin
polarization has opposite signs in neighboring quadrants,
while the perpendicular component remains trivially zero
everywhere. The size of the quadrants is determined by
the ratio ∆z/∆sc, such that in the limit ∆z � ∆sc the

corner states merge pairwise at the top and bottom ex-
tremities of the disk.

Additionally, having in mind an experimental realiza-
tion in quantum wells [3–5, 14–17] of our model with
four corner states described by the Hamiltonian H′, we
study how the topological phase diagram and the result
of the STM measurement vary as a function of g-factors
of the electron and hole bands, denoted by g1 and g1̄, re-
spectively. The result of such a calculation is presented
in Fig. S7. We find that the topological phase and, as
a result, the quadrupolar polarization feature are stable
even for a strong g-factor anisotropy. However, when g1̄

becomes of the order of 0.25g1 (and vice versa), a phase
transition occurs leading to the closing of the bulk gap,
accompanied by the disappearance of the corner states
as well as of the quadrupolar structure of the spin polar-
ization.

1 Y. Volpez, D. Loss, and J. Klinovaja, Phys. Rev. Lett. 122,
126402 (2019).

2 B. A. Bernevig, T. L. Hughes, and S. Zhang, Science 314,
5806 (2006).

3 M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buh-
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