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Abstract

3D hand shape and pose estimation from a single depth
map is a new and challenging computer vision problem with
many applications. The state-of-the-art methods directly
regress 3D hand meshes from 2D depth images via 2D con-
volutional neural networks, which leads to artefacts in the
estimations due to perspective distortions in the images.

In contrast, we propose a novel architecture with 3D
convolutions trained in a weakly-supervised manner. The
input to our method is a 3D voxelized depth map, and we
rely on two hand shape representations. The first one is the
3D voxelized grid of the shape which is accurate but does
not preserve the mesh topology and the number of mesh ver-
tices. The second representation is the 3D hand surface
which is less accurate but does not suffer from the limita-
tions of the first representation. We combine the advan-
tages of these two representations by registering the hand
surface to the voxelized hand shape. In the extensive ex-
periments, the proposed approach improves over the state
of the art by 47.8% on the SynHand5M dataset. Moreover,
our augmentation policy for voxelized depth maps further
enhances the accuracy of 3D hand pose estimation on real
data. Our method produces visually more reasonable and
realistic hand shapes on NYU and BigHand2.2M datasets
compared to the existing approaches.

1. Introduction

The problem of deep learning-based 3D hand pose esti-
mation has been extensively studied in the past few years
[33], and recent works achieve high accuracy on public
benchmarks [32, 18, 22]. Simultaneous estimation of 3D
hand pose and shape from a single depth map is a newly
emerging computer vision problem. It is more challeng-
ing than the pose estimation because annotating real im-
ages for shape is laborious and cumbersome. Other salient
challenges include varying hand shapes, occlusions, high
number of degrees of freedom (DOF) and self-similarity.

Figure 1: Hand shape and pose estimation with HandVoxNet.
A 3D voxelized depth map and accurately regressed heatmaps of
3D joints (left block) are used to estimate two hand shape repre-
sentations (middle block). To combine the advantages of these rep-
resentations, we accurately register the shape surface to the vox-
elized shape (right block). Our architecture with 3D convolutions
establishes a one-to-one mapping between voxelized depth map,
voxelized hand shape and heatmaps of 3D joints.

The dense 3D hand mesh is a richer representation which
is more useful than the sparse 3D joints, and it finds many
applications in computer vision and graphics [27, 23, 17].

With the recent progress in deep learning, a few works
[35, 7, 17, 13, 14] have proposed algorithms for simulta-
neous hand pose and shape estimation. Malik et al. [14]
developed a 2D CNN-based approach that estimates shapes
directly from 2D depth maps. The recovered shapes suf-
fer from artifacts due to the limited representation capacity
of their hand model [7, 17]. The same problem can oc-
cur even by embedding a realistic statistical hand model
(i.e., MANO) [23] inside a deep network [7, 35]. In con-
trast to these model-based approaches [35, 14], Ge et al. [7]
proposed a more accurate direct regression-based approach
using a monocular RGB image. Recently, Malik et al. [17]
developed another direct regression-based approach from
a single depth image. All of the approaches mentioned
above treat and process depth maps with 2D CNNs, even
though depth maps are intrinsically a 3D data. Training a
2D CNN to estimate 3D hand pose or shape given 2D rep-
resentation of a depth map is highly non-linear and results in
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perspective distortions in the estimated outputs [18]. V2V-
PoseNet [18] is the first work that uses 3D voxelized grid of
depth map to estimate 3D joints heatmaps and, thus, avoids
perspective distortions. However, extending this work for
shape estimation by directly regressing 3D heatmaps of
mesh vertices is not feasible in practice.

In this work, we propose the first 3D CNN architec-
ture which simultaneously estimates 3D shape and 3D pose
given a voxelized depth map (see Fig. 1) To this end, we
introduce novel architectures based on 3D convolutions
which estimate two different representations of hand shape
(Secs. 3–5). The first representation is the hand shape on
a voxelized grid. It is estimated from a new voxel-to-voxel
network which establishes a one-to-one mapping between
the voxelized depth map and the voxelized shape. How-
ever, the estimated voxelized shape does not preserve the
hand mesh topology and the number of vertices. For this
reason, we also estimate hand surface (the second represen-
tation) with our voxel-to-surface network. Since this net-
work does not establish a one-to-one mapping, the accuracy
of the estimated hand surface is low but the hand topology
is preserved. To combine the advantages of both represen-
tations, we propose registration methods to fit the hand sur-
face to voxelized shape. Since real hand shape annotations
are not available, we employ two 3D CNN-based synthesiz-
ers which act as sources of weak supervision by generating
voxelized depth maps from our shape representations (see
Fig. 2). To increase the robustness and accuracy of the hand
pose estimation, we perform 3D data augmentation on the
voxelized depth maps (Sec. 4.2).

We conduct ablation studies and perform extensive eval-
uations of the proposed method on real and synthetic
datasets. Our approach improves the accuracy of hand
shape estimation by 47.8% on SynHand5M dataset [14] and
outperforms the state of the art. Our method produces vi-
sually more reasonable and plausible hand shapes of NYU
and BigHand2.2M datasets compared to the state-of-the-art
approaches (Sec. 6). To summarise, our contributions are:

1. The first voxel-based hand shape and pose estimation
approach with the following novel components:
(i) Voxel-to-voxel 3D CNN-based network.
(ii) Voxel-to-surface 3D CNN-based network.
(iii) 3D CNN-based voxelized depth map synthesizers.
(iv) Hand shape registration components.

2. A new 3D data augmentation policy on voxelized grids
of depth maps.

2. Related Work
We now discuss the existing methods for deep hand pose

and shape estimation. Moreover, we briefly report the most
related works for depth-based hand pose estimation.

Deep Hand Pose and Shape Estimation. Malik et
al. [14] proposed the first deep neural network for hand pose
and shape estimation from a single depth image. To this
end, they developed a model-based hand pose and shape
layer which is embedded inside their deep network. Their
approach suffers from artifacts due to the difficulty in opti-
mizing complex hand shape parameters inside the network.
Ge et al. [7] developed a direct regression-based algorithm
for hand pose and shape estimation from a single RGB
image. They highlight that the representation capacity of
the statistical deformable hand model (i.e., MANO [23])
could be limited due to the small amount of training data
and the linear bases utilized for the shape recovery. Zhang
et al. [35] introduced a similar MANO model based ap-
proach using a monocular RGB image. Recently, Malik
et al. [17] proposed a structured weakly-supervised deep
learning-based approach using a single depth image. All
of the above-mentioned methods use 2D CNNs and treat
the depth maps as 2D data. Consequently, the deep network
is likely to produce perspective distortions in the shape and
pose estimations [18]. In contrast, we propose the first 3D
convolutions based architecture which establishes a one-to-
one mapping between the voxelized depth map and the vox-
elized hand shape. This one-to-one mapping allows to more
accurately reconstruct the hand shapes.

Hand Pose Estimation from Depth. In general, deep
learning-based hand pose estimation methods can be classi-
fied into two categories. The first one encompasses the dis-
criminative methods which directly estimate hand joint lo-
cations using CNNs [4, 3, 32, 21, 22, 18, 10, 6, 12]. The sec-
ond category is hybrid methods which explicitly incorporate
hand structure inside deep networks [16, 30, 8, 19, 15]. The
disriminative methods achieve higher accuracy compared to
the hybrid methods. The voxel-to-voxel approach [18] is
powerful and highly effective because it uses 3D convolu-
tions to learn a one-to-one mapping between the 3D vox-
elized depth map and 3D heatmaps of hand joints. Notably,
the voxelized representation of depth maps is best suited
for 3D data augmentation to improve the robustness and
accuracy of the estimations. A few methods perform data
augmentation on depth maps [19, 28] or voxelized depth
maps [18]. In this work, we integrate the voxel-to-voxel ap-
proach with our pipeline and, additionally, perform new 3D
data augmentation on voxelized depth maps. Our 3D data
augmentation policy helps to achieve a noticeable improve-
ment in the 3D pose estimation accuracy on real datasets.

3. Method Overview

Given a single input depth image, our goal is to estimate
N 3D hand joint locations J ∈ R3×N (i.e., 3D pose) and
K = 1193 3D vertex locations V ∈ R3×K (i.e., 3D shape).
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Figure 2: Overview of our approach for 3D hand shape and pose recovery from a 3D voxelized depth map. V2V-PoseNet estimates
3D joints heatmaps (i.e., pose). Hand shape is obtained in two phases. First, V2V-ShapeNet and V2S-Net estimate the voxelized shape and
shape surface, respectively. Thereby, V2V-SynNet and S2V-SynNet synthesize the voxelized depth acting as sources of weak-supervision.
They are excluded during testing. In the second phase, shape registration accurately fits the shape surface to the voxelized shape.

Fig. 2 shows an overview of the proposed approach. The in-
put depth image is converted into a voxelized grid (i.e., VD)
of size 88 × 88 × 88, by using intrinsic camera parame-
ters and a fixed cube size. For hand pose estimation, VD
is provided as an input to the voxel-to-voxel pose regres-
sion network (i.e., V2V-PoseNet) that directly estimates 3D
joint heatmaps {Hj}N

j=1. Each 3D joint heatmap is repre-
sented as 44 × 44 × 44 voxelized grid. We resize VD to
44 × 44 × 44 voxel grid size (i.e., V′D) and concatenate it
with the estimated Hj , to provide as an input to our shape
estimation network. We call this concatenated input as IS .

The voxelized hand shape (i.e., 64×64×64 grid size) is
directly regressed via 3D CNN-based voxel-to-voxel shape
regression network (i.e., V2V-ShapeNet), by using IS as
an input. Notably, V2V-ShapeNet establishes a one-to-one
mapping between the voxelized depth map and the vox-
elized shape. Therefore, it produces accurate voxelized
shape representation but does not preserve the topology of
hand mesh and the number of mesh vertices. To regress
hand surface, IS is fed to the 3D CNN-based voxel-to-
surface regression network (i.e., V2S-Net). Since the map-
ping between IS and hand surface is not one-to-one, it
is therefore less accurate. Voxel-to-voxel and surface-to-
voxel synthesizers (i.e., V2V-SynNet and S2V-SynNet) are
connected after V2V-ShapeNet and V2S-Net, respectively.
These synthesizers reconstruct V′D and act as sources of
weak supervision during training. They are excluded during
testing. To combine the advantages of the two shape repre-
sentations, we register the estimated hand surface to the es-
timated voxelized hand shape. We employ 3D CNN-based
DispVoxNet [25] for synthetic data, and non-rigid gravita-
tional approach (NRGA) [1] for real data.

4. The Proposed HandVoxNet Approach
In this section, we explain our proposed HandVoxNet

approach by highlighting the function and effectiveness of
each of its components. We develop an effective solution
that produces reasonable hand shapes via 3D CNN-based
deep networks. To this end, our approach fully exploits ac-
curately estimated heatmaps of 3D joints as a strong pose
prior, as well as voxelized depth maps. Given that collect-
ing accurate real hand shape ground truth is hard and labori-
ous, we develop a weakly-supervised network for real hand
shape estimation by learning from accurately labeled syn-
thetic data. Moreover, our 3D data augmentation on vox-
elized depth maps allows to further improve the accuracy
and robustness of 3D hand pose estimation.

4.1. 3D Hand Shape Estimation

As aforementioned, estimating 3D hand shape from a
2D depth map by using 2D CNN is a highly non-linear
mapping. It compels the network to perform perspective-
distortion-invariant estimation which causes difficulty in
learning the shapes. To address this limitation, we develop
a full voxel-based deep network that effectively utilizes the
estimated 3D pose and voxelized depth map to produce rea-
sonable 3D hand shapes. Our proposed approach for 3D
shape estimation comprises of two main phases. In the first
phase, we estimate the shape surface and the voxelized hand
shape. In the second phase, we register the estimated shape
surface to the estimated voxelized hand shape by employing
a 3D CNN-based registration for synthetic data and NRGA-
based fitting process for real data.
Voxelized Shape Estimation. Our idea is to estimate 3D
hand shape in the voxelized form via 3D CNN-based net-
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work. It allows the network to estimate the shape in such a
way that minimizes the chances for perspective distortion.
Inspired by the approach proposed in the recent work [17],
we consider sparse 3D joints as the latent representation of
dense 3D shape. However, in this work, we combine 3D
pose with the depth map which helps to represent the shape
of hand more accurately. Furthermore, here we use more ac-
curate and useful representations of 3D pose and 2D depth
image which are 3D joints heatmaps and a voxelized depth
map, respectively. The V2V-ShapeNet module is shown in
Fig. 2. It can be considered as the 3D shape decoder:

V̂S ∼ Dec(Hj ⊕ V′D) = p(VS |IS) (1)

where p(VS |IS) is the decoded distribution. The decoder
learns to reconstruct the voxelized hand shape V̂S as close
as possible to the ground truth voxelized hand shape VS .
The V2V-ShapeNet is a 3D CNN-based architecture that
directly estimates the probability of each voxel in the vox-
elized shape indicating whether it is the background (i.e., 0)
or the shape voxel (i.e., 1). The per-voxel binary cross en-
tropy loss LVS for voxelized shape reconstruction reads:

LVS = −(VS log(V̂S) + (1− VS) log(1− V̂S)) (2)

where VS and V̂S are the ground truth and the estimated
voxelized hand shapes, respectively. The architecture of
V2V-ShapeNet is provided in the supplement.

Since the annotations for real hand shapes are not avail-
able, weak supervision is therefore essential in order to ef-
fectively learn real hand shapes. For this reason, we propose
a 3D CNN-based V2V-SynNet (see Fig. 2) which acts as a
source of weak supervision during training. This module is
removed during testing. V2V-SynNet synthesizes the vox-
elized depth map from the estimated voxelized shape repre-
sentation. The per-voxel binary cross entropy loss Lv

VD
for

voxelized depth map reconstruction is given by:

Lv
VD

= −(VD log(V̂D) + (1−VD) log(1− log(V̂D)) (3)

where VD and V̂D are the ground truth and the reconstructed
voxelized depth maps, respectively. The architecture of
V2V-SynNet is provided in the supplement.
Shape Surface Estimation. The hand poses of the shape
surfaces and voxelized shapes need to be similar for an im-
proved shape registration. To facilitate the registration, we
employ V2S-Net deep network which directly regresses V .
Based on the similar concept of hand shape decoding (as
mentioned before), IS is provided as an input to this net-
work while the decoded output is the reconstructed hand
mesh (see Fig. 2). The hand shape surface reconstruction
loss LVT is given by the standard Euclidean loss as:

LVT =
1

2

∥∥∥V̂T − VT∥∥∥2 , (4)

where VT and V̂T are the respective ground truth and re-
constructed hand shape surfaces. As explained before, in
the case of missing real hand shape ground truth, the weak
supervision on mesh vertices is provided by S2V-SynNet.
In this case, the input to the S2V-SynNet is V̂T which is in
3D coordinates form. The loss function Ls

VD
for the S2V-

SynNet is similar to Eq. (3). Further details on S2V-SynNet
and V2S-Net can be found in the supplement.
CNN-based Shape Registration. Thanks to fully con-
nected (FC) layers, V2S-Net is able to estimate hand shapes
while preserving the order and number of points. Losing lo-
cal spatial information is also known as a drawback of FC
layers. In contrast to FC layers, a lot of works show fully
convolutional networks (FCN) perform well in geometry re-
gression tasks [24, 9, 18, 31]. However, estimating the vox-
elized hand shape by 3D convolutional layer results in an
inconsistent number of points and loses point order. Hence,
the ideal architecture is a network which estimates the hand
shape without losing local spatial information while pre-
serving the topology of the hand shape. To achieve this, we
register the estimated shape by V2S-Net to the probabilis-
tic shape representation estimated by FCN (V2V-ShapeNet)
using DispVoxNets pipeline [25].

The original DispVoxNets pipeline is comprised of two
stages, i.e., global displacement estimation and refinement
stage. The refinement stage is used to remove roughness on
the point set surface. In contrast to the original approach,
we replace the refinement stage with Laplacian smoothing
[29]. This is possible because we assume the mesh topology
is already known, and it is preserved by our pipeline.

In the DispVoxNet pipeline, the hand surface shape V̂T
is first converted into a voxelized grid V̂ ′

T (i.e., 64×64×64
voxelized grid size). DispVoxNet estimates per-voxel dis-
placements of the dimension 643× 3 between the reference
V̂S and voxelized hand surface V̂ ′

T
1. The displacement loss

LDisp is given by:

LDisp. =
1

Q3

∥∥∥d−Dvn(V̂S , V̂
′

T )
∥∥∥2 , (5)

where Q and d are the voxel grid size and the ground truth
displacement, respectively. Since it is difficult to obtain d
between the voxelized shape V̂S and hand surface V̂T , the
displacements are first computed between VT and V̂T , and
are discretized to obtain d. For more details of ground truth
voxelized grid computation, please refer to [25].

NRGA-Based Shape Registration. In our voxel-based 3D
hand shape and pose estimation pipeline (Fig. 2), the Dis-
pVoxNet [25] component requires shape annotations in its
source-to-target displacement field learning phase. These
annotations are available only for the synthetic dataset

1a larger grid size results in higher accuracy of DispVoxNet, and we
hence set it to the maximum which our hardware supports.
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which leaves a domain gap on the performance of Dis-
pVoxNet when tested on real dataset. To bridge this gap, we
apply NRGA [1] to improve V̂T by registering it with V̂S .
NRGA is selected for this deformable alignment task over
other methods [20, 2], as it supports local topology preser-
vation of input hand surface and is robust at noise handling.
Although NRGA is a point cloud alignment method, it pro-
vides the option to relax the deformation magnitude in the
neighbouring regions of the hand mesh vertices. The orig-
inal NRGA estimates a rigid transformation for every ver-
tex v ∈ V̂T and diffuses the transformations in a subspace
formed by a set of neighbourhood vertices of v. It builds a
k-d tree on the template (V̂T in our case) and neighbourhood
vertices are selected as the k-nearest neighbours (typically
0.1% − 0.2% of the total points in the template). We mod-
ify NRGA for the surface-to-voxel operation, i.e., instead of
k-nearest neighbours, we use connected vertices in a 4-ring
for V̂T . See more details in our supplementary material.

4.2. Data Augmentation in 3D

Our method for hand shape estimation relies on the ac-
curacy of the estimated 3D pose. Therefore, the hand pose
estimation method has to be accurate and robust. Training
data augmentation helps to improve the performance of a
deep network [19]. Existing methods for hand pose estima-
tion [19, 28] use data augmentation in 2D. This is mainly
because these methods treat depth maps as 2D data. The
representation of the depth map in voxelized form makes it
convenient to perform data augmentation in all three dimen-
sions. In this paper, we propose a new 3D data augmenta-
tion policy which improves the accuracy and robustness of
hand pose estimation (see Sec. 6.3).

During V2V-PoseNet training, we apply simultaneous
rotations in all three axes (x,y,z) to each 3D coordinate
(i, j, k) of VD andHj by using Euler transformations:

[̂i, ĵ, k̂]T = [Rotx(θx)]× [Roty(θy)]× [Rotz(θz)][i, j, k]
T,
(6)

where (̂i, ĵ, k̂) is the transformed voxel coordinate.
Rotx(θx), Roty(θy) and Rotz(θz) are 3× 3 rotation matrices
around x, y and z axes. The values for θx, θy and θz are se-
lected randomly in the ranges [−40◦, +40◦], [−40◦, +40◦]
and [−120◦, +120◦], respectively. In addition to rotations
in 3D, following [18], we perform scaling and translation in
the respective ranges [+0.8,+1.2] and [−8,+8].

5. The Network Training
VD is generated by projecting the raw depth image pixels

into 3D space. Hand region points are then extracted by us-
ing a cube of size 300 that is centered on hand palm center
position. 3D point coordinates of the hand region are dis-
cretized in the range [1, 88]. Finally, to obtain VD, the voxel

Methods 3D V Err. (mm)
V2S-Net (w/oHj) 8.78
V2S-Net (w/o V′D) 3.54
V2S-Net (withHj ⊕ V′D) 3.36
Methods 3D S Err.
V2V-ShapeNet (w/oHj) 0.007
V2V-ShapeNet (w/o V′D) 0.016
V2V-ShapeNet (withHj ⊕ V′D) 0.005

Table 1: Ablation study on inputs (i.e., Hj and V′D) to V2S-Net
and V2V-ShapeNet. We observe that combining both inputs is
useful for these two networks.

value is set to 1 for the 3D point coordinate of hand region,
and 0 otherwise. Following [18], Hj are generated as 3D
Gaussians. Similar to the generating of VD, VS is obtained
by voxelizing the hand mesh. VT is created by normaliz-
ing the mesh vertices in the range [−1, +1]. We perform
this normalization by subtracting the vertices from the palm
center and then dividing them by half of the cube size.

We train V2V-PoseNet [18] on NYU [28], BigHand2.2M
[34] and SynHand5M [14] datasets separately with the 3D
data augmentation technique mentioned in Sec. 4.2. For
SynHand5M dataset, we train V2S-Net and V2V-ShapeNet
(including the synthesizers S2V-SynNet and V2V-SynNet)
separately using RMSProp as an optimization method with
a batch size of 8 and a learning rate LR = 2.5× 10−4. After
training the pose and shape networks, we put these networks
together in the pipeline (see Fig. 2) and fine-tune them in an
end-to-end manner with synthetic, as well as combined real
and synthetic data. The total loss LT read as follows:

LT = LH + 1LVS + 1LVT + Lv
VD

+ Ls
VD

(7)

where LH is heatmaps loss [18] and 1 represents an indica-
tor function layer. This layer forwards the estimations to the
loss layer only for synthetic data using a flag value, which
is 1 for synthetic and 0 for real data. It disables the gradi-
ents flow during the backward pass in the case of real data.
For fine-tunings, we use RMSProp with a batch size of 6
and a learning rate 2.5× 10−5. DispVoxNet is trained only
on SynHand5M dataset due to the availability of the ground
truth geometry. During the training, Adam optimizer [11]
with a learning rate of 3.0×10−4 was employed. The train-
ing continues until the convergence of LDisp with batch size
12. All models are trained until convergence on a desktop
workstation equipped with Nvidia Titan X GPU.

6. Experiments
We perform qualitative and quantitative evaluations of

our complete pipeline including ablation studies on the fully
labeled SynHand5M [14] dataset. We qualitatively evaluate
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Figure 3: Qualitative results on SynHand5M [14] dataset. Es-
timated hand pose overlay (1st col), voxelized shape (2nd col), hand
surface (3rd col), final shape (4th col), and the overlays of hand sur-
face and final shapes with ground truth (gray color) are illustrated.

Methods 3D V Err. (mm)
DeepHPS [14] 11.8
WHSP-Net [17] 5.12
ours (w/o synthesizers) 2.92
ours (with synthesizers) 2.67

Table 2: Comparison with the state of the arts on SynHand5M
[14]. Our full method, with V2V-SynNet and S2V-SynNet synthe-
sizers, outperforms the WHSP-Net approach [17] by 47.85%.

real hand shape recovery on NYU [28] and BigHand2.2M
[34] datasets. Furthermore, we study the impact of our 3D
data augmentation on V2V-PoseNet [18].

6.1. Datasets and Evaluation Metrics

Although there are many depth-based hand pose datasets
[34, 5, 26], only a few of them (i.e., BigHand2.2M [34],
NYU [28], SynHand5M [14]) provide adequate training
data and annotations which resemble the joint locations of
a real hand. NYU real benchmark offers joint annotations
for 72757 and 8252 RGBD images of the training (TN) and
test sets, respectively. Their hand model contains 42 DOF
which makes it possible to combine this dataset with the re-
cent benchmarks (e.g., BigHand2.2M). BigHand2.2M is a
million-scale real benchmark. For pose estimation, it pro-
vides accurate joint annotations for 956k training (TB) depth
images acquired from 10 subjects. Their hand model con-
tains 21 joint locations which resembles real hand skeleton.
The size of the BigHand2.2M’s test set is 296k. The anno-
tation of hand palm center is not given in the BigHand2.2M
dataset. Hence, we obtain the hand palm center position
by taking the average of the metacarpal joints and the wrist
joint positions. SynHand5M dataset contains fully anno-
tated 5 million depth images for both the 3D hand pose
and shape. The sizes of its training (TS) and test sets are
4.5M and 500k, respectively. The joint annotations of Big-
Hand2.2M are fully compatible with SynHand5M.

Components runtime, sec
V2V-PoseNet 0.011
V2V-ShapeNet 0.0015
V2S-Net 0.0038
DispVoxNet (GPU + CPU)∗ 0.162
NRGA (CPU) 59 - 70

Table 3: Runtime: (first four rows) forward-pass of deep net-
works on GPU. “∗” shows that Laplacian smoothing runs on CPU.

We use three evaluation metrics: (i) the average 3D joint
location error over all test frames (3D J Err.); (ii) mean
vertex location error over all test frames (3D V Err.); and
(iii) mean voxelized shape error (i.e., per-voxel binary cross
entropy) over all test data (3D S Err.).

6.2. Evaluation of Hand Shape Estimation

In this subsection, we evaluate our method on Syn-
Hand5M, NYU and BigHand2.2M benchmarks.
Synthetic Hand Shape Reconstruction. We train our com-
plete pipeline on the fully labeled SynHand5M dataset by
following the training methodology explained in Sec. 5. We
conduct two ablation studies to show the effectiveness of
our design choice. First is the regression of VT and VS
by using input V′D (i.e., without Hj) and the synthesizers.
Similar experiments are repeated by using Hj (i.e., with-
out V′D) and IS (i.e., with IS ⊕ V′D) as separate inputs to
V2V-ShapeNet and V2S-Net. The results are summarized
in Table 1 and clearly show the benefit of concatenating
voxelized depth map with 3D heatmaps. The second ab-
lation study is to observe the impact of V2V-SynNet and
S2V-SynNet, given IS as an input to the complete shape
estimation network. We train V2S-Net and V2V-ShapeNet
with and without using their respective synthesizers (see
Fig. 2). The quantitative results and comparisons with the
state-of-the-art methods on SynHand5M test set are sum-
marized in Table 2. Our method with synthesizers improves
on ours without synthesizers, and achieves 47.8% improve-
ment in the accuracy compared to the recent WHSP-Net
[17]. Several synthesized samples of voxelized depth maps
are shown in the supplement. The qualitative results of
shape representations and poses are shown in Fig. 3. Dis-
pVoxNet fits the estimated hand surface to the estimated
voxelized hand shape, thereby improving the hand surface
reconstruction accuracy by 20.5% (i.e., from 3.36mm to
2.67mm). Notably, the accuracy of our hand surface esti-
mation is higher compared to WHSP-Net (cf. Tables 1 and
2), which clearly shows the effectiveness of employing 3D
CNN based network for mesh vertex regression.
Real Hand Shape Reconstruction. To estimate plausible
real hand shape representations, the synthesizers are essen-
tial (see Fig. 2). For NYU hand surface and voxelized shape
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(a) Voxelized shape (b) Shape surface (c) Ours (final shape) (d) DeepHPS [14] (e) WHSP-Net [17]

Figure 4: Shape reconstruction of NYU [28] dataset: (a), (b) and (c) show the 2D overlays and 3D visualizations of estimated voxelized
hand shape, shape surface, and the final shape after registration, respectively. (d) and (e) show the corresponding results of hand shapes from
DeepHPS [14] and WHSP-Net [17] methods. Our approach produces visually more accurate hand shapes than the existing approaches.

(a) (b) (c) (d) (e)

Figure 5: Shape reconstruction of BigHand2.2M [34] dataset:
(a) the 2D pose overlay; (b), (c) recovered voxelized shape and
shape surface, respectively; (d) the overlays of shape surface and
registered shape; (e) the final hand shape.

recovery, we combine the training sets of NYU and Syn-
Hand5M (i.e., TNS = TN + TS) by selecting closely match-
ing 22 common joint positions in both datasets. However,
note that the common joint positions are still not exactly
similar in both the datasets. V2S-Net and V2V-ShapeNet
recover plausible hand shape representations while NRGA-
based method performs a successful registration (as shown
in Fig. 4(a), (b) and (c)). It is observed that the vox-
elized shape is more accurately estimated than the hand
surface. Thereby, the alignment further refines the hand
surface. Using the similar training strategy, we combine
BigHand2.2M and SynHand5M datasets and shuffle them
(i.e., TBS = TB +TS). Samples of the estimated hand shape
representations for BigHand2.2M are shown in Fig. 5.

(a) Depth (b) 3D Pose (c) DispVoxNet [25] (d) NRGA [1]

Figure 6: Failure case: our method is unable to produce plausible
shapes in cases of severe occlusion and missing depth information.

Methods 3D J Err. (mm)
DeepHPS [14] 6.30
WHSP-Net [17] 4.32
V2V-PoseNet [18] 3.81
our HandVoxNet (full method) 3.75

Table 4: 3D hand pose estimation results on SynHand5M [14]
dataset. We compare the accuracy of our full method (i.e., Hand-
VoxNet) with state-of-the-art methods.

We qualitatively compare our reconstructed hand shapes
of NYU dataset with the state of the art. For better illustra-
tion of the shape reconstruction accuracy, we show the 2D
overlay of hand mesh onto the corresponding depth image
(as shown in Fig. 4-(d) and (e)). Model-based DeepHPS
[14] suffers from artifacts, the regression-based WHSP-Net
approach [17] produces perspective distortions and incor-
rect sizes of shapes. In contrast, HandVoxNet recovers vi-
sually more plausible hand shapes (Fig. 4-(c)). Table 3 pro-
vides the runtimes of different components of our pipeline.
Failure Cases. Our approach fails to estimate plausible
hand shapes in cases of severe occlusion of hand parts and
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Dataset Method 3D J Err. (mm)

NYU V2V-PoseNet [18] 9.22
V2V-PoseNet (our 3D augm.) 8.72

BigHand2.2M V2V-PoseNet [18] 9.95
V2V-PoseNet (our 3D augm.) 9.27

Table 5: 3D hand pose estimation results on NYU [28] and
BigHand2.2M [34] datasets using our 3D data augmentation.
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Figure 7: Samples of NYU [28] depth images with 2D overlay of
the estimated 3D hand pose. Our method produces more accurate
results compared to WHSP-Net [17] and DeepHPS [14] methods.

missing information in the depth map (see Fig. 6).

6.3. Evaluation of Hand Pose Estimation

In our approach, the accuracy of the estimated hand
shape is dependent on the accuracy of estimated 3D pose
(see Sec. 4). Therefore, the hand pose estimation needs to
be robust and accurate. Therefore, we perform a new 3D
data augmentation on voxelized depth maps which further
improves the accuracy of 3D hand pose estimation on real
datasets. Notably, our focus is to develop an effective ap-
proach for simultaneous hand pose and shape estimation.
However, for completeness, we show our results and com-
parisons of hand pose estimation with SynHand5M, NYU
and BigHand2.2M datasets.
SynHand5M dataset: We do not perform training data
augmentation on SynHand5M because this dataset origi-
nally contains large viewpoint variations [14]. We train our
full method and V2V-PoseNet [18] on SynHand5M dataset.
The quantitative results on the test set are presented in Table
4. We observe that the backpropagation from the shape re-
gression pipeline is effective and improves the accuracy of
the estimated 3D pose. We achieve 13.19% improvement in
the accuracy compared to WHSP-Net approach [17].
NYU and BigHand2.2M datasets: V2V-PoseNet [18] is a
powerful pose estimation method that exploits the 3D data
representations of hand pose and depth map. Thanks to our
3D data augmentation strategy (see Sec. 4.2), we improve

Figure 8: We study the impact of our 3D data augmentation on
the pose estimation accuracy of V2V-PoseNet [18] on NYU [28]
dataset. The graph shows mean errors for individual hand joints.

the accuracy by 5.42% and 6.83% compared to the original
V2V-PoseNet models on NYU and BigHand2.2M datasets,
respectively (see Table 5). Fig. 8 shows the average errors
on individual hand joints. We observe a noticeable improve-
ment in the accuracy of the finger tips. The qualitative re-
sults and comparisons with the state-of-the-art methods for
hand pose estimation are shown in Fig. 7.

7. Conclusion and Future Work
We develop the first voxel-based pipeline for 3D hand

shape and pose recovery from a single depth map, which
establishes an effective inter-link between hand pose and
shape estimations using 3D convolutions. This inter-link
boosts the accuracy of both estimates, which is demon-
strated experimentally. We employ 3D voxelized depth map
and accurately estimated 3D heatmaps of joints as inputs to
reconstruct two hand shape representations, i.e., 3D vox-
elized shape and 3D shape surface. To combine the advan-
tages of both shape representations, we employ registration
methods, i.e., DispVoxNet and NRGA, which accurately fit
the shape surface to the voxelized shape.

The experimental evaluation further shows that our 3D
data augmentation policy on voxelized grids enhances the
accuracy of 3D hand pose estimation on real data. Hand-
VoxNet produces visually more accurate hand shapes of real
images compared to the previous methods. All these results
indicate that the one-to-one mapping between voxelized
depth map, voxelized shape and 3D heatmaps of joints is
essential for an accurate hand shape and pose recovery.

In future work, generating a realistic synthetic dataset
can further enhance the hand shape reconstruction from real
images. The runtimes of the used registration methods can
be improved by the parallelization on GPUs.
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