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Epigenetic Regulators as the Gatekeepers

of Hematopoiesis

Cecilia Pessoa Rodrigues, ' Maria Shvedunova,’ and Asifa Akhtar'*

Hematopoiesis is the process by which both fetal and adult organisms derive the
full repertoire of blood cells from a single multipotent progenitor cell type, the
hematopoietic stem cells (HSCs). Correct enactment of this process relies on a syn-
ergistic interplay between genetically encoded differentiation programs and a host
of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC
niche microenvironment, action of specific transcription factors, and alterations in
intracellular metabolic state. The consolidation of these inputs with the genetically
encoded program into a coherent differentiation program for each lineage is
thought to rely on epigenetic modifiers. Recent work has delineated the precise
contributions of different classes of epigenetic modifiers to HSC self-renewal as
well as lineage specification and differentiation into various cell types. Here, we
bring together what is currently known about chromatin status and the develop-
ment of cells in the hematopoietic system under normal and abnormal conditions.

Epigenetic Factors Integrate Intrinsic and Extrinsic Factors to Enact
Hematopoiesis

The mammalian blood system serves as an excellent paradigm to study adult stem cell renewal
and cell fate commitment, since despite their tremendous diversity in terms of cell morphology,
molecular features and functions — ranging from oxygen carriage to wound healing and pathogen
defense — all the mature blood cells have a common progenitor: the hematopoietic stem cells
(HSCs; see Glossary). These cells are a relatively rare population that sits at the apex of blood cell
differentiation. Functionally, HSCs are defined by their capacity to reconstitute the entire blood
system of a lethally irradiated recipient [1,2].

Hematopoietic differentiation or hematopoiesis is a dynamic process fine-tuned by both extrinsic
and intrinsic factors [3-6]. The niche is a complex multicellular network composed of stem,
progenitor and mature hematopoietic cells and nonhematopoietic cell types, and represents
the most significant extrinsic cue. This microenvironment provides a variety of inputs such as
exposure to cytokine or growth factor signaling, variable oxygen and pH conditions, as well as
cell-cell contacts and extracellular matrix stiffness. Thereby, an intact niche provides the appro-
priate signals and conditions for maintaining HSC quiescence and promoting progenitor cell
differentiation [7-9]. Moreover, different stimulations, for example immune response against
viruses, will trigger the production of type one interferons such as IFNa. This cytokine can in
turn act as a signal to break HSC quiescence, triggering a specific transcription network which
will lean the differentiation output towards a particular cell-type program, preferentially myeloid
output in this example [10,11]. For intrinsic cues, it is widely accepted that lineage regulators
expressed in HSCs and progenitor cells instruct fate determination, as illustrated by the balance
between the PU.1 and GATA1 transcription factors (TFs), where the first one elicits the myeloid
program, and the second one governs the erythroid branch. Unbalanced expression of either
leads to hematopoietic lineage skewing [12]. Therefore, the competing influences of various
extrinsic and intrinsic inputs need to be coordinated to ensure balanced hematopoiesis.
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The classical view of hematopoiesis has been illustrated via a branching tree consisting of a
stepwise series of bifurcations signposting progressive commitment to increasingly differentiated
progenitor cell populations and ultimately to terminally differentiated cell types. Single-cell RNA
sequencing (scRNA-seq) and in vivo lineage tracing experiments have recently overturned several
aspects of this dogma (Box 1 and Figure 1, Key Figure). While HSCs remain at the top of all
hematopoietic trajectories, the rigidity and hierarchical structure of the intermediate steps in the
differentiation scheme have been reconsidered. While HSCs were previously thought of as homo-
geneous and having a blank slate with respect to differentiation, we now know that HSCs, in fact,
represent a heterogeneous population consisting of cells with existing lineage biases which make
them functionally uni-, bi-, or multipotent under steady-state conditions [13—18]. It has been
hypothesized that these lineage biases are established through epigenetic priming during hema-
topoiesis [19,20]. Remarkably, single HSCs show a stereotypical behavior upon transplantation,
in which the future lineage trajectory or fate of an individual HSC clone appears to be established
prior to young adulthood and persistently manifests under various conditions. Furthermore, while
the transcriptome is not consistently correlated with future trajectory, epigenetic features such as
DNA methylation and chromatin accessibility reveal a confident association with the subsequent
function of specific clones [20]. In agreement with this finding, short-term exposure to an immune
threat such as bacteria can induce C/EBP[-dependent changes in chromatin accessibility, which
in turn prime the HSCs towards the myeloid compartment upon secondary infections [21]. Also,
changes in the niche compartment have been shown to imprint a lasting influence on HSC
chromatin accessibility that persists even following transplantation [8]. These data suggest that
epigenetic memory represents an important factor in guiding HSC fate decisions.

Hematopoiesis as a Model to Understand Chromatin Regulation of Cell Fate

Factors capable of modulating the structure or function of chromatin are known as chromatin
regulators. Chromatin or epigenetic factors can alter a cell’s transcriptional output without eliciting
changes in the underlying genetic sequence. Mechanisms of chromatin regulation involving
direct modification of chromatin include DNA methylation, covalent histone modifications, and

Box 1. scRNA-seq and In Vivo Lineage Tracing Have Transformed Our View of Hematopoiesis

Even though the first observation of the HSCs’ remarkable ability to restore the entire hematopoietic system was >50 years
[159], the understanding of how — in terms of trajectory — they do so remains a fascinating question to this day. The clas-
sical dogma states that hematopoiesis consists of a stepwise differentiation, where asymmetric division of HSCs gives rise
to one daughter cell which retains HSC characteristics and a second daughter cell which loses the self-renewal capacity
but retains multipotent differentiation ability, known as a multipotent progenitor cell (MPP; see Figure 1 in main text).
According to the classical model, MPPs will participate in sequential binary decisions [160,161] until they reach a fully
differentiated mature blood cell type. The classical model has been predominantly derived from studies employing trans-
plantation assays. Although transplants are valuable for their ability to determine self-renewal and lineage potential of
HSCs, their reliance on surface markers to identify HSCs may mean that they miss the full scope of HSC heterogeneity.

The combination of next-generation techniques such as scRNA-seq with unperturbed in vivo tracking experiments and
single-cell transplantations have challenged the classical hierarchical view of hematopoiesis. Recent work has uncovered
new hematopoietic cell populations and unprecedented branching points that give rise to the notion that hematopoiesis is
better represented as a continuum [13,162-171]. Nonetheless, despite the considerable advances promoted by those
single-cell techniques they also have limitations and technical challenges that need to be considered. Barcode-based
techniques are not able to fully assess rare HSC clones due to their exclusion by thresholding. Also, several lineage-tracing
techniques rely on Cre lines, with all the associated caveats of specificity and selectivity. Researchers labelling HSCs with
Pdzk1ip1-driven Cre showed that at steady state, blood lineage replenishment is highly dependent on HSCs [172]. In
sharp contrast, researchers using the Tie2-Cre for the same purpose found that mature hematopoietic replenishment is
not dependent on HSCs [13]. This discrepancy could only be resolved by engagement of independent techniques.
Sleeping Beauty transposon-based tagging experiments and polylox barcoding supported the idea that, with the excep-
tion of megakaryocyte fate, MPPs likely represent the actual active differentiation compartment and are responsible for the
replenishment of most of the mature blood cells at status quo [14,17,162]. This controversy emphasizes the need for the
development and application of new approaches, models, and software to accurately deconvolute HSC fate in vivo.
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Glossary

CRISPR: The CRISPR/Cas9 system is
a harnessed system used to mediate
genome editing in cells, including
mammalian cells. It can be used to
generate gene knockouts (via insertion/
deletion) or knockins.

CRISPR Array Repair Lineage
tracing (CARLIN): a technology
developed by scientists at the Stem Cell
Research program at Boston Children’s
Hospital and Dana-Farber Cancer
Institute/Harvard Medical School to
track every cell in the mouse body, from
the embryonic stage until adulthood
[157].

Granulopoiesis: granulocyte
development.

Hematopoietic stem cells: adult stem
cells that can give rise to all types of
blood (hematopoietic) cells, including
white blood cells, red blood cells, and
platelets.

Histone variants: differ from the
canonical histones by a few amino acids
and are lowly expressed. Are typically
inserted independently of replication.
Lineage and RNA recovery
(LARRY): allows the generation of a
library of clonally tagged cells with DNA
barcodes. Reading these barcodes
using single-cell sequencing enabled the
reconstruction of genome-wide
transcriptional trajectories from
differentiating cell populations [15].
Nucleosome: the fundamental subunit
of the chromatin. Each nucleosome is
composed of an eight histone core,
known as a histone octamer. Each
histone octamer is composed of two
copies each of the histone proteins H2A,
H2B, H3, and H4.

SNPs: DNA sequence variation
occurring when a single nucleotide in the
genome differs between members of a
species or paired chromosomes in an
individual.
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Figure 1. (A) Scheme depicting the canonical stepwise hematopoiesis pattern. Under this view, HSCs are thought to contribute to each lineage equally. (B) Revised model
showing that hematopoiesis more closely represents a continuum. Recent findings indicate that only a small fraction of HSCs generate an equal outcome for all blood
mature cells, while most HSCs exhibit a differentiation bias towards one lineage. Abbreviations: CLP, common lymphoid progenitor; CMP, common myeloid
progenitor; DCs, dendritic cells; GMP, granulocyte/macrophage progenitor; HSCs, hematopoietic stem cells; ILCs, innate-lymphocyte cells; LMPP, lymphoid/myeloid
progenitor; MEP, megakaryocyte/erythroid progenitor; MgK, megakaryocyte; MPP, multipotent progenitor; NK, natural killer; RBCs, red blood cells..

nucleosome remodeling. These can be further influenced by miRNA, long noncoding RNA
(IncRNA), specialized histone variants, and 3D chromatin conformation [22,23]. The concerted
chromatin environment produced by the sum of these modifications and factors is known as the
chromatin or epigenetic landscape. In general terms, chromatin modifiers elicit local chromatin
alterations, which in turn either promote or repress transcription.

The chromatin landscape plays a decisive role from the start of the hematopoietic process.
Multiple epigenetic factors collaborate to ensure the maintenance of the HSC pool by instructing
these cells on which transcription program should be active or suppressed in order to maintain
their stemness [24,25]. Dynamic chromatin reorganization is responsible for lineage priming by
ensuring that the transcription network of a determinate cell type will be facilitated, while
programs associated with an alternative fate will be prevented. In this regard, epigenetic modifiers
exert a strong influence on lineage commitment decisions [26,27]. Unsurprisingly, chromatin
deregulation also contributes to impaired hematopoiesis and leukemia [28,29]. Mouse knockouts
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of enzymes responsible for DNA methylation or post-translational histone modifications fre-
quently show hematopoietic defects ranging from bone marrow failure to leukemia [29,30].

Chromatin Dynamics Shaping Cell Fate Decisions

Nucleosomal position and density have a remarkable influence on chromatin accessibility and
regulatory function by licensing the availability of binding sites to TFs and the transcription
machinery [31,32] (Box 2). Accurate nucleosome phasing, density and assembly are therefore
required to enable transcription at appropriate gene loci and time points. Local nucleosome
occupancy and composition are finely tailored by a group of ATP-dependent enzymes termed
nucleosome remodelers. They are subdivided into four major subfamilies named imitation
switch (ISWI), chromodomain helicase DNA-binding (CHD/NuRD/Mi-2), switch/sucrose
non-fermentable (SWI/SNF), and INO80. Mechanistically, ISWI and CHD have been shown
to modulate nucleosome assembly and organization following DNA replication by regulating
the maturation of nucleosomes and generating canonical nucleosomal spacing (Figure 2).
The INO80 subfamily is mainly associated with the removal and replacement of a given histone
by canonical or related variants. The SWI/SNF subfamily emerges as the primary remodeler re-
sponsible for regulating sliding of nucleosomes along the DNA or even releasing full nucleo-
somes from the chromatin. Hence, the SWI/SNF subfamily of nucleosome remodelers is
essential to the regulation of nucleosome density or phasing: a process that is not only intri-
cately linked with chromatin dynamics, but also with transcription, since nucleosomal packing
hinders TF binding to motifs located in that region, while nucleosome-free regions permit rapid
access to TFs [33]).

Ablation of nucleosome remodelers is associated with defective hematopoiesis. Deletion of
Arid1a, the core component of the mammalian SWI/SNF complex, causes global reduction in
accessible chromatin, affecting differentiation of both myeloid and lymphoid lineages [34]. Likewise,
deletion of Baf200, another member of the SWI/SNF complex in mammals, leads to defective he-
matopoiesis, as illustrated by perinatal death from severe anemia due to defective erythropoiesis
and impaired HSC expansion in the fetal liver [35]. In addition, MLL-AF9-driven leukemogenesis
is accelerated in Baf200~'~ tumor-bearing mice [35]. Moreover, the SNF2-like ATPase Mi2p of
the NuRD complex was shown to be required for HSC self-renewal, as demonstrated by an
increase in progenitor cell cycling and decrease in HSC quiescence observed shortly after its

Box 2. Interplay between TFs, Nucleosome Remodelers and Chromatin Dynamics

Nucleosome positioning, density and occupancy time (turnover) along the DNA can impose a physical barrier which atten-
uates chromatin accessibility and transcription. Nucleosome positioning is therefore intimately linked to gene expression.
Strong promoters preferentially occur at regions displaying increased nucleosome turnover and low density, whereas
weak promoters, despite having a high nucleosome turnover, show an increased nucleosome occupancy. Accordingly,
facultative heterochromatin is characterized by low nucleosome turnover and occupancy. How do increased nucleosome
turnover and reduced nucleosome occupancy translate into increased expression? TFs are proteins with specificity
towards specific DNA sequences or motifs. Most TFs show affinity towards naked DNA, but are excluded from
nucleosome-dense regions. One mechanistic model proposed for how TFs may gain access to histone-bound DNA is
by exploiting nucleosome turnover; this model is known as passive competition for DNA binding. Alternatively, another
model involves the active recruitment of nucleosome remodelers and the displacement of APs and/or linker histones
(see Figure 2D in main text). In this multistep process, the TFs first bind to internucleosomal DNA and destabilize the prox-
imal nucleosome, destabilization of the core histone particle will in turn recruit active remodelers which will ultimately lead to
the establishment of DNA accessibility. Indeed both models are applicable to the DNA template in cis. Thus, a third method
of nucleosome remodeling applies to TF binding in trans. In this model TFs binds to distal accessible regulatory elements,
which will in turn recruit other cofactors to evict nucleosomes leading to maintenance of DNA accessibility in trans (see
Figure 2D in main text). Finally, a special class of TF has the ability to directly bind to nucleosomal DNA which is sufficient
to establish the open chromatin state. These TFs are termed pioneer factors and include key developmental TFs such as
PU.1 and EBF1 (see Figure 2D in main text).
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Figure 2. Nucleosome Remodelers Regulate Chromatin Dynamics. (A) ISWI and CHD coordinate nucleosome assembly and spacing following DNA replication.
(B) INO8O performs nucleosome editing by changing the nucleosome composition. (C) The SWI/SNF subfamily modulates chromatin accessibility by repositioning
nucleosomes, ejecting octamers or removing histones. (D) Left: Mechanism of pioneer TF binding. Middle: nucleosome remodeling in cis using an AP prior to pioneer
TF binding. Right: nucleosome remodeling in trans via recruitment of active nucleosome remodelers and stabilizing secondary TFs (TF3 in this case). Abbreviations: AP,
architecture protein; CHD, chromodomain helicase DNA-binding; ISWI, imitation switch; SWI/SNF, switch/sucrose non-fermentable; TF, transcription factor. Created

with BioRender.com.

deletion. These changes do not impair erythroid differentiation but affect myeloid and lymphoid
lineages [36]. Furthermore, mice whose HSCs harbor a deletion of the gene encoding BPTF
(a component of the NURF nucleosome remodeling complex) show impaired bone marrow recon-
stitution, culminating in bone marrow failure and anemia. Molecularly, Bptf knockout results in
deregulated transcription of stemness programs, marked by decreased expression of genes
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Box 3. Principles of Chromatin Accessibility

Eukaryotic chromatin is packaged into an array of nucleosomes, composed of a histone octamer core wrapped by 147 bp
of DNA, and separated by linker DNA. The nucleosome core is formed by four histone proteins — H2A, H2B, H3, and H4 —
that can be post-translationally modified, including methylation, phosphorylation, acetylation, ubiquitylation, and
sumoylation [173] or replaced by histone variants [174]. The nucleosomes themselves can also be moved, either through
addition, removal or changes in internucleosomal spacing. Furthermore, the underlying DNA can also be modified through
methylation. All of these epigenetic modifications come together to regulate chromatin dynamics and gene expression dur-
ing developmental processes. Chromatin accessibility is measured by evaluating the vulnerability of its constituent DNA to
enzymatic digestion or cleavage. The first evaluation of chromatin accessibility was conducted by Hewish and colleagues
in 1973, who revealed regular nucleosome phasing using DNA endonucleases. Later, Southern blot hybridization revealed
the precise 100-200-bp phasing pattern produced through DNase digestion of chromatin. Advances in sequencing tech-
nology have permitted the genome-wide mapping of chromatin accessible regions with increasing sensitivity [175,176].
We briefly describe the most widely used techniques in Box 4.

encoding MEIS1, PBX1, MN1, and LMQO2, TFs essential for HSC maintenance [37]. Collectively,
these findings shed light on the importance of appropriate nucleosome distribution in facilitating
and instructing hematopoiesis.

Defects in chromatin accessibility are associated with altered transcription programs in hemato-
poietic progenitor cells and disbalanced mature cell output [38]. In this sense, methods which
help ascertain the chromatin landscape (Boxes 3 and 4) have emerged as powerful tools in un-
derstanding cell fate decisions along a continuous trajectory. ATAC-seq experiments on distinct
hematopoietic human cell types, including HSCs, have revealed that cell types can be identified
much more precisely on the basis of their chromatin accessibility profiles than their
transcriptomes [39]. This is mainly due to the fact that ATAC-seq data can reveal cis-regulatory
elements that are specifically active at different stages of differentiation [39-41]. Moreover, the

Box 4. Selection of Modern Next-Generation-Sequencing-Based Technologies

MNase-seq: utilizes the MNase single-strand-specific endo-exonuclease to indirectly infer chromatin accessibility by
unveiling the areas of the genome occupied by nucleosomes and regulatory factors. Thereby, this method resolves the
genome-wide nucleosome distribution in a qualitative and quantitative manner.

DNase-seq: this technique exploits the capacity of double-stranded endonuclease DNase | to preferentially cleave within
nucleosome-free regions, termed DNase | hypersensitive sites (DHSs). DNase-seq analysis uncovered that while a minor-
ity of DHSs is found within promoters and transcriptional start site-proximal regions, there is significant enrichment of DN-
ase-accessible regions at distal enhancers. One major concern with this technology is that DNase has cleavage biases,
thus directly affecting the TF footprint interpretation.

Assay for transposase-accessible chromatin using sequencing (ATAC-seq): represents one of the remarkable ad-
vances in the field given the protocol’s ease and capacity to support low input material (500-50 000 cells). This protocol
hijacks the ability of the Tn5 transposase to fragment DNA and randomly integrate into the genome. The Tn5 is further
tagged/labeled with lllumina oligos or fluorescent probes which will allow the generation of sequencing libraries to map
open chromatin and its related regulatory elements (ATAC-seq), or the single-cell visualization of global chromatin acces-
sibility (ATAC-see). ATAC-seq not only maps chromatin accessibility, but is also suitable for TF footprinting. Recently,
ATAC-seq has been adapted to a single-cell platform, allowing the inspection of chromatin dynamics during cell fate
determination.

Bisulfite sequencing (WGBS/RRBS): bisulfite genomic sequencing is the gold-standard technology for detection of
DNA methylation. This method relies on the observation that unmethylated cytosines are converted to uracils when ex-
posed to sodium bisulfite whereas methylated forms of cytosine remain unchanged. The alignment can then be used to
resolve methylation status at single nucleotide-level in a similar manner to detecting DNA variants from NGS data.

Nucleosome occupancy and methylome sequencing (NOMe-seq): this method provides simultaneous information
on DNA accessibility and methylation. Instead of relying on DNA cleavage, NOMe-seq probes DNA status through
chemical modification by treating the samples with a GpC methyltransferase (MTase from M.CviPl) that methylates open
chromatin regions. Bisulfite conversion of nonmethylated cytosine to uracil nucleotides provides a single-nucleotide
measure of accessibility. Given the abundance of GC regions in the genome, NOMe-seq generates high-resolution
profiles, however, it requires a large number of sequencing reads which is associated with increased cost.
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integration of RNA sequencing, ATAC-seq, and chromatin-immunoprecipitation sequencing
(ChiP-seq) profiles of hematopoietic progenitor and mature cells has unveiled that hematopoiesis
involves a gradual reorganization of the chromatin landscape, in which poised enhancers are
established through gain of chromatin accessibility before onset of RNA expression from their
target promoters. Although HSCs show extensive poised enhancers, the maximum poised
enhancer peaks have been observed in MPPs, implying de novo gain and loss of enhancer
accessibility during hematopoiesis [27].

3D genome conformation has also been proposed to play a role in regulating chromatin state
dynamics in HSCs and derived lineages. Genome folding permits cis-regulatory regions to either
increase or decrease their proximities and thereby interactions in 3D space. Genome conformation
has been shown to facilitate the expression of appropriate transcriptional programs during cell fate
specification of multiple tissues and organs [42-44], as illustrated by the fact that the enhancer—
promoter interaction patterns are cell type specific and segregate with the hematopoietic tree
[45]. Furthermore, 36% of the genome was found to undergo compartment switching during dif-
ferentiation of human embryonic stem cells (ESCs) to one of the three germ layers [46]. However,
little is known regarding how chromosome organization contributes to fate determination in HSCs.
A recent study comparing the 3D genome organization of mouse fetal and adult HSCs uncovered
that although topological associated domains (TADs), the main structural units of chromosome
architecture, remain largely unchanged during fetal-adult transition, there is an increase in the
separation between active and inactive compartments and sharper definition of TAD boundaries
[47]. The authors additionally uncovered significant cell type-specific enhancer—promoter interac-
tions, with more cell cycle and metabolism-related genes exhibiting enhancer—promoter contacts
in fetal than adult HSCs. This strongly supports the idea that genome architecture contributes to
adult HSC identity. Further evidence for a role of chromosome architecture in HSC identity comes
from studies of Stag2 null mice. HSCs harboring a deletion in chromosome architectural protein
Stag2 show changes in chromatin accessibility and transcription of ineage specification genes, in-
cluding Spi1/PU.1, Ebf1, and Pax5, leading to reduced hematopoietic progenitor cell commitment
towards the B cell lineage. Supporting the specific requirement for an appropriate chromatin land-
scape, this defect can be rescued by Stag2 re-expression, but not by overexpression of Spi1/
PU.1 [48].

Integrating chromatin accessibility data with fine-mapped genome-wide association studies
(GWASS) is valuable for uncovering SNPs in noncoding and intergenic regions linked to human dis-
eases [39,49]. Recent GWAS studies on human hematopoietic cell types have discovered multiple
SNPs associated with physiological traits such as RBC size, volume, and hemoglobin content
[50,51]. Thus, we envision that integrating hematopoietic cell GWAS data with knowledge of cell
type-specific regulatory element activity will enable us to build models for accurate prediction of ge-
netic variants in blood-related diseases. Thereby, insights into transcription regulation and chromatin
accessibility can be leveraged to understand human blood-related diseases.

Histone Variants Modulate Chromatin Accessibility during Hematopoiesis

Core histone variants such as H3.3 have been shown to play an instructive function during
hematopoiesis [52]. Recently, the histone chaperone HIRA, responsible for depositing H3.3
onto chromatin, was shown to be pivotal for nucleosome remodeling in HSCs. Its depletion
results in an overall decrease in chromatin accessibility and impaired HSC differentiation by
hindrance of the transcription of genes coding for critical hematopoietic TFs [53].

Besides the canonical histone core, the linker histones, including variants of histone H1, are also
capable of influencing chromatin accessibility. H1 modifies the angle at which DNA exits the
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nucleosome, thus promoting the neutralization of the charge of linker DNA. As a consequence,
chromatin folds into a more compact and less accessible state. Histone H1 was recently
shown to promote granulopoiesis [54]. By contrast, overexpression of HMGN — a protein be-
longing to the family of nucleosome-binding proteins which competes with histone H1 —in hema-
topoietic progenitors results in impaired myeloid differentiation due to increased transcription of
genes associated with stem identity and function [55]. The influence of H1 and linker DNA in reg-
ulating HSC fate are still to be defined.

Covalent Modifications at Histone Tails — Wagging between Histone Acetylation
and Deacetylation

Chromatin accessibility is also influenced by the acetylation status of certain lysine residues in
histone proteins. Addition of an acetyl group to lysine typically correlates with open chromatin
structure and activation of gene expression. The levels of chromatin acetylation are tightly
regulated by lysine acetyltransferases (KATs) and histone deacetylases (HDACS) [56,57].

Given the close association of histone acetylation and active transcription, KATs (0300, CBP,
MOZ GCN5, HBO1, and MOF) have been extensively studied in the context of normal and malig-
nant hematopoiesis [38,58-67]. For instance, the CBP-p300 family of KATs has been implicated
in both HSC self-renewal and differentiation, as illustrated by specific binding of CBP/p300 to the
c-Myb KIX domain which thereby regulates c-Myb-dependent gene expression [68].

Despite their homology and overlapping functions in other cell types, the role of CBP and p300
during hematopoiesis appear to be distinct and dependent on their expression levels [69].
Although Cbp*’~ mice display a hematopoietic defect, p300*'~ mice do not, suggesting either
that CBP and p300 influence hematopoiesis through distinct networks, or that redundant
pathways could rescue p300 but not CBP function [70-72]. Deletion of Cbp in the HSC compart-
ment results in differentiation defects, which are reflected in impaired bone marrow reconstitution
after transplantation [70]. In contrast, transplanted p300~~ HSCs only show mild differences with
regards to differentiation [69], suggesting that changes in HSCs upon p300 deletion might stem
from the niche. Of note, despite its essential function in regulating adult HSC fate, CBP is not re-
quired to initiate HSC formation, but is essential for maintaining the HSC pool.

Ablation of the MYST family KAT MOZ (also known as KATBA or MYSTS3) has been shown to reg-
ulate various aspects of hematopoiesis, ranging from HSC proliferation to self-renewal and hema-
topoietic lineage commitment [62]. Likewise, the KAT MOF (also known as KAT8 or MYST1) was
found to specifically influence adult hematopoiesis [38,66], while being dispensable for the highly
proliferative fetal counterpart [65]. MOF orchestrates erythropoiesis through its modulation of
H4K16ac and chromatin accessibility in HSCs and erythroid progenitors (MPP2 and MEP). Mof
expression during adult hematopoiesis is dynamic, showing a first peak at HSCs/progenitor
cells and a second peak at the early erythroid progenitor state. The transcription factor GFI1B
is responsible for a second peak in Mof expression, whose protein product binds chromatin
and deposits H4K16ac in erythroid progenitor cells, generating a positive feedback loop which
enforces the erythroid lineage. Removal of MOF or its enzymatic activity severely compromises
erythroid differentiation in colony-formation assays. Consequently, both Mof”~ and Vav1-iCre
Mof™®/1X animals suffer from anemia and display reduced numbers of erythroid progenitors
and MEPs in vivo [38,66].

A fascinating feature of histone acetylation is its high dynamicity. Indeed, histone marks can be
gained and lost repeatedly along a single hematopoietic trajectory. One example is the expression

of Mof, which is dynamic during erythropoiesis, which starts out high in HSCs, drops in MPP1 and
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pre-MEP cells, and then reaches another peak in MEPs [3]. This is also mirrored by fluctuations in
global levels of the MOF target modification H4K16ac in these cell types. Fluctuations in the
expression patterns of Hdac4, Hdac2, and Sirt4 are also observed along differentiation through
the erythroid lineage, raising the possibility that multiple histone acetylation sites besides
H4K16ac are dynamically regulated [38].

Active histone deacetylation is the counterbalance of histone acetylation and promotes transcrip-
tional repression. Modulating the levels of HDACs therefore also impacts HSC biology. For
instance, HSCs lacking the histone deacetylase sirtuin 1 (SIRT1) exhibit defects in self-renewal
and differentiation, resulting in reduced size of the lymphoid compartment and onset of anemia
[73,74]. HDAC1 and HDAC2 seem to have redundant targets in HSCs, as only combined loss,
but not single ablation, of these enzymes results in rapid hematopoietic failure from severe anemia
and cytopenia. Of note, the phenotypes observed in HSCs upon KAT or HDAC knockout are
strongly reminiscent of the phenotypes of aged HSCs, including self-renewal defects and myeloid
bias. A deregulated histone acetyl profile may therefore be either a driver or consequence of phys-
iological aging in HSCs. Consistent with this, the active mark H4K16ac appears to be downreg-
ulated in old murine HSCs [75]. Considering the significant number of stem cell maintenance
pathways found to be regulated by MOF in young HSCs [38], one can speculate that decrease
of H4K16ac may have detrimental effects on the ability of aging HSCs to maintain their stem iden-
tity. These findings indicate that pharmacological augmentation of cellular acetylation levels might
be able to prevent functional decline in aged HSCs in humans.

DNA Methylation Represses Impromptu Programs in HSCs

Historically, DNA methylation has been described as a silencing mark, ensuring tissue-specific
gene expression patterns in a heritable manner, including X-chromosome inactivation in mam-
mals, silencing of transposon elements, and genome imprinting (reviewed by [76,77]). DNA meth-
ylation occurs predominantly at cytosine bases, producing 5-methylcytosine (5mCQC). In the
mammalian genome, 70-80% of the cytosines adjacent to guanines (CpGs) are found methyl-
ated (5mC), except for gene regulatory regions close to promoters where CpGs remain
unmethylated (CpG islands, CGils) [78]. DNA methylation depends on the enzymatic activity of
DNA methyltransferases (DNMTs). Three active DNMTs have been identified in mammals:
DNMT1, DNMT3A, and DNMT3B [79,80]. While DNMT3A and DNMT3B recognize unmethylated
regions and are responsible for establishing de novo CpG methylation [81], DNMT1 targets
hemimethylated DNA and has a prominent role in maintaining DNA methylation patterns during
DNA replication.

Given their distinct targets in DNA, DNMT1 and DNMT3A/B unsurprisingly influence cell fate in
different ways. Dnmt1~'~ HSCs show predisposition for myeloid-erythroid lineage commitment,
accompanied by a significant decrease in the related lymphoid populations [82]. In contrast,
scRNA-seq on conditional Dnmt3a™~ HSCs reveals a predisposition for the erythroid differentia-
tion program, accompanied by increased chromatin accessibility at binding sites for critical
erythroid TFs KLF1, GATA1, and TAL1 [83]. Transplantation experiments have revealed that
the Dnmt3a™'~ HSCs also exhibit enhanced self-renewal capacity and are able to regenerate
over at least 12 transplant generations in mice, at the expense of cell differentiation [84-86].
This is in stark contrast to Dnmt1~~ HSCs, which suffer from drastically reduced self-renewal
capacity [82]. The enhanced self-renewal capacity of Dnmt3a~~ HSCs might be connected
with the fact that ~30% of hypomethylated regions in these cells are located at the edges of
vast unmethylated regulatory regions, approximately 3.5 kb in length, termed canyons [87]. Over-
all, canyon-associated genes are enriched for stereotypical stemness genes, including the Hox
family cluster [87], and show a gradual methylation loss upon serial transplantations, which
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correlates with the striking extended lifespan of Dnmt3a™~ HSCs [86]. Thus, although deletion of ei-
ther DNMT1 or DNMT3A/B results in hypomethylation, their downstream effects on HSC fate ap-
pear to be distinct. In mammals, DNMT1 promotes the self-renewal program of HSCs, while
DNMT3A elicits differentiation programs, in particular by suppressing erythroid programs via de
novo methylation of key TF motifs. Altered levels and mutations of DNMTs are associated with de-
velopmental disorders, including clonal hematopoiesis of indeterminate potential (CHIP) and acute
myeloid leukemias in humans (AMLs) [88,89].

The discovery of the Ten-eleven translocation (TET) enzymes added another layer of complexity to
the regulation of DNA methylation. The TET enzymes oxidize 5mC to 5-hydroxy-methylcytosine,
which results in DNA demethylation [79]. Therefore, the interplay between DNMT and TET enzymes
represents a powerful strategy to regulate gene activity through dynamic addition and removal of
DNA methylation.

Among the TET enzymes, TET2 appears to be prominent in regulating HSC fate. Single-cell
DNA methylation analyses (scRRBS; Box 4) on Tet2~~ HSCs revealed dramatic methylation
changes at CpG sites contained within lineage-specific TF binding motifs, resulting in disrup-
tion of transcriptional priming [83]. While Dnmt3a-deficient HSCs appear to favor the erythroid
differentiation program at the expense of monocyte lineage commitment [83,90], Tet2”~ HSCs
show the opposite biases, with a skew towards the myelomonocytic progenitors. Furthermore,
chromatin accessibility is decreased at motifs for TAL1 and KLF1 in Tet2™'~ cells. Therefore, it is
likely that TET2 and DNMT3A compete to maintain the methylation status quo at the same
lineage-related loci but cooperate to repress the stem cell transcriptional network in HSCs. Mice
receiving transplanted double knockout Dnmt3a™~ Tet2™~ HSCs exhibit a complex phenotype,
with multiple signs of abnormal hematopoiesis, suggesting that TET2 and DNMT3A have a syner-
gistic impact on hematopoiesis [91,92]. In fact, the interplay between TET and DNMT3 appears to
be more complex than previously anticipated. Double knockout of Dnmt3a and Tet2 in HSCs does
not produce an epistatic phenotype, but rather elicits upregulation of erythroid signature genes in
comparison to single Tet2~~ mutants. These findings are particularly important since single-mutant
Dnmt3a™~ HSCs maintain their stem cell program, while the combination with Tet2 deletion leads
to derepression of lineage-specific regulators and augmentation of differentiation programs [91].
Taken together, these findings suggest that double null mutations may serve to elicit and accelerate
hematopoietic disorders. Consistent with this hypothesis, DNMT3A and TET2 mutations frequently
co-occur in T cell ymphoma and AML in humans [91,93,94]. Moreover, TET loss of function in
humans correlates with a unique pattern of global hypomethylation coupled to regional hyperme-
thylation in diverse cancer genomes, including leukemias [95].

Polycomb Repressive Complexes: Repression beyond 5mC

As discussed earlier, DNA methylation has a valuable function in transcription suppression, but
the fact that many unmethylated CpG islands show low or no expression hints towards the action
of additional epigenetic repression machinery in HSCs. The Polycomb repressive complexes
(PRCs) are another critical player in the regulation of chromatin permissibility (reviewed by
[96,97)).

The PRCs can be further divided into PRC1 and PRC2. Both are multi-subunit complexes
containing enzymatic members capable of catalyzing the monoubiquitylation of H2A (H2Aub1)
and the addition of one or more methyl groups on lysine 27 at histone H3 (H3K27me). Both
these histone modifications trigger transcriptional repression [98,99]. Considerable attention has
been paid to studying both PRC1 and PRC2 dynamics during different developmental stages,
ranging from ESCs, where they are responsible for repressing pluripotency, to adult stem cells,
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in particular HSCs, since mutations in PRC components are strongly associated with blood-related
disorders [97]. In this regard, pioneer ChIP-sequencing studies profiling histone methylation in
young and old HSCs revealed the existence of bivalent genes, positive for both H3K27me3 and
H3K4me3, whose functions are related to development and RNA metabolism [100].

PRC1 complexes exist in multiple forms, including canonical PRC1.2 and PRC1.4 as well as non-
canonical variants [101]. Several members of the canonical PRC1.4 variant of the PRC1 complex
(also known as PRC1-BMI1) are highly expressed in HSCs, where they regulate HSC self-
renewal by repressing p16™K** and p19°7™ [102-106]. Furthermore, Bmi7 null animals show a
block in B cell differentiation via the silencing of Ebf1 and Pax5 [107]. Accordingly, Bmi1 deletion
in T cells leads to B cell reprogramming while BMI1 overexpression causes expansion of the HSC
pool due to augmentation of their self-renewal capacity and increased symmetric division. In
contrast, HSCs deficient for the PRC1.2 variant of the canonical PRC1 complex (Mel-18 KO) are
more quiescent and have less proliferation ability [108]. The expression of some PRC1 complex
members appears to be dynamic during hematopoiesis. The chromobox (CBX) protein CBX7 is
highly expressed in HSCs, whereas multipotent cells express CBX9 and repress CBX7 [109].

The noncanonical PRC1 complexes also contribute to determining HSC trajectory, underscored
by the high rates of somatic mutations found in member BCOR and its homolog BCORL 1 in
various blood-related diseases in humans [110,111]. In mice, Pcgf1-deficient hematopoietic
progenitor cells produced augmented numbers of myeloid progenitor cells by downregulation
of HoxA family genes Hoxa7, Hoxa9, and Hoxa10 [112,113].

The PRC2 complex contains three core subunits: SUZ12, EED, and one of two methyltransferases:
EZH1 or EZH2. The PRC2 complex subunits influence hematopoiesis at different stages in a dosage-
dependent manner. For example, the homozygous deletion of Suz72 impairs HSC function and
promotes lymphopoiesis, whereas in heterozygosity, it enhances HSC self-renewal [114,115]. Also,
embryonic deletion of Ezh1 triggers the premature emergence of bona fide HSCs in vivo due to
enhanced accessibility of binding sites for key HSC TFs, including HLF, FOXO1, and ARID5B
[116]. Although Ezh2 is indispensable for fetal hematopoiesis, its ablation in adult bone marrow results
in only minor defects during lymphoid differentiation [117-119], suggesting that £zh2 regulation in
HSCs can differ depending on the temporal expression and/or HSC state.

The putative Polycomb group proteins additional sex combs like 1 and 2 (ASXL1 and 2) are not
only commonly mutated in mammalian clonal hematopoiesis [120,121], but are also required for
correct hematopoiesis acting in a gene dosage-dependent manner with non-overlapping biolog-
ical functions between them [122-124].

Chromatin Dynamics Emerges as a Critical Facet of Blood-Related Disorders
Despite significant efforts in the clinic, AML accounts for ~4% of all cancer deaths' and patients
who achieve remission have a relapse rate of ~50%, resulting in an overall survival rate of
~30% after 5 years. This dichotomy — remission and relapse — has been attributed to the persis-
tence and maintenance of leukemic stem cells (LSCs) after treatment. Although LSCs cannot be
precisely defined by surface markers, they can be defined by their capacity to regenerate and
initiate AML upon transplantation into immunodeficient mice, analogous to how normal HSCs
are capable of generating progenitors and mature blood cells [125].

Although the exact origin of LSCs remains a puzzle, it is accepted that the long lifespan of HSCs
makes them susceptible to the accumulation of mutations over time, generating a potential
reservoir of somatic mutations. One current hypothesis postulates that the acquisition of

¢? CellPress

Trends in Genetics, February 2021, Vol. 37, No. 2 135




¢? CellPress

additional driver mutations in already mutated HSCs can push them towards an LSC profile and
enable them to gain the potential to promote leukemogenesis.

In support of this notion, analysis of hematopoietic cells from healthy elderly subjects revealed the
presence of multiineage clones carrying somatic mutations without any apparent clinical pheno-
type [126-129]. Indeed, the frequency of mutations seems to gradually increase from HSCs to
clonal hematopoiesis of indeterminate potential (CHIP) and even further in LSCs and AML in
humans. HSCs isolated from patients with AML have been shown to harbor some but not all of
the genetic alterations found in leukemic cells. Of note, the development of CHIP in humans
has been recently associated with non-blood-related comorbidities, in particular
noncommunicable diseases such as cardiovascular disorders [120,130-132].

Selection of mutations in genes encoding epigenetic regulators, specifically DNMT3A, TETT,
TET2,IDH2, and ASXL1, are among the earliest events conferring competitive fitness to leukemic
cells. LSCs harbor unique patterns of DNA methylation and histone modification compared
to HSCs and blast cells. Furthermore, in spite of the intracellular heterogeneity, enhanced self-
renewal capacity is a recurrent phenotype elicited by epigenetic regulator mutations [132]. One
illustration of this is MLL deficiency, which leads to impaired HOXA9 suppression, thereby
promoting HSC self-renewal [67,133,134]. Similarly, hematopoietic cells from PRC2 mutant
mice show aberrant expression of HSC-related genes due to impaired suppression of the
‘stem program’ [135].

Perturbations in histone acetylation levels have also been linked to emergence of LSCs and AML
development. The histone acetyltransferase HBO-1, targeting lysine 14 on H3 (H3K14ac),
facilitates expression of Hoxa9 and Hoxa10, thereby sustaining the functional properties of
LSCs [136]. Likewise, IKF2 appears to be dispensable for human and mouse HSCs, while its
upregulation in LSCs promotes their self-renewal by inhibiting the C/EBP-driven differentiation
program and thereby promoting AML onset [137].

Mutations in the RNA splicing machinery are another recurrent feature in CHIP, LSCs, and AML
[138-140]. For instance, mutations of IDH2 and the splicing factor SRSF2 cooperatively drive
the development of lethal myelodysplastic syndrome [141]. Evidence is also emerging of
crosstalk between RNA-processing enzymes and epigenetic regulators in leukemic progenitors.
The histone methyltransferase KDM4C enhances the chromatin accessibility and thereby
expression of the ALKBH5 gene encoding a N 6-methyladenosine (m6A) demethylase in
LSCs. This upregulation leads to global changes in mRNA stability [142]. Moreover, the METTL3
gene — encoding a m6A mRNA methyltransferase — was revealed as being essential for the ability
of myeloid leukemia cells to establish the disease in immunodeficient mice. METTL3-deficient
leukemia cells suffer from impaired cell proliferation and pronounced cell differentiation [143,144].
Thus, collectively these findings provide functional evidence that dysregulation of the HSC
post-transcriptional machinery contributes to leukemogenesis, and that mutations in epigenetic
regulators and spliceosome machinery components cooperate in the progression from clonal
hematopoiesis to a pre-leukemic state.

Old Foes, New Promises — Epigenetic Regulators as Emerging Clinical Targets
against Leukemia

The heterogeneity observed in AML due to the propensity of LSCs to clonally evolve poses a
formidable challenge to the development of an effective and unique therapy for this disease. The
majority of current strategies aim to disrupt LSC quiescence by restoring and promoting their dif-
ferentiation capacity [132]. Epigenetic regulators are another class of attractive AML drug targets
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Figure 3. Metabolites Serve as Key Substrates for Histone-Modifying Enzymes. Scheme showing the relationship
between intracellular metabolites and epigenetic regulation. The depicted molecules have been implicated in the regulation of
both HSC and LSC fate. Genome-wide tracks represent active transcription (magenta) or repression (teal). Abbreviations: 2-
HG, 2-hydroxyglutarate; Ac, acetyl-CoA; oKG, a-ketoglutarate; HDAC, histone deacetyltransferase; HSC, hematopoietic
stem cell; KAT, lysine acetyltransferase; KDM, histone demethylation; KMT, histone methyltransferases; LSC, leukemic
stem cell; Me, methyl group; SAM, S-adenosylmethionine; TET, ten-eleven translocation. Created with BioRender.com.

given the prevalence of LSC clones bearing mutations in them. However, this is hampered by the
fact that most leukemia-associated mutations in epigenetic regulators result in loss of function.

One promising alternative is to modulate epigenetic regulators by altering the levels of their
‘feedstock’ through metabolic manipulation (Figure 3 and Box 5). This principle is illustrated by the
mode of action of two clinically approved drugs: enasidenib and ivosidenib, inhibitors for mutant
IDH2 and IDH1, respectively. Both compounds reduce levels of 2-HG, removing inappropriate inhi-
bition of the TET enzymes, thereby restoring normal levels of DNA methylation and ultimately trigger-
ing LSC differentiation [145,146]. Vitamin C (ascorbic acid) can also act as a cofactor in the regulation
of TET enzymes in mammals [147]. By hijacking this unique property, two groups independently
showed that vitamin C can regulate murine and human HSC numbers and that supplementation
of exogenous vitamin C attenuates leukemogenesis by restoring normal TET2 function [148,149].
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Box 5. Crosstalk between Metabolites and Chromatin Environment during Hematopoiesis

Another crosstalk that is now receiving considerable attention is the relationship between cellular metabolism, epigenetic
modifications and hematopoiesis (see Figure 3 in main text) [177-180]. A prime example of this is the observation that the
demethylation activity of the TET enzymes can be attenuated by the activity of isocitrate dehydrogenase IDH1/DH2. Since
these enzymes are involved in the oxidative decarboxylation of isocitrate, this reaction produces NADPH and 2-
hydroxyglutarate (2-HG). The latter is a metabolite that inhibits TET2 activity. Indeed, mutations in IDH1/2 are frequently
found in leukemia and CHIP (see Chromatin Dynamics Emerges as a Critical Facet of Blood-Related Disorders in main text)
and their deletion leads to impaired differentiation in cultured human HSCs [181]. Nevertheless, ldh2-mutant HSCs do not
phenocopy the defects observed in Tet2-deficient animals [83], suggesting that modifications in DNA methylation likely
precede metabolic changes in these cells. Indeed, AML patients show recurring gain-of-function mutations in IDH7 and
IDH2 and increased 2-HG levels [182,183].

Moreover, changes in branched-chain amino acid (BCAA) metabolism have been associated with increased a-ketoglutaric
acid levels in LSCs, resulting in indirect increases of 2-HG [184]. This metabolite, as discussed above, negatively regulates
TET2, in turn causing DNA hypermethylation with significant effects on cell differentiation and proliferation [83,185,186].

Both HSCs and LSCs depend on glycolytic respiration, making them sensitive to the relatively low oxygen concentrations
in the bone marrow microenvironment [9]. Perturbations in glycolysis are detrimental to both cell types, but LSCs exhibit a
competitive advantage through their ability to increase mitochondrial mass and increase OXPHOS capacity and fitness
[187]. In addition, by upregulating expression of ALOX5 and ALOX15, LSCs are able to colonize atypical niches rich in
adipocytes, conferring them drug resistance [188,189]. Lysosomes also appear to have complex functions in HSC biol-
ogy, as repression of lysosomal activity enhances both quiescence and differentiation capacity [190]. Even though the pre-
cise function of lysosomal activity in LSCs remains unclear, it has been shown that leukemic cells are more sensitive to
lysosomal disruption when compared to normal progenitor cells [191]. Mitophagy reduction also preferentially affects ab-
normal progenitor cells, as it results in decreased numbers of LSCs and promotes AML differentiation [192]. Not surpris-
ingly, targeting both mitochondria and lysosomes concomitantly represents a promising strategy against AML [193].
Altogether, the interplay between metabolism and epigenetic modifications is necessary in progression of cells from a
pre-leukemic state to full-blown leukemia.

Targeting epigenetic modifiers which repress differentiation programs also appears to be a
promising strategy for avoiding AML relapse [150]. Preclinical studies using LSCs exposed to
an inhibitor of the histone demethylase 1 (LSD1) showed increased differentiation output due to
the return of the proper wiring of PU.1 and C/EBPa enhancers [151,152]. Dnmt3a-mutant
HSCs showed increased H3K79me at the DNA-methylated canyons (see DNA Methylation
Represses Impromptu Programs in HSCs), thereby suggesting that blocking its methylation
could be a propitious strategy [153,154]. Consistently, reducing H3K79me either by downregu-
lating disruptor of telomeric silencing 1-like (DOT1L) or administration of pinometostat (EPZ-5676)
elicits efficient responses and decreased leukemogenic potential in a subset of MLL-rearranged
advanced leukemias [132,155,156].

Concluding Remarks

In this review, we shed light on the multiple ways in which chromatin dynamics regulates hema-
topoiesis and HSC fate determination. HSC identity is ensured by their chromatin landscape,
which provides and maintains their accurate transcription profile. In this regard, while TF binding
and chromatin decompaction represent intrinsic cues, the niche can provide external cues to
either reinforce cell differentiation or maintain an undifferentiated state. Importantly, perturbations
in either can elicit leukemogenesis. Thereby, combining chromatin state, clonality, transcription
and genomic profiles in an unperturbed/native system emerges as a powerful strategy to
precisely decipher the onset of blood-related disorders. We envision that the engineered
mouse encoding all the CRISPR editing components (CRISPR array repair lineage tracing,
CARLIN) [157], and lineage and RNA recovery (LARRY) coupled with scRNA/ATAC-seq
will be essential to disentangle HSC clone history and the importance of chromatin status. An-
other current issue rests on the fact that most barcode techniques are not suitable to study
human hematopoiesis in vivo. Techniques taking advantage of the inherent intraindividual varia-
tion in MtDNA as an innate barcode to infer clonal relationships will prove critical in deciphering
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Outstanding Questions

Can changes in the niche metabolic
microenvironment contribute to HSC
fate determination by affecting epige-
netic regulator activities?

How is temporal regulation of the
chromatin landscape in different
hematopoietic differentiation programs
achieved?

Is the dosage of epigenetic regulators
important for cell determination?

How do epigenetic regulators affect
HSC interaction with the niche?

Advances in low-input ChlP-sequencing
technologies should in future permit us
to precisely assay the full extent of inter-
cellular heterogeneity in histone post-
translational modifications in HSCs.
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progenitor fates of human hematopoiesis [158]. It is tempting to predict that the combination of
clonal output with chromatin status profiling may provide insights into the mechanisms underpin-
ning and conferring memory to lineage specification and HSC fate. In summary, despite exciting
open questions to be addressed (See Outstanding Questions) the last decade has significantly
advanced our understanding of how chromatin dynamics instruct cell transitions between
developmental stages and cellular activation states. Further molecular insights into the action of
chromatin factors in hematopoaietic cell types will be valuable not only for epigenetic and stem cell
researchers but also in providing sources of new druggable targets for the clinic in the coming years.
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