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Abstract. We present a new learning-based method for multi-frame
depth estimation from a color video, which is a fundamental problem in
scene understanding, robot navigation or handheld 3D reconstruction.
While recent learning-based methods estimate depth at high accuracy,
3D point clouds exported from their depth maps often fail to preserve
important geometric feature (e.g., corners, edges, planes) of man-made
scenes. Widely-used pixel-wise depth errors do not specifically penal-
ize inconsistency on these features. These inaccuracies are particularly
severe when subsequent depth reconstructions are accumulated in an
attempt to scan a full environment with man-made objects with this
kind of features. Our depth estimation algorithm therefore introduces
a Combined Normal Map (CNM) constraint, which is designed to bet-
ter preserve high-curvature features and global planar regions. In order
to further improve the depth estimation accuracy, we introduce a new
occlusion-aware strategy that aggregates initial depth predictions from
multiple adjacent views into one final depth map and one occlusion prob-
ability map for the current reference view. Our method outperforms the
state-of-the-art in terms of depth estimation accuracy, and preserves es-
sential geometric features of man-made indoor scenes much better than
other algorithms.

Keywords: Multi-view Depth Estimation, Normal Constraint, Occlusion-
aware Strategy, Deep Learning

1 Introduction

Dense multi-view stereo is one of the fundamental problems in computer vision
with decades of research, e.g. [31, 14, 4, 40, 13, 43]. Algorithms vastly differ in
their assumptions on input (pairs of images, multi-view images etc.) or employed
scene representations (depth maps, point clouds, meshes, patches, volumetric
scalar fields etc.) [11].

In this paper, we focus on the specific problem of multi-view depth estimation
from a color video from a single moving RGB camera [11]. Algorithms to solve
this problem have many important applications in computer vision, graphics
and robotics. They empower robots to avoid collisions and plan paths using
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only one onboard color camera [3]. Such algorithms thus enable on-board depth
estimation from mobile phones to properly combine virtual and real scenes in
augmented reality in an occlusion-aware way. Purely color-based solutions bear
many advantages over RGB-D based approaches [47] since color cameras are
ubiquitous, cheap, consume little energy, and work nearly in all scene conditions.

Depth estimation from a video sequence is a challenging problem. Traditional
methods [14, 4, 40, 13, 43] achieve impressive results but struggle on important
scene aspects: texture-less regions, thin structures, shape edges and features, and
non-Lambertian surfaces. Recently there are some attempts to employ learning
techniques to this problem [20, 16, 36, 41, 18]. These methods train an end-to-end
network typically with a pixel-wise depth loss function. They lead to significant
accuracy improvement in depth estimation compared to non-learning-based ap-
proaches. However, most of these works fail to preserve prominent features of
3D shapes, such as corners, sharp edges and planes, because they use only depth
for supervision and their loss functions are therefore not built to preserve these
structures. This problem is particularly detrimental when reconstructing indoor
scenes with man-made objects or regular shapes, as shown in Fig. 4. Another
problem is the performance degradation caused by the depth ambiguity in the
occluded region, which has been ignored by most of the existing works.

We present a new method for depth estimation with a single moving color
camera that is designed to preserve important local features (edges, corners,
high curvature features) and planar regions. It takes one video frame as ref-
erence image and uses some other frames as source images to estimate depth
in the reference frame. Pairing the reference image with each source image, we
first build an initial 3D cost volume from each pair via plane-sweeping warping.
Subsequent cost aggregation for each initial cost volume yields an initial depth
maps for each image pair (e.g. the reference image and a source image). Then we
employ a new occlusion-aware strategy to combine these initial depth maps into
one final reference-view depth map, along with an occlusion probability map.

Our first main contribution is a new structure preserving constraint enforced
during training. It is inspired by learning-based monocular depth estimation
methods using normal constraints for structure preservation. GeoNet [29] en-
forces a surface normal constraint, but their results have artifacts due to noise
in the ground truth depth. Yin et al. [42] propose a global geometric constraint,
called virtual normal. However, they cannot preserve intrinsic geometric features
of real surfaces and local high-curvature features. We therefore propose a new
Combined Normal Map (CNM) constraint, attached to local features for both
local high-curvature regions and global planar regions. For training our network,
we use a differentiable least squares module to compute normals directly from
the estimated depth and use the CNM as ground truth in addition to the stan-
dard depth loss. Experiments in Section 5.2 show that the use of this novel CNM
constraint significantly improves the depth estimation accuracy and outperforms
those approaches that use only local or global constraints.

Our second contribution is a new neural network that combines depth maps
predicted with individual source images into one final reference-view depth map,
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together with an occlusion probability map. It uses a novel occlusion-aware loss
function which assigns higher weights to the non-occluded regions. Importantly,
this network is trained without any occlusion ground truth.

We experimentally show that our method significantly outperforms the state-
of-the-art multi-view stereo from monocular video, both quantitatively and qual-
itatively. Furthermore, we show that our depth estimation algorithm, when inte-
grated into a fusion-based handheld 3D scene scanning approach, enables inter-
active scanning of man-made scenes and objects in much higher shape quality
(See Fig. 6).

2 Related Work

Multi-view stereo. MVS algorithms [14, 4, 40, 13, 43] are able to reconstruct 3D
models from images under the assumptions of known materials, viewpoints, and
lighting conditions. The MVS methods vary significantly according to different
scene representations, but the typical workflow is to use hand-crafted photo-
consistency metrics to build a cost volume and do the cost aggregation and
estimate the 3D geometry from the aggregated cost volume. These methods
tend to fail for thin objects, non-diffuse surfaces, or the objects with insufficient
features.
Learning-based depth estimation. Recently some learning-based methods
achieve compelling results in depth estimation. They can be categorized into four
groups: i) single-view depth estimation [9, 25, 22, 10]; ii) two-view stereo depth
estimation [44, 26, 34, 5, 20]; iii) multi-view stereo depth estimation [16, 41, 18];
iv) depth estimation from a video sequence [36, 23]. Single-view depth estimation
is an ill-posed problem due to inherent depth ambiguity. On the other hand,
two-view and multi-view depth estimation [11] is also challenging due to the
difficulties in dense correspondence matching and depth prediction in featureless
or specular regions. Some two-view [44, 26, 5, 20] and multi-view [16, 36, 41, 18]
depth estimation algorithms have produced promising results in accuracy and
speed by integrating cost volume generation, cost volume aggregation, disparity
optimization and disparity refinement in an end-to-end network.

Depth estimation from video frames is becoming popular with the high de-
mand in emerging areas, such as AR/VR, robot navigation, autonomous driving
and view-dependent realistic rendering. Wang et al. [36] design a real-time
multi-view depth estimation network. Liu et al. [23] propose a Bayesian filter-
ing framework to use frame coherence to improve depth estimation. Since these
methods enforce depth constraint only, they often fail to preserve important
geometric feature (e.g., corners, edges, planes) of man-made scenes.
Surface normal constraint. Depth-normal consistency has been explored be-
fore for the depth estimation task [8, 46, 29, 42]. Eigen et al. [8] propose a neural
network with three decoders to separately predict depth, surface normal and seg-
mentation. Zhang et al. [46] enforce the surface normal constraint for depth com-
pletion. Qi et al. [29] incorporate geometric relations between depth and surface
normal by introducing the depth-to-normal and normal-to-depth networks. The
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performance of these methods suffers from the noise in surface normal stemming
from ground truth depth. Yin et al. [42] propose a global geometric constraint,
called virtual normal, which is defined as the normal of a virtual surface plane
formed by three randomly sampled non-collinear points with a large distance.
The virtual normal is unable to faithfully capture the geometric features of real
surfaces and the local high-curvature features. Kusupati et al. [21] use the sobel
operator to calculate the spatial gradient of depth and enforce the consistency
of the spatial gradient and the normal in the pixel coordinate space. However
the gradient calculated by the sobel operator is very sensitive to local noise, and
causes obvious artifacts in the surface normal calculated from estimated depth
(See Fig. 5 for the visual result).

Occlusion handling for depth estimation. Non-learning methods [19, 7, 39,
37, 27, 1] use post-processing, such as left-right consistency check [7], to handle
the occlusion issue. There are some learning-based methods for handling occlu-
sion as well. Ilg et al. [17] and Wang et al. [35] predict occlusions by training
a neural network on a synthetic dataset in a supervised manner. Qiu et al. [30]
directly learn an intermediate occlusion mask for a single image; it has no epipo-
lar geometry guarantee and just drives network to learn experienced patterns.
We propose an occlusion-aware strategy to jointly refine depth prediction and
estimate an occlusion probability map for multi-view depth estimation without
any ground truth occlusion labels.

3 Method

In this section we describe the proposed network, as outlined in Fig. 1. Our
pipeline takes the frames in a local time window in the video as input. Note that
in our setting the video frame rate is 30 fps and we sample video frames with
the interval of 10.

For the sake of simplicity in exposition, we suppose that the time window
size is 3. We take the middle frame as the reference image Iref , and the two
adjacent images as the two source images {I1s , I2s} which are supposed to have
sufficient overlap with the reference image. Our goal is to compute an accurate
depth map from the view of the reference image.

We first outline our method. With a differentiable homography warping op-
eration [41], all the source images are first warped into a stack of different fronto-
parallel planes of the reference camera to form an initial 3D cost volume (see
Section 3.1). Next, cost aggregation is applied to the initial cost volume to rec-
tify any incorrect cost values and then an initial depth map is extracted from
the aggregated cost volume. Besides pixel-wise depth supervision over the ini-
tial depth map, we also enforce a novel local and global geometric constraint,
namely Combined Normal Map (CNM), for training the network to produce su-
perior results (see Section 3.2). We then further improve the accuracy of depth
estimation by applying a new occlusion-aware strategy to aggregate the depth
predictions from different adjacent views into one depth map for the reference
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Fig. 1. Overview of our method. The network input consists of one reference image
and n(n = 2, 4, . . . ) source images. With homography warping, each source image is
combined with the reference image as a pair to generate a cost volume. Then the
cost volume is fed into the DepthNet to generate an initial depth map, with `1 depth
supervision and the constraint of Combined Normal Map. Finally, with the n initial
depth maps and the average cost volume of the aggregated cost volumes as input, the
RefineNet employs an occlusion-aware loss to produce the final reference-view depth
map and an occlusion probability map, with again the supervision by the depth and
the CNM constraints.

view, with an occlusion probability map (see Section 3.3). The details of each
step will be elaborated in the subsequent sections.

3.1 Differentiable Homography Warping

Consider the reference image Iref and one of its source images, denoted Iis. We
warp Iis into fronto-parallel virtual planes of Iref to form an initial cost volume.
Similar to [16, 41], we first uniformly sample D depth planes at depth dn in a
range [dmin, dmax], n = 1, 2, . . . , D. The mapping from the the warped Iis to the
nth virtual plane of Iref at depth dn is determined by a planar homography
transformation Hn, following the classical plane-sweeping stereo [12].

u′n ∼ Hnu, u
′
n ∼ K[Rs,i|ts,i]

[
(K−1u)dn

1

]
, (1)

where u is the homogeneous coordinate of a pixel in reference image, u′n is
projected coordinate of u in source image Iis with virtual plane dn. K denotes
the intrinsic parameters of the camera, {Rs,i, ts,i} are the rotation and the
translation of the source image Iis relative to the reference image Iref .

Next, we measure the visual consistency of the warped Iis and Iref at depth
dn and build a cost volume Ci with the size of W ×H ×D, where W,H,D are
the image width, image height and the number of depth planes, respectively.
Unlike previous works [41, 23] that use extracted feature maps of an image pair
for warping and building a 4D cost volume, here we use the image pair directly
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to avoid the memory-heavy and time-consuming 3D convolution operation on a
4D cost volume.

3.2 DepthNet for Initial Depth Prediction

Similar to recent learning-based stereo [20] and MVS [41, 18] methods, after
getting cost volumes {Ci}i=1,2 from image pairs {Iref , Iis}i=1,2, we first use the
neural network DepthNet to do cost aggregation for each Ci, which rectifies the
incorrect values by aggregating the neighbouring pixel values. Note that we feed
Ci stacked with Is together into the DepthNet in order to make use of more
detailed context information as [36] does. We denote the aggregated cost volume
as Vi. Next, we retrieve the initial depth map Di

ref from the aggregated cost

volume Vi using a 2D convolution layer. Note that two initial depth maps, D1
ref

and D2
ref , are generated for the reference view Iref .

We train the network with depth supervision. With only depth supervision,
the point cloud converted from the estimated depth does not preserve regular
features, such as sharp edges and planar regions. We therefore propose to also
enforce the normal constraint for further improvement. Note that, instead of just
using local surface normal [29] or just a global virtual normal [42], we use the
so called Combine Normal Map (CNM) that combines the local surface normal
and the global planar structural feature in an adaptive manner.

Pixel-wise Depth Loss We use a standard pixel-wise depth map loss as
follows,

lid =
1

|Q|
∑
q∈Q

∥∥∥D̂(q)−Di(q)
∥∥∥
1

(2)

where Q is the set of all pixels that are valid in ground truth depth, D̂(q) is
the ground truth depth value of pixel q, and Di(q) is the initial estimated depth
value of pixel q.

Combined Normal Map In order to preserve both local and global struc-
tures of scenes, we introduce the Combined Normal Map (CNM) as ground truth
for the supervision with the normal constraint. To obtain this normal map, we
first use PlaneCNN [24] to extract planar regions, such as walls, tables, and
floors. Then we apply the local surface normals to non-planar regions, and use
the mean of the surface normals in a planar region as the assigned to the region.
The visual comparison of the local normal map and the CNM can be seen in
Fig. 2.

The key insight here is to use local surface normal to capture rich local geo-
metric features in the high-curvature regions and to employ the average normal
to filter out noise in the surface normals for the planar regions to preserve global
structures. In this way, the CNM significantly improves the depth prediction
and the recovery of good 3D structures of the scene, compared to using only
local or global normal supervision (see the ablation study in Section 5.4).

Combined Normal Loss We define the loss on the CNM as follows:

lin = − 1

|Q|
∑
q∈Q

N̂(q) ·Ni(q), (3)
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Local normal map Combined normal mapPlane segmentation

Fig. 2. Visual comparison of local normal map and combined normal map.

where Q is the set of valid ground truth pixels, N̂(q) is the combined normal of
pixel q, and Ni(q) is the surface tangent normal of the 3D point corresponding
to the pixel q, both normalized to unit vectors.

To obtain an accurate depth map and preserve geometric features, we com-
bine the Pixel-wise Depth Loss and the Combined Normal Loss together to
supervise the network output. The overall loss is:

li = lid + λlin, (4)

where λ is a trade-off parameter, which is set to 1 in all experiments.

3.3 Occlusion-aware RefineNet

The next step is to combine the initial depth maps D1
ref and D2

ref of the ref-

erence image predicted from different image pairs {Iref , Iis}i=1,2 into one final
depth map, which is denoted as Dfin. We design an occlusion-aware network,
namely RefineNet, based on an occlusion probability map. Note that the occlu-
sion refers to the region in Iref where it cannot be observed in either I1s or I2s .
In contrast to treating all pixels equally, when calculating the loss we assign the
lower weights to the occluded region and the higher weights to the non-occluded
region, which shifts the focus of the network to the non-occluded regions, since
the depth prediction in the non-occluded regions is more reliable. Furthermore,
the occlusion probability map predicted by the network can be used to filter out
unreliable depth samples, as shown in Fig. 3, which is useful when the depth
maps are fused for 3D reconstruction (see more details in Section 5.4).

Here we describe more technical details of this step. We design the RefineNet
to predict the final depth map and the occlusion probability map from the aver-
age cost volume V̄ of the two cost volumes {Vi}i=1,2 and two initial depth maps
{Di

ref}i=1,2. The RefineNet has one encoder and two decoders.
The first decoder estimates the occlusion probabilities based on the occlusion

information encoded in the average cost volume V̄ and the initial depth maps.
Intuitively, for a pixel in the non-occluded region, it has the strongest response
(peak) at nth layer with depth dn of the average cost volume V̄ , and D1

ref

and D2
ref at this pixel have similar depth values. However, for a pixel in the

occluded region, it has scattered responses at the depth layers of V̄ and has very
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Reference view Before masking After masking Occlusion probability map
0

1

Fig. 3. Efficiency of occlusion probability map. Masked by the occlusion map, the point
cloud converted from estimated depth has fewer outlying points.

different values on the initial depth maps at this pixel. The other decoder predicts
the refined depth map with the depth constraint and the CNM constraint, as
described in Section 3.2

To train the RefineNet, we design a novel occlusion-aware loss function as
follows,

Lrefine = (lrd + β · lrn)− α · 1

|Q|
·
∑
q∈Q

(1− P (q)) , (5)

where

lrd =
1

|Q|
∑
q∈Q

(1− P (q))
∥∥∥D̂(q)−Dr(q)

∥∥∥
1

(6)

lrn = − 1

|Q|
∑
q∈Q

(1− P (q)) N̂(q) ·Nr(q). (7)

Here Dr(q) denotes the refined estimated depth at pixel q, Nr(q) denotes the
surface normal of the 3D point corresponding to q, D̂(q) is the ground truth
depth of q, N̂(q) is the combined normal of q, and P (q) denotes the occlusion
probability value of q (P (q) is high when q is occluded). The weight α is set to
0.2 and β is set to 1 in all experiments.

4 Datasets and Implementation Details

Dataset We train our network with the ScanNet dataset [6], and evaluate our
method on the 7scenes dataset [32] and the SUN3D dataset [38]. ScanNet consists
of 1600 different indoor scenes, which are divided into 1000 for training and 600
for testing. ScanNet provides RGB images, ground truth depth maps and camera
poses. We generate the CNM as described in Section 3.2.
Implementation details Our training process consists of three stages. First,
we train the DepthNet using the loss function defined in Equation 4. Then, we fix
the parameters of the DepthNet and train the RefineNet with the loss function
Equation 5. Next, we finetune the parameters of the DepthNet and the RefineNet
together with the loss terms in Equation 4 and Equation 5. For all the training
stages, the ground truth depth map and the CNM are used as supervision. We
use Adam optimizer (lr = 0.0001, β1 = 0.9, β2 = 0.999, weight decay = 0.00001)
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Input image

GT view 1 Mvdepthnet view 1 Neuralrgbd view 1 Our view 1

GT normal Mvdepthnet normal Neuralrgbd normal Our normal

GT depth Mvdepthnet depth Neuralrgbd depth Our depth

GT view 2

Our view 2

Fig. 4. Visual depth comparison with mvdepthnet [36] and neuralrgbd [23]. Our esti-
mated depth maps preserve shape regularity better than by mvdepthnet and neural-
rgbd, for example, in the regions of sofa, cabinet and wall. The result by mvdepthnet
(colum 2) shows strong discontinuity of depth value at the lower end of the red wall,
which is incorrect. We also show the visualization of normal maps computed from these
depth maps to further show the superior quality of our depth estimation in terms of
shape regularity. Note that the red region of GT depth (black region of GT normal) is
invalid due to scanning failure of the Kinect sensor. More comparisons can be found in
the supplementary materials

and run for 6 epochs for each stage. We implemented our model in Pytorch [28].
Training the network with two GeForce RTX 2080 Ti GPUs, which takes two
days for all stages.

5 Experiments

To evaluate our method, we compare our method with state-of-the-arts in three
aspects: accuracy of depth estimation, geometric consistency, and video-based
3D reconstruction with TSDF fusion.

5.1 Evaluation Metrics

For depth accuracy, we compute the widely-used statistical metrics defined in [9]:
i) accuracy under threshold (σ < 1.25i where i ∈ {1, 2, 3}); ii) scale-invariant
error (scale.inv); iii) absolute relative error (abs.rel); iv) square relative error
(sq.rel); iv) root mean square error (rmse); v) rmse in log space (rmse log).

We evaluate the surface normal accuracy with the following metrics used
in the prior works [8, 29]: i) the mean of angle error (mean); ii) the median of
the angle error (median); iii) rmse; iv) the percentage of pixels with angle error
below threshold t where t ∈ [11.25◦, 22.5◦, 30◦].
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Table 1. Comparison of depth estimation over 7-Scenes dataset [32] with the metrics
defined in [9].

σ < 1.25 σ < 1.252 σ < 1.253 abs.rel sq.rel rmse rmse log scale.inv

DORN [10] 60.05 87.76 96.33 0.2000 0.1153 0.4591 0.2813 0.2207
GeoNet [29] 55.10 84.46 94.76 0.2574 0.1762 0.5253 0.3952 0.3318
Yin et al. [42] 60.62 88.81 97.44 0.2154 0.1245 0.4500 0.2597 0.1660
DeMoN [34] 31.88 61.02 82.52 0.3888 0.4198 0.8549 0.4771 0.4473

MVSNet-retrain†[41] 64.09 87.73 95.88 0.2339 0.1904 0.5078 0.2611 0.1783

neuralrgbd†[23] 69.26 91.77 96.82 0.1758 0.1123 0.4408 0.2500 0.1899
mvdepthnet [36] 71.97 92.00 97.31 0.1865 0.1163 0.4124 0.2256 0.1691

mvdepthnet-retrain†[36] 71.79 92.56 97.83 0.1925 0.2350 0.4585 0.2301 0.1697
DPSNet [18] 63.65 85.73 94.33 0.2710 0.2752 0.5632 0.2759 0.1856

DPSNet-retrain†[18] 70.96 91.42 97.17 0.1991 0.1420 0.4382 0.2284 0.1685

Kusupati et al. †[21] 73.12 92.33 97.78 0.1801 0.1179 0.4120 0.2184 /

ours† 76.64 94.46 98.56 0.1612 0.0832 0.3614 0.2049 0.1603
† Trained on ScanNet dataset.

5.2 Comparisons

Depth prediction We compare our method with several other depth estima-
tion methods. We categorize them according to their input formats: i) one single
image: DORN [10], GeoNet [29] and VNL [42]; ii) two images from monocular
camera: DeMoN [34]; iii) multiple unordered images: MVSNet [41], DPSNet [18],
kusupati et al. [21]; iv) a video sequence: mvdepthnet [36] and neuralrgbd [23].
The models provided by these methods were trained on different datasets and are
evaluated on a separate dataset, 7Scenes dataset [32]. For the multi-view depth
estimation methods, neuralrgbd [23] and kusupati et al. [21] are trained on
ScanNet, MVSNet [41] is trained on DTU dataset [2], mvdepthnet [36] and DP-
SNet [18] are trained on mixed datasets (SUN3D [38], TUM RGB-D [33], MVS
datasets [34], SceneNN [15] and synthetic dataset Scenes11 [34]). For fair com-
parison, we further retrained MVSNet [41], mvdepthnet [36] and DPSNet [18] on
ScanNet. Table 1 shows that our method outperforms other methods in terms
of all evaluation metrics.
Visual comparison In Fig. 4, compared to mvdepthnet [36] and neuralrgbd [23],
our estimated depth map has less noise, sharper boundaries and spatially con-
sistent depth values, which can be also seen in the surface normal visualization.
Furthermore, the 3D point cloud exported from the estimated depth preserves
global planar features and local features in the high-curvature regions. More
comparison examples are included in the supplementary materials.
Surface normal accuracy To evaluate the accuracy of normal calculated
from estimated depth, we choose two single-view depth estimation methods:
GeoNet [29] and Yin et al. [42], and one multi-view depth estimation method:
Kusupati et al. [21]. GeoNet [29] incorporates surface normal constraint to depth
estimation, while Yin et al. [42] propose a global normal constraint, namely Vir-
tual Normal, which is defined by three randomly sampled non-collinear points.
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Table 2. Evaluation of the calculated surface normal from estimated depth on
7scenes[32] and SUN3D [38].“Ours with VNL” denotes our model retrained using vir-
tual normal loss [42].

Dataset 7scenes SUN3D

error accuracy error accuracy
Method mean median rmse 11.25◦ 22.5◦ 30◦ mean median rmse 11.25◦ 22.5◦ 30◦

GeoNet [29] 57.04 52.43 65.50 4.396 15.16 23.83 47.39 40.25 57.11 9.311 26.63 37.49
Yin et al. [42] 45.17 37.77 54.77 11.05 29.76 40.78 38.50 30.03 48.90 19.06 40.32 51.17
Ours with VNL 43.08 34.98 53.15 13.84 33.37 43.90 31.68 22.10 42.74 29.50 52.97 62.81
Kusupati et al. [21] 55.54 50.46 64.28 5.774 18.03 26.81 52.86 47.03 62.30 7.507 22.56 32.22
Ours 36.34 27.21 46.46 20.24 43.36 54.11 29.21 20.89 38.99 30.45 55.05 65.25

GT OursOurs with VNLYin et al.GeoNet Kusupati et al.

Fig. 5. Visual comparison of surface normal calculated from 3D point cloud exported
from estimated depth with GeoNet [29] , Yin et al. [42] and Kusupati et al. [21].

Kusupati et al. [21] use the sobel operator to calculate depth gradient and
enforce the consistency of the depth gradient and the normal in the pixel co-
ordinate space. To demonstrate that the improved performance of our method
indeed benefits from the new CNM constraint (rather than entirely due to our
multi-view input), we also retrained our network by replacing the Combined
Normal Loss with the Virtual Normal loss (denoted as “Ours with VNL” in
Table 2) on ScanNet dataset.

As shown in Table 2 and Fig. 5, our method outperforms GeoNet [29], Yin et
al. [42] and Kusupati et al. [21] both quantitatively and qualitatively. Compared
with our model retrained using VNL, our model with the CNM constraint works
much better, which preserves local and global features.

5.3 Video Reconstruction

With the high-fidelity depth map and the occlusion probability map obtained
by our method, high-quality reconstruction of video even in texture-less envi-
ronments can be achieved by applying TSDF fusion method [45]. We compare
our method with mvdepthnet [36] and neuralrgbd [23]. Note that these three
methods are all trained on the ScanNet dataset. As shown in Fig. 6, even for
white walls, feature-less sofa and table, our reconstructed result is much better
than the other two methods in the aspects of local and global structural recovery,
and completion. Also, the color of our reconstruction is closest to the color of
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Table 3. Evaluation of the usefulness of CNM and the occlusion-aware refinement
module. The first four rows show the results without any constraint, with only local
normal constraint, with only global normal constraint, and with the CNM constraint
respectively. The last two rows show the results without/with the occlusion-aware loss.

Components Estimated depth evaluation Calculated normal evaluation

local global refine occlu. 1.25 1.252 abs.rel sq.rel rmse scale.inv 11.25◦ 22.5◦ mean median rmse

× × × × 71.79 92.56 0.1925 0.2350 0.4585 0.1697 9.877 27.20 46.62 39.91 55.96
X × × × 71.95 92.45 0.1899 0.1188 0.4060 0.1589 16.97 39.49 37.92 29.60 47.53
× X × × 66.85 90.17 0.2096 0.1462 0.4570 0.1752 15.39 37.09 39.15 31.33 48.45
X X × × 73.17 92.75 0.1812 0.1076 0.3952 0.1654 17.67 40.23 37.65 29.18 47.36
X X X × 74.77 93.22 0.1726 0.0999 0.3877 0.1758 18.61 41.13 37.67 28.77 47.74
X X X X 75.80 93.79 0.1669 0.0909 0.3731 0.1638 20.12 42.76 36.82 27.67 47.03

(a) GT (c) Mvdepthnet(b) Neuralrgbd (d) Ours
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Fig. 6. Comparison with neuralrgbd [23] and mvdepthnet [36] for 3D reconstruction
on a scene from ScanNet. (a) With ground truth depth; (b) With estimated depth and
confidence map from neuralrgbd; (c) With estimated depth from mvdepthnet; (d) With
our estimated depth and occlusion probability map. All reconstructions are done with
TSDF fusion [45] using 110 frames uniformly selected from a video of 1100 frames.

the ground truth. This confirms that the individual depth maps have less noise
and high-consistency so the colors would not be mixed up in the fusion process.

5.4 Ablation studies

Compared with prior works, we explicitly drive the depth estimation network
to adaptively learn local surface directions and global planar structures. Taking
multiple views as inputs, our refinement module jointly refines depth and pre-
dicts occlusion probability. In this section, we evaluate the usefulness of each
component.
Combined normal map As shown in Table 3, enforced by our CNM constraint
(local + global), our model achieves better performance in terms of estimated
depth and calculated normal from estimated depth, compared to that without
geometric constraint, only with local normal constraint, and only with global
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Table 4. Effect of the number of source views N and the choice of reference view.
We use the model trained with N = 2, and test with different number of views over
7-Scenes dataset [32]. The first row shows the result of using the last frame in the local
window as the reference frame. The other rows are the results of using the middle frame
as the reference frame.

Estimated depth evaluation Calculated normal evaluation

view num 1.25 1.252 abs.rel rmse scale.inv 11.25◦ 22.5◦ mean median rmse

2 views (last) 72.88 92.70 0.1750 0.3910 0.1686 19.14 41.83 37.17 28.27 47.20
2 views 75.80 93.79 0.1669 0.3731 0.1638 20.12 42.76 36.82 27.67 47.03
4 views 76.29 94.28 0.1647 0.3652 0.1608 20.30 43.17 36.57 27.37 46.78
6 views 76.64 94.46 0.1612 0.3614 0.1602 20.37 43.14 36.53 27.37 46.72
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GT No constraint Local + Global (CNM)Local constraint Global constraint

Fig. 7. Effects of using local surface normal and CNM as constraints for supervision.

normal constraint (the plane normal constraint). Fig. 7 also shows that with
CNM, the calculated normal is more consistent in planar regions and the point
cloud converted from estimated depth keeps better shape.

The number of source views for refinement Our refinement module can
allow any arbitrary even number of source views as input, and generate a refined
depth map and an occlusion probability map. In Table 3, with refinement mod-
ule, the performance of our model has been significantly improved. As shown in
Table 4, the quality of refined depth will be improved gradually with the increase
of source views. A forward pass with 2/4/6 source views all takes nearly 0.02s on
a GeForce RTX 2080 Ti GPU. Furthermore, we evaluate how the performance
is affected by the choice of the reference view. We find that the performance
of our model will degrade significantly if we use the last frame as the reference
view rather than the middle frame in the local time window. This is because the
middle frame shares more overlapping areas than the last frame with the other
frames in the time window.

The usefulness of occlusion probability map Unlike left-right check as a
post-processing operation, our RefineNet jointly refines depth and generates an
occlusion probability map. As shown in Table. 3, our model with the occlusion-
aware refinement achieves better results than that with a naive refinement (w/o
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GT w/o occlusion map w/ occlusion maptarget

Fig. 8. Effect of occlusion probability map for video reconstruction. The occlusion
probability map provides weighting parameters into TSDF fusion system for fusing
estimated depth maps, and enables reconstructed model to keep sharp boundaries.

occlusion map) and without any refinement. The naive refinement treats every
pixel equally regardless whether it is on the occluded region or non-occluded
region. In contrast, our occlusion-aware refinement penalizes occluded pixels
less and pays more attention to the non-occluded region. In Fig. 3, the point
cloud converted from estimated depth becomes cleaner and has sharp boundaries
by applying the occlusion probability map to the multi-view depth integration
process. Moreover unlike binary mask, our occlusion map can be easily used in
TSDF fusion system [45] as weights. In Fig. 8, the fused mesh using estimated
depth and the occlusion probability map has less artifact than that without
occlusion map.

6 Conclusion and Limitations

In this paper, we propose a new method for estimating depth from a video se-
quence. There are two main contributions. We propose a novel normal-based
constraint CNM, which is designed to preserve local and global geometric fea-
tures for depth estimation, and a new occlusion-aware strategy to aggregate
multiple depth predictions into one single depth map. Experiments demonstrate
that our method outperforms than the state-of-the-art in terms of the accuracy of
depth prediction and the recovery of geometric features. Furthermore, the high-
fidelity depth prediction and the occlusion detection make the highly-detailed
reconstruction with only a commercial RGB camera possible.

Now we discuss the limitations of our work and possible future directions.
First, the performance of our method relies on the quality of the CNM, which
is based on the segmentation of global planar regions. It has been observed that
existing plane segmentation methods are not robust for all the scenes. One possi-
ble solution is to jointly learn the segmentation labels and the depth prediction.
Second, for the task of video-based 3D reconstruction, our work can be extended
by designing an end-to-end network to directly generate 3D reconstruction from
video, rather than having to invoke the explicit step of using TSDF fusion to
integrate the estimated depth maps.
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