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SI. ATOMIC STRUCTURE OF TWISTED
BILAYER GRAPHENE

The atomic structure of twisted bilayer graphene
(TBG) consists of two super-imposed graphene layers
rotated by an angle # and separated by a distance of
do = 0.335 nm. The axis of rotation is chosen to inter-
sect two vertically aligned carbon atoms when starting
from purely AA-stacked bilayer, i.e. two perfectly over-
lapping honeycomb lattices. Labelling the upper (lower)
monolayer of TBG by (1), their two-dimensional lattice
vectors are

a’ = ag(cos(/6), —sin(7/6))
ab, = ap(cos(7/6), sin(r/6)) (1)
ai = R(0)aj,

where R(0) represents a rotation by an angle 6 and ag =
0.246 nm is the lattice constant of graphene, which should
not be confused with the carbon-carbon bond length of
aec = ag/ /3. The so defined primitive cell is di-atomic
and contains two inequivalent sites with basis vectors

bu(l) —

(0 0) (A site),

(2)
b“(l)

3a1 w4 - 2( ) (B site).

3

The choice of basis vectors and the type of rotation

around an AA site restricts the symmetry of TBG to
point group D3. The latter contains a threefold in-plane
rotation C3 = C3, around the z-axis and a twofold out-
of-plane rotation Cy = Csy.
The lattice geometry of TBG, as defined so far, is not
periodic in general [IH3] since the periods of the two
graphene layers are incommensurate for arbitrary twist
angles. A finite unit cell can only be constructed for some
discrete angles satisfying the condition

1m2+n2+mn
2m2 +n2+mn

cos() = (3)
with (m,n) being positive integers. In this case, the
twisted bilayer graphene forms a moiré pattern, see Fig.
(a), containing N(m,n) = 4(m? + n? + mn) atoms with

superlattice vectors

L, = ma! + nal, = na® + may (4)
L2 = R(7T/3)L1
Magic-angle twisted bilayer graphene has a twist angle
of §# = 1.05° corresponding to the the integers (m,n) =
(31,32). The so defined structure contains N = 11908
carbon atoms in the moiré unit cell. When discussing
the geometric structure of TBG, atomic relaxation ef-
fects play an important role and may modify the low-
energy physics of the system significantly. From exper-
iments using transmission electron microscopy (TEM)
[4] as well as from structural optimization studies us-
ing density functional theory [5] it is known that the in-
terlayer distance between the two layers varies over the
moiré unit cell. The interlayer spacing takes its maximum
value d4 4 = 0.360 nm in the AA regions and its minimal
value dap = 0.335nm in the AB regions. Intermediate
spacings d(r) are obtained by using an interpolation sug-
gested by [11 5]

3
d(r) = do + 2d; Z cos(G;-r), (5)

i=1

where the vector r points to a carbon atom in the moiré
unit cell and G are the reciprocal lattice vectors obtained
from Eq. . Furthermore the constants dg = (d A4+
2dap) and d; = (dAA dap) are defined such to match
the distances in the AA and AB regions. In order to
preserve the D3 symmetry of the system, the corrugation
must be applied symmetric to both layers as depicted in

Fig. [1f (c).

S II. ATOMISTIC TIGHT-BINDING
HAMILTONIAN

The eigenenergies and eigenfunctions of non-
interacting TBG are obtained using a single-orbital
tight-binding Hamiltonian for the p.-orbitals of the
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Figure 1. Atomic structure of twisted bilayer graphene. (a) Atomic structure of twisted bilayer graphene with twist
angle 6 = 5.09° corresponding to (m,n) = (6,7). The blue labels indicate characteristic stacking patterns emerging throughout
the moiré unit cell. (b) Downfolding of the (mini-) Brillouin zone of TBG (brown hexagon). (c) Corrugation effects in TBG.
(d) Band structure of magic-angle TBG with twist angle 6 = 1.05° corresponding to (m,n) = (31,32). The low-energy window
around charge neutrality (red line) is modified significantly when corrugation of the two graphene sheets is taken into account
(left panel). This is reflected in the formation of four flat bands (two-fold spin degeneracy) around charge neutrality that have
a bandwidth of ~ 15meV and are separated from the rest of the spectrum.

carbon atoms [T}, 2] [6]:

H=Y Y t(R+r—R —r)ch, ocrr, o (6)

R,R’ ,J,0

For our microscopic approach we account for the full 7-
band spectrum of magic-angle TBG, keeping all N =
11908 bands under consideration. In the following, we
label the supercell vector with R and the position vec-
tor of site ¢ in the corresponding moiré unit cell with r;.
Hence, the operator ckﬂ,g creates an electron with spin
o = T,] in the p.-orbital of site i, whereas cg ., , de-
stroys an electron with the same quantum numbers. The
transfer integral between orbitals at site ¢ and j, sep-
arated by the vector d can be written in Slater-Koster

form [1]

Hd) = t)(d) + t.(d)

= () = (7)]
to(d) = VO, exp <_d godO) {‘H B

Here, d* = d - e, points perpendicular to the graphene
sheets and dy = 1.362a(p is the vertical spacing of
graphite. The term V,,, = 0.48 eV describes the inter-
layer hopping between atoms in different monolayers of
TBG, while Vp,, = —2.7 eV models the intralayer hop-
ping amplitude between neighboring atoms in a single
graphene sheet. The parameters are fitted to data of first

principle calculations to match the dispersion of mono-
and bilayer graphene [I]. This ensures in particular that
TBG behaves locally similar to graphene with the over-
all structure being modulated by the moiré pattern. The
parameter §y = 0.184 ay determines the decay length of
the transfer integral and is chosen such that the nearest-
neighbor intralayer hopping reduces to 0.1V,,,,. For nu-
merical calculations it is therefore sufficient to truncate
hopping terms for r;; > 4ag as t(r;;) < 107* in these
regimes.

To construct the full non-interacting Hamiltonian of
the periodic system, we define the Bloch wave basis by a
Fourier transform to mini-Brillouin zone (MBZ) momen-
tum k, which is depicted in Fig. [1| (b),

1 .
ikR
Cer = —F= § € CRr
N R
Z ek Re,

k

Sl

CRr =

The spin index is omitted for simplicity. Note that the
moiré Fourier transform as defined above couples mo-
menta k and superlattice vectors R. The latter describe
the spatial extent of the moiré unit cell, which in the case
of magic-angle TBG is given by L = |L; 5| = 13.42nm.

Inserting these expressions into Eq.@ renders the
unperturbed Hamiltonian block-diagonal in momentum



space

Hy

Z Z Zt(R“FTi*R/*Tj)
k R—R’i,j,0

—ik-(R—R’) T
X e Ck,'ri,ock,'rj,o' (9)

z Z [Ho(k)}"'i,'l'j CL,'Pi,O’Ck,'I’j,U'
k 1,50

The matrix [Hy(k)]
space (4, j) for each k to obtain the bandstructure e,(k)
and orbital-to-band transformation u%(k), b = 1..N:

Hy= Z €b(k)7117b7k7b
kb

can be diagonalized in orbital

TiTj

with Ye,b = uﬁ(k)okm. (10)

Since magic-angle TBG contains N = 11908 atoms in
the moiré unit cell, care must be taken when treating the
system numerically.

S III. MAGNETIC INSTABILITIES AND

STONER CRITERION

A. Stoner Criterion

In the manuscript, we study magnetic instabilities in
TBG described by short-ranged Coulomb interactions.
To this end, we follow Ref. [7] and employ a repulsive
Hubbard term for electrons with opposite spin o with

o = —o residing on the same carbon site
1
Hint - iU Z NRr;,c"NR,r;o- (11)
R,i,o

To treat the interacting system in a pertubative manner,
we define the free Matsubara Green’s function in orbital-
momentum space as

Gr o (fw, k) = Z ul (k) (iw — ep (k) " Tuli (k). (12)
b

We then calculate the renormalized interaction in the
spin channel within the random-phase approximation
(RPA) to analyze the electronic instabilities mediated by
spin-fluctuation exchange between electrons to high or-
der in the bare coupling U. Since the initial short-ranged
interaction vertex U has no momentum and frequency
dependence, the full susceptibility of the system can be
approximated by ¥RFA(q) = Xo(a)/[1 + UXo(q)). Here,
we use the multi-index qunatum number ¢ = (q, iw) and
indicate matrices of dimension N x N with an hat sym-
bol, e.g. X = Xrr. Magnetic instabilities may sub-
sequently be classified according to a generalized Stoner
criterion: The effective (RPA) interaction diverges, when
the smallest eigenvalue A\ of x(g) reaches —1/U, marking
the onset of magnetic order for all interaction strengths

U > Ugit. = —1/Xg. The corresponding eigenvector
v(o)(q) is expected to dominate the spatial structure of
orbital magnetization.

In this letter, we study magnetic instabilities with em-
phasis on the static, long-wavelength limit (q,iw — 0)
on the moiré scale. The latter limit proves to contain
the relevant physics when starting with local repulsive
interaction. We stress again that momenta g are related
via moiré Fourier transform Eq. to the superlattice
vectors R. The RPA susceptibility predicts spin correla-
tions at length scales intermediate to the c-c bond scale
and moiré length scale, thus being described by order-
ings at ¢ = 0. The system shows the same order in all
moiré unit cells with variable correlations present on the
c-c bond scale.

B. Spin susceptibility

For analyzing the magnetic properties of the system
on the RPA level, it is therefore sufficient to compute
the free polarization function xq(q) defined as

. 1 . )
X0,/ (4:1) = 7 lg; Gr o (i, ) g 1 (i +w) , k+q).
(13)
The Matsubara summation occuring in Eq. can be
evaluated analytically yielding the well-known Lindhard
function for multi-orbital systems

N nr(ey (k) —nr(e(k + q))
X0, /(G iw) = N k§, iw + ey (k) — ep(k + q)

x bl (k)ubl (k)ub” (k + q)ul, (k + q),
(14)

where np(e) = (1 + €)1 is the Fermi function. While
the analytical evaluation of the Matsuabra sum occuring
in Eq. is the standard procedure for systems con-
taining only few atoms in the unit cell, this approach is
destined to fail in our atomistic approach as it scales
like O(N*). For magic-angle TBG with N = 11908
atoms in the moiré unit cell, it is more efficient to com-
pute the Matsubara sum in Eq. numerically over a
properly chosen frequency grid and in each step compute
Hadamard products of band-summed non-local Green’s
functions g . (iv’, k)gy . (i(w' +w) , k+q). The expres-
sion then scales like O(N3N,,) with N, being the number
of fermionic frequencies needed to achieve proper conver-
gence. To this end, non-linear mixing schemes [§] are
proven to outperform any linear summation such that
we only need to sum over N, =~ 1000 frequencies when
accessing temperatures down to 7' = 0.03 meV. The mo-
mentum sum occuring in Eq. is evaluated over 24 k
points in the MBZ using a momentum meshing proposed
by Cunningham et al. [9]. In particular, we checked



that the results are sufficiently converged when taking
an denser mesh into account.

C. Leading Instabilities

In the manuscript, we classify the different leading
eigenvectors of the RPA analysis according to their real-
space profile in the moiré unit cell following the nomen-
clature introduced in Ref. [7]. The three potential ground
states of the interacting system at T = 0.03meV are
depicted in Fig. |2 (b): (i) AFM: moiré-modulated an-
tiferromagnetic phase on the carbon-carbon bond scale
("Angstrom"-scale) with increased weight in the AA re-
gions, (ii) DAFM: moiré-modulated antiferromagnetic
phase with opposite signs between the AA and AB re-
gions that becomes visible as a node in the absolute value
of the order parameter, (iii) FM: moiré-modulated fer-
romagnetic phase (FM) that exhibits the same overall
sign in the moiré unit cell. The choice of the temper-
ature 7' = 0.03meV should provide resolution of the
flat energy bands in TBG as extensively discussed in
Ref. [7]. As long as T' > O(1meV) the flat band physics
is not resolved and the system inherits magnetic order
from purely AA and AB stacked bilayer graphene. For
T =~ O(1meV) ~ 10K, significant deviations due to the
flat bands occur, leading to the plethora of magnetic
phases described above.

S IV. SELF-CONSISTENT BOGOLIUBOV
DE-GENNES EQUATIONS FOR TBG

A. Fluctuation-Exchange approximation

For interaction values U < Ugy the system is in the
paramagnetic regime and the magnetic instabilities pre-
scribed by the RPA analysis are not strong enough to ac-
tually occur. In this regime, spin and charge fluctuations
contained in the transverse and longitudinal spin channel
can give rise to an effective interaction between electrons
that may lead to the formation of Cooper pairs. The
leading RPA diagrams to the irreducible singlet particle-
particle scattering vertex fg(q, v) are captured within the
fluctuations-exchange approximation (FLEX) [0} 11|

U%%0(q) U3x5(q)

e Y G R O R

As in the previous section, we only consider the static
long-wavelength limit (g, iw — 0) and thus focus on the
pairing structure on the carbon-carbon bonds within the
moiré unit cell. To this end, the real-space profile of the
effective interaction I's for different chemical potentials is
shown in Fig. 2| (c). As mentioned in the manuscript, the
interaction vertex is staggered through the moiré unit cell

close to a DAFM/AFM instability, opening the door for
unconventional singlet Cooper pairs in the two graphene
sheets of TBG. In particular, the interlayer interaction
strength is an order of magnitude smaller than compara-
ble intralayer terms. This indicates that the main pairing
will create in-plane Cooper pairs. In the manuscript, we
thus only visualize the projection of the superconduct-
ing order parameters on the in-plane form factor basis of
each graphene sheet, i.e. a layer-resolved representation.

B. Self-consistent BdAG Formalism

In the next step, we analyze the effective particle-
particle scattering vertex Eq. using a mean-field de-
coupling to extract pairing symmetries and spatial dis-
tribution of the superconducting order parameter. In the
static long-wavelength limit (g,iw — 0), we may hence
neglect the momentum dependence of the gap parameter
and effectively solve a one-unit cell system with periodic
boundary conditions. While this approach does not take
correlations between different moiré unit cells into ac-
count, it allows for all pairing contributions from within
the moiré unit cell. Due to the proximity to the anti-
ferromagnetic ordered state, we restrict the mean-field
decoupling to spin-singlet configurations that are sym-
metric under the exchange of spatial indices

1
A= 3 [T2(g = 0)];; {circjy — ciycjt)nr- (16)
The expectation value (-)p can be calculated by diag-
onalizing the resulting mean-field Hamiltonian Hyp in
Nambu-space using a Bogoliubov de-Gennes transforma-
tion [12]

Hy A
How =t (Ho A
MF = ¢ (AT _Ho)w
n, n* T, Tk E"
(circjy — circithur = zn: (uf'vj”™ + ujv”) tanh <2T)
(17)

Here, ul (vI') are the particle (hole) amplitudes of the

1
BdG quasi-particles resulting from the diagonalization of

the Hamiltonian in Eq.
~N\NT/E 0 .
= 00)' (£ 1) ()

and ¢ = (ClT’ oo Cprps CL, ey c;rw)T is the 2N-component
Nambu vector. )~ denotes a sum over the positive

(18)

b

Il
7N
®|> <

*
S

quasi-particle energies F,, > 0 and E is the corresponding
diagonal matrix. To solve this set of self-consistent equa-
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Figure 2. Spin correlations in magic-angle TBG. (a) Magnetic RPA phase diagram showing the critical onsite interaction
strength Ucrit. vs. chemical potential p in the four flat bands of TBG at T" = 0.03 meV. The vertical lines indicate the integer
fillings +3,+2, +1 that show an increased magnetic ordering tendency towards a moiré-modulated ferromagnetic state, while
away from integer fillings weaker antiferromagnetic tendencies dominate. (b) Spatial distribution of the leading eigenvector of
the RPA analysis on the carbon-carbon bond scale in the moiré unit cell. For simplicity, only the lower layer of TBG is shown
as well as a linecut through the unit cell. The leading eigenvector of the DAFM instabilities is staggered throughout the moiré
unit cell with strongest weight in the AA regions as depicted in the linecut in (b). (c¢) Effective spin-fluctuation mediated
pairing vertex I'2(¢ = 0) close to a DAFM (upper panel) and FM (lower panel) magnetic instability. In the former case, the
pairing vertex is staggered in real-space with strong on-site repulsion and nearest-neighbor attraction. Real-space profiles are
shown starting from an atom located in the AA, AB or DW region of TBG, respectively.

tions we start with an initial guess for A;; and iterate un-
til convergence is achieved using a linear mixing scheme
to avoid any bipartite solutions. Since the atomic ar-
rangement is highly inhomogeneous in the moiré unit cell,
we track the free energy during each self-consistency cy-
cle and for different initial configurations to ensure proper
convergence of the algorithm into the actual global min-
imum. The free energy of the system in the low temper-
ature regime reads

|7

19
F27ij ( )

F=E-TS~E;—» E,—)»

n ij
where B, = 2% E,np(E,) is the excitation energy of
the quasi-particles. The different initial configurations
are chosen to transform according to the irreducible rep-
resentations of the Dgp, point group of the honeycomb
lattice. This procedure aligns with the insights from the
previous paragraph that the spin-fluctuation mediated
pairing vertex Eq. will create in-plane Cooper pairs
with strongest pairing amplitude living on the nearest-

neighbor bonds of the two single graphene sheets. The
phase factors of the different nearest-neighbor pairing
channels are shown in Fig. [3

C. Supercurrent and magnetic field

To characterize the different superconducting phases of
the system, we compute the layer resolved quasi-particle
bond current in TBG [12]

Jm = %(c;ﬂtnmcm — C;(ntmncn>énm. (20)
In the atomistic approach presented here, the quasi-
particle current J,,, is only defined between two car-
bon atoms residing at sites 7,,(,,) in the moiré unit cell.
Therefore, we take an amplitude-weighted average of
neighboring bonds to arrive at a vector field represen-
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Figure 3. Form factors for different nearest-neighbor (sin-
glet) pairing channels on the honeycomb lattice. The complex
linear combination d + id is characterized by the phase factor
w = exp(=+i 27/3).

tation J as shown in Fig. 3 in the manuscript
J(ry) L > Tnmé (21)
Tn) =735 nm€nm-
3< )

Here, é,,,, points from the atom at position r,, to its three
nearest-neighbors 7, on each graphene sheet. In partic-
ular, the current amplitude is negligible at distances ex-
ceeding nearest-neighbor atoms and thus an average over
nearest-neighbors is sufficient.

The spontaneously flowing currents of quasi-particles
induce a magnetic field that can be calculated by apply-
ing the Biot-Savart law

Ho r—r
B('l") = E/J(T) X mdz}r, (22)

where pg is the vacuum permeability. Since the cur-
rent co-propagates in the two graphene sheets of TBG
in the "chiral" phase, the magnetic fields induced by the
supercurrents add constructively making this particular
feature of the TRS breaking phase measurable in exper-
iment.
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