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Abstract We investigate the factorized solution of generalized stable Sylvester
equations such as those arising in model reduction, image restoration, and ob-
server design. Our algorithms, based on the matrix sign function, take advan-
tage of the current trend to integrate high performance graphics accelerators
(also known as GPUs) in computer systems. As a result, our realisations pro-
vide a valuable tool to solve large-scale problems on a variety of platforms.
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1 Introduction

Consider the (continuous-time) generalized Sylvester equation in factored form
AXD+EXB+FG = 0, (1)

where A,E ¢ R™", B,D ¢ R™*™, F ¢ R"?, G € R”*™, and X € R"*™
is the sought-after solution. Equation has a unique solution if and only
ifa+ B #0foralla € A(A,E) and g € A(B, D), where A(U,V) denotes
the generalized eigenspectrum of the matrix pencil U — AV. In particular, this
property holds for generalized stable Sylvester equations, where both A (4, E)
and A (B, D) lie in the open left half plane. Sylvester equations have numer-
ous applications in control theory, signal processing, filtering, model reduction,
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image restoration, etc., see, e.g., [I] and the references therein. In particular,
in model reduction using cross-Gramians [2LBl[4[5], image restoration [6], and
observer design [7], p < n,m and the solution X often exhibits a low (numer-
ical) rank [8]. In such cases, it is beneficial to compute the factorized solution
of the equation, from the perspectives of numerical accuracy as well as com-
putational cost. Thus, we aim at computing a pair of matrices Y and Z7,
both with a small number of columns, such that X =Y Z. Algorithms for the
standard case (E = I,,, D = I,,,) were first suggested in [9}[T].

The factorized solution of Eq. involves a considerable computational
effort (in terms of arithmetic operations), asking for the application of high
performance techniques when large problems are to be solved. To address this
problem, following the general adoption of graphics processing units (GPUs)
as powerful and ubiquitous parallel co-processors, in this work we propose
efficient realizations based on the matrix sign function that are specifically
designed to exploit this type of accelerators. Our experimental result confirm
the efficacy of the sign function-based solvers and report a considerable per-
formance advantage for this type of GPU-based solver.

Several previous works on parallel algorithms for solving linear matrix
equations proposed implementations of an algorithm based on the (Hessenberg-
)Schur decomposition of the coefficient matrices. As this is usually done using
(Sca)LAPACK routines, the work in [I0JIIL12] concentrates on the solution
of (quasi-)triangular Sylvester equations. The work in [I2] focuses on task-
parallelism, but not on GPU accelerators, and does not consider the general-
ized variant of the Sylvester equation targeted here; furthermore, [TOJIT] study
the symmetric case of Lyapunov equations. The solution process in all three
papers is not related to the iterative low-rank solver approach proposed in our
paper, and the parallel performance of these solvers is limited by that of the
QZ algorithm for the initial stage of the solution procedure. In comparison, we
avoid the QZ algorithm completely and adhere to a matrix multiplication rich
method that leverages the low-rank structure of the right-hand side for mem-
ory and computational savings. The paper [I3] discusses an iterative scheme
that treats the standard case of without a factorized right-hand side, but
from the timings and accuracy results listed in that paper, is not competi-
tive with our approach. Our previous work on parallel and GPU-accelerated
Lyapunov and Sylvester solvers summarized in [I4] and further developed in
[15] did not consider the generalized and factorized Sylvester case (I]). As an
additional contribution, we improve our GPU-enabled routine of the factor-
ized solver and include two more variants, a hybrid CPU-GPU version and a
dual-GPU version.

The rest of the paper is structured as follows. In Section 2] we briefly review
the classical sign function solver for the generalized Sylvester equation, discuss
the factored iteration, and propose an initial transformation of the equation
that considerably reduces the cost per iteration. Then, in Section[3] we provide
some details on how the Sylvester equation solvers are parallelized using many-
core strategies. Numerical experiments reporting the accuracy and the high
performance of the new methods on a hardware platform equipped with GPUs
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are presented in Section [l The final section summarizes the findings in this
paper and gives some concluding remarks.

2 Iterative Schemes for Generalized Stable Sylvester Equations

Traditional solvers for generalized Sylvester equations consist of generaliza-

tions of the Bartels-Stewart (BS) method [16] and the Hessenberg-Schur method
[I7U18]. A different approach is to rely on iterative schemes for the computation

of the matrix sign function. We adapt the basic Newton iteration used in this

context [19] to solve the generalized formulations shown in Eq. and obtain

the solution in factored form. Similar algorithms have been proposed for the

standard Sylvester equation in [I] and for the Lyapunov equation in [20,21].

We also propose an initial transformation of the equation that further reduces

the cost of both the classical and the factored iterations.

2.1 Theoretical background

Consider a matrix M € R"! with no eigenvalues on the imaginary axis, and let

M=S5 [J(; ﬁ} S~ be its Jordan decomposition. The Jordan blocks in J~ €

R and J* € RUD*0=Y contain, respectively, the stable and unstable
parts of A(M,I;). (Here, I; denotes the square identity matrix of order [.)
The matriz sign function of M is defined as sign (M) := S [70& Il(it} S—L.
By applying Newton’s root-finding iteration to M? = I; in order to compute

sign (M), with the starting point chosen as M, we obtain the Newton iteration
for the matrix sign function:

1
My := M, Mk+1::§(Mk+Mk_1), k=0,1,2,.... (2)

Under the given assumptions, the sequence {M},}72 , converges to sign (M) =
limg s 0o My, [19], with an ultimately quadratic convergence rate. As the ini-
tial convergence may be slow, the use of acceleration techniques such as those

in [221123] is recommended. If X is a solution of Eq. , the similarity transfor-
mation defined by [Ig IX can be used to block-diagonalize the block upper
3) as shown in Eq. .

triangular matrix in Eq. (|

i {A é] _ [E—IA E—lCD‘l} 3)

0 -B 0 —BD!

I, X1 '[E-'AE'CcD | [I, X
0 I, 0 —-BD™! 0 I,
I, -X|[E'AE-'cD ][I, X] [A 0
0 I, 0 —BD! 0L, |0o-B|
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Using sign (fI ), the relation given in , and the property of the sign function
sign (T‘lﬁT) = T 'sign (f[) T, we derive Eq. for the solution of Eq. .
. - -1, 2X
51gn(H) = { 0 Im:|. (5)

This relation forms the basis of the numerical algorithm derived next since it
states that we can solve by computing the matrix sign function of H in .

A FG E 0 =
H—-\K := [O_B})\[OD]_L(H/\IWWL)M. (6)
. . E 0
From Eq. 1' and using the equivalence of Eq. @7 where L = { 01 ] and
m
M = {I(;L g , we know that we can compute the solution of the generalized

Sylvester equation by applying to H. In doing so, we obtain in the first
step

Hy=3H+HY)=4L*HM™' + MH'L)
=L ' (3(H+LMH'LM))M~' =L (3(H+ KH'K)) M~
Repeating this calculation and denoting Hy := H = LHM, we arrive at
Hpy = %(Hk +LMH,'LM) = %(Hk +KH'K), k=12,..., (7)

so that Hy = LH, M. Finally, taking limits on both sides, yields

-F 2EXD}

Hy := klggon = Lsign (H) M= { 0o D (8)

and X = %E‘lngD_l, Hi5 denotes the upper right n x m-block of Hy.

2.2 Solution of the generalized Sylvester equation

In [I] it is observed that exploiting the block-triangular structure of the matrix
pencil H — AK, we obtain the following classical generalized Newton iteration
for the solution of the generalized Sylvester equation :

Ay = A, A1 = 3 (A + EA'E),
By = B, Biy1 == 3 (By+DB;'D), k=0,1,2,.... (9)
Co == FG, Cipy1 = 3(Cy+EA;'C,B;'D),

At convergence, the solution of is computed by solving the linear equation

1 .
EXD = 5 kILI&Ck.
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Also, from we have limg_,oo Ay = —F and limy_,., B, = —D, which
suggests the stopping criterion

{ [Ax + Elly [[Bx + Dl }
X ) =T,
11 1D

(10)

where 7 is a tolerance threshold. One might choose 7 = e for the machine
precision ¢ and, for instance, ¥ = n or v = 10y/n. However, as the terminal
accuracy sometimes cannot be reached, in order to avoid stagnation it is better
to choose 7 = /¢ and to perform 1 to 3 additional iterations once this criterion
is satisfied. Due to quadratic convergence of the Newton iteration , this is
usually sufficient to reach the attainable accuracy, as already suggested and
explained in the context of sign function based matrix equation solvers in [20].

2.3 Factored solution of the generalized Sylvester equation

In order to obtain a factorized solution of , we rewrite the iteration for Cj
as two separate iterations:

Fy:=F, Fpyi= 25 [ F, EA 'R T,

G k=0,1,2,...,
Go=G, Gpy1:=—-= {GkBkﬁlDy

V2
so that Cx41 = Fr4+1Gr+1. Although this iteration is cheaper during the initial
steps if p < n,m, this advantage is lost as the iteration advances since the
number of columns in Fj41 and the number of rows in Gy41 is doubled in
each iteration step. This can be avoided by applying a similar technique as that
employed in [20] for the factorized solution of generalized Lyapunov equations.
Let F, € R™P* and G} € RP**™. We first compute a rank-revealing QR
(RRQR) factorization [24] of G411 as defined above; that is, we calculate

1 Gy _ R
Vi laupp] ~vame. r=[7].

where U is orthogonal, Il is a permutation matrix, and R is upper triangular
with Ry € R™™ of full row-rank. Then, we compute a RRQR factorization
of Fk+1 U:

1 _ T
%[Fk, EA'F U =VTIlp, T= {0},

where V' is orthogonal, ITr is a permutation matrix, and T is upper triangular
with Ty € R™?Pk of full row-rank. Partitioning V = [Vi, Vo], with V; € R™™,
and computing

[Th1, Tho ) :==ThIIp, Ty € R,

we then get as the new iterates

Fypq = WVT1, Giy1 = Rillg,
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which satisfy Cx41 = F41Gr41. Setting
Y= —F lim F Zi= — lim GD!
' \/Q k—o0 ko ' \/§ k—o0 k ’
we obtain the solution in factored form X = Y Z. If X has low numeri-
cal rank, the factors Y and Z will have a low number of columns and rows,
respectively, and the storage space and computation time needed for the fac-
tored iteration will be lower than that of the classical iteration. In such case,
r,t < m,n, and the cost of the current iteration for the factorized solution is
L (n® +m3) + O(2(n + m)?) flops, where the cubic part comes from solving
the linear systems and computing the matrix products EA,;lE and DB, 'D;

see [1l Section 4] for details of the complexity analysis .
2.4 Numerical performance

We next analyze the accuracy of the new Sylvester solvers borrowing exam-
ples from [25l[26]. We use IEEE double-precision floating-point arithmetic with
machine precision ¢ =~ 2.2204 x 107!, For the numerical evaluation, we im-
plemented two MATLAB functions:

— ggesne: The classical generalized Newton iteration for the generalized
Sylvester equation in factored form as given in @

— ggesnc: The factored variant of the generalized Newton iteration for the
generalized Sylvester equation in factored form.

We compare these functions with the BS method as implemented in function
lyap from the MATLAB Control Toolbox. As the BS solver in MATLAB
cannot deal with the generalized Sylvester equation, we apply it to the trans-
formed standard Sylvester equation (E~1A)X +X(BD 1)+ E-*FGD~! = 0.

Example 1. A basic test case aimed to compute the cross-Gramian matrix
W, of a generalized linear time-invariant system of the form

Mi(t) = —Kx(t) + Bu(t), y(t) = Cx(t). (11)
This matrix is given by the solution of the generalized Sylvester equation
KWoM + MW.,K + BC =0, (12)

and W, = WCOM . The cross-Gramian contains information of certain proper-
ties of the linear system [4] and can also be used for model reduction [2]. We
employ the solvers to compute W,, for a system described in [25] Example 4.2]
which comes from a model for heat control in a thin rod. The physical process
is modeled by a linear-quadratic optimal control problem for the instationary
1D heat equation. Semi-discretization in space using finite elements leads to a
system of the form , where M and K are the mass matrix and stiffness ma-
trix, respectively, of the finite element approximation. Mesh refinement leads
to systems of different orders n. The other parameters in this example are set
tO(lZO.Ol, b=2,C:1, ,81 :0, [32:0.1, ’}/120.9, "Y2=1
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Fig. 1 Numerical performance of the generalized Sylvester equation solvers applied to Ex-
amples 1 (left) and 2 (right).

The left-hand side plot in Fig. [I] shows the results for various problem
dimensions. As a measure of the quality of the solutions, we report the relative
residuals R R

|IKW2E M+ MW:K + BC||r

o

2K FWellr[MlF + Bl FlICll 7

where W, denotes the computed solution. For this example, the two factored
solvers outperform the BS method by a margin that grows with the problem

dimension n.
Example 2 [26] Example 13]. In this case we choose for real a,b,d,e > 1

A:diag (1,0,,(12,...,0,”_1)7 B:diag (111;—1717—2’.“717—(”—1))
ﬁ:diag(—1,—d*1,—d*%...,—d*”*”), B =diag (—1,—e, —¢2,...,—e"" 1),
ﬁ:vau v:[1721"'an]T é:—f{b— AB,

where the parameters a, b, d, and e regulate the eigenvalue distribution of
the corresponding matrices. We then employ an equivalence transformation
defined as T = H>SHy, where

Hl :In*%hlh’{’ hl = [1717"'71]Ta
Hy =1, — %hghg, ho = [1,—17...,(—1)7171
S =diag (1,s,...,s"71), s > 1,

]T

b

to transform the matrices of the equation into
A=T"TATT, B=TBT ', D=TDT', E=T"TETT, C =T-TCT .

The factorized right-hand side matrix is then given by F = —T~Tv and G =
v (D+ B)T~. In this example we set the parameters as a = 1.001, b = 1.004,
d=1.002, e = 1.003, and s = 1.01.

The right-hand side plot in Fig. [1| compares the relative errors in the com-

puted solution X*, %, for the different methods. The errors for all
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three algorithms are remarkably similar and as small as could be expected
from numerically backward stable methods.

3 Many-Core Versions

In this section we describe our GPU-accelerated realisations of the factored
solver. Our routines off-load the most expensive computational stages of the
method to the accelerator, leaving less-demanding or hardly parallelizable op-
erations to the CPU.

Single-GPU variant, ggcsncg,,. As we stated previously, the method pro-
posed for the generalized stable Sylvester equation is based on two simulta-
neous matrix iterations. From the perspective of computational cost, these
iterations involve two major operations: the matrix inversion (computed as a
matrix factorization and the solution of two triangular linear systems) and a
matrix update, which can be performed via a matrix multiplication (GEMM).
Our experiments show that these two operations (which are performed on
both iteration matrices) represent approximately 85% of the total cost of the
method. Therefore, an important acceleration can be expected from off-loading
these operations to the GPU. In our implementation, basic linear algebra ker-
nels such as matrix products, transpositions and norms, are performed using
the cuBLAS GPU-accelerated library, while more complex operations, such as
LU factorizations and triangular system solves rely on the cuSolver library. It
should be noted that both operations occur in every iteration of the proce-
dure. Regarding the data transfers, the equation matrices A, B, D and F are
sent to the device only once, prior to the beginning of the procedure. Con-
trarily, the factors of the solution matrix are retrieved back to the CPU at
each iteration, since the compression stage that uses the RRQR factorization
to reduce the number of columns/rows of the factors is performed in the CPU.
Without compression, the sign function iteration duplicates the number of
columns/rows of the left/right factors of the solution at each iteration. The
compression procedure leverages the low-rank property of the factors to keep
the size of the factors bounded.

Hybrid variant, ggcsncy,,. As our method for the Sylvester equation com-
bines operations performed in the CPU with others performed in the GPU, it is
interesting to analyse how the computation on both devices can be overlapped
to maximize the utilization of the hardware. To allow this, it is necessary to
re-define the computation workflow. Concretely, we overlap the compression
stage (performed in the CPU) with the matrix factorizations and triangular
solves (computed in the GPU) corresponding to the next iteration, a strategy
commonly referred as look-ahead [27]. This is convenient because the result
of the linear systems in a given iteration are used to update the iteration
matrices, which are then compressed. This variant can achieve important ac-
celerations when the compression runtime is comparable to the cost of the
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[ Operation [ Kernel [ Device ]
X = EA,;1 GETRF+GETRS GPU1
€=B.'D GETRF+GETRS GPU2
do

_ 1 /
Apy1 = 5(Ar +xE) | GEMM GPU1
Fiy1 = [Fr, xFi] MEMCPY

I
By = Q(Bg + DE) | GEMM GPU2
Grq1 = % [G:&] MEMCPY
start transfer of Fj1; and Gy41 to the CPU
X = EA,;_'{I GETRF+GETRS GPU1
§{=B,D GETRF+GETRS GPU2
Gry1 =U {%1] Il GEQP3+GESVD
Fo U=V [Tol] Ir | ORGQR+GEQP34GESVD CPU
[T, The] :=Th1IF LAPMT
Frpq :=V1Tn GEMMM
Gry1:=Rillg LAPMT

until convergence

Fig. 2 Algorithmic formulation of the ggcsncagpys variant. The factorized Newton iteration
for the sign function has been re-organized so that the two sequences that compose the
method can be isolated and executed in different devices.

matrix factorizations and linear system solution.

Dual GPU variant, ggcsncag,,s The Newton iteration involves two indepen-
dent recurrences (for { A}y and {B}) with a third one (for {C'}y) that depends
on the other two. However, in the factored variant of the method, the {C}y
recurrence is replaced by two independent ones (for {F}; and {G};). In turn,
{F}\ depends on {A}y, while {G}\ depends on By. This allows to completely
separate the ({A}g,{F}x)-iteration from the ({B}x,{G}1)-one, handling each
in a separate device. This approach offers two distinct benefits. On the one
hand, duplicating the computational power to solve the main stages of the al-
gorithm can strongly reduce the required runtime (up to 2x in the ideal case).
On the other hand, the duplication of the memory allows addressing problems
of larger scale. Although the two recurrences are independent, the compression
of the factors requires a synchronization. Specifically, the synchronization oc-
curs before the RRQR factorization of Fj U, given that U is the orthogonal
matrix resulting from the RRQR factorization of Gy1. The communication
of data between the CPU memory and the devices also occurs at this point,
where Fy, 11 = [Fy, EA'F}] and Gjy1 = [Gy; G, B~ 1 D] are transferred to the
CPU memory to be compressed there. It is important to note that, if the com-
pression procedure keeps the number of columns of Fj and rows of Gy, small,
the cost of these transfers and the compression itself will be small compared
with that of the operations that involve the square matrices Ay and By (of
dimension n and m respectively); see the outline of the ggesncagpys variant in

Fig.
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[ Problem [ Dim. [ ggesnc [ ggcsnegpy [ ggCsncypu [ ggcsncyyp [ gE8CSNCogpus ]
256 191 105 100 91 73
512 460 446 340 322 219
Example 1 1024 2108 2454 1625 1582 901
2048 11826 18156 10030 9928 5887
4096 | 138610 141689 73067 72852 42339
256 79 35 30 30 20
512 287 147 106 106 73
Example 2 1024 1343 952 608 605 386
2048 9959 9644 5291 5238 3211
256 129 68 63 56 40
512 364 295 207 204 135
Example 3 1024 1760 1581 987 982 574
2048 10200 11317 6087 6092 3599
4096 79347 87657 44056 44029 25830

Table 1 Execution time (in milliseconds) for the baseline and proposed variants, on the
three example problems and different problem sizes.

4 Experimental Evaluation

In this section we analyse the performance of the generalized Sylvester equa-
tion solvers using two platforms for the experiments. The executions involving
GPUs were performed on a server equipped with an Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz, 64GB of RAM, and two GeForce GTX 980 Ti GPUs with
6GB of GDDR5 memory. The multicore CPU experiments were performed on
a server with 2x20-core Intel Xeon Gold 6138 CPUs @ 2.00GHz and 128GB
of RAM. IEEE double-precision floating-point arithmetic was used for all the
executions, and the multicore runs were performed with MATLAB R2018b
on top of a multi-threaded instance of Intel MKL. The GPU executions were
performed using CUDA 10.2.

Example 3. We construct matrices A € R™", B € R™*™, F € R"*?
and G € RP*™ with random entries uniformly distributed in U[-1,1]. Matrix
A is then “stabilized” as A := A — ||A|rI,. Finally, we compute the QR
factorization A = QR and set A := R and E := Q. Matrices B and D are
analogously obtained from a QR factorization of B — || B||p1,,.

For the experimental evaluation we include two extra versions as base-
line variants. First, a CPU-based variant (ggcsnc) of the iterative solver to
compute the factorized solution of the Generalized Sylvester equation imple-
mented in MATLABIH This is the only variant that we execute in the Intel
Xeon Gold processor, enabling MATLAB to use 20 CPU threads (the con-
figuration that offers the best performance). Second, a GPU version of the
Generalized Sylvester solver that works with the full (non-factored) solution
(ggcsnegyy). Tablesummarizes the runtime required by the baseline variants
as well as the three GPU versions proposed in this work: ggcsncgp., ggcsncpys

1 The most expensive operation of this method are matrix operations, which MATLAB
off-loads to external libraries (such as BLAS or LAPACK). MATLAB adds a small amount
of overhead which makes this baseline only slightly unfair from the runtime perspective.
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g8CSNChyp BECSNCagpus
Problem Inv. & Upd. | % | Comp. | % || Theo. | Achi. | Theo. | Achi.
Example 1 9639.5 | 96.1 115.0 | 1.2 115.0 | 102.0 | 4818.2 | 4143.0
Example 2 5012.7 | 94.7 789 | 1.5 78.9 53.0 | 2506.4 | 2080.0
Example 3 5998.8 | 96.9 8.3 | 0.2 8.3 -4.5 | 2999.4 | 2488.2

Table 2 Runtime and percentage of the total runtime of the main stages of the solver
(left), and comparison between the theoretical and achieved runtime difference with respect
to variant ggcsncgp, (right) for the test cases of dimension 2048. Runtime values are in
milliseconds.

and ggcsncagpus. These implementations are employed to solve three scalable
test cases. In our evaluation, we select the cases corresponding to the following
matrix dimensions: n = m = 256,512, 1024, 2048 and 4096.

The results show that the advantage of ggcsnegyy, baseline regarding the
ggcsnc variant decreases with the problem size. This mostly indicates that the
factored solution offers significant benefits for large instances of the evaluated
examples. This is confirmed when comparing the ggcsncy,, and ggcsnegp,
variants. For the smallest test cases, with n = m = 256, the acceleration
obtained by ggcsncgy, is mild, and grows consistently with the size of the
problem in all three examples. According to the results, the ggcsncy,, vari-
ant does not show any significant performance difference with ggcsncgy,, for
Examples 2 and 3, while it only presents a modest advantage in Example 1.
The attainable acceleration by this variant is constrained by the time taken
by the RRQR compression algorithm, which is analysed later on.

The experiments also reveal that the ggcsncagy,s variant clearly outper-
forms the remaining alternatives in all the tested instances. The acceleration
achieved with respect to the ggcsnc and ggcsncyy, variants differs accord-
ing to the test case, but is close to 3x and 1.7x, respectively, for the largest
instance of each example.

At this point, it is important to remark that the GPU platform has rather
poor double precision performance, and hence the experimental setup favours
the CPU. Although higher accelerations are expected for high performance-
oriented GPUs, the results show that significant performance gains are ob-
tained with less expensive multi-GPU platforms.

In order to complete the analysis, we compare the results of Table [I] with
those that would be obtained if a perfect overlapping was achieved in each case.
In this line, Table [2| (left) offers the runtime, and percentage of total runtime,
required by the most important operations, for the test cases with matrices
dimension 2048. Specifically, we include two main stages: the inversion and up-
date of the iteration matrices; and the compression of the solution matrix. As
stated previously, the matrix inversion and update are performed on two matri-
ces independently, and represent the most computationally-demanding parts.
The ggcsncagpus variant leverages task-parallelism to off-load each inversion-
update sequence to a different GPU, which makes the major achievable run-
time reduction equivalent to half the total runtime of these stages. In compar-
ison, in the ggcsncy,, version the previous stages are concurrently computed
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with the matrix compression, which implies that the best improvement for
this case is equal to the runtime taken by the compression (as this operation
typically requires significantly less runtime than the other overlapped oper-
ations). In Table [2[ (right) we summarize the theoretical and actual runtime
reductions. For the ggcsncy,y solver, the runtime reductions are strongly cor-
related with the theoretical values as the achieved reductions are mostly equal
to the theoretical. It should be remarked that the computational cost of the
compression stage depends of the number of rows and columns of the matrices
involved. In the three examples of Table [2| these numbers are 36, 53 and 7
respectively, which means that this variant only offers benefits when n and
m are large. Regarding the ggcsncogp,s variant, the results show that the
observed runtime reductions are close to the theoretical values. Specifically,
these reductions exceed 80% of the peak for the examples of Table 2] and the
benefits increase with the runtime.

5 Conclusions

We have discussed a matrix sign function-based scheme to directly obtain the
factorized solution of the generalized stable Sylvester equation. The factored
iteration (in conjunction with rank-revealing QR) allows significant savings in
computation time and memory requirements in case the solution has low nu-
merical rank. The novel algorithm can be efficiently parallelized. In this work,
we have designed and evaluated implementations that efficiently leverage both
data- and task-parallelism on platforms equipped with multicore processors
and one or two GPUs. The experimental results confirm the efficacy of the
sign function-based solvers and report a considerable advantage that can be
realised on massively parallel hardware.

In future work, we intend to generalize our approach to harness distributed
platforms equipped with several GPUs, in order to handle large-scale problems.
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dent Research Group: “Efficient Hetergenous Computing” at UdelaR, a part-
ner group of the Max Planck Institute in Magdeburg.

References

1. P. Benner, E. S. Quintana-Orti, and G. Quintana-Orti, “Solving stable Sylvester equa-
tions via rational iterative schemes,” J. Sci. Comp., vol. 28, no. 1, pp. 51-83, 2005.

2. R. Aldhaheri, “Model order reduction via real schur-form decomposition,” Internat. J.
Control, vol. 53, no. 3, pp. 709-716, 1991.

3. P. Benner and C. Himpe, “Cross-Gramian-based dominant subspaces,” Adv. Comput.
Math., vol. 45, no. 5, pp. 2533-2553, 2019.

4. K. Fernando and H. Nicholson, “On a fundamental property of the cross-Gramian ma-
trix,” IEEE Trans. Circuits and Systems, vol. CAS-31, no. 5, pp. 504-505, 1984.

5. C. Himpe and M. Ohlberger, “Cross-Gramian based combined state and parameter
reduction for large-scale control systems,” Mathematical Problems in Engineering, vol.
2014, p. 843869, 2014.



Factorized Solution of Generalized Stable Sylvester Equations on GPUs 13

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

D. Calvetti and L. Reichel, “Application of ADI iterative methods to the restoration of
noisy images,” SIAM J. Matriz Anal. Appl., vol. 17, pp. 165-186, 1996.

B. Datta, Numerical Methods for Linear Control Systems Design and Analysis. Else-
vier Press, 2003.

L. Grasedyck, “Existence of a low rank or H-matrix approximant to the solution of a
Sylvester equation,” Numer. Lin. Alg. Appl., vol. 11, pp. 371-389, 2004.

P. Benner, “Factorized solution of Sylvester equations with applications in control,” in
Proc. Intl. Symp. Math. Theory Networks and Syst. MTNS 2004, 2004.

M. Koéhler and J. Saak, “On GPU acceleration of common solvers for (quasi-) triangular
generalized Lyapunov equations,” Par. Comp., vol. 57, pp. 212 — 221, 2016.

M. Kéhler and J. Saak, “On BLAS level-3 implementations of common solvers for (quasi-
) triangular generalized Lyapunov equations,” ACM Trans. Math. Softw., vol. 43, no.
1, art. no. 3, 2016.

A. Schwarz and C. Mikkelsen, “Robust task-parallel solution of the triangular Sylvester
equation,” in International Conference on Parallel Processing and Applied Mathemat-
ics. Springer, Cham, 2019.

M. Xiao, Q. Lv, Z. Xing, and Y. Zhang, “A parallel two-stage iteration method for
solving continuous Sylvester equations,” Algorithms, vol. 10, no. 3, art. no. 95, 2017.
P. Benner, P. Ezzatti, H. Mena, E. S. Quintana-Orti, and A. Remén, “Solving matrix
equations on multi-core and many-core architectures,” Algorithms, vol. 6, no. 4, pp.
857-870, 2013. [Online]. Available: https://www.mdpi.com/1999-4893/6/4/857

E. Dufrechu, P. Ezzatti, E. S. Quintana-Orti, and A. Remén, “Accelerating the
Lyapack library using GPUs,” J. Supercomput., vol. 65, no. 3, p. 1114-1124, Sep. 2013.
[Online]. Available: https://doi.org/10.1007/s11227-013-0889-8

R. Bartels and G. Stewart, “Solution of the matrix equation AX + X B = C": Algorithm
432,” Comm. ACM, vol. 15, pp. 820-826, 1972.

W. Enright, “Improving the efficiency of matrix operations in the numerical solution
of stiff ordinary differential equations,” ACM Trans. Math. Softw., vol. 4, pp. 127-136,
1978.

G. H. Golub, S. Nash, and C. F. Van Loan, “A Hessenberg—Schur method for the
problem AX + XB = C,” IEEFE Trans. Aut. Control, vol. AC-24, pp. 909-913, 1979.
J. Roberts, “Linear model reduction and solution of the algebraic Riccati equation by
use of the sign function,” Internat. J. Control, vol. 32, pp. 677-687, 1980, (Reprint Tech.
Report No. TR-13, CUED/B-Control, Cambridge Univ., Engineering Dept., 1971).

P. Benner and E. S. Quintana-Orti, “Solving stable generalized Lyapunov equations
with the matrix sign function,” Numer. Algorithms, vol. 20, no. 1, pp. 75—-100, 1999.
P. Benner, J. Claver, and E. Quintana-Orti, “Parallel distributed solvers for large stable
generalized Lyapunov equations,” Parallel Proc. Letters, vol. 9, no. 1, pp. 147-158, 1999.
R. Byers, “Solving the algebraic Riccati equation with the matrix sign function,” Linear
Algebra Appl., vol. 85, pp. 267-279, 1987.

N. Higham, “Computing the polar decomposition—with applications,” SIAM J. Sci.
Statist. Comput., vol. 7, pp. 1160-1174, 1986.

T. Chan, “Rank revealing QR factorizations,” Linear Algebra Appl., vol. 88/89, pp.
67-82, 1987.

J. Abels and P. Benner, “CAREX — a collection of benchmark examples for continuous-
time algebraic Riccati equations (version 2.0),” SLICOT Working Note 1999-14, Nov.
1999, available from http://www.slicot.org.

M. Slowik, P. Benner, and V. Sima, “Evaluation of the linear matrix equation solvers
in SLICOT,” J. Numer. Anal. Ind. Appl. Math., vol. 2, no. 1-2, pp. 11-34, 2007.

J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhofer, E. Dufrechou, P. Ezzatti, and E. S.
Quintana-Orti, “Exploiting task and data parallelism in ILUPACK’s preconditioned CG
solver on NUMA architectures and many-core accelerators,” Parallel Comp., vol. 54,
pp. 97-107, 2016.


https://www.mdpi.com/1999-4893/6/4/857
https://doi.org/10.1007/s11227-013-0889-8

	Introduction
	Iterative Schemes for Generalized Stable Sylvester Equations
	Many-Core Versions
	Experimental Evaluation
	Conclusions

