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1 | ADSORPTION PROPERTIES

Adsorption energies E pot
ads for the systems discussed in the paper are provided in table S1.

A comparison of the adsorption energy curve between Light and Tight settings is provided in figure S1 for θ = 0.46.
The difference in binding energy is 58 meV.

As mentioned in the paper, we use Eads calculated by the eq. 5 and E ∗
ads

calculated by the eq. 7. Only Eads rigor-
ously satisfies the definition of an adsorption energy. Comparing the numbers for coverage 0.46 and PBE + vdWsurf

in tables S1 and S2, one can compare the values obtained with these two definitions. The differences are very small
(less than 10 meV).
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TABLE S1 Adsorption energy for different adsorption patterns, calculated with PBE+vdWsurf by FHI-aims code
with Light and Tight settings.

Eads
(

eV
molecule

)
θ = 1,

(
2
√

3× 2
√

3
)
R13.9◦, 9 molecules, 4 Rh layers

Light, 2x2x1 k-points 1.023

θ = 0.64, 3x3 slab with 1 molecule

Light, 4x4x1 k-points 0.946

θ = 0.46, 5x5 slab with 2 molecules

Light, 2x2x1 k-points 0.953

Tight, 2x2x1 k-points 0.912

θ = 0.12, 7x7 slab with 1 molecule

Light, 2x2x1 k-points 0.945

TABLE S2 Adsorption distance hCOM between the center of mass of a molecule and a surface, and energy E ∗ads,
calculated as the energy difference between the minimal point of the adsorption curve and the point at 10 Å
distance from the surface.

FHI-aims hCOM (Å) E ∗ads (meV)

θ = 0.46, Tight settings

PBE 3.71 147

PBE+MBD-nl 3.45 843

PBE + vdWsurf 3.36 905

HSE06+MBD-nl 3.30 1026

θ = 0.46, Light settings

PBE + vdWsurf 3.37 963
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Experiment C6D12
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F IGURE S1 Adsorption curves calculated with PBE +vdWsurf [1] functional with Tight (solid blue line) and Light
(dashed black line) settings of FHI-aims. Calculations were performed with the unit cell of θ = 0.46. Shaded areas
show the experimental values of the adsorption energy of C6H12 (red) and C6D12 (grey), obtained by temperature
programmed desorption [2].
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2 | COVERAGE DEPENDENCE OF VIBRATIONAL SPECTRUM

We show in figure S2 the harmonic vDOS for the adsorption patterns considered in this work (PBE+vdWsurf). The key
feature is a red shift in the stretching vibrations of the CH groups pointing to the surface (denoted as (I) in figure S2b).
This red shift decreases with increasing coverage. It means that surface-molecule interaction becomes weaker. At
highest coverage (θ = 1) there are multiple splittings of CH stretching frequencies. It is an evidence that cyclohexane
adsorption sites become highly nonequivalent because of molecule-molecule interactions. We also note a blue shift
in stretching vibrations of CH groups of type (III) and slight red shift in groups (II) and (IV).
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F IGURE S2 a) Different CH groups for a cyclohexane adsorbed on a surface. b) The vibrational spectra of CH
stretching modes of cyclohexane in vacuum (black) and on a Rh(111) surface with coverage θ = 0.12 (red), θ = 0.46
(blue), θ = 0.64 (green) and θ = 1 (ochre). The grey arrows assign peaks to the CH groups given in (b). As the red shift
in CH stretching modes decreases, the H/D difference in the adsorption energy decreases also. At the full coverage
(θ = 1), the intermolecular interaction is so strong that single adsorption sites become highly non-equivalent, which
is reflected in multiple peak splitting in the range between 2540 and 3040 cm−1.
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3 | CALCULATIONS WITH REV-VDW-DF2 FUNCTIONAL

The Quantum-ESPRESSO code [3, 4] was used for the calculations of adsorption energy curve without zero-point-
energy correction as a function of molecule-surface distance with a Rh(111) (3×3) surface with 4 metal layers and
vacuum equivalent to eight monolayer (19.77 Å) with rev-vdW-DF2 functional as shown in figure S3 (a) (θ = 0.64). A
6 × 6 Γ-centered k-point grid was used. The results for θ = 0.46 and θ = 0.64 are given in table S3.

The STATE [5, 6] code was used for the calculations of vibrational spectra, adsorption energy curves with and
without zero-point-energy correction, and the work function as functions of the molecule-surface distance with the
rev-vdW-DF2 functional[7, 8]. A simplified version of the self-consistent van der Waals density functional[9, 10] was
employed[11]. The computational setup for the STATE calculations has multiple differences from the one reported in
the main text. For these calculations, a Rh(111) (3×3) surface with 5 metal layers with a vacuum equivalent to eight
monolayer (19.88 Å) is considered (θ = 0.64). The slab was constructed using the lattice constant optimized with
rev-vdW-DF2 of 3.81 Å. A cyclohexane molecule was put on one side of the slab and the effective screening medium
method was used to eliminate the artificial electrostatic interaction with the neighboring slabs [12, 13]. The bottom
2 layers of the Rh(111) slab were fixed and the remaining degrees of freedomwere fully relaxed until the forces acting
on them become less than 5× 10−4 Hartree/Bohr. Ultrasoft pseudopotentials [14] and a plane-wave basis sets with a
cutoff energy of 49 (625) Ry for wave functions (charge density) were used. A 4× 4 Γ-centered k-point grid was used.
Harmonic vibrational frequencies were calculated by using the Wilson’s GF method and finite difference method as
implemented in the STATE package[15]. Atoms were displaced along the vibrational eigenmodes and the magnitude
of the displacement was determined self-consistently. All 3N molecular vibrations are included in zero-point energy
calculation. The results are presented in figure S3 (b) and in table S4.

TABLE S3 Adsorption distance hCOM between the center of mass of a molecule and a surface, and energy Eads,
calculated as the energy difference between the minimal point of the adsorption curve and the sum of energies of
an isolated molecule and a clean surface using Quantum ESPRESSO.

Quantum ESPRESSO hCOM (Å) Eads (meV)

θ = 0.46, rev-vdW-DF2 3.48 768

θ = 0.64, rev-vdW-DF2 3.49 791

TABLE S4 The results of quasi-harmonic calculation with rev-vdW-DF2: the adsorption energy, the equilibrium
distance between molecules and the surface, and the work function change for C6H12 and C6D12 for coverage
θ = 0.64 using STATE.

STATE C6H12 C6D12 no ZPE

ZPE-corrected Eads (meV) 876 840 818

QH hCOM (Å) 3.427 3.439 3.471

QH ∆φ (meV) -1205 -1190 -1151
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F IGURE S3 a) Adsorption curve calculated with rev-vdW-DF2 for the coverage of θ = 0.64 obtained using
Quantum-ESPRESSO. Zero energy level corresponds to sum of the energies of an isolated molecule and a clean
surface. Shaded areas show the experimental values of the adsorption energy of C6H12 (red) and C6D12 (grey),
obtained by temperature programmed desorption [2]. b) ZPE-corrected energy of adsorption for C6H12 (red) and
C6D12 (black) obtained with STATE. The green line shows the adsorption energy values calculated without ZPE
correction. Zero level is the same as in a).

TABLE S5 Isotope effects on distance to surface and work function change, obtained by QH model and aiPIMD
simulations with PBE + vdWsurf functional for coverage θ = 0.46.

C6H12 C6D12 no ZPE

ZPE-corrected E ∗ads (meV) 1067 1030 956

QH hCOM (Å) 3.351 3.364 3.386

QH ∆φ (meV) -960 -945 -920

PIMD hCOM (Å) 3.41 ± 0.01 3.42 ± 0.01 3.416 ± 0.007

PIMD ∆φ (meV) -927 ± 9 -915 ± 9 -903 ± 5
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4 | QUASI-HARMONIC MODEL AT FINITE TEMPERATURE

For the calculation of a ZPE corrected adsorption curves, with FHI-aimswe include only (3Nm−3) molecular vibrations,
where Nm is the number of atoms in a molecule. The remaining 3 lowest-frequency modes (0 to 55 cm−1 depending
on distance to surface) correspond to the hindered translations of a rigid molecule. They have completely classical
behavior and high entropy, and they are populated at very low temperatures. These modes give a relatively high
mobility to molecules. They raise the question of applicability of the harmonic approximation when the molecule
deviates far away from its equilibrium position.

In figures S4a,b, we show harmonic free energy corrections at 150 K including (3Nm − 3) modes and only the
(3Nm − 6) intramolecular modes. Clearly, temperature effects are concentrated in the lower-frequency modes, and
these effects are negligibly small in the higher frequency intramolecular vibrations. hCOM when including (3Nm − 3)
modes is 3.351 (3.365) Å for H and 3.364 (3.384) Å for D at the temperature of 0 (150) K.
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F IGURE S4 The effect of temperature on the harmonic free energy of cyclohexane (red) and D-cyclohexane
(black) with and without inclusion of hindered rigid rotation modes (a and b, respectively). Solid lines show
ZPE-corrected potential energy, dashed lines add finite temperature corrections at the temperature of 150 K. The
curves are aligned to zero at the distance of 10 Å. Calculations are done with PBE + vdWsurf functional.

5 | DEPENDENCE OF THE WORK FUNCTION CHANGE ON COVERAGE AND
FUNCTIONAL

We have calculated the dependence of work function change on distance for the coverage 0.64 using rev-vdW-DF2
and PBE functionals. The results are shown in figure S5. Taking the slope of the rev-vdW-DF2 dependence, the QH
model predicts the isotopic difference in work function change to be 15 meV (see table S4). In addition, we show
the difference between self-consistent and non-self-consistent implementations of vdWsurf correction in the work
function [16].
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F IGURE S5 Work function change as a function of distance to surface. Calculated for coverage 0.64 using PBE
(red squares) and rev-vdW-DF2 (green circles) functionals. And the values for coverage 0.46 by PBE (black crosses)
and PBE + self-consistent vdWsurf (blue triangles).

6 | ELECTRON DENSITY REARRANGEMENT

Multiple slices of the electron density difference between the full system (surface+molecules) and the superposition
of an isolated adsorbate and a clean surface are presented (figures S6, S7). In these pictures, shades of blue mean
electron depletion upon adsorption, and shades of red mean electron accumulation.
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F IGURE S6 Difference between the electron density of a surface with molecules adsorbed and the sum of
isolated surface and isolated molecules, shown at different y − z slices along x coordinate. Red color denotes
electron density accumulation, and blue denotes depletion.
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F IGURE S7 Difference between the electron density of a surface with molecules adsorbed and the sum of
isolated surface and isolated molecules, shown at different x − y slices along z coordinate. Red color denotes
electron density accumulation, and blue denotes depletion.
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7 | ESTIMATE OF THE ERROR OF SL-RPC IN POTENTIAL ENERGY

Our expression 2 in the manuscript can be rewritten as

kBT

2

∑
ν

∑
k

[
ω2mol

ω2
k
+ ω2

ν,full + ∆
−

ω2full
ω2
k
+ ω2

ν,full

]
, (1)

where ∆ = ω2
ν,mol − ω

2
ν,full. Since ∆ is much smaller than ω2

k
+ ω2

ν,full, it can be omitted, and we immediately get eq. 9
from the Ref. [17]. It is a reasonable approximation of one fraction, which gives an error of not more than 10% in
practical cases. However, two fractions have quite close values, therefore the difference between them can be even
smaller than the error introduced by omitting the ∆. This fact leads to a significant overestimation of the error, if the
eq. 9 from [17] is used.

8 | ESTIMATE OF THE ERROR OF SL-RPC IN FREE ENERGY

Assuming a system to be harmonic, the Hamiltonian of a ring polymer with P beads in “physical” normal modes can
be written as

H = K +
3N∑
ν=1

P∑
k=1

[
mνω

2
P

2

(
q
(k )
ν − q (k+1)ν

)2
+
mνω

2
ν

2
q
(k )2
ν

]
. (2)

Here K is a kinetic energy, ν denotes normal modes (NMs) of a physical system, mν is an effective mass associated
with the normal mode ν. Note that here, k stands for a bead index – in contrast to the following equations, where it
will enumerate normal modes of a free ring polymer.

Expanding the spring-terms and rearranging the summation over k (also making use of periodicity of a ring poly-
mer q (P+1) = q (1) ), one can rewrite a Hamiltonian as following:

H = K +
3N∑
ν=1

P∑
k=1

[
mνω

2
P

2

(
2q (k )2ν − q (k )ν q

(k+1)
ν − q (k )ν q

(k−1)
ν

)
+
mνω

2
ν

2
q
(k )2
ν

]
. (3)

Then, the spring terms can be written in a matrix form (bold below means P -dimensional vectors {q j }, j ∈ [1, ..., P ]
and corresponding square matrices)

V spr i ng =
3N∑
ν=1

mνω
2
P

2
q>ν Aqν , (4)

A =



2 −1 0 ... −1
−1 2 −1 0

0 −1 2 ...

... 0 ...

−1
−1 −1 2


(5)
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We diagonalize theA matrix by performing a normal mode transformationC:

A = CÃC> . (6)

q̃ν = Cqν (7)

The matrixC is unitary, therefore the transformation to the normal modes of a free ring polymer doesn’t change the
physical potential term

mνω
2
ν

2
q2ν =

mνω
2
ν

2
q̃>ν C

−1>C−1q̃ν =
mνω

2
ν

2
q̃2ν . (8)

The Hamiltonian in the “double normal-mode” representation (i.e. the normal modes of a physical system and the
normal modes of a free ring polymer) reads as

H = K +
3N∑
ν=1

P−1∑
k=0

mν (ω2k + ω
2
ν,full)

2
q̃
(k )2
ν , (9)

q̃
(k )
ν =

P∑
j=1

C Pj k q
j
ν (10)

where k denotes NMs of a free ring polymer. Here and below, “full” index stands for the “expensive” potential energy
surface which describes all interactions in a system, while “mol” stands for the “cheap” one. In case of spatially-
localized contraction, a “cheap” potential describes only interactions within an adsorbate.

Contraction procedure. Given a ring polymer of P beads, one can contract it to a lower dimensionality. Many
useful expressions can be found in [18]. Equations 21-22 from [18], rewritten in our notation:

q
(j ′)
ν =

P ′∑
j=1

(T P ′P )j ′j q
(j )
ν , (11)

where

(T P ′P )j ′j =
1

P

P ′/2∑
k=−P ′/2

C P
′

j ′kC
P
j k (12)

is a contraction matrix from (P × 3N ) to (P ′ × 3N )-dimensional space. It performs transformation C P to a Fourier
space, there it truncates the high-order coefficients and transforms back to a lower-dimensional real space by C P ′ .
Similarly, we define an expansion matrixT P

P ′ from (P
′×3N ) to (P ×3N )-dimensional space. The expansion procedure

is a reverse of a contraction with only difference: instead of truncating Fourier series, we have to expand it from P ′ to
P terms. Since we don’t have these coefficients, we set them to be zero. It can be shown that the potential energies
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of the P - and P ′-ring polymers are related as

P∑
k=1

V (q (k )1 , ..., q
(k )
3N ) ≈

P

P ′

P ′∑
j=1

V (q ′(j )1 , ..., q
′(j )
3N ), (13)

with respect to the accuracy of contraction.
The Hamiltonian after the SL-RPC is applied:

H = K +
3N∑
ν=1

[
P ′−1∑
k=0

mν (ω2k + ω
2
ν,full)

2
q̃
(k )2
ν +

P−1∑
k=P ′

mν (ω2k + ω
2
ν,mol)

2
q̃
(k )2
ν

]
. (14)

Then, the partition function of this system is

Q =
3N∏
ν=1


P ′−1∏
k=0

1

βP ħ
√
ω2
k
+ ω2

ν,full

P−1∏
k=P ′

1

βP ħ
√
ω2
k
+ ω2

ν,mol

 (15)

The free energy of a (single) physical system:

F = − 1
β
ln(Q ) == − 1

β

3N∑
ν=1

[
−
P ′−1∑
k=0

ln(βP ħ
√
ω2
k
+ ω2

ν,full) −
P−1∑
k=P ′

ln(βP ħ
√
ω2
k
+ ω2

ν,mol)
]
=

=
3NP ln(βP ħ)

β
+

1

2β

3N∑
ν=1

[
P ′−1∑
k=0

ln(ω2k + ω
2
ν,full) +

P−1∑
k=P ′

ln(ω2k + ω
2
ν,mol)

]
.

(16)

The free energy difference between SL-RPC and P beads calculated with full potential:

δF = (F RPC − F P beads ) = 1

2β

3N∑
ν=1

P−1∑
k=P ′

ln
(
ω2
k
+ ω2

ν,mol
ω2
k
+ ω2

ν,full

)
=

1

2β

3N∑
ν=1

P−1∑
k=P ′

ln
(
1 +

ω2
ν,mol − ω

2
ν,full

ω2
k
+ ω2

ν,full

)
. (17)
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