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Abstract
Modern experimental research often relies on the synchronization of different events prior to data analysis. One way of achieving
synchronization involves marking distinct events with electrical pulses (event markers or “TTL pulses”), which are continuously
recorded with research hardware, and can later be temporally aligned. Traditionally, this event marking was often performed
using the parallel port in standard personal computers. However, the parallel port is disappearing from the landscape of computer
hardware, being replaced by a serial (COM) port, namely the USB port. To find an adequate replacement for the parallel port, we
evaluated four microcontroller units (MCUs) and the LabJack U3, an often-used USB data acquisition device, in terms of their
latency and jitter for sending event markers in a simulated experiment on bothWindows and Linux. Our results show that all four
MCUs were comparable to the parallel port in terms of both latency and jitter, and consistently achieved latencies under 1 ms.
With some caveats, the LabJack U3 can also achieve comparable latencies. In addition to the collected data, we share extensive
documentation on how to build and use MCUs for event marking, including code examples. MCUs are a cost-effective, flexible,
and performant replacement for the disappearing parallel port, enabling event marking and synchronization of data streams.

Keywords Event marking . Parallel port . USB . TTL . Trigger . Open-hardware

Introduction

Experimental research in a multitude of scientific disciplines
involves the presentation of stimuli to research subjects. Be it
displaying a visual stimulus to a human, applying an electric
shock to a rodent, or switching off the lights in a room being
navigated by an autonomous robot – researchers need to re-
cord these events together with other data to make sense of the
results. A traditional implementation for event marking is the
parallel port available on standard computers (Clerc et al.,
2016). The parallel port works with direct current signals that
directly translate to digital states on the receiving interface,
and can thus achieve microsecond resolution of data transmis-
sion (Stewart, 2006; Voss et al., 2007). These fast direct cur-
rent signals, also called transistor–transistor logic (TTL)

pulses, persuaded manufacturers of recording hardware for
experimental research to adopt the parallel port as a standard
interface for implementing event marking. However, the par-
allel port’s original role as a general interface to transmit data
has been taken over by serial communication protocols, spe-
cifically the ubiquitous “universal serial bus” (USB) protocol.
As parallel port interfaces are replaced by USB ports on com-
mercially available computers, it is becoming increasingly
difficult to obtain modern computer hardware that supports a
parallel port “out of the box”. Yet, most data recording hard-
ware for experimental research still relies on event marker
inputs sent from a parallel port interface. Consequently, re-
searchers often find themselves hoarding outdated computer
equipment or relying on workarounds such as PCI adapter
cards or old docking stations for modern laptops. The problem
of parallel port availability is even more pronounced for users
of Apple computers, which are traditionally produced without
a parallel port interface (Knight, 1997). But even for users of
recent versions of Microsoft Windows, access to the parallel
port has become increasingly difficult for native applications
and impossible for web browser-based studies (see e.g.,
Bridges et al., 2020).

Workarounds for event marking should be treated with
caution: because they tend not to be exhaustively tested, they
can introduce dangerous uncertainty about the true latency
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between an event and its associated marker in the data. Some
analysis techniques such as event-related potentials (ERPs,
Luck, 2014) can tolerate a small constant latency of a few
milliseconds, but quickly become unusable with unpredict-
able variations of the latencies (i.e., jitter). Commercial man-
ufacturers are beginning to acknowledge this situation and to
release products tailored to bridging the link from USB con-
nectors to the proprietary connectors expecting TTL pulse
inputs as from a parallel port. Currently, there are at least
seven products to choose from (e.g., Canto et al., 2011; see
Supplemental Material for a list), most of which have been
tested by their respective manufacturers. Unfortunately, how-
ever, most of the products have at least one of the following
drawbacks: (i) they are expensive, (ii) they are specific to a
particular type of hardware, or (iii) they provide supported
functionality only under a limited set of operating system or
software packages (i.e., hardware drivers or accompanying
software are not provided for all major operating systems).
Although the relatively widespread MCU evaluation boards
such as Arduinos can be used for the same purpose, many labs
shy away from them because of uncertainty as to whether or
not events can be marked with the required precision. The
same holds for commercial USB input/output products for
which no published timing test results are available
(Wimmer et al., 2019).

With the present study, we aim to resolve this uncertain-
ty and to demonstrate that USB-based “event trigger de-
vices” that present themselves as serial (COM) ports can
generally serve as adequate replacements for the previous
gold standard parallel port. We describe the general prin-
ciple underlying the commercial products that link the
USB port to proprietary connectors expecting a TTL pulse.
Furthermore, we run a suite of latency tests on several such
event trigger devices under two major operating systems
(Windows, Linux) and compare the results against the per-
formance of a traditional parallel port. We did not run tests
under the macOS operating system because devices run-
ning macOS do typically not have native parallel port sup-
port. In the Supplemental Material, we provide a detailed
tutorial on how to build event-trigger devices and software
examples on how to operate them.

General principle underlying MCUs

A microcontroller unit (MCU) consists of at least one pro-
cessor, memory (both volatile working memory and pro-
grammable memory for program code), and digital in- and
output ports (e.g., for TTL signals or standardized buses
like USB or the Serial Peripheral Interface, SPI). Upon
startup, the MCU reads the firmware from the internal

memory and executes the contained instructions. The
event-trigger devices analyzed here were programmed to
read a trigger value from the PC, either directly via an
embedded USB controller or a separate USB controller
chip attached via an internal serial port, activate the corre-
sponding output ports for a few milliseconds, and repeat
these instructions from the beginning. The pseudocode for
the simplest possible trigger device firmware consists of
just a few lines (see Algorithm 1). This design involves
at least two send- or receive-buffers (four in the case of a
separate USB controller) which, combined with a fixed
transfer rate and buffer sizes, put upper bounds on band-
width (typically 14.4 kB/s at 115200 baud; 1.2 kB/s at
9600 baud) and lower bounds on latency (69.4 μs at
115200 baud with a single pair of buffers that can be
flushed instantaneously up to 107 ms for two 64-byte
buffers at 9600 baud). The simplest communication
scheme translates one input byte to 8 bits, each of which
is linked to one digital output and encoded in base 2 (e.g.,
the trigger 75 would translate to 0*128+1*64+0*32+
0*16+1*8+0*4+1*2+1*1=010010112, so the pins 7, 4, 2,
and 1 would be enabled).

Algorithm 1. Example pseudocode for operating an event
trigger device. Note that unlike in this example, some MCUs
may have specialized functions that allow setting all output
pins at once, without having to iterate through a loop.

Following the code in Algorithm 1, an event trigger (in
form of a TTL pulse) can be caused by sending a single byte,
the trigger value, to the device’s input buffer. More function-
ality can be built in by replacing the MCU’s firmware,
implementing an instruction scheme that evaluates the input
and sets outputs depending on the result of the computation.
With minor adjustments, some MCUs can even be accessed
via WebUSB to synchronize browser-based experiments with
measurement devices via TTL pulses. Being able to program
an MCU’s firmware to execute almost arbitrary logic and
communication protocols can thus be a big advantage.
However, such firmware modifications are typically not pos-
sible for commercial devices, as these are often constrained by
built in, proprietary firmware. This constitutes the main dif-
ference between theMCUs tested here and other devices, such
as the LabJack U3. Their general functionality and the
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communication protocol between the host PC and the trigger
device stays identical.

Methods

To compare the latency and jitter of MCUs with that of the
parallel port, we devised a test setup using a LabStreamer
device (NeuroBehavioral Systems; Albany, CA, USA), a stan-
dard Dell Optiplex 750 desktop computer with a native paral-
lel port (the host computer), a Teensy 3.2 MCU to simulate
keypresses, and a LabJack U3 (LabJack Cooperation;
Lakewood, CA, USA) and four other MCUs to be tested
against the parallel port (see Fig. 1). We established a com-
munication protocol between the host computer and the
LabStreamer device using the Lab Streaming Layer (LSL;
https://github.com/sccn/labstreaminglayer). LSL is a
software library for streaming timestamped measurement
samples and TTL pulses over the local network. Clock
offsets and uncertainty of the offset estimation between
sender and receiver are periodically measured and subtracted
out, so the receiver of a measurement sample (here: the
LabStreamer) can record the time a TTL pulse was sent,
rather than the time it was received.

The measurement process then proceeded as follows. The
Teensy 3.2 MCU presented itself as a virtual keyboard to auto-
matically send a keystroke to the host computer and simulta-
neously a TTL pulse to the LabStreamer (sampling the digital
inputs at 10 kHz ) every 90 ms. Using LSL, the host computer
and the LabStreamer then synchronized their clocks via a net-
work connection. Upon receiving the simulated keypress signal,
the host computer sent two additional signals: (i) a TTL pulse
over the parallel port, LabJack U3, or a connected MCU, which
was programmed to receive that signal via an emulated serial port
running at 115200 baud per second, and (ii) an LSL trigger
timestamped to the received keypress. The receiving MCU or
LabJack U3 then read the signal byte and activated correspond-
ing digital outputs, thus sending a TTL pulse to the LabStreamer
(see Supplemental Material for the scripts). In each test run, at
least 2500 measurements were made. Measurements with an
LSL timestamp uncertainty below 0.01 ms, for example due to
computational or network delays, were marked as invalid.
Afterwards, we selected the first 2500 valid measurements from
each test run for analysis.

We tested the LabJack U3 using two different methods of
relaying the data: The standard “setFIOState”method, and the
“writeRegister” method, which was recommended by the
LabJack customer support to achieve faster latencies. Note
that each method was tested on the same LabJack U3 device
in separate measurement sessions.

Next to the parallel port and the LabJackU3, we tested four
different, popular MCUs: (i) the widely used Arduino Uno as
an example of an 8-bit MCU without native USB capabilities,
(ii) the Arduino Leonardo (technically identical to the Arduino
Pro Micro), an 8-bit MCU with an embedded native USB
controller, (iii) the Teensy LC, an inexpensive 32-bit ARM
MCU, and (iv) the Teensy 3.2, an affordable 32-bit MCUwith
enough communication interfaces and digital/analog in- and
output ports for demanding experimental setups requiring the
synchronization of several devices or processing of inputs,
such as voice feedback. All devices (MCUs, parallel port,
and LabJack U3) were tested with Python 3.6 and the
Python bindings for the Psychtoolbox (Kleiner et al., 2007)
on theWindows 7 and Ubuntu Linux 18.04 operating systems
separately. To access the parallel port, the PsychoPy library
was used (Peirce et al., 2019).

After data recording, we compared the device latencies of
transmitting the byte from the PC to the labstreamer by calcu-
lating the mean, median, standard deviation, and interquartile
range of the data for each device and operating system.
Additionally, we computed these statistics averaged across
devices within each operating system group to see whether
the devices performed better on one or the other operating
system. All computations and plotting were done in Python
using the libraries Numpy (van der Walt et al., 2011), Pandas
(McKinney, 2010), Matplotlib (Hunter, 2007), and Seaborn
(Waskom et al., 2020).

Fig. 1 Testing setup. a Setup of the hardware. b Schematic representation
of the signal time courses. For both panels, (1) the Teensy 3.2 keyboard
simultaneously sends a key press to the PC and a TTL pulse to the
LabStreamer; the PC receives the key press and sends (2) a timestamped
LSL trigger via the network (marking timepoint zero), and (3) TTL pulse
via the microcontroller (MCU), LabJack U3 (LU3), or parallel port (par)
to the LabStreamer. This yields the latency of the tested device (b)
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Results

Mean and median latencies as well as standard deviation and
interquartile ranges are reported in Table 1 and visually pre-
sented in Fig. 2. Across both operating systems, the parallel
port had the lowest average latency and jitter. However, apart
from the LabJack U3, all other tested devices consistently
achieved latency and jitter comparable to that of the parallel
port. For the LabJack U3, the mode of operation
(writeRegister versus setFIOState) made a large difference.
The writeRegister method resulted in smaller latencies, how-
ever this method also produced a large amount of outliers on
Windows, but not on Linux (see Fig. 2). The setFIOState
method, in contrast, resulted in the longest latencies of all
tested devices, but did not produce as many outliers as the
writeRegister method. Notably, the LabJack U3 operated with
the setFIOState method was much faster under Linux com-
pared to Windows. Averaging over devices (excluding the
LabJack U3 as an outlier) within each operating system group
showed a small performance benefit of using Linux over
Windows. Devices operated on Linux were 0.042 ms faster
(mean). The device latency between operating systems was
nearly identical for the parallel port (mean latency Linux =
0.212 ms, mean latency Windows = 0.210 ms). Looking at
the remaining devices (again, excluding the LabJack U3 as an
outlier), the smallest effect of operating system on device la-
tency was observed for the Arduino Leonardo (mean latency
Linux = 0.308 ms; mean latency Windows = 0.352 ms), and
the largest effect for the Teensy LC (mean latency Linux =
0.254 ms; mean latency Windows = 0.319 ms).

Discussion

We evaluated four popular microcontrollers and a LabJack U3
device as potential replacements for the parallel port. All
microcontrollers achieved latencies comparable to the parallel
port in terms of both absolute latencies and jitter. The 8-bit
MCUs (Arduino Uno, Arduino Leonardo) were generally
slower than the 32-bit MCUs (Teensy LC, Teensy 3.2) but
still consistently achieved latencies below 1ms and below half
a millisecond compared to the parallel port so even high-speed
data recordings with sampling rates in the lower kilohertz
range will therefore record triggers with a maximum delay
and jitter of a few samples relative to a native parallel port.
The LabJack U3 performed worse than all tested MCUs when
accessedwith code from the programming interface documen-
tation (the setFIOState method). Direct access to the device’s
internal memory through the writeRegister method improved
the latency, at the cost of increased complexity for the user. It
is important to note, however, that when operated under
Windows, the writeRegister method resulted in a number of
large outliers of up to 7 ms. This problem did not occur when
operating the LabJack U3 with the writeRegister method un-
der Linux, or when operating it using the setFIOState method
under either operating system. Apart from these eye-catching
outliers in that particular case, the remaining devices did not
produce many outliers. Although there were a few outliers
larger than half a millisecond in two tests (Arduino
Leonardo and Arduino Uno on Linux), they were well below
the usual unavoidable timing differences, such as due to
missed screen refreshes and the latency of the input devices.

Table 1 Latencies for all tested devices in milliseconds. The table includes an entry for the Teensy 3.2 device that simulated a keyboard in the test
setup. Its latency is negative because the simulated keystroke happened prior to the timepoint zero (the LSL Trigger, cf. Fig. 1)

Operating system Device Mean SD Median IQR

Linux Teensy 3.2 Keyboard – 1.650 0.410 – 1.672 0.574

Linux Parallel Port 0.212 0.032 0.211 0.05

Linux Teensy 3.2 0.244 0.032 0.243 0.049

Linux Teensy LC 0.254 0.032 0.255 0.052

Linux LabJack U3 (writeRegister) 0.280 0.039 0.279 0.054

Linux Arduino Leonardo 0.308 0.036 0.308 0.052

Linux Arduino Uno 0.453 0.045 0.452 0.05

Linux LabJack U3 (setFIOStatus) 0.616 0.120 0.603 0.057

Windows Teensy 3.2 Keyboard – 1.756 0.334 – 1.751 0.503

Windows Parallel Port 0.210 0.030 0.209 0.049

Windows Teensy 3.2 0.296 0.030 0.296 0.05

Windows Teensy LC 0.319 0.033 0.319 0.05

Windows Arduino Leonardo 0.352 0.032 0.353 0.05

Windows LabJack U3 (writeRegister) 0.439 0.287 0.401 0.082

Windows Arduino Uno 0.505 0.031 0.507 0.051

Windows LabJack U3 (setFIOStatus) 1.144 0.099 1.157 0.158

SD standard deviation, IQR interquartile range
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Our testing setup also allowed us to measure the input lag due
to the operating system without the underlying delays in real
keyboards (see latency of Teensy 3.2 Keyboard in Table 1).
This measured input lag provides a lower bound of unavoid-
able timing differences, that is, even if input (e.g., a keyboard
or response box) and output (e.g., an event-trigger box based
on an MCU) are hypothetically perfect and without delay,
researchers still have to expect around 1.7 ms of delay with
some jitter (see Table 1). This means that for example, in
experiments marking a subject’s response in a recorded elec-
troencephalogram (EEG) by sending an event trigger after
receiving a keypress, the delay due to the operating system
will be at least an order of magnitude above MCU TTL pulse
latency (for a similar point, see Ulrich & Giray, 1989). Taken
together, the results show that using MCUs (and with the
mentioned caveats, the LabJack U3) to send digital event sig-
nals can reliably achieve adequate performance. Due to a lack
of an Apple device with native parallel port support, we did
not perform the tests under the macOS operating system. We
speculate that the performance would have been slightly
worse (longer latencies and increased jitter) compared to
Windows and Linux, based on other results comparing the
three operating systems (Bridges et al., 2020; Simpson,
2019). Yet for some macOS users, MCUs may still be an
attractive option given the lack of alternatives.

Our findings build trust in the commercial products that
have been introduced to the market in recent years to fill the
gap left by parallel ports. However, the simplicity of our ex-
perimental setup and the devices we built for testing indicates
that it may not be necessary to buy a commercial product:
With some time and dedication, a replacement for the parallel
port can be easily built (see Supplementary Materials for in-
structions). Such do-it-yourself (DIY) devices afford much
greater flexibility than many commercially available devices:

By choosing the MCU and other materials, as well as the
software to run on the device, the end users themselves deter-
mine on which system the device will run. For the MCU
devices presented in this study, we supply firmware as well
as high-level Python code under a permissive license in the
SupplementaryMaterial. The LabJack U3 on the other hand is
shipped with a proprietary firmware and a dedicated software
interface provided by the LabJack Cooperation. With the
growing literature on open-source hardware in the spirit of
open science (White et al., 2019), many other building instruc-
tions and software examples are available on the Internet.
Unlike many commercial products, MCUs and the additional
components needed to build a replacement for the parallel port
are relatively cheap (around €30 in total) and are thus also
available to researchers and users whose budgets do not allow
them to buy expensive new hardware (Chagas, 2018). It is still
important to stress that each laboratory setup must be appro-
priately tested and benchmarked before data recording (Plant
et al., 2004; Plant & Quinlan, 2013; Plant & Turner, 2009).
However, the same applies to commercial hardware and soft-
ware. In summary, considering the affordable prices, ease of
use, performance, and flexibility of MCUs with a native USB
controller, there are many reasons for deploying them in lab-
oratory studies.
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Fig. 2 Raincloud plot (Allen et al., 2021) of TTL pulse latencies for the
parallel port, all tested MCUs, and the LabJack U3. The LabJack U3 was
tested using two different methods; (i) through the standard LabJack
setFIOState method, and (ii) through writing data directly to the register

with the writeRegister method. Under Windows, the LabJack U3
(writeRegister) had 11 more measurements between 2.3 and 7 ms that
are not shown in the figure (mean = 4 ms), as indicated with the red
asterisk
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