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Building on the insight that primordial black holes can arise from the formation and subsequent 
gravitational collapse of bound states of stable supermassive elementary particles during the early 
radiation era, we offer a comprehensive picture describing the evolution and growth of the resulting 
mini-black holes through both the radiation and matter dominated phases, until the onset of (small scale) 
inhomogeneities. This is achieved by means of an exact metric solving Einstein’s equations throughout 
both phases. We show that, thanks to a special enhancement effect producing an effective horizon above 
the actual event horizon, this process can explain the observed mass values of the earliest giant black 
holes. Unlike other proposals, it also predicts a lower limit on the mass of supermassive black holes.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In very recent work a new mechanism was proposed to ex-
plain the origin of supermassive black holes in the early Universe 
by means of the condensation of superheavy elementary particles 
during the early radiation phase [1]. Accordingly, the existence 
of primordial black holes would be due to the gravitational col-
lapse of such bound states, shortly after their formation, to small 
black holes, whose masses must lie above a certain critical value 
to evade Hawking evaporation. Their subsequent growth during 
the radiation era can be modeled by an exact metric solving Ein-
stein’s equation, such that towards the end of the radiation era the 
emerging macroscopic black holes can grow to nearly solar mass 
objects.

In this Letter we discuss the complete evolution of such primor-
dial black holes throughout both the radiation and matter dom-
inated eras, and show that the proposed mechanism can indeed 
explain the observed mass values of supermassive black holes, as 
reported in [2]. This completes the argument given in [1], where 
we did not follow the evolution of the emergent macroscopic black 
holes beyond equilibrium time teq , and did not provide mass esti-
mates for the large black holes that emerge at the time of the 
formation of small scale inhomogeneities. Here we close this cru-
cial gap by offering a much more comprehensive picture, modeling 
the growth of mini-black holes into giant black holes ‘from begin-
ning to end’. The fact that this can be done by means of a closed 
form metric solving the Einstein equations that encompasses both
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the radiation and the matter dominated phase is an important in-
put in our analysis.

As we have explained in [1], superheavy gravitinos can serve as 
microscopic seeds for generating mini-black holes if their mass is 
sufficiently large so that their gravitational attraction exceeds the 
repulsive or attractive electric forces between them. Furthermore, 
these seed particles must be stable against decay into Standard 
Model matter. Although other kinds of particles with similar prop-
erties might serve the same purpose, we have argued in [1] that 
the gravitinos of maximal (N = 8) supergravity are distinguished 
in view of a possible unification of the fundamental interactions 
(however, as explained there, the underlying theory must tran-
scend N = 8 supergravity). This follows from the structure of the 
fermionic sector of the maximal N = 8 supermultiplet [3]: identify-
ing the 48 non-Goldstino spin- 1

2 fermions of the N = 8 supermul-
tiplet with three generations of quarks and leptons of the Standard 
Model of particle physics (including right-chiral neutrinos), one is 
left with eight massive gravitinos with the properties described 
in [3,1]. These properties are radically different from those of the 
more familiar sterile gravitinos of low energy N = 1 supergravity 
models; in particular, unlike the latter, superheavy gravitinos do
participate in Standard Model interactions.

Although our proposal is thus mainly motivated by unification, 
we emphasize again that, except for the properties listed below in 
section 2, our considerations are largely independent of the pre-
cise nature of the “seed particles” that produce primordial black 
holes. Evidently, our proposal differs in several important ways 
from other scenarios aiming to explain the origin of primordial 
black holes, which we cannot review here for lack of space. See, 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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however [4,5] for alternative ansätze, and [6] for a comprehensive 
survey of the present state of the art and a discussion of the rela-
tive merits of different proposals.

2. Basic considerations

We refer readers to [1] for a more detailed explanation of 
the basic motivation and assumptions underlying our proposal. 
As argued there, the gravitino mass Mg must lie between MBPS

and MPl, where the ‘BPS-mass’ MBPS is the mass for which the 
electrostatic repulsion between two (anti-)gravitinos of the same 
charge equals their gravitational attraction. MPl is the reduced 
Planck mass ∼ 4.34 · 10−9 kg (it corresponds to the Planck time 
tPl = 2.70 · 10−43 s). For numerical estimates we will take MBPS ∼
0.01 · MPl, so that

0.01 · MPl < Mg < MPl (1)

This ensures that the force remains attractive also between grav-
itinos of the same electric charge. The minimal seed mass Mseed ∼
N Mg for a primordial black hole in the early radiation phase is 
determined by asking the total energy of a bound system of N
(anti-)gravitinos to be negative, viz.1

〈Ekin(t)〉 + 〈E pot(t)〉 = NTrad(t) − N2 GM2
g

〈d(t)〉
!
< 0 (2)

where 〈d(t)〉 is the (time-dependent) average distance between 
two gravitinos in the ambient hot radiation plasma. As we explain 
in [1], the cosmic time t drops out in this inequality upon sub-
stituting the relevant quantities with their time dependence. We 
then find

N � Teq

GM2
g

· 102 m ∼ 1012 (3)

for the minimum number of (anti-)gravitinos in a bound state for 
gravitational collapse to occur, where Teq ∼ 1 eV and we take 
Mg ∼ 10−9 kg as an exemplary value [1]. Since the cosmic time 
t drops out in the derivation of this inequality, the value of N re-
mains the same throughout the radiation phase. If the bound state 
is meta-stable, the collapse can be delayed in such a way that an 
even larger number N of (anti-)gravitinos can accrue before gravi-
tational collapse occurs, in which case the seed mass could be even 
larger. The minimum mass of a black hole resulting from gravita-
tional collapse of such a bound state is therefore

Mseed ∼ 1012Mg ∼ 103 kg ⇒ GMseed ∼ 10−24 m (4)

Now, a black hole of such a small mass would be expected to de-
cay immediately by Hawking radiation [7]: from the well known 
formula for the lifetime of a black hole (see e.g. [8]) we have

τevap(m) = tPl

(
m

MPl

)3

(5)

This is the result which would hold in empty space. However, dur-
ing the early radiation phase this is not the only process that must 
be taken into account, because of the presence of extremely hot 
and dense radiation, which can ‘feed’ black hole growth. The ab-
sorption of radiation thus provides a competing process which can 
stabilize the black hole against Hawking decay, such that with the 

1 We adopt units with h̄ = 1, c = 1, kB = 1, so that for instance 1 eV = 1.16 ·
104 K, etc. The final formulas are then re-expressed in convenient units (eV, kg, m, 
s, or K).
2

initially extremely high temperatures of the radiation era mass 
accretion can overwhelm Hawking evaporation even for very small 
black holes. The details of this process are complicated, because a 
proper treatment would require generalizing the original Hawking 
calculation to the time-dependent space-time background given by 
(18) below, something that remains to be done. However, there is a 
simple approximate criterion for accretion to overcome the rate for 
Hawking radiation for a black hole of given mass m, which reads

Trad(t) > T Hawking(m) = 1

8πGm
(6)

The break-even point is reached when the radiation tempera-
ture equals the Hawking temperature, at time t0 = t0(m) when 
Trad(t0) ∼ T Hawking(m). For larger times t > t0 (and lower radia-
tion temperatures) a black hole of mass m will decay. Imposing 
this equality, or alternatively using eqn.(26) of [1] we deduce the 
relevant mass at time t , which gives

m4(t) � M3
Pl

tPl
· 1

G2ρrad(t)
= 32π M3

Pl

3GtPl
· t2 (7)

When read from right to left this equation tells us which is the 
latest time for a mini-black hole of given mass m to remain stable 
against Hawking decay during the radiation phase. This is the case 
for t < t0 ≡ t(m) ∝ m2, after which time the black hole will decay. 
Conversely, for a given time t any mini-black hole of initial mass 
greater than m(t) will be able to survive and can start growing, 
whereas those of smaller mass decay. With (4) as the reference 
value we thus take the initial mass to be ∼ Mseed , and assume 
that the time range available for the formation of such a mini-
black hole is

tmin = 108 · tPl � 10−34 s < t < tmax � 10−18 s (8)

During this time interval a black hole of initial mass (4) can survive 
and start growing by accreting radiation. While the upper bound 
is thus determined by setting tmax ≡ t(Mseed), the lower bound has 
been chosen mainly to stay clear of the quantum gravity regime 
and a possible inflationary phase.

Once we have a stable mini-black hole we can study its further 
evolution through the radiation phase by means the exact solu-
tion derived in [1], until matter starts to dominate over radiation 
at time t ∼ teq ∼ 42000 yr, when these objects have grown into 
macroscopic black holes. With (8) we get the following range of 
masses

10−12M	 � m(teq) � 10−3M	 (9)

However, the solution in [1] does not apply to the matter domi-
nated phase. To investigate the further evolution one would con-
ventionally switch to a different description by invoking the Ed-
dington formula [2,9]

m(t) = M0 exp

(
4πGmpt

εσT

)
� M0 exp

(
t

45 Myr

)
(10)

where mp is the proton mass, σT is the Thompson cross section, 
and ε is the fraction of the mass loss that is radiated away (usually 
taken as ε = 0.1). Unfortunately, because of the exponential depen-
dence this formula is extremely sensitive to the precise value of ε
and the choice of “final” time t – surely, exponential growth does 
not persist into the present epoch!

We also note that this formula was originally developed to de-
scribe the evolution of luminous stars [9]. Its derivation relies on 
the Newtonian approximation and is based on a simple equilib-
rium condition, balancing the rate of mass absorption against the 
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luminosity of infalling matter, where the luminosity is assumed to 
grow linearly with the mass of the star. It thus appears doubtful 
whether one can use it in the present context, and we therefore 
prefer to refrain from a ‘blind’ application of (10). Instead we here 
propose a general relativistic treatment of black hole evolution in 
a dense environment by means of an exact solution of Einstein’s 
equations, which seems superior to (10) even though it does not 
(yet) take into account rotation and matter self-interactions. Fur-
thermore, unlike (10), our final formula does not rely on exponen-
tial growth.

3. Black hole evolution from radiation to matter dominated era

To present this new solution we employ conformal coordinates, 
with conformal time η, instead of the cosmic time coordinate t
used above. One main advantage of this coordinate choice is that 
the causal structure of the space-time is often easier to analyze 
(for the solution to be presented below it is the same as that of 
the Schwarzschild solution). Secondly, we wish to exploit the fact 
that the use of conformal time allows us to exhibit a simple closed 
form solution that encompasses both the radiative and the matter 
dominated phase. With conformal time η, the Friedmann equa-
tions read (for a spatially flat universe and vanishing cosmological 
constant)

ȧ2 = 8πG

3
ρa4,aä − ȧ2 = −4πG

3
(ρ + 3p)a4 (11)

where

ȧ ≡ da

dη
,dt = a(η)dη. (12)

The requisite exact solution of (11) is (see e.g. [10]).

a(η) = Aη + B2η2
(

⇒ t = 1

2
Aη2 + 1

3
B2η3

)
(13)

together with the density and pressure

8πGρ(η) = 3A2

a4(η)
+ 12B2

a3(η)
,8πGp(η) = A2

a4(η)
(14)

The relevant numbers A and B can be calculated from known data, 
up to rescaling η → λη, A → λ−2 A, B → λ−3/2 B, a → λ−1a. The 
latter scale is conventionally fixed by setting a(t0) = 1, where t0 �
13.8 · 109 yr is the present time. Taking this as the reference value 
we make use of the fact that at equilibrium between radiation and 
matter [11]

a(ηeq) � 1

3400
, teq � 1.5 · 1012 s (15)

and at the last scattering [11]

a(ηL S) � 1

1090
, tL S � 1.2 · 1013 s (16)

This gives

A = 2.1 · 10−20 s−1, B = 6.2 · 10−19 s−1. (17)

for our Universe (starting from nucleosynthesis).
For the new metric ansatz we now substitute (13) into2

ds2 = a(η)2
[
−C̃(r)dη2 + dr2

C̃(r)
+ r2d	2

]
(18)

2 This ansatz is somewhat similar to, but actually different from, the McVittie 
solution [12–16] and the Lemaître-Tolman-Bondi metric [17]. This can be seen for 
instance from the fact that for our solution the black hole mass grows with time, 
cf. (21) below, and has a non-vanishing heat flow vector qμ �= 0 in (25).
3

Here the a priori unknown function C̃(r) is uniquely fixed by im-
posing two physical requirements corresponding to the two lim-
iting cases of pure matter and pure radiation. For pure radiation 
(B = 0) we demand the trace of the energy-momentum tensor re-
sulting from (18) to vanish

T μ
μ

!= 0 ⇒ d2

dr2

(
r2C̃(r)

) != 2. (19)

With the standard form of the energy-momentum tensor for a per-
fect fluid (i.e. (25) below for qμ = 0), this is equivalent to the 
statement that ρ = 3p throughout the radiation era. For the other 
limiting case of pure matter (A = 0), we require the pressure to 
vanish: p = 0 ⇒ (rC̃)′ != 1. This leads to the unique solution

C̃(r) ≡ C(r) := 1 − 2Gm

r
(20)

which we will use in the following. The essential new feature here 
is that the metric (18) allows us to evolve the black hole through 
both the radiative and matter dominated periods, with a smooth 
transition between the two.

In (20) we use a different font for the fixed mass parameter 
because m is not the physical mass, unlike m(t) above. This is most 
easily seen by replacing

Gm

r
→ Gma(η)

ra(η)
≡ Gma(η)

rphys
⇒ m(η) = ma(η) (21)

Using (4), (8) and the above relation with ηmin = 10−7 s and 
ηmax = 10 s, as well as Gmmin = GMseed/amax and Gmmax =
GMseed/amin we get

Gmmin ∼ 5 · 10−6 m, Gmmax ∼ 5 · 102 m (22)

For the metric ansatz (18) with C(r) from (20) the non-vanishing 
components of the Einstein tensor, hence the associated energy-
momentum tensor, are given by:

8πGTηη = 3ȧ2

a2
= 3(A + 2B2η)2

(Aη + B2η2)2

8πGTrη = 2Gm

r2C(r)
· ȧ

a
= 2Gm

r2C(r)
· A + 2B2η

Aη + B2η2

8πGTrr = ȧ2 − 2aä

a2C(r)2
= 1

C(r)2
· A2

(Aη + B2η2)2
(23)

together with3

Tθθ = C(r)r2Trr, Tϕϕ = sin2 θTθθ (24)

Now, to elevate (23) beyond the status of a mere identity, we 
must endow it with physical meaning by interpreting the r.h.s. 
in terms of physical sources of energy and momentum, that is, 
a proper energy-momentum tensor, appropriate to radiation and 
matter. To this aim we re-express the r.h.s. of (23) in the standard 
form [18]

Tμν = pgμν + (p + ρ)uμuν − uμqν − uνqμ (25)

3 We take this opportunity to correct two misprints in [1]: the extra factor of C
in (24) below is missing in (46) there. Furthermore, in eqn.(50) of [1] it should read

8πGp(η, r) = r

A2η4(r − 2Gm)
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Here we neglect higher derivatives in uμ and matter self-interact-
ions (viscosity, etc.). For the density and pressure to match be-
tween (25) and (23) we must include an extra inverse factor C(r)
in comparison with (14) to account for the curvature

8πGρ(η, r) = 1

C(r)

(
3A2

a4(η)
+ 12B2

a3(η)

)

8πGp(η, r) = 1

C(r)

A2

a4(η)
(26)

again with a(η) from (13). The 4-velocity is4

uμ = − a(η)

C(r)1/2

(
C(r) cosh ξ, sinh ξ,0,0

)
(27)

while the heat flow vector is given by

8πGqμ = − 2Gmȧ(η)

r2C(r)3/2a(η)2

(
C(r) sinh ξ, cosh ξ,0,0) (28)

These vectors obey uμuμ = −1 and uμqμ = 0. The parameter ξ =
ξ(η, r) > 0 is determined from

tanh ξ = Gmη

r2
·
(

1 − B4η2

A2 + 3AB2η + 3B4η2

)
(29)

The signs in (27) and (28) are chosen such that for the contravari-
ant components of the 4-velocity we have uη > 0 and ur < 0, 
hence inward flow of matter. (Choosing the opposite sign for the 
components of uμ would correspond to a shrinking white hole.)

To keep ξ real and finite we must demand tanh ξ < 1. It is read-
ily seen that

tanh ξ ∼ Gmη

r2
for B2η 
 A (radiation)

∼ 2

3

Gmη

r2
for B2η � A (matter) (30)

The representation (25) is valid as long as all quantities remain 
real and finite. This requires r2 > O(1)Gmη, with a strictly posi-
tive O(1) prefactor. When r reaches the value for which tanh ξ = 1
the components of uμ and qμ diverge, and the expansion (25)
breaks down. For the external observer the average velocity of the 
infalling matter then reaches the speed of light, so for all practical 
purposes everything happening inside this shell is shielded from 
the outside (even though light rays can still escape from this re-
gion, as long as r > 2Gm). As we are not concerned with O(1)

factors here we define

rH (η) := a(η)
√

Gmη (31)

and interpret the associated outward moving shell as an effective
horizon (or ‘pseudo-horizon’) that lies above the actual event hori-
zon; note that rH (η) is invariant under the coordinate rescalings 
mentioned after (17). Physically, we expect the matter inside the 
shell rphys � rH (η) to be rapidly sucked up into the black hole, 
once the outside region rphys > rH (η) gets depleted of ‘fuel’ due 
to the formation of inhomogeneities. The extra matter inside the 
shell rphys � rH (η) thus enhances the growth substantially, beyond 
the linear growth with the scale factor implied by (21).

At the onset of inhomogeneities, we must stop using the metric 
(18) because the growth of the black hole gets decoupled from the 
growth of the scale factor a(η), after which the black hole evolves 

4 There is a second solution with the same ρ and p, but ur = qη = 0, which we 
discard as unphysical because it would imply the absence of motion of matter other 
than the co-motion with the cosmic frame.
4

in a more standard fashion by much slower accretion (for this rea-
son there is also no point in extending the metric ansatz (18) into 
the present epoch, which is dominated by Dark Energy). To esti-
mate its mass we take the value of rH at that particular time to 
define an effective Schwarzschild radius, thus equating the mass 
with the maximum energy that can possibly fit inside a shell of 
radius rH . This approximation appears justified not only because 
of the apparent divergent kinetic energy of the infalling matter 
near rH , but also because of the strong increase of the density and 
pressure inside this shell, due to the extra factor C−1(r) in (26). 
A more detailed investigation of the evolution inside the shell in 
view of eliminating the firewall (= infinite density and pressure) 
and the curvature singularity at r = 2Gm would require modifying 
the metric ansatz (18) for r � rH (η), for instance replacing C(r) by 
C(r, η).

4. Mass estimates

We can now apply the above formulas to estimate the result-
ing black hole mass at the onset of (small scale) inhomogeneities, 
i.e. the onset of star formation. To be sure, there are still un-
certainties about the actual numbers, but it is reassuring that 
we do end up the right orders of magnitude. The relevant time 
t at which to evaluate rH (η(t)) lies well after decoupling, since 
the inhomogeneities in the CMB are still tiny, of order O(10−5). 
Rather, we take tinhom � 108 yr � 3.2 · 1015 s, which is the time 
when the first stars are born [19]. This corresponds to ηinhom �
2.7 ·1017 s ⇒ a(ηinhom) � 0.034. Substituting (22) into (31) and us-
ing rS(M	) = 3 km we can calculate the range of possible black 
hole masses, for instance taking t ∼ 100 Myr as an approximate 
reference value:

105M	 � mBH � 2 · 109M	 (32)

which is consistent with observations [2]. To reach such large mass 
values the replacement of Gm by 

√
Gmη in (31), as advocated in 

this paper, is evidently of crucial importance.
Observe that, as a consequence of the Hawking evaporation of 

seed black holes with too small mass, our calculation also provides 
a lower bound in (32), in contradistinction to other proposals where 
there is no such lower bound on the mass range. It is thus a pre-
diction of the present mechanism that the black holes formed from 
gravitinos should belong to a very different mass category than the 
black holes formed from stellar collapse and subsequent mergers, a 
prediction that can also serve to discriminate our proposal against 
alternative ones. From the present point of view, the existence of 
such a gap in the mass distribution of black holes in the Universe 
would thus constitute indirect observational evidence for the exis-
tence of Hawking radiation. At least so far, this expectation seems 
to be in accord with observation, as no such objects (intermediate 
mass black holes = “IMBHs”) have been found until now [20].

Note added: After this paper was accepted for publication we be-
came aware of earlier work [21] which discusses a metric ansatz 
similar to (18). Possible astrophysical applications different from 
the ones considered here have very recently been considered in 
[22].
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