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École polytechnique fédérale de Lausanne, ISIC, Station 6, CH-1015 Lausanne, Switzerland
3Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik,

Technische Universität Berlin, 10623 Berlin, Germany
4Max Planck Institute for the Structure and Dynamics of Matter and

Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
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Abstract

Excitons, Coulomb-bound electron-hole pairs, are the fundamental excitations governing the

optoelectronic properties of semiconductors. While optical signatures of excitons have been

studied extensively, experimental access to the excitonic wave function itself has been elusive.

Using multidimensional photoemission spectroscopy, we present a momentum-, energy- and

time-resolved perspective on excitons in the layered semiconductor WSe2. By tuning the exci-

tation wavelength, we determine the energy-momentum signature of bright exciton formation

and its difference from conventional single-particle excited states. The multidimensional data

allows to retrieve fundamental exciton properties like the binding energy and the exciton-lattice

coupling and to reconstruct the real-space excitonic distribution function via Fourier transform.

All quantities are in excellent agreement with microscopic calculations. Our approach provides

a full characterization of the exciton properties and is applicable to bright and dark excitons in

semiconducting materials, heterostructures and devices.

Excitons, bound electron-hole quasi-particles carrying energy and momentum but no net charge,

are fundamental excitations of semiconductors and insulators arising from light-matter interac-

tion.1 An initial excitonic polarization induced by a light field (often referred to as coherent

excitons and e.g. detected by optical absorption spectroscopy) rapidly loses coherence with

the driving field and dephases into a population of incoherent excitonic states.2, 3 The gener-

ated excitons propagate in solid-state materials through diffusion4, 5 and eventually release their

energy e.g. in the form of luminescence (photon), lattice excitation (phonon) or dissociation

into single charged quasi-particles.6–9 Understanding exciton physics is of capital importance

for advanced photonic and optoelectronic applications including photovoltaics. Layered transi-

tion metal dichalcogenide (TMDC) semiconductors exhibit rich exciton physics even at room

temperature due to strong Coulomb interaction.10 Excitons in TMDCs feature large oscilla-
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tor strength11 and their inter- and intra-band dynamics have been extensively investigated.12–14

Moreover, strong spin-orbit coupling and broken inversion symmetry in each crystalline trilayer

lead to a locking between spin, valley and layer degrees of freedom, which started a surge of

valley physics studies.15–17

A large portion of the research on excitonic phenomena in TMDCs adopts optical spectro-

scopic techniques,10, 12, 14–16, 18–21 which only access bright excitonic transitions with near-zero

momentum transfer. While techniques such as time-resolved THz spectroscopy also allow prob-

ing optically dark excitons via internal quantum transitions,13 finite-momentum excitons which

lie outside the radiative light cone remain inaccessible to such methods. This limitation is

overcome by time- and angle-resolved photoemission spectroscopy (trARPES), a spectroscopic

tool accessing excited states, including excitons, in energy-momentum space and on ultrafast

timescales.17, 22–24 Here, we reveal the characteristics of the excitonic wave function in the pho-

toemission signal of the prototypical layered TMDC semiconductor 2H-WSe2 and establish

that all fundamental exciton properties are encoded in the trARPES signal’s energy, time, and

momentum dimensions: the exciton binding energy, its self-energy as a measure of the exciton-

lattice coupling, as well as the real-space distribution of the excitonic wave function.

Fig. 1(a) depicts the experimental scheme of trARPES employing femtosecond near-infrared

(NIR) pump and extreme ultraviolet (XUV) probe pulses combined with two types of photo-

electron analyzers: a hemispherical analyzer (HA) and a time-of-flight momentum microscope

(MM). The whole setup allows us to measure the 3D time-dependent electronic structure in a

given energy-momentum-plane with high counting statistics using the HA, and alternatively re-

solve both in-plane momentum directions yielding a 4D photoemission signal I(Ekin, kx, ky, t)

of the entire valence band with the MM.22, 25 Fig.1 (b-d) and (e-g) show snapshots of the 3D and

4D data with 1.55 eV excitation, respectively, at three selected time delays: i) prior to optical

excitation, showing the ground-state band structure of WSe2 from the Brillouin zone (BZ) cen-
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Figure 1: Multidimensional photoemission spectroscopy of excitons in WSe2: (a) Us-
ing near-infrared (1.55 eV) or UV (3.1 eV) pump and XUV probe (21.7 eV), we performed
trARPES measurements in bulk WSe2 with two types of photoelectron detectors: hemispherical
analyser (HA) or time-of-flight momentum microscope (MM). (b) With the HA, the equilibrium
band structure in a finite momentum window is found at negative pump-probe delay, t = −100
fs, showing the spin-orbit split valence bands near the K-points. Upon 1.55 eV excitation, the
excited state dynamics, i.e., the intervalley scattering from K to Σ valley, are representatively
shown in (c) t = 0 fs and (d) t = 100 fs. (e) Four-dimensional (4D) band structure mapping,
I(E, kx, ky, t), with the MM showing the band dispersion within the whole Brillouin zone from
its center Γ to the K valleys at its corners. The same evolution of the excited state is shown for
(f) t = 0 fs and (g) t = 100 fs, respectively. All the excited states signal are scaled for clarity.

ter Γ (only shown in the MM data) to the BZ boundary K points (b,e); ii) upon optical excitation

resonant with the A exciton absorption (the first excitonic state), featuring excited-state signal at

the K and Σ valleys (c,f); and iii) at t = 100 fs after optical excitation, with excited-state signal

mostly at the Σ valleys (d,g). In the following, we identify the excitonic features in the excited-

state photoemission signal and quantify the exciton properties retrieved from the energy, time

and momentum dimensions of the 4D trARPES signal.
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Photoemission signature of excitons. During the photoemission of an electron bound in an

exciton, the electron-hole interaction diminishes, i.e. the exciton breaks up, as a single-particle

photoelectron is detected while a single-particle hole is left behind in the material.23 To identify

the signature of the excitonic electron-hole interaction in photoemission spectroscopy, we com-

pare the signal of excitons with that of single-particle excited states. For generating excitons,

we excite with 1.55 eV photons (1/e2 bandwidth = 43 meV), in resonance with the low-energy

side of the A-excitonic absorption of bulk WSe2.12 Fig.2(a) shows the excited-state signal in-

tegrated in the first 25 fs after pump-probe overlap. The data reveals a vertical transition at the

K point through an excited-state signal localized in energy and momentum. In contrast, the

above-band-gap excitation with 3.1 eV photon energy generates a population higher in the con-

duction band, which rapidly redistributes to all bands and valleys of the lower conduction band

(the equivalent scenario applies to the holes in the valence band). Fig.2(b) shows this excited-

state signal in the K valley 100 fs after excitation, where carriers have redistributed in energy

and momentum. This signal resembles the dispersion of a single-particle band with an effective

mass of m∗ = 0.55 me, in good agreement with electronic band structure calculations.26 The

energetic positions of the excitonic and single-particle states at the K point are determined as

the center of mass of the energy distribution curves (EDCs), see Fig.2(b). The excited-state

signal upon resonant excitation of the A exciton is centered 100 ± 3 meV below the center of

the single-particle band. Such a signal below the single-particle band has been predicted as

photoemission signature of excitons and the energy difference can be associated with the exci-

ton binding energy Eb.2, 3, 9, 27 A calculation of the A-exciton binding energy in bilayer WSe2

based on the screened Keldysh-like potential (see SI for details) yields Eb = 91.3 meV, in very

good agreement with the experimental value. It is important to note that we retrieve the exciton

binding energy directly from measuring the absolute energies of many-body and single-particle

states with a single photoemission experiment, in contrast to combining different experimental
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methods18 or by comparing photoemission signals with electronic structure calculations.24 The

observation that the excitonic binding energy is measurable as energy loss of the photoelectron

confirms that the hole final states indeed are identical to single-particle holes, which further im-

plies that the localized hole of the exciton transforms to Bloch-like single-particle states during

the photoemission process.

To set the stage for discussing the exciton dynamics, we emphasize a signal appearing as

replicas of the upper (VB1) and lower (VB2) spin-orbit split valence bands in Fig.2(a) shifted by

the photon energy h̄ωpump. This signal only appears during temporal pump-probe overlap and

we attribute it to a photon-dressed electronic state due to coherent coupling to the optical driving

field. Since the employed s-polarized pump light (polarization parallel to the sample surface)

suppresses laser-assisted photoemission, the experimental configuration selectively probes the

coherent excitonic polarization induced by the pump field.2, 3, 28

Formation and decay dynamics of bright excitons. The bright A excitons at the K point

are not the lowest-energy excitons in WSe2 but can relax their energy further by scattering

in momentum space. We extract the quasiparticle dynamics within three regions of interest

(ROIs) from the trARPES data in Fig.2(a), representing the coherent excitonic replica of VB1,

the excitonic state at the K valley, and the Σ valley population. The respective time traces in

Fig.3(a) reflect three types of quasi-particle dynamics: the dephasing of the coherent excitonic

polarization (black), the buildup and relaxation of a bright exciton population at K (blue) and

the carrier accumulation of dark states at Σ (yellow).

The observed carrier dynamics imply the following microscopic processes as sketched in

Fig.3(b). First, the interaction of the initial valence band state |i〉 with the near-resonant optical

light field creates a coherent excitonic polarization (dashed line), which quickly dephases into

an optically bright exciton population |n〉, offset by the pump detuning ∆a. The decoherence
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Figure 2: Signatures of excitons versus quasi-free carriers in trARPES. (a) Upon the arrival
of the pump photons at h̄ω = 1.55 eV, the excited states at K and Σ are populated. During
the pump-probe overlap, sideband replica of the two topmost valence bands, VB1 and VB2,
are visible (highlighted by the green dashed lines). Inset: schematic of the bright exciton at the
K valley and dark exciton at the Σ valley. (b) Using the above-band-gap pump at 3.1 eV, the
parabolic dispersion of the conduction band at the K valley is clearly observed. As shown in
the EDCs at K (right panel), the single-particle (3.1 eV pump photon energy; blue) is ∆E ≈
100 meV higher than the excitonic signal at 1.66 eV (1.55 eV pump photon energy; red). The
excited state signals are scaled for clarity.
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Figure 3: Exciton dephasing and population dynamics with OBE model fitting. (a) Normal-
ized photoemission intensity of photon-dressed coherent state (black), bright exciton population
at K (blue) and dark exciton at Σ (yellow) extracted from the three labeled ROIs in Fig.2(a),
respectively. The observed time traces are fitted globally with the solution of OBEs (lines). (b)
Schematic of the five-level OBE model: the initial state |i〉 is coherently coupled to the final
state |f〉 through a virtual intermediate state (dashed line), which dephase to the bright exci-
tons at state |n〉 with the time scale of T ∗

2 ; the population at state |n〉 scatters to the dark state
|s〉 with the time scale of T1; all the excited states are photoionized to the final states |f〉 and
|g〉, respectively. (c) Imaginary part of the electron-phonon self-energy calculated using density
functional perturbation theory. The values at the band extrema at K (circles) are compared with
those estimated from the experimental exciton lifetime.

process occurs with the pure dephasing time T ∗
2 . These bright excitons undergo rapid scattering

into the optically dark Σ-point state |s〉 on the timescale T1. We model these processes and

the photoemission signals from these states into the continuum final states |f〉 and |g〉 using a

five-level extension to the optical Bloch equations29, 30 (OBE, see SI). Based on a multivariate

least-squares fitting procedure, we can describe the dynamics of coherent and incoherent exciton

contributions, obtaining a coherent exciton dephasing time of T ∗
2 = 17± 9 fs and a population

lifetime for the bright A-exciton population of T1 = 18 ± 4 fs. The extracted dephasing time

corresponds well to microscopic calculations.14, 31

To evaluate the mechanism governing the bright exciton scattering, we performed ab initio

calculations of the single-particle self-energy of WSe2. At low excitation densities, the elec-

tron self-energy is dominated by electron-phonon interaction which is computed using density
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functional perturbation theory (DFPT), taking into account the electronic screening of the lattice

motion (see SI). The imaginary part of the momentum-resolved self-energy is shown in Fig.3(c)

encoded by the color scale. From the calculation, we obtain Im(Σel−ph) = 13.1 meV at the con-

duction band minimum and Im(Σh−ph) = 2.6 meV at the valence band maximum of the K val-

leys. While a rigorous description of exciton-phonon coupling requires treatment on the basis

of excitonic eigenstates, in the weak coupling limit, i.e., small self-energy renormalization due

to the electron-hole interaction, the exciton-phonon self-energy is dominated by its incoherent

contribution.32 In this case, the exciton-phonon interaction can be approximated as sum of the

single-particle-phonon interactions. Our calculated value Im(Σel−ph)+Im(Σh−ph) ≈ 16 meV

agrees with the experimental exciton self-energy Im(Σex) = 18 ± 4.8 meV determined ac-

cording to Im(Σex) = h̄/(2 T1). This agreement with theory shows that the exciton lifetime

provides a quantitative measure of the strength of its interaction with the lattice and supports

the assumption of a dominating incoherent self-energy contribution.

Momentum- and real-space distribution of A excitons. Our 4D trARPES data not only

provides the energy-momentum dynamics of excitons but also contains direct amplitude in-

formation about exciton wave functions. In Fig.4(a), we display the early-time excited-state

momentum distribution I(kx, ky, t = 0 fs) of the K valleys, by integrating in energy over the

CB. Signals from other valleys are filtered out in order to focus on the A excitons (see SI). The

total photoemission intensity is proportional to the squared transition dipole matrix element,

|Mk
f,i|2 = |〈ψf |A · p|ψi〉|2, which connects the initial state wave function ψi to the photoemis-

sion final state ψf , via the polarization operator A · p. Here, A is the vector potential of the

light field and p is the momentum operator. Within the plane wave approximation (PWA) for

the final state, the matrix element takes the form

|Mk
f,i|2 ∝ |A · k|2|〈eik·r|ψi〉|2 (1)
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where k is the wave vector of the photoionized electron. According to Eq.1, the matrix element

is proportional to the amplitude of the Fourier transform (FT) of the initial state wave function.

Therefore, the momentum distribution of the photoemission signal I(kx, ky) can be used to re-

trieve the real-space probability density of the electron contribution to the two-particle excitonic

wave function, i.e., the modulus-squared wave function, I(rx, ry), with a suitable assumption

for the missing phase information.

A similar reconstruction of electronic wave functions from ARPES spectra has been pre-

viously demonstrated for occupied molecular orbitals in the ground state of crystalline organic

films and chemisorbed molecular monolayers.33, 34 Here, we extend this technique into the time

domain and apply it to reconstruct the excitonic wave function in WSe2. Assuming a constant

phase profile across the BZ as a lower-limit wave function extension (see SI), we retrieve the ex-

citon probability density via 2D FT as shown in Fig.4(a-b). The reconstruction exhibits a broad

isotropic real-space exciton distribution carrying high-frequency oscillations, corresponding to

the hexagonal periodic lattice structure of WSe2. To resolve the isotropic exciton wave func-

tion envelope more clearly, the 1D real-space carrier distribution without the oscillatory pattern

is shown in Fig.4(d), obtained by FT of only one of the six K valleys, yielding a value of

rexpWSe2
= 1.74± 0.2 nm for the excitonic Bohr radius.

To verify the method of reconstructing excitonic wave functions, we performed microscopic

calculations of trARPES spectra. The momentum-resolved description of the exciton is based

on a many-particle treatment of the Coulomb interaction between electron-hole pairs and the

exciton-phonon scattering dynamics3 (see SI). The momentum distributions of the bright K-

excitons calculated within the PWA for the final state is shown in Fig.4(c). We find a very good

agreement to the experimental momentum distribution curve (MDC) taken along the dashed line

in Fig.4(a)), supporting our assumption that the trARPES spectrum contains the fingerprints of

the excitonic wave function and justifying the use of the PWA. Furthermore, the calculated
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Figure 4: Momentum- and real-space distribution of A excitons in WSe2. (a) The early-time
momentum distribution of the exciton signal in the six K valleys, I(kx, ky, t = 0 fs), obtained
by energy integration over the CB. (b) 2D Fourier transform of the momentum-resolved pho-
toemission intensity I(kx, ky) recovers the real-space image I(rx, ry), featuring the electron
density distribution of the excitonic wave function. The high frequency oscillations reflect the
hexagonal lattice structure. The width of the exciton distribution is indicated by 2·rWSe2 . (c) The
momentum distribution curve (MDC) of the bottom K valley (red) extracted along the dashed
line in (a), compared with the calculated MDC of the A exciton (black). (d) Experimental and
theoretical radial real-space exciton distribution. The exciton Bohr radius rWSe2 is indicated
with a dashed line. To retrieve the spatial distribution of the exciton, the oscillatory pattern in
(b) is removed by Fourier-transforming only one of the K valleys (see SI for details).
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real-space exciton distribution in Fig. 4(d) shows good agreement to our experimental results,

yielding a very similar excitonic Bohr radius of rtheoWSe2
= 1.78 nm. This agreement demon-

strates the consistency of the experimentally retrieved exciton binding energy and Bohr radius

and additionally suggests the validity of the assumption of a constant phase, which provides

the FT-limited (lower-bound) exciton distribution. While the excitonic Bloch state is invari-

ant under global and valley-dependent phase renormalization, we find that valley-local phase

variations in momentum space can lead to broadening of the exciton probability distribution.

In the SI, we reconstruct the real-space exciton density distribution with non-constant interval-

ley and intravalley phase profiles, where we find a broadened exciton distribution in the case

of an intravalley varying phase. Therefore, we note here that the real-space reconstruction of

the exciton density with a constant phase is suitable for topologically trivial solid-state wave

functions. However, the winding of the phase in topologically non-trivial materials leads to an

additional expansion of the carrier density distribution, requiring explicit momentum-dependent

phase information. In general, the phase of the excitonic wave function might additionally be

reconstructed through iterative phase retrieval algorithms.35 We envision that future develop-

ments will allow retrieving the phase as well as orbital information of excitonic wave functions

by utilizing dichroic observables36–38 in trARPES.

In this work, we provide a comprehensive experimental characterization of an excitonic

state with trARPES. The interactions governing the formation of this prototypical many-body

state are observable as energy renormalization in comparison to single-particle states, while its

interaction strength with other quasi-particles is reflected in the excited state’s lifetime. These

quantities are intimately connected to the real and imaginary parts of the many-body state’s self-

energy and our approach establishes experimental access to these elusive quantities. Moreover,

we retrieve real-space information of the excitons by Fourier transform of its momentum distri-

bution, establishing the measurement of wave function properties of transient many-body states
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with 4D photoemission spectroscopy. Our approach is applicable to all exciton species occur-

ring in a wide range of inorganic and organic semiconductors, van der Waals heterostructures

and devices. Its extension to other many-body quasi-particles in solids appears straightforward.

Data availability We provide the full experimental dataset as well as the details of the data

analysis on the data repository Zenodo. Also, we provide the source code of our data analytics

on GitHub.
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[8] Christiansen Dominik, Selig Malte, Berghäuser Gunnar, et al. Phonon sidebands in mono-

layer transition metal dichalcogenides Phys. Rev. Lett. 2017;119:187402.

[9] Steinhoff Alexander, Florian Matthias, Rösner Malte, Schönhoff Gunnar, Wehling TO,

Jahnke Frank. Exciton fission in monolayer transition metal dichalcogenide semiconduc-

tors Nat. Commun. 2017;8:1166.

[10] Wang Gang, Chernikov Alexey, Glazov Mikhail M, et al. Colloquium: Excitons in atomi-

cally thin transition metal dichalcogenides Rev. Mod. Phys. 2018;90:021001.

[11] Wang Gang, Marie Xavier, Gerber I, et al. Giant enhancement of the optical second-

harmonic emission of WSe2 monolayers by laser excitation at exciton resonances Phys.

Rev. Lett. 2015;114:097403.

[12] Li Yilei, Chernikov Alexey, Zhang Xian, et al. Measurement of the optical dielectric func-

tion of monolayer transition-metal dichalcogenides: MoS2, Mo Se2, WS2, and WSe2 Phys.

Rev. B 2014;90:205422.

[13] Pöllmann Christoph, Steinleitner Philipp, Leierseder Ursula, et al. Resonant internal quan-

tum transitions and femtosecond radiative decay of excitons in monolayer WSe2 Nat.

Mater. 2015;14:889–893.
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[24] Madéo Julien, Man Michael KL, Sahoo Chakradhar, et al. Directly visualizing the mo-

mentum forbidden dark excitons and their dynamics in atomically thin semiconductors

Science 2020;370:1199-1204.

16



[25] Maklar Julian, Dong Shuo, Beaulieu Samuel, et al. A quantitative comparison of time-

of-flight momentum microscopes and hemispherical analyzers for time-resolved ARPES

experiments Rev. Sci. Instrum. 2020;90:023105.

[26] Wickramaratne Darshana, Zahid Ferdows, Lake Roger K. Electronic and thermoelectric

properties of few-layer transition metal dichalcogenides J. Chem. Phys. 2014;140:124710.

[27] Rustagi Avinash, Kemper Alexander F. Photoemission signature of excitons Phys. Rev. B

2018;97:235310.

[28] Perfetto E, Stefanucci G. Ultrafast creation and melting of nonequilibrium excitonic con-

densates in bulk WSe2 arXiv:2011.11967 2020.

[29] Knoesel E, Hotzel A, Wolf M. Ultrafast dynamics of hot electrons and holes in copper:

Excitation, energy relaxation, and transport effects Phys. Rev. B 1998;57:12812.

[30] Ueba Hiromu, Gumhalter Branko. Theory of two-photon photoemission spectroscopy of

surfaces Prog. Surf. Sci. 2007;82:193–223.

[31] Raja Archana, Selig Malte, Berghauser Gunnar, et al. Enhancement of Exciton–Phonon

Scattering from Monolayer to Bilayer WS2 Nano Lett. 2018;18:6135–6143.

[32] Marini Andrea. Ab initio finite-temperature excitons Phys. Rev. Lett. 2008;101:106405.
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Supplementary Information

Supplementary Notes
This section includes the experimental methods, procedure of reconstructing the real-space ex-

citonic wavefunction and energy calibration of trARPES spectrum.

Experimental Methods

Time- and angle-resolved photoemission spectroscopy. The whole setup and the compu-

tational workflow for data processing have been described in detail elsewhere.1–3 Our laser

system is a home-built optical parametric chirped-pulse amplifier (OPCPA) delivering 15 W

(λpump = 800 nm) at 500 kHz repetition rate.4 The major part (80%) of the OPCPA output is

used to drive high-order harmonic generation (HHG) by tightly focusing the second harmonic

of the laser pulses (400 nm) onto a dense Argon gas jet. Out of the generated XUV frequency

comb, a single harmonic (7th order, 21.7 eV) is isolated by a combination of a mulilayer mirror

and propagation through a 400 nm thick Sn metallic filter. The remaining part of the OPCPA

output serves as the optical pump beam, with a transform-limited pulse duration of 35 fs. An-

other pump wavelength used in the experiment, λpump = 400 nm, is the frequency-doubled fun-

damental pump light generated using a barium borate crystal. In the measurement, the pump

fluence of 800 nm is F800 = 1.3 mJ/cm2 and that of 400 nm is F400 = 85 µJ/cm2. All

measurements are performed at room temperature. The optical pump and probe beams are fo-

cused at the sample position in the ultra-high vacuum chamber which is equipped with two type
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of photoelectron analyzers, a conventional hemispherical analyser (HA) from SPECS GmbH

and a novel time-of-flight momentum microscope (MM) from Surface Concept and SPECS

GmbH. This combination of complimentary electron analyzers enables high quality and effi-

cient data collection within the full Brillouin zone (with the MM) and regions of interests (with

the HA), and the exploration of ultrafast dynamics. The MM collects photoelectrons within

a wide emission angle using an extraction lens, simultaneously recording the photoemission

spectrum at both in-plane momentum directions kx and ky using a delay line detector. In a

pump-probe scheme, the MM thus directly provides the 4D-dimensional photoemission inten-

sity I(Ekin, kx, ky, t) in an efficient way as shown in the Fig.1. In contrast, the HA yields a

single energy-momentum cut in a fixed experimental configuration, effectively allowing for a

much higher electron detection rate within a particular momentum range, which allows us to

investigate the delicate quasiparticle scattering dynamics with enhanced signal-to-noise ratio.

In our experiment, the energy axis of trARPES spectra are aligned with the ground state of

valence band maximum (VBM) at the K valley.

Sample preparation. Bulk WSe2 is a purchased crystal from HQ Graphene, which is firstly

glued on top of a copper sample holder and then cleaved at room temperature and a base pressure

of 5x10−11 mbar. The sample is further handled by a 6-axis manipulator (SPECS GmbH) for

trARPES measurements.

Determination of the excitonic distribution function

Matrix element effects in the ARPES spectrum Within the sudden approximation, the inten-

sity of the ARPES spectrum can be written as the product of a transition matrix elementMk
f,i, the

one-electron removal spectral function A(k, ω) and the electronic distribution function f(k, ω):

I(k, ω) ∝ 2π

~
|Mk

f,i|2A(k, ω)f(k, ω) (1)

As discussed in the main text, the matrix element is defined as a transition between the initial
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and final state wave functions|Mk
f,i|2 = |〈ψf |A · p|ψi〉|2, mediated by the vector potential of

the exciting electromagnetic field A and the momentum operator p. Assuming the final state

as a plane wave, this component can be simplified as |Mk
f,i|2 ∝ |A · k|2|〈eik·r|ψi〉|2, contain-

ing two elements: (1) the polarization factor |A · k| between the potential of the optical field

A and the photoelectron wave vector k, and (2) the Fourier transformation of the initial state

wave function ψi(k). The first term is largely determined by the experimental geometry, lead-

ing to a slight modulation of the spectral weight based on the projection of polarization to the

final state wave vector.5 Therefore, it would unavoidable introduce a intensity modulation in

the practical use of hemispherical electron analyser, because of the sample rotations during the

momentum scan. In our setup, the momentum microscope eliminates the experiment-induced

intensity variation by collecting the photo-ionized electrons of a wide angle range, such that the

momentum map can be achieved in a fixed experimental geometry. The matrix element com-

ponent is naturally encoded with the information of initial state as discussed in the main text.

The photoemission intensity modulation due to the orbital texture has been demonstrated in the

recent study of time-reversal dichroism in ARPES.6 Under the plane wave assumption (PWA)

of final states, the real-space carrier reconstruction using its momentum distribution achieves

the experimentally long-pursued goal: mapping the fundamental shape and size of electronic

wavefunction. Nevertheless, the validity of the Fourier imaging approach, more specifically

speaking, the PWA of the final states has been continuously debated, which is considered as

applicable under the favorable conditions of simple orbital components and high photon en-

ergy.7 The good agreement of the microscopy calculation of trARPES spectrum using PWA of

final states with the experimental results, shown in the main text Fig.4, supports the viability of

real-space reconstruction of exciton in our system.
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Figure S.1: Momentum and real-space carrier distribution map of WSe2. (a) Start from the
momentum map of excited state electrons which includes six K valleys in the first BZ (dash line
labelled) and Σ valleys in the first and second BZ. (b) The six K valleys are selectively shown.
(c) The intensity at each K valley are normalized to remove the polarization factor. (d) Zooming
to one of the K valley, the MDCs (kx and ky cuts at top and right panel) are selected at the center
of carrier distribution. The superimposed momentum response function (green dashed Gaussian
shape with FHWM=0.063 Å

−1
) characterises the momentum resolution of the setup. (e) After

deconvolving the momentum broadening factor, the intrinsic carrier distribution is presented as
2D Lorentzian shape. (f) The comparison of raw MDC data and extracted Lorentzian MDC. (g)
The momentum map is then 2D Fourier transferred to real-space distribution (h).
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The data preparation procedure The momentum maps as shown in Fig.4 (a) in the main

text are prepared and consequently Fourier transformed to real space following three step: (i)

isolation of the K valleys from the trARPES data (time delay is selected at time zero) by ap-

plying a momentum mask, (ii) removal of the momentum broadening effect, mainly from the

momentum resolution of setup, employing a deconvolution scheme, and (iii) 2D Fourier trans-

formation (FT) of the momentum map to real space. Fig. S.1 shows the detailed data processing

procedures step by step. By integrating the energy axis within the conduction band region, we

obtain the conduction band momentum map showing the excited state carrier distribution local-

ized at the conduction band minima around the K and Σ valleys in the first Brillouin zone (BZ),

and some of the Σ valleys of the second BZ (Fig. S.1(a)). By applying a circular momentum

mask, we isolate the six K valleys as shown in Fig. S.1(b). Next, the population intensity at

each K valley is normalized by the local maximum to remove the geometric polarization factor

(Fig. S.1(c)), which comes from the coupling between light field and photoionized electron de-

termined by the experimental geometry. In this measurement, we used linearly polarized light

at 65◦ incidence angle with respect to the sample surface. In step (ii), the experimental momen-

tum resolution effect is deconvolved from the measured data to obtain the intrinsic momentum

distribution. Our momentum resolution of METIS is, δk = 0.063 Å
−1, determined by the grid

edge at back focusing plane. The MDC of the raw data (Fig. S.1(d)) was maximum likeli-

hood fitted with the convolved function of a Gaussian (FHWM=δk) and a Lorentzian function

representing the intrinsic spectral function (Fig. S.1(e) and (f)). Finally, in step(iii), the real-

space carrier distribution (Fig. S.1(h)) is obtained by applying the 2D FT to the momentum

map (Fig. S.1(g)). Noted, we present the intrinsic momentum distribution of six K valleys with

the averaged lineshape after removing the momentum resolution effect. Within the 2D FT pro-

cess, we transfer the square root of the intensity of the 2D momentum map
√
I(kx, ky) to the

real-space wavefunction ψ(rx, ry) and then square the wave function to present the probability
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|ψ(rx, ry)|2. The neglected phase information will be discussed below.

In analogy to the electron Bohr radius in hydrogen atom,8 we estimate the exciton Bohr

radius based on the average radius of exciton distribution 〈r2〉 = |r · ψ(r)|2. The 1D real-

space exciton distribution |ψ(r)|2 is shown in the main context Fig.4(d) and the exciton Bohr

radius rWSe2 is defined as the distance of the peak intensity in 〈r2〉. By calculating the exciton

distribution at six K valleys, we obtain the exciton Bohr radius rWSe2 = 1.74 ± 0.2 nm, which

the standard deviation is a measure of variability between valleys.

Momentum dependent phase profile of exciton wave function In the FT procedure de-

scribed in the main text, we assumed a constant phase profile of the excitonic wave function,

which yields a lower limit for the excitonic distribution function. This relation will be rational-

ized in this section, showing that while the excitonic Bloch state is invariant under global and

valley-dependent phase shift, local phase variations in momentum space only lead to broadening

in the spatial exciton probability distribution.

While more advanced approaches such as phase-retrieval schemes have been employed to

reconstruct the amplitude and phase of ARPES spectra in iterative algorithms,9 here we discuss

the influence of inter- and intravalley-dependent phase variations based on symmetry consid-

erations and simulations. With linearly polarized excitation, bulk WSe2 preserves both time

reversal symmetry and spatial inversion symmetry. The time reversal operator T̂ introduces a

phase reversal between K and K’ point, which suggests the Bloch wave function can be written

as ψK(r) = eik·rφK(r)eiθ and ψK′(r) = eik·rφK′(r)e−iθ, respectively.

To fulfill these conditions, we construct a periodical varying phase mask of eiθ and e−iθ

centered at the K and K’ valleys, respectively (Fig. S.2(b)), and apply it to the amplitude profile

from our measurement (square root of the momentum map) before reconstructing the real-space

image. The corresponding exciton density distribution can be found in Fig. S.2(f). Compared
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Figure S.2: Momentum dependent phase profile of A excitons. Three representative phase
profiles are prepared as (a) constant, (b) intervalley alternating and (c) inter- and intravalley
varying in momentum space. The corresponding phase information within these three scenarios
are summarized in (d). The real-space exciton density distribution of bulk WSe2 (e), (f) and (g)
are obtained via FT of the experimentally measured amplitude profile of the wave function
with the phase profiles (a), (b) and (c), respectively. (h) Normalized probability distribution
of exciton density for the three different phase scenarios, showing the influence of local phase
variations on the envelop function.
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with the momentum-independent phase profile (Fig. S.2(a)) which was applied for the evalua-

tion in the main text, we find no influence on the width of the exciton distribution (Fig. S.2(h)).

Note that the high frequency oscillations under the envelope function vary with the intervalley

phase reversal, which can be regarded as analogous to the interference pattern changing with

the relative phase differences between two coherent emitters (K and K’ valleys).

A more realistic phase profile might contain on top of an intervalley alternating phase contri-

bution also a non-constant intravalley phase profile, as exemplary shown in Fig. S.2(c). Impor-

tantly, we find that such a non-constant inter-valley phase profile can only lead to a broadening

of the exciton distribution, see Fig. S.2(g). While these considerations show the importance of

the local phase profile for a detailed assessment of the excitonic wave function, the assumption

of a flat phase profile can be used to estimate a lower limit. Note that the phase profiles we

prepared are three representative cases of inter- and intra-valley dependent phase information.

Energy alignment of trARPES spectrum

In our experiment, the energy axis of trARPES spectra are aligned with the ground state of

valence band maximum (VBM) at the K valley. Fig. S.3 shows the energy distribution curve

(EDC) at t = −1 ps before 800 nm (black) and 400 nm pump (red), respectively.
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Figure S.3: Energy calibration of trARPES spectrum. (a),(b) EDC of the K valley at t =
−1 ps before 800 nm and 400 nm excitation, respectively

Supplementary Methods
This section includes the optical Bloch equation model, single-particle self-energy calculation

and microscopic calculation of exciton in trARPES.

Optical Bloch equation fitting

Optical Bloch equation (OBE) modelling has been employed to describe two-photon photoe-

mission from metallic surface states.10, 11 In general, the use of OBE in solid state systems and

in particular in photoemission hinges on the important result that the coherent excitation of a

quasi-continuum of states may be treated in the same way as the incoherent limit of a pure two

level system, significantly simplifying the full harmonic description of the quantum process.12 It

is therefore possible to apply OBE to photoemission processes within semiconductors when the

conditions allow schematizing the system as a set of atomic levels. In particular, it is well suited

for pump excitation wavelengths very close to the direct bandgap of the semiconductor. In this

conditions, hot carriers have very little excess energy and intra-valley relaxation dynamics can

be neglected.

OBE offer a tool to disentangle the formation and decay of a coherent polarized state of the
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solid from the intrinsic lifetime of electronic states. This allows for a much more precise as-

sessment of intrinsic lifetimes than models based on rate equations that ignore the decoherence

processes, and tend to grossly overestimate the real values, especially when the lifetime is close

to, or even shorter than, the temporal resolution, i.e. pump-probe pulse cross-correlation. Here

we explain how the three level OBE model is extended in order to determine the dephasing time

of two-photon photoemission and the intrinsic lifetime of bright excitons at the WSe2 K-valley.

Model construction For the derivation of the equations for the 3 level system, we use the

formula described by Martin Weinelt’s.10 To simplify the formalism, the energy variables are

expressed in terms of “detunings”, i.e.:

∆a = ~ωa − (En − Ei)

∆b = ~ωb − (Ef − En)

These quantities contain all the relevant energy information for the model and are zero when a

transition is resonant to the photon energy of the pump, ~ωa, or the probe, ~ωb: Ei is the energy

of the initial state, En the one of the intermediate state of interest, and Ef is the final, detected

state energy. In our case, ∆a is zero when the pump energy is resonant with the bright A-exciton

populating the K valley, and ∆b is zero when a value of energy of the continuum is resonant with

the photoemission from the intermediate state due to the probe photon. Note that ∆a,b 6= 0 can

be produced by two different mechanisms: either ~ωa,b is changed while (En,f −Ei,n) remains

constant (which we may call wavelength detuning) or, alternatively, the effective energy gap for

vertical transitions (En,f −Ei,n) is changed, while ~ωa,b is constant (which we may call energy

gap detuning).

In the application of OBE to photoemission, ∆a and ∆b are used with a different conceptual

approach. As the pump creates transitions between states in the solid, ∆a 6= 0 is intended to
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arise either from wavelength detuning, or from energy gap detuning between Bloch states in the

solid (for example, a change in the bandgap due to temperature variation). ∆b refers, instead,

to vacuum states whose energy can vary continuously. Because of this, ∆b 6= 0 is used, in the

following, as a way to map the measured ARPES spectra in the final detected state: ~ωb and

Ef are considered fixed, and ∆b 6= 0 allows to produce transitions from states energetically

above or below En to the observed final state. The energy-resolved spectrum can therefore be

obtained by continuously varying ∆b.

The derivation of OBE is based on the Liouville-Von Neumann equation:

ρkl = −i[Ĥ0 + V̂ , ρ̂kl]− Γklρkl (2)

The equation describes the evolution of the density operator under a perturbation V̂ with unper-

turbed Hamiltonian Ĥ0. Note that ~ has been set to 1, as will be in the following. The perturbing

fields are described in the dipole approximation by the quantities:

pa(t) = Ea(t) 〈i |D |n〉 (3)

pb(t) = Eb(t) 〈n |D | f〉 (4)

where the temporal envelope functionsEa,b(t) of both pump and probe pulses are assumed to be

Gaussian distributions and D is the dipole operator. In order to account for intrinsic population

decay and decoherence term in eq.2, we add the damping operator Γ̂, that can be represented in

matrix form as:

Γ̂ =




0
Γn
2

+ Γ∗n + Γ∗i Γ∗i + Γ∗f
Γn
2

+ Γ∗n + Γ∗i Γn
Γn
2

+ Γ∗n + Γ∗f

Γ∗i + Γ∗f
Γn
2

+ Γ∗n + Γ∗f 0




(5)

The terms Γj and Γ∗j describe the decay and the dephasing rates of state j, respectively. In eq.5,

the intrinsic lifetime of excitons can be characterised by the diagonal term Γ̂n, describing the
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population decay rate. The initial and the final state are assumed to have an infinite lifetime,

i.e., Γi = Γf = 0. On the other hand, the off-diagonal terms of intermediate state contains half

of the decay rate and the complex part Γ∗n + Γ∗i , which is the so-called “pure-dephasing rate”,

describing the decay of quantum coherence between the levels n and i.

By substituting eq.3-5 in eq.2, and applying the rotating wave approximation (neglecting

high frequency oscillating terms), we obtain the following optical Bloch equations:

ρ̇ii = +Im
(
p∗aρ

(1)
in

)
(6)

ρ̇nn = −Im
(
p∗aρ

(1)
in

)
+ Im

(
p∗bρ

(2)
nf

)
− Γnρnn (7)

ρ̇ff = −Im
(
p∗bρ

(2)
nf

)
(8)

ρ̇
(1)
in = −i∆aρ

(1)
in −

i

2
p∗bρ

(3)
if +

i

2
pa(ρnn − ρii)−

(
Γn
2

+ Γ∗i + Γ∗n

)
ρ
(1)
in (9)

ρ̇
(2)
nf = −i∆bρ

(2)
nf +

i

2
p∗aρ

(3)
if +

i

2
pb(ρff − ρnn)−

(
Γn
2

+ Γ∗n + Γ∗f

)
ρ
(2)
nf (10)

ρ̇
(3)
if = −i(∆a + ∆b)ρ

(3)
if +

i

2
p∗aρ

(2)
nf +

i

2
pbρ

(1)
in −

(
Γ∗i + Γ∗f

)
ρ
(3)
if (11)

where we have set:

ρ
(1)
in = e−iωatρin

ρ
(2)
nf = e−iωbtρnf

ρ
(3)
if = e−i(ωa+ωb)tρif

This is the set of equations needed to describe a three level system. To adapt the formalism to

include K-Σ incoherent scattering, we need to create an additional two level system coupled to

the main three level system via the K decay rate Γn. We have to build an equation for the Σ state

(subscript s), one for the photoemitted final state (subscript g), and one for the corresponding

coherence (subscript sg). To meet the experimental reality, we also insert a backscattering

parameter B, allowing to account for all mechanisms transferring population from Σ to K (eq.
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7 has to be modified, see eq. 13). For a schematic of the 5-level system, see Fig. S.4(a).

ρ̇ii = +Im
(
p∗aρ

(1)
in

)
(12)

ρ̇nn = −Im
(
p∗aρ

(1)
in

)
+ Im

(
p∗bρ

(2)
nf

)
− Γnρnn+ΓnBρss (13)

ρ̇ff = −Im
(
p∗bρ

(2)
nf

)
(14)

ρ̇
(1)
in = −i∆aρ

(1)
in −

i

2
p∗bρ

(3)
if +

i

2
pa(ρnn − ρii)−

(
Γn
2

+ Γ∗i + Γ∗n

)
ρ
(1)
in (15)

ρ̇
(2)
nf = −i∆bρ

(2)
nf +

i

2
p∗aρ

(3)
if +

i

2
pb(ρff − ρnn)−

(
Γn
2

+ Γ∗n + Γ∗f

)
ρ
(2)
nf (16)

ρ̇
(3)
if = −i(∆a + ∆b)ρ

(3)
if +

i

2
p∗aρ

(2)
nf +

i

2
pbρ

(1)
in −

(
Γ∗i + Γ∗f

)
ρ
(3)
if (17)

ρ̇ss = +Im
(
p∗bρ

(2)
sg

)
+ Γnρnn − ΓnBρss (18)

ρ̇gg= −Im
(
p∗bρ

(2)
sg

)
(19)

ρ̇(2)sg = −i∆bρ
(2)
sg +

i

2
pb(ρgg − ρss)−

(
Γ∗s + Γ∗g

)
ρ(2)sg (20)

Here, we define ρ(2)sg = e−iωbtρsg . These equations constitute the model used for the numerical

fit of the data.

Assumptions In order to simplify the fitting procedure, we assume that the initial state de-

phasing time is equal to the excited states11 , i.e., Γ∗i = Γ∗n = Γ∗s, and that the final states

dephasing time is infinite (Γ∗f = Γ∗g = 0). In this way, the only fitting parameters of the Gamma

matrix are the inverse lifetime Γn and the pure dephasing rate Γ∗n of the bright excitonic state at

K, together with the backscattering fraction B. However, a large number of parameters relative

to the optical excitation require further optimization, in particular the determination of the time

of coincidence of the pump and probe pulses. This quantity must be defined with a precision

much higher than the measurable cross-correlation FWHM in order to achieve good confidence

in the fit and determine lifetimes shorter than the duration of the pulses.

Given the aforementioned approximations, reducing the band structure to a system of non-
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dispersing levels, a ploy may be used to achieve this. As mentioned in the main text, the density

matrix treatment of the photoemission process upon resonant pumping allows correctly treating

the mixing of the two types of quantum processes to reach the final state: the first one consists

of a coherent two-photon process with an intermediate virtual state, and the second one involves

a two-step process, where the A exciton is created at the K valley and then photoemitted to the

final state by the probe photon. The former can be separated from the latter by wavelength de-

tuning of the pump to values smaller than the band gap (∆a < 0). If the detuning becomes very

large (∆a << 0) the intermediate states of the two processes are very far apart in energy and

they can be observed separately by solving the dynamics at two different ∆b. At probe detuning

∆b = 0 the dynamics is only determined by the two-step process involving the formation of a

real population in the K valley; while at probe detuning ∆b = −∆a the final state population

arises from the coherent two-photon process with a detuned virtual state. The evolution in time

of the latter allows to precisely assess the coincidence between the pump and probe pulses.

To achieve a good fit, it is therefore advantageous to evaluate ρff once with a very large

detuning (which we may define as ∆
′
a) and extract its time evolution at ∆b = −∆

′
a to isolate

the coherent process dynamics and accurately determine the pump-probe coincidence. We can

further evaluate ρff a second time at a pump detuning equal to the experimental pump detuning

(which we define as ∆a), and extract its time evolution at ∆b = 0 to determine the population

dynamics of the K-exciton state. A third curve, arising from ρgg evaluated at probe detuning

∆b = 0 and pump detuning ∆a, completes the set of three curves that can be extracted from the

model and fitted to the experimental data, with the result plotted in Fig.3(a) of the main text.

The effective coincidence time is the fourth (and last) fitting parameter.

Data selection In our data, the Floquet virtual intermediate state is clearly observable as a

transient replica of the valence band shifted by 1.55 eV. The pump is slightly wavelength de-
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tuned from the direct optical bandgap at 1.67 eV, but this energy distance is not sufficient to

clearly isolate the coherent process dynamics. It is however possible to extract the time trace

at very large detuning by integrating the ARPES dataset in a momentum range away from the

K points (resonant transition) and in an energy window following the Floquet replica. This

creates a fictitious large energy gap detuning, because the pump wavelength stays constant, but

the energy gap for direct optical transitions increases as the conduction and valence band have

diverging dispersion.

For the OBE fit reported in the main text, we select k1 = 0.84−0.96 Å
−1, E1 = 1.11−1.26

eV. Combining a fit of the conduction band minimum (see next paragraph) with theoretical

calculations, we can estimate the effective energy gap for direct optical transitions at this point

as 2.47 ± 0.1 eV, thus determining ∆
′
a = 0.92 ± 0.1 eV. The energy range was chosen to be

comparable to the energy resolution, while the momentum range was selected to include the full

momentum distribution in the selected energy range. Small modifications of the momentum and

energy windows did not affect the fit results.

Next, we extract the curve describing the K-exciton population dynamics. The EDC at +65

fs is fitted to locate the minimum of the conduction band, at 1.67 ± 0.03 eV; this also allows

quantifying the effective ∆a = 0.12 ± 0.03. Then the momentum distribution curve (MDC) is

fitted to find the centre of the valley. The curve is extracted in the range k2 = 1.14− 1.26 Å
−1

,

E2 = 1.57 − 1.6 eV. Considerations on the energy and momentum ranges are the same as the

previous paragraph. The procedure to extract the position of the Σ valley is the same as for K,

but in this case, since the s level is taken to act as a sink for n population, we need to account

for all the electron scattered from K. Since in this case the carriers do have excess energy (the

Σ valley is at lower energy than K), to eliminate the influence of intravalley dynamics we use

a rather wide momentum-energy range: k3 = 0.40 − 0.80 Å
−1

, E3 = 1.17 − 2.17 eV. For a

schematic of the method employed to extract the fitted signal, see Fig. S.4(b).
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Parameter optimization and fit reliability The procedure to extract the data has allowed to

use experimental results to fix two more parameters, the pump detunings ∆a and ∆
′
a. Only few

parameters of the excitation pulses are left to be determined: the amplitudes of the electric fields,

the time duration of each of the pulses, and the phase of the pump and probe fields. The ratio

between the amplitude of the fields can be reconstructed using the measured pulse energy of the

pump and the photon flux of the probe and resultsEpump
0 /Eprobe

0 = 26000±2500. As very large

values of Epump
0 create significant problems in the numerical evaluation of the OBE system,

and anyhow we fit a normalized set of curves where only the ratio between the pump and probe

signals is relevant, we set the fields to very small absolute values Epump
0 = 2.6± 0.25 V/m and

Eprobe
0 = 0.0001 V/m. The choice of the phase is relevant for coherent spectroscopy applications

such as interferometric photoemission or quantum beat spectroscopy: in these cases oscillations

of the population are observable and their behaviour depends on the phases of the pump and

probe fields.10 In our case they are not relevant, so we set them to zero. By repeating the fit

for different choices of the phases, we indeed found no significant variation of the results (see

correlations in Fig. S.5).

The pulse durations, in the form of the temporal FWHM of the Gaussian envelope, are

critical parameters for the determination of lifetime and dephasing time. According to the

results presented in,1 we have rather accurate estimates for our set-up: FWHMpump = 32±2 fs

and FWHMprobe = 19 ± 2 fs. However these values may show slight variations depending on

the accuracy of the optimization procedure of the set-up. To further refine these values for the

conditions present during the specific experiment analyzed in this manuscript, we iterated the

fit multiple times, fixing these two parameters at different values, and recorded the variation of

the calculated uncertainty on the K-state lifetime and decoherence as shown in Fig. S.4(c-d).

The errors reach minima at different values both of FWHMpump and FWHMprobe, but are

well behaved in the range between the two minima, so we used the average and dispersion:
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Name Value Std. Dev. Units
Pump Detuning 1 0.122 0.05 eV
Pump Detuning 2 0.92 0.1 eV

Pump FWHM 36 4 eV
Probe FWHM 23 4 eV

Phase in 0 π rad
Phase nf 0 π rad

Pump amplitude 2.6816 0.25 -

Table S.1: Fit parameters. Fixed fit input parameters with their standard deviations as used in
the optical Bloch equation fit.

FWHMpump = 36 ± 3 fs and FWHMprobe = 23 ± 2 fs. The mean value of this optimiza-

tion procedure have a discrepancy of about 4 fs with respect to the values measured indepen-

dently in,1 so we adopted more realistic confidence intervals: FWHMpump = 36 ± 4 fs and

FWHMprobe = 23 ± 4 fs. An analogous procedure has been used to confirm the values of the

two detunings ∆a and ∆
′
a. In this case, minima of the errors were not observed. Rather, the error

on the decoherence time decays exponentially, while the lifetime error varies slowly. However,

the detunings at which the decoherence error drops to values comparable to the lifetime error

are consistent with the experimentally determined ∆a and ∆
′
a, so we used those results.

Finally, we iterated the fitting procedure multiple times in order to determine realistically the

confidence intervals. We repeated the fit while randomly choosing the values of the parameters

within the assigned error bars (see Supplementary Tab. S.1).

The latter procedure also allows observing the cross correlation between parameters and

results of the fit, as displayed in Fig. S.5. Here, the univariate distributions of the input param-

eters (blue) and fit results (red) are plotted in the first row, showing that sufficient sampling is

achieved to reach quasi-normal distributions in the inputs. In the lower rows, the bivariate dis-

tributions display the distribution of each fitting result versus the input parameters (blue panels)

or versus other fitting parameters (red panels). When the distributions have a round shape, they

suggest statistical independence between the parameters. As an example, it is possible to look at
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Figure S.4: Schematics and optimization of fit parameters. (a) Schematic of the five level
model in the presence of pump detuning. The red levels represent the energy levels, the blue
ones the continuum states of ARPES final states. The dashed line represents the virtual in-
termediate state for the coherent two-photon process. The orange arrow represents the pump
excitation, the light blue arrow the probe-induced transition. The black diagonal arrow repre-
sents the dephasing of the coherence in an excited state population. The black horizontal arrow
represents scattering to the two level subsystem (g and s), while the grey one represents the
small fraction of back-scattered carriers. (b) Schematic view of the procedure used to improve
the fit precision. The bottom (top) horizontal orange line represents the dispersion of the VB
(CB), while the blurry replica represents the transient coherent state. The data for K and Σ

are extracted in the corresponding momentum positions (k = 1.2Å
−1

and k = 0.6Å
−1

) and
fitted with the OBE solved for small negative pump detuning and zero probe detuning (blue
and yellow curve). Simultaneously, the data extracted from the Floquet state at k = 0.9Å

−1
is

fitted with the OBE solution for large negative pump detuning (∆′a) and corresponding positive
probe detuning ∆b = −∆′a (red curve). (c) Variation of the confidence interval relative to the
K-exciton lifetime (red circles) and Dephasing time (blue squares) as a function of the probe
FWHM. The curves have been fitted with 4th order polynomials, removing the effects of nu-
merical noise allowing the determination of the position of the minima with high precision. (d)
Similar, but as a function of the pump FWHM.
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Name Value Std. Dev. 95% C.I. Units
τp 18 2 4 fs
τφ 17 5 9 fs

∆t0 9 1 2 fs
B 0.036 0.002 0.004 -

Table S.2: Fit results. Results of the optical Bloch equation fit, with the calculated error bars.

the columns related to the phase parameters: the horizontal mirror symmetry of the distributions

suggests that the results are independent from the phase choice. When the bivariate distribu-

tions assume a linear, diagonal shape, they indicate a strong interdependence (correlation) of

fit parameters. For example, note how strongly the results are affected by the choice of pump

FWHM, justifying the careful procedures used to determine its value.

To estimate the confidence interval, we calculated the standard deviation obtained from five

thousand successive fits with parameters extracted randomly with normally distributed proba-

bility (see Supplementary Tab. S.1 for mean values and standard deviation of each randomized

parameter). We then estimated the 95% confidence interval using a Student T distribution with

94 degrees of freedom (105 data points with 11 fixed parameters). The results are presented in

Supplementary Tab. S.2.

Self-energy calculation

For the density functional electron-phonon calculation we used the EPW code13 as part of the

quantum espresso package14 using norm-conserving pseudopotentials and the local density ap-

proximation. The hexagonal structure of WSe2 was relaxed with lattice constants of a=6.2020

a.u, c=3.9548 a.u. and the density was computed with the pw.x program with a planewave cutoff

of 160 Ry and a Monkhorst-Pack-grid of 42x42x16 k-points. The phonons were evaluated using

the ph.x program on a q-mesh of 6x6x2. Based on a wannierization of the electronic structure

using the wannier90.x program,15 the EPW code interpolates the phonon and electron-phonon

coupling quantities to a 20x20x10 q-mesh to evaluate the self energy, shown in the main text.
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The electron-phonon lifetime is evaluated at each band n and k-point k as,

1

τnk
=

1

~
∑

mν

∫
dq

ωBZ
|gnmν(k, q)|2

× [(1− fmk+q + nqν)δ(εnk − ~ωqν − εmk+q)

+ (fmk+q + nqν)δ(εnk + ~ωqν − εmk+q))]

(21)

where the sum runs over all phonon modes (q, ν) and electronic bands ε. gnmν are the electron-

phonon coupling matrix elements and f and n are the Fermi and Bose distributions, respectively.

Microscopic calculation of exciton signatures in trARPES

The microscopic description of the time- and angle-resolved photoemission spectroscopy in-

cluding the Coulomb interaction between electrons and holes and the exciton-phonon scatter-

ing dynamics is based on a many-particle Hamiltonian and the Heisenberg equation of motion

formalism. We treat the quasi-particle band structure within a parabolic approximation, with

effective masses stemming from ab initio calculation established in literature,16 and include the

electron-light interaction for the VIS pump and the XUV probe pulse semi-classically in length

gauge. In order to take into account the electron-hole Coulomb interaction we exploit the unit

operator method exploiting the completeness relation of the Fock space.17, 18 Hence, the con-

duction band electron operators are expressed uniquely by electron-hole pair excitations, which

are transformed to the exciton picture by introducing exciton relative and center-of-mass mo-

mentum. The eigenenergies and wave functions of the excitons are computed by numerically

solving the Wannier equation.

~2k2
‖

2mξvξc
ϕξvξcµ,k‖

−
∑

q‖

V ξvξc
k‖+q‖

ϕξvξcµ,k‖
= Eξvξc

µ ϕξvξcµ,k‖
(22)

with the index ξv/c standing for the valley of the involved valence or conduction band electron,

the reduced mass mξvξc and the exciton state µ. The screening of the Coulomb potential Vq‖ ,

due to the dielectric environment, is treated beyond the Rytova-Keldysh framework.19–21 To

model the bulk we assume that the XUV pulse irradiates only the first two layers of the crystal.
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According to this, we take a bilayer band structure from ab initio calculations22 and solve the

Wannier equation for the bilayer WSe2 on a WSe2 substrate. We find a value of 91.3 meV

consistent with the experimental result.

The trARPES experiment measures a current of photoemitted electrons that the evaluated

signal Ik,εfk(τ) = limt→∞
∫ t
−∞ dt

′ ρfk(t′, τ) is determined by the vacuum electron distribution

ρfk = 〈f †kfk〉. The fermionic operator f (†)
k annihilates (creates) an electron in the continuum

states of the vacuum. The signal is a function of in-plane momentum k‖ and kinetic energy

εfk of the photoelectrons and pump-probe time delay τ . Note, that the wave vector k is three-

dimensional with its in-plane component k‖. The equation of motion for the vacuum electron

population in exciton basis reads23

d

dt
ρfk = −2=m

(
Ωvf

k P
vf
k‖,k

+ Ωcfξc−
k P ∗ξcξv0 P vfξv

k‖,k
+
∑

ξv ,Q

Ωcfξc
k,Q δ〈P ∗ξcξvQ P vfξv

k‖−Q,k〉
)

(23)

restricted to the 1s-A-exciton. The first term accounts for photoemission of valence band elec-

trons P vf
k‖,k

= 〈v†ξvk‖
fk〉 with the corresponding Rabi-frequency Ωvf

k . The second and third terms

describe the exciton-assisted photoemission yielding the excitonic signals in trARPES, with the

corresponding Rabi-frequencies Ωcfξc−
k = Ωcfξc

k ϕ∗ξcξvk‖
exp(iωvist) and Ωcfξc

k,Q = Ωcfξc
k ϕ∗ξcξv

k‖−αξcξvQ
.

The exciton wavefunction is denoted by ϕ∗ξcξv
k‖−αξcξvQ

with center-of-mass momentum Q and mass

ratio αξcξv = me/(me + mh). The second term couples the excitonic coherence P ∗ξcξv0 , excited

by the VIS pump pulse, with the photoemission transition of valence band electrons. In con-

trast, the third term is driven by the excitonic population caused by the phonon-induced decay

of the excitonic coherence.24–26We find a T ∗2 time of 18.1 fs. The exciton dynamics describe

the phonon-induced relaxation and thermalization throughout the Brillouin zone expressed by

a Boltzmann-like scattering equation.27 For the exciton-phonon interaction the underlying

electron-phonon deformation potential matrix elements for acoustic and optical phonons are

taken from ab initio calculations.28 In a first approximation, we use for the bilayer the same
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electron-phonon matrix elements as for the monolayer, which is supported by similar temper-

ature dependent shifts in absorption experiments when going from mono- to bilayer.26 The

trARPES signal for small pump-probe delays is determined by the second term. The excitonic

coherence oscillates with the excitation energy and decays with increasing time forming inco-

herent excitons, lying at the exciton energy, which explains an observable time dependent shift

of the excitonic trARPES signal for detuned excitations. At large pump-probe delays the third

term is the origin of the excitonic trARPES signal.

The slight deviation of the MDC between theory and experiment might be explainable by the

spectrally broad pump pulse used in the experiment, which generates a hot exciton distribution

of KK excitons (electron and hole situated at the K-point), which broadens the momentum

distribution curve even at τ = 0.
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