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Abstract 

We examine nanoparticles (NPs) forming polyhedral sections of the ideal cubic lattice, simple 

(sc), body centered (bcc), and face centered (fcc) cubic, which are confined by facets character-

ized by densest and second densest {h k l} monolayers of the lattice. Together with the constraint 

that the NPs exhibit the same point symmetry as the ideal cubic lattice, i.e. Oh, different types of 

generic NPs serve for the definition of general polyhedral cubic NPs. Their structural properties, 

such as shape, size, and surface facets, are discussed in analytical and numerical detail with visu-

alization of characteristic examples. The geometric relationships of the model particles expressed 

by corresponding formulas and numerical tables can be used to estimate shapes and sizes of real 

compact metal nanoparticles observed by experiment. 
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I.  Introduction 

Nanoparticles of many sizes, shapes, and composition have become the target of a large 

number of recent experimental and theoretical studies due to their exciting physical and chemical 

properties [a1]. Here we mention only important applications in medicine [a2] or in catalysis 

where catalytic metal nanoparticles have become ubiquitious [a3, a4]. 

Shapes of real metal nanoparticles (NP), observed by experiment, are determined by their 

individual atoms being exposed to different local environments depending on their location in-

side the particle. Metal atoms close to the particle surface experience fewer atom neighbors com-

pared to those inside the particle volume. This influences their interatomic binding and affects 

the particle structure. The variation of atom environments in finite particles depends strongly on 

the particle size since the relative number of surface atoms compared with those of the inner par-

ticle core becomes smaller with increasing size. This suggests that deviations from a crystalline 

bulk structure with its equivalent atom centers arranged in three-dimensional periodicity become 

less important as the particle size increases. 

In many cases, structural properties of metal NPs with only a few atoms do not reflect 

those of corresponding bulk crystals. Details depend on the specific cluster shape and elemental 

composition and there are no general guidelines as to interatomic distances or angles or as to 

symmetry. This is illustrated by theoretical studies on silver NPs up to Ag12 [a5] where equilib-

rium structures are found to deviate substantially from those of sections of the face-centered cu-

bic crystal describing bulk silver. Also these very small NPs offer different stable isomers with 

varying shape and structure [a5]. Larger compact metal NPs can also exhibit symmetry proper-

ties which are not compatible with those of bulk crystals. As examples, many alkaline earth and 

transition metal (Nickel, Cobalt) NPs in gas phase with up to 5000 atoms [a6, a7] are believed to 

form compact particles with icosahedral symmetry Ih which cannot appear in perfect bulk crys-

tals due to their 5-fold rotational axes. Their structure can be explained by the concept of polyhe-

dral atom shell filling which yields preferred NP sizes connected with so-called magic numbers 

of atoms [a7, a8]. However, many metal NPs have been observed by experiment to exhibit cubic 

Oh symmetry which can be associated with compact sections of cubic bulk crystal structures, 

both face- and body-centered cubic, or can be approximated accordingly [a9]. Here examples are 

Aluminum and Indium NPs in gas phase between 1000 and 10000 atoms [a6] which are sug-

gested to form compact polyhedral particles of face-centered cubic structure where confining 

facets are described by sections of densest (low Miller index) monolayers referring to {h k l} 

families. Amongst these cuboctahedral shapes enclosed by both triangular {1 1 1] and square  
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{1 0 0}facets, have been discussed. The corresponding NPs represent a fairly good approxima-

tion to spherical NPs since the atoms of the different planar sections do not vary too much in 

their distance from the NP center. Also other high-symmetry structures representing compact 

sections of face-centered cubic bulk crystals have been proposed in the literature [a6, a7] as pos-

sible structures of compact metal NPs where we mention only octahedral NPs which will be dis-

cussed below. Finally, metal NPs of Oh symmetry described by sections of body-centered cubic 

bulk crystals have been suggested in the literature [a6, a10]. Here theoretical structure studies 

can help to describe and classify ideal compact cubic nanoparticles and, thus, identify structural 

properties of many real metal nanoparticles. 

In this work we examine ideal nanoparticles forming polyhedral sections of the ideal cubic 

lattice, simple (sc), body centered (bcc), and face centered (fcc) cubic. These particles are as-

sumed to be confined by facets of densest and second densest monolayers described by Miller 

indexed {h k l} families, i.e. {1 0 0}, {1 1 0} for sc and bcc as well as {1 1 1}, {1 0 0} for fcc. 

Together with the constraint that the NPs exhibit the same point symmetry as the ideal cubic lat-

tice, i.e. Oh, there are different types of generic NPs which serve for the definition of general pol-

yhedral NPs. Their structural properties , such as shape, size, and surfaces, are discussed in ana-

lytical and numerical detail with visualization of characteristic examples. These results can also 

be used as a repository for structures of compact NPs with internal cubic lattice. All NP graphics 

and analyses have been obtained with the help of the Balsac software developed by the author 

[a11]. 
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II.  Results and Discussion 

A.  Nanoparticles with Simple Cubic (sc) Lattice Structure 

The simple cubic (sc) lattice is defined by lattice vectors R1, R2, R3 in Cartesian coordinates ac-

cording to 

     1 2 31,0,0 , 0,1,0 , 0,1,0R a R a R a    (A.1) 

where a is the lattice constant. The three densest monolayer families of the sc lattice are de-

scribed by six square shaped {1 0 0} (highest density), twelve rectangular {1 1 0}, and eight hex-

agonal {1 1 1} netplanes where distances between adjacent parallel netplanes are given by 

d{100} = a ,     d{110} = a/2 ,     d{111} = a/3 (A.2) 

The point symmetry of the sc lattice is characterized by Oh with symmetry centers at all atom 

sites and at the void centers of each elementary cell. 

Compact simple cubic nanoparticles (NPs) are confined by finite sections of monolayers (facets) 

whose structure is described by different netplanes (h k l). If they exhibit central Oh symmetry 

and show an (h k l) oriented facet they must must also include all other symmetry related facets 

characterized by orientations of the complete {h k l} family. Thus, general sc NPs of Oh sym-

metry are determined by facets whose orientation can be defined by those of different {h k l} 

families. (As an example, we mention the {1 0 0} family with its six netplane orientations  

(1 0 0), (0 1 0), (0 0 1).) Further, according to the symmetry of the sc host lattice possible NP 

centers can only be atom or Oh symmetry void sites of the lattice. This will be discussed at dif-

ferent levels of complication in the following. 

A.1.  Generic sc Nanoparticles 

First, we consider generic sc nanoparticles (NPs) of Oh symmetry which are confined by facets 

with orientations of only one netplane family {h k l}. This allows to distinguish between differ-

ent generic NP types where we focus on those confined by {1 0 0} or {1 1 0} facets which corre-

spond to the densest monolayers of the sc lattice and offer the flattest NP facets.  

(a) Generic cubic sc NPs, denoted sc[N, 0) (the notation of sc NPs, in particular the bracket-

ing, will be explained in Secs. A.2, 3), contain an atom at their symmetry center for even 

N and a void for odd N. They are confined by all six {1 0 0} monolayers with distances 

D{100} = N d{100} between parallel monolayers (polyhedral NP diameters). This yields six 
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square shaped {1 0 0} facets with (N + 1) edge atoms each and eight polyhedral atom 

corners, see Fig. A.1. 

 

Figure A.1.  Atom ball models of a generic cubic sc NP, sc[6, 0) with an 

atom at its center. The black lines sketch the square {1 0 0}facet shapes. 

(b) Generic rhombic sc NPs are confined by all twelve {1 1 0} monolayers with distances 

D{110} = 2M d{110} between parallel monolayers (polyhedral NP diameters). Here we dis-

tinguish two NP types. 

Generic rhombic A sc NPs, denoted sc(0, M], contain an atom at their symmetry center 

and are confined by rhombic facets of all twelve {1 1 0} monolayers, see Figs. A.2. For 

even M, Fig. A.2a, the {1 1 0} rhombi contain (M + 1) parallel nearest neighbor atom 

rows of increasing/decreasing length in the sequence 0 (atom), 2a, …, M a, …, 2a, 0 

(atom). For odd M, Fig. A.2b, the lengths increase/decrease in the sequence 0 (atom), 2a, 

…, (M-1)a, (M-1)a, …, 2a, 0 (atom). This yields a capping of the rhombi at their near 

corners resulting in eight additional triangular {1 1 1} microfacets at the sc NP surface. 

Altogether, the generic rhombic A sc NPs are described as rhombic dodecahedra offering 

14 polyhedral atom corners for even M and reminding of the shape of Wigner-Seitz cells 

of the face centered cubic (fcc) crystal lattice [a12]. For odd M, the dodecahedra are 

capped at eight corners which leads to 30 polyhedral atom corners. 
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(a)  (b)  

Figure A.2.  Atom ball models of generic rhombic A sc NPs with an 

atom at their symmetry centers, (a) sc(0, 4] and (b) sc(0, 5]. The black 

lines sketch the (capped) rhombic {1 1 0} and triangular {1 1 1} facet 

shapes. 

Generic rhombic B fcc NPs, denoted sc(1, M], contain a void at their symmetry center 

and are also confined by rhombic facets of all twelve {1 1 0} monolayers, see Figs. A.3. 

For even M, Fig. A.3a, the {1 1 0} rhombi contain M parallel nearest neighbor atom rows 

of increasing/decreasing length in the sequence a, 3a, …, (M-1)a, (M-1)a, …, 3a, a. This 

yields a capping of the rhombi at their far corners resulting in six additional square  

{1 0 0} microfacets at the sc NP surface. For odd M, Fig. A.3b, the lengths increase/de-

crease in the sequence a, 3a, …, M a, …, 3a, a which yields a capping of the rhombi at 

all four corners resulting in eight additional triangular {1 1 1} microfacets. Altogether, 

the generic rhombic B sc NPs are described by capped rhombic dodecahedra offering 48 

(32) polyhedral atom corners for even (odd) M and. 

(a)  (b)  

Figure A.3.  Atom ball models of generic rhombic B sc NPs with a void 

at their symmetry centers, (a) sc(1, 5] and (b) sc(1, 6]. The black lines 

sketch the (capped) rhombic {1 1 0}, the triangular {1 1 1}, and the 

square {1 0 0} facet shapes. 
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A.2.  Non-generic sc Nanoparticles 

Non-generic sc nanoparticles of Oh symmetry are confined by facets with orientations of several 

netplane families {hi ki li}. This can be considered as combining the confinements of the corre-

sponding generic NPs, NPi, determined by {hi ki li} with suitable polyhedral diameters, sharing 

their symmetry center and type (atom or void). As an example we discuss non-generic sc nano-

particles which combine two generic nanoparticles NP1, NP2 of the types detailed in Sec. A.1. 

Thus, the resulting sc NP contains only atoms inside both partner NPs. Here three possible sce-

narios can be distinguished, nanoparticle NP2 contains all atoms of NP1 (yielding generic NP1), 

NP1 contains all atoms of NP2 (yielding generic NP2), or NP1 and NP2 share only parts of their 

atoms (intersecting, which yields true non-generic NPs). These scenarios are determined by the 

choice of the two netplane families {h k l} and by relationships between the corresponding poly-

hedral NP diameters D{hkl} defined by N and M. In the following, we restrict ourselves to non-

generic sc NPs defined by pairs of generic cubic and rhombic NPs. 

Non-generic sc NPs with an atom at their symmetry center combine a generic cubic NP,  

sc[N, 0) with even N, and a rhombic A NP, sc(0, M] where polyhedral diameters amount to 

D{100} = N d{100} = N a,  N even, D{110} = 2M d{110} = 2M a/2 (A.3) 

Thus, the smallest rhombic A NP which surrounds the cubic NP is defined with (A.2) by 

D{110} = 2 D{100}      and hence      M = N (A.4) 

On the other hand, the smallest cubic NP which surrounds the rhombic A NP is defined with 

(A.2) by 

D{100} = 2 D{110}      and hence      N = 2M (A.5) 

As a consequence, non-generic sc NPs with an atom at their symmetry center combining generic 

cubic and rhombic A NPs, NP1, NP2, yield the choices shown in Table A.1. 

NP1 / NP2  NP1 in NP2 NP2 in NP1 

Cubic / Rhombic A 

sc[N, 0) / sc(0, M], N even 
M  N N  2M 

 

Table A.1.  Constraints of structure parameters N, M for pairs of sc NPs, 

NP1 and NP2, sharing an atom as their symmetry center. 
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Non-generic sc NPs with a void at their symmetry center combine a generic cubic NP,  

sc[N, 0) with odd N, and a rhombic B NP, sc(1, M] where polyhedral diameters amount to 

D{100} = N d{100} = N a,  N odd,    D{110} = 2M d{110} = 2M a/2 (A.6) 

which also leads to relation (A.4) for the smallest rhombic B NP surrounding the cubic NP. Fur-

ther, the smallest cubic NP which surrounds the rhombic B NP is given by 

(D{100} + d{100}) = 2 D{110}      and hence      N = 2M - 1 (A.7) 

Therefore, non-generic sc NPs with a void at their symmetry center combining generic cubic and 

rhombic B NPs, NP1, NP2, yield the three choices shown in Table A.2. 

NP1 / NP2  NP1 in NP2 NP2 in NP1 

Cubic / Rhombic B 

sc[N, 0) / sc(1, M], N odd 
M  N N  2M-1 

 

Table A.2.  Constraints of structure parameters N, M for pairs of sc NPs, 

NP1 and NP2, sharing a void as their symmetry center. 

Tables A.1, 2 show in particular that true non-generic sc NPs, defined by pairs of generic cubic 

NPs, sc[N, 0), and rhombic NPs, sc(q, M], q = 0, 1, refer to structure parameters N, M which 

bracket each other according to 

M < N < 2M  ,      N/2 < M < N N even, atom centered (A.8a) 

M < N < 2M - 1  ,      (N + 1)/2 < M < N N odd, void centered (A.8b) 

These non-generic sc NPs may be called cubo-rhombic and denoted as sc[N, M] combining a 

generic cubic sc[N, 0) (first index) with a rhombic NP (second index) where the latter is rhombic 

A, sc(0, M], for even N and rhombic B, sc(1, M], for odd N. The nomenclature together with the 

results of Tables A.1, 2 suggests an alternative notation for generic NPs where we may formally 

write 

generic cubic sc[N, 0)  =  sc[N, M]  , N  M (A.9a) 

generic rhombic A sc(0, M]  =  sc[N, M]  , N  2M (A.9b) 

generic rhombic B sc(1, M]  =  sc[N, M]  , N  2M - 1 (A.9c) 

 

A.3.  Cubo-rhombic sc Nanoparticles 

In the following we will discuss the detailed structure of true cubo-rhombic NPs sc[N, M] deter-

mined by corresponding structure parameters N, M and confined by the two densest monolayer 
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families {1 0 0} and {1 1 0}. These NPs contain an atom at there symmetry center for even N 

while their symmetry center is void for odd N. 

First, we consider atom centered sc NPs. Starting from a generic cubic NP sc[N, 0) (N even) 

with a polyhedral NP diameter D{100} = N d{100} the smallest enclosing rhombic A NP sc(0, M] 

has a polyhedral NP diameter D{110} = 2M d{110} with M = N according to Tables A.1, 2. Shrink-

ing the rhombic sc NP, i.e. for smaller M values given by M = N - m, m  0, the cubic and rhom-

bic sc NPs intersect yielding a cubo-rhombic A NP sc[N, M = N - m]. In the following we define 

this NP by sc[N, m) which is compatible with the initial definition of a generic cubic sc NP de-

noted sc[N, 0) in Sec. A.1. The constraints on M given in Table A.1 can be expressed by equiva-

lent constraints on m yielding 

N/2  M  N  , 0  m  N/2 cubo-rhombic A (A.10) 

where m values larger than N/2 result in generic rhombic A sc NPs. The building scheme corre-

sponds to the generic cubic NP sc[N, 0) being truncated at its twelve edges by removing m  

{1 1 0} facet layers each. 

On the other hand, starting from a generic rhombic A NP sc(0, M] with a polyhedral NP diameter 

D{110} = 2M d{110} the smallest enclosing cubic sc NP has a polyhedral NP diameter  

D{100} = N d{100} with N = 2M according to Table A.1. Shrinking the cubic sc NP, i.e. for smaller 

N values given by N = 2M - n with n = 0, 2, 4 … the cubic and rhombic NPs intersect yielding 

also a cubo-rhombic A NP sc[N = 2M - n, M]. In the following we define this NP by sc(n, M]  

with even n which is compatible with the initial definition of a generic rhombic A sc NP denoted 

sc(0, M] in Sec. A.1. The constraints on N given in Table A.1 can be expressed by equivalent 

constraints on n yielding 

M  N  2M  , 0  n  M ,    n even cubo-rhombic A (A.11) 

where n values larger than M result in generic cubic sc NPs. The building scheme corresponds to 

the generic rhombic A NP sc(0, M] being truncated at its six 4-fold symmetry corners by remov-

ing n/2 {1 0 0} facet layers each. 

The two building schemes must yield the same cubo-rhombic A NP sc[N, M] where the two 

structure parameters N, M quantify the polyhedral NP diameters D{100} and D{110} according to 

D{100} = N d{100}  , D{110} = 2M d{110} (A.12) 

with the basic netplane distances d{100} and d{110} given by (A.2). Further, the relations 

M = N - m  , N = 2M - n  ,     n even (A.13a) 
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from the two building schemes can be converted to 

n = 2M - N  , m = N - M (A.13b) 

N = n + 2m  , M = n + m (A.13c) 

Next, we consider void centered sc NPs whose treatment is completely analogous to the atom 

centered case. Starting from a generic cubic NP sc[N, 0) (N odd) and its smallest enclosing 

rhombic B NP sc(1, M] with M = N, shrinking the rhombic sc NP yields a cubo-rhombic B NP 

sc[N, M = N - m] which can be defined by sc[N, m). The constraints on M given in Table A.2 can 

be expressed by equivalent constraints on m yielding 

(N+1)/2  M  N  , 0  m  (N - 1)/2 cubo-rhombic B (A.14) 

where m values larger than (N - 1)/2 result in generic rhombic B sc NPs. The building scheme 

corresponds also to the generic cubic NP sc[N, 0) being truncated at its twelve edges by remov-

ing m {1 1 0} facet layers each. 

On the other hand, starting from a generic rhombic B NP sc(1, M] and its smallest enclosing cu-

bic sc NP sc [N, 0) with N = 2M - 1, shrinking the cubic sc NP yields also a cubo-rhombic B NP 

sc[N = 2M - n, M] which can be defined by sc[n, M) with odd n. This includes the initial defini-

tion of a generic rhombic B sc NP denoted sc(1, M]. The constraints on N given in Table A.2 can 

be expressed by equivalent constraints on n yielding 

M  N  2M-1  , 1  n  M ,    n odd cubo-rhombic B (A.15) 

where n values larger than M result in generic cubic sc NPs. The building scheme corresponds to 

the generic rhombic B NP sc(1, M], being truncated at its six 4-fold symmetry corners by remov-

ing (n - 1)/2 {1 0 0} facet layers each. 

The two building schemes must yield the same cubo-rhombic B NP sc[N, M] resulting in 

M = N - m  , N = 2M - n  ,     n odd (A.16) 

and hence to relations (A.13b), (A.13c) derived above. 

Altogether, relations (A.13) suggest an alternative set of structure parameters n, m which charac-

terize the deviation of the cubo-rhombic NP sc[N, M] from its generic envelope NPs, cubic  

sc[N, 0) and rhombic A sc(0, M] or rhombic B sc(1, M]. Thus, cubo-rhombic A (atom centered) 

or B (void centered) NPs can also be denoted sc(n, m) with even or odd n, respectively. 

The structure parameters n, m are also connected with geometric properties of the NP facets, in 

particular, with characteristic lengths of the facet edges. The cubo-rhombic sc NPs, sc[N, M]  
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sc(n, m), are confined by all six {1 0 0} facets of square shape with (n + 1)  (n + 1) atoms each 

and by all twelve {1 1 0} facets, see Figs. A.4. For even m, Fig. A.4a, the {1 1 0} facets are hex-

agonal and contain m + 1 parallel nearest neighbor atom rows of increasing/decreasing length in 

the sequence n a, (n+2)a, …, (n + m) a, …, (n+2)a, n a. For odd m, Fig. A.4b, the {1 1 0} facets 

are capped hexagonal (octagonal) and the lengths of the m + 1 atom rows increase/decrease in 

the sequence n a, (n+2)a, …, (n + m -1)a, (n + m -1)a, …, (n+2)a, n a. This yields eight addi-

tional triangular {1 1 1} microfacets shown in Fig A.5b. Altogether, the sc NPs are described by 

cubo-rhombic polyhedra offering 32 (n > 0, m > 0, m even) or 48 (n > 0, m > 0, m odd) corners 

with true cubic (n > 0, m = 0, eight corners) and true rhombic A (n = 0, m > 0, 14 corners) being 

special cases. 

(a)  (b)  

Figure A.4.  Atom ball models of atom centered cubo-rhombic A sc NPs,  

(a) sc[14, 10]  sc(6, 4) and (b) sc[16, 11]  sc(6, 5). The black lines 

sketch the square {1 0 0}, (capped) hexagonal {1 1 0} and triangular {1 1 

1} facet shapes. 

The confinement of a cubo-rhombic A sc[N, M]  sc(n, m) NP with an atom at its symmetry cen-

ter (N, n even) by its generic envelope sc NPs, cubic sc[N, 0) and rhombic A sc(0, M] with N, M 

defined by A.13, is illustrated in Fig. A.5 for sc[14, 10]  sc(6, 4) with sc[14,0) and sc(0, 10] 

forming the envelope sc NPs.  
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(a)   (b)   (c)  

Figure A.5.  Atom ball models of a cubo-rhombic A sc[14, 10]  sc(6, 4) 

NP with its confining generic cubic and rhombic A NPs. (a) Initial  

sc(6, 4) shown by yellow balls, (b) sc(6, 4) inside generic sc[14, 0), and 

(c) sc(6, 4) inside generic sc(0, 10]. The atoms outside sc(6, 4) are shown 

by white balls. 

Further, the confinement of a cubo-rhombic B sc[N, M]  sc(n, m) NP with a void at its sym-

metry center (N, n odd) by its cubic sc[N, 0) and rhombic B sc(1, M] envelope sc NPs is shown 

in Fig. 6 for sc[13, 9]  sc(5, 4) with sc[13,0) and sc(1, 9] forming the envelopes.  

(a)   (b)   (c)  

Figure A.6.  Atom ball models of a cubo-rhombic B sc[13, 9]  sc(5, 4) 

NP with its confining generic cubic and rhombic B NPs. (a) Initial  

sc(5, 4) shown by yellow balls, (b) sc(5, 4) inside generic sc[13, 0), and 

(c) sc(5, 4) inside generic sc(1, 9]. The atoms outside sc(5, 4) are shown 

by white balls. 

Altogether, the equivalence of structure parameters n, m and N, M according to (A.13) suggests 

alternative notations of cubo-rhombic sc NPs introduced earlier. Apart from a notation by  

sc[N, M], meaningful alternatives are sc(n, m), sc[N, m), and sc(n, M] where the different brack-

eting denotes the different meanings of the two parameters in the notation. Table A.3 lists types 
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and notations of all cubo-rhombic sc NPs where type A NPs (atom centered) refer to even n, N 

values while for type B NPs (void centered) n, N values are odd. 

Type sc[N, M] sc(n, m) sc[N, m) sc(n, M] 

Cubo-rhombic A M < N < 2M n > 0, m > 0 0 < m <N/2 0 < n < M 

Cubo-rhombic B M < N < 2M-1 n > 1, m > 0 0 < m < (N-1)/2 1 < n < M 

Generic cubic N = M n > 0, m = 0 m = 0 n = M 

Generic rhombic A N = 2M n = 0, m > 0 m = N/2 n = 0 

Generic rhombic B N = 2M-1 n = 1, m > 0 m = (N-1)/2 n = 1 

Elementary cube (B) N = M = 1 n = 1, m = 0 N = 1, m = 0 n = M = 1 

Atom (A) N = M = 0 n = m = 0 N = m = 0 n = M = 0 

 

Table A.3.  Types and notations of all intersecting and generic sc NPs.  

 

A.4.  Properties of Cubo-rhombic sc Nanoparticles 

Structural properties characterizing cubo-rhombic sc nanoparticles can be obtained by geometric 

consideration and simple algebra where we quote only results of the most important quantities. 

Structure parameters n, m, N, M, according to (A.13), i.e. 

n = 2M - N  , m = N - M (A.13b) 

N = n + 2m  , M = n + m (A.13c) 

with constraints listed in Tables A.1 - 3 will be used interchangeably and in mixed combinations 

to simplify formal expressions. Note that according to (A.13) structure parameters n and N will 

always be both even or both odd numbers. Results which are valid only for atom centered, type 

A, or for void centered, type B, sc NPs will be denoted accordingly. 

The number of atoms forming an sc(n, m) NP are given by the volume count denoted  Nvol(n, m) 

where simple algebra yields for 

-  m even (N, M both even or both odd) 

       

       

3 2

3 22

( , ) 1

1 1

1

2 2

1

1

1volN n m n

M

n m n m n m n

M M N

n m

M M N

   

        


    



 
 (A.17a) 
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-  m odd (N even, M odd or N odd, M even) 

       

       

3 2

3 22

( , ) 1 1

1 1 2 2 1 1

1 1 1vol nN m nn m n n

M M M M N M

m n m n m

N

        

       



 
 

 (A.17b) 

with special cases 

Generic cubic    
3 3

( , 0) 1 1volN n n N     N = n (A.18) 

Generic rhombic A  2(0, ) 2 3 2 1volN m m m m      (A.19a) 

  22 3 2 1M M M     M = m even 

 2(0, ) 2 3 2volN m m m m     (A.19b) 

  22 3 2M M M    M = m odd 

Generic rhombic B   2(1, ) 1 2 7 7 1volN m m m m       (A.20a) 

  22 3 2 1M M M     M = m + 1 odd 

  2(1, ) 1 2 7 7volN m m m m      (A.20b) 

  22 3 2M M M    M = m + 1 even 

The number of atoms on the outermost facets of an sc(n, m) NP (forming the outer polyhedral 

shell confining the NP) are given by the facet count denoted Nshell(n, m) where simple algebra 

yields for 

-  m even (N, M both even or both odd) 

 
2 2( , ) 6 2 6 2shellN n m m n M      (A.21a) 

-  m odd (N even, M odd or N odd, M even) 

 
2 2( , ) 6 6shellN n m m n M    (A.21b) 

with special cases 

Generic cubic 
2 2( , 0) 6 2 6 2shellN n n N     N = n (A.22) 

Generic rhombic A 
2 2(0, ) 6 2 6 2shellN m m M     M = m even (A.23a) 

2 2(0, ) 6 6shellN m m M   M = m odd (A.23b) 

Generic rhombic B  
2 2(1, ) 6 1 2 6 2shellN m m M      M = m + 1  odd (A.24a) 

 
2 2(1, ) 6 1 6shellN m m M    M = m + 1  even (A.24b) 
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The distances between the center of an sc(n, m) NP and its outer facet midpoints (facet dis-

tances) are given by R{hkl}(n, m), {h k l} = {1 0 0}, {1 1 0}, and {1 1 1}, which are connected 

with the polyhedral NP diameters D{hkl} according to 

{ } { }

1
( , )

2
hkl hklR n m D  (A.25) 

Thus, with (A.2), (A.3), (A.6), (A.7), (A.13) and a denoting the lattice constant of the sc lattice 

we obtain 

 {100} {100}

1
( , ) 2

2 2

a
R n m N d n m    (A.26) 

   {1 1 0} {1 1 0}

1
( , ) 2

2 2

a
R n m M d n m    (A.27) 

   {111} {111}

1 3
( , ) 3

2 2
R n m M d a n m    m even + (A.28a) 

  {111}

1 3 1
3 1

2 2 3
M d a n m

 
     

 
 m odd (A.28b) 

+  Note that for even m all {1 1 1} facets reduce to one atom. Thus, distances R{111}(n, m) 

refer to corner rather than facet distances. 

The distances between the center of an sc(n, m) NP and its two different types of corners (corner 

distances) are given by Rc1(n, m) (referring to each of six (n = 0) or 24 (n > 0) corners at {1 0 0} 

facets) and by Rc2(n, m) (referring to each of eight (m even) or 24 (m odd) corners at {1 1 0} 

(and eight possible {1 1 1}) facets for odd m) where with (A.7) and a denoting the lattice con-

stant of the sc lattice 

   
2 22 2

1( , ) 2 2 2 2
2 2

c

a a
R n m n m n N M N       (A.29) 

 2

3 3
( , )

2 2
cR n m a n m a M    m even (A.30a) 

     
2 2 2

2 1 1 3 1 4
2 2

a a
n m n m M M          m odd (A.30b) 

The areas of each of the{1 0 0}, {1 1 0}, and {1 1 1} facets of an sc(n, m) NP, measured by cor-

responding corner atoms (facet areas), are given by A{100}(n, m) (referring to each of six facets ), 

A{110}(n, m) (referring to each of twelve facets ), and A{111}(n, m) (referring to each of six micro-

facets, for odd m only) where, with (A.6), (A.7) and a denoting the lattice constant of the sc lat-

tice 
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22 2 2

{100}( , ) 2A n m a n a M N    (A.31) 

 2

{110}

1
( , ) 2

2
A n m a m n m   

   21
3

2
a N M M N    m even (A.32a) 

 2

{110}

1
( , ) 2 1

2
A n m a m n m      

   21
3 1

2
a N M M N       m odd (A.32b) 

2

{111}

3
( , )

2
A n m a  (A33) 
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B.  Nanoparticles with Body Centered Cubic (bcc) Lattice Structure 

The body centered cubic (bcc) lattice can be defined as a non-primitive simple cubic lattice by 

lattice vectors R1, R2, R3 in Cartesian coordinates together with two lattice basis vectors r1, r2 ac-

cording to 

     1 2 31,0,0 , 0,1,0 , 0,1,0R a R a R a    (B.1a) 

   1 20, 0, 0 , 1, 1, 1
2

a
r a r   (B.1b) 

where a is the lattice constant. The two densest monolayer families of the bcc lattice are de-

scribed by six square shaped {1 0 0}, twelve rectangular {1 1 0} (highest density), and eight hex-

agonal {1 1 1} netplanes where distances between adjacent parallel netplanes are given by 

d{100} = a/2 ,     d{110} = a/2 ,     d{111} = a/(23) (B.2) 

The point symmetry of the bcc lattice is characterized by Oh with symmetry centers at all atom 

sites. 

Compact body centered cubic nanoparticles (NPs) are confined by finite sections of monolayers 

(facets) whose structure is described by different netplanes (h k l). If they exhibit central Oh sym-

metry and show an (h k l) oriented facet they must must also include all other symmetry related 

facets characterized by orientations of the complete {h k l} family. Thus, general bcc NPs of Oh 

symmetry are determined by facets whose orientation can be defined by those of different  

{h k l} families. (As an example, we mention the {1 0 0} family with its six netplane orientations 

(1 0 0), (0 1 0), (0 0 1).) Further, according to the symmetry of the bcc host lattice possible 

NP centers can only be atom sites of the lattice. This will be discussed at different levels of com-

plication in the following. 

B.1.  Generic bcc Nanoparticles 

First, we consider generic bcc nanoparticles (NPs) of Oh symmetry which are confined by facets 

with orientations of only one netplane family {h k l}. This allows to distinguish between differ-

ent generic NP types where we focus on those described by {1 0 0} or {1 1 0} facets which cor-

respond to the densest monolayers of the bcc lattice and offer the flattest NP facets. The bcc NPs 

contain always an atom at their symmetry center. 

(a) Generic cubic bcc NPs, denoted bcc[N, 0) (the notation of bcc NPs, in particular the 

bracketing, will be explained in Secs. B.2, 3), are confined by all six {1 0 0} monolayers 

with distances D{100} = 2N d{100} between parallel monolayers (polyhedral NP diameters). 
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This yields six square shaped {1 0 0} facets with (N + 1) edge atoms each and eight poly-

hedral atom corners, see Fig. B.1. 

 

Figure B.1.  Atom ball model of a generic cubic bcc NP, bcc[5, 0) with 

an atom at its center. The black lines sketch the square {1 0 0} facet 

shapes. 

(b) Generic rhombic bcc NPs, denoted bcc(0, M], are confined by all twelve {1 1 0} mono-

layers with distances D{110} = 2M d{110} between parallel monolayers (polyhedral NP di-

ameters). This yields rhombic {1 1 0} facets of all twelve monolayers, see Fig. B.2. The 

{1 1 0} rhombi contain (M + 1)  (M + 1) atoms each, also described by 2M + 1 parallel 

nearest neighbor atom rows of increasing/decreasing length in the sequence 0 (atom), 1a, 

…, M a, …, 1a, 0 (atom). Altogether, the generic rhombic bcc NPs are described as 

rhombic dodecahedra offering 14 polyhedral atom corners and reminding of the shape of 

Wigner-Seitz cells of the face centered cubic (fcc) crystal lattice [a12]. 
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Figure B.2.  Atom ball model of a generic cubic bcc(0, 6] NP with an 

atom at its center. The black lines sketch the rhombic {1 1 0}facet 

shapes. 

 

B.2.  Non-generic bcc Nanoparticles 

Non-generic bcc nanoparticles of Oh symmetry are confined by facets with orientations of sev-

eral netplane families {hi ki li}. This can be considered as combining the confinements of the cor-

responding generic NPs, NPi, determined by {hi ki li} with suitable polyhedral diameters, sharing 

their symmetry center and type (atom or void). As an example we discuss non-generic bcc nano-

particles which combine two generic nanoparticles NP1, NP2 of the types detailed in Sec. B.1. 

Thus, the resulting bcc NP contains only atoms inside both partner NPs. Here three possible sce-

narios can be distinguished, nanoparticle NP2 contains all atoms of NP1 (yielding generic NP1), 

NP1 contains all atoms of NP2 (yielding generic NP2), or NP1 and NP2 share only parts of their 

atoms (intersecting, which yields true non-generic NPs). These scenarios are determined by the 

choice of the two netplane families {h k l} and by relationships between the corresponding poly-

hedral NP diameters D{hkl} defined by N and M. In the following, we restrict ourselves to non-

generic sc NPs defined by pairs of generic cubic and rhombic NPs. 

Non-generic bcc NPs contain always an atom at their symmetry center. They combine a generic 

cubic NP, sc[N, 0), and a rhombic NP, sc(0, M] where polyhedral diameters amount to 

D{100} = 2N d{100} = N a, D{110} = 2M d{110} = 2M a/2 (B.3) 

Thus, the smallest rhombic NP which surrounds the cubic NP is defined with (B.2) by 

D{110} = 2 D{100}      and hence      M = N (B.4) 
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On the other hand, the smallest cubic NP which surrounds the rhombic NP is defined with (B.2) 

by 

D{100} = 2 D{110}      and hence      N = 2M (B.5) 

As a consequence, non-generic bcc NPs combining generic cubic and rhombic NPs, NP1, NP2, 

yield the choices shown in Table B.1. 

NP1 / NP2  NP1 in NP2 NP2 in NP1 

Cubic / Rhombic 

bcc[N, 0) / bcc(0, M] 
M  N N  2M 

 

Table B.1.  Constraints of structure parameters N, M for pairs of bcc 

NPs, NP1 and NP2, sharing an atom as their symmetry center. 

Table B.1 shows in particular that true non-generic bcc NPs, defined by pairs of generic cubic 

and rhombic NPs, bcc[N, 0) and bcc(0, M] refer to structure parameters N, M which bracket each 

other according to 

M < N < 2M  ,      N/2 < M < N  (B.6) 

These non-generic bcc NPs may be called cubo-rhombic and denoted as bcc[N, M] combining a 

generic cubic bcc[N, 0) (first index) with a rhombic NP sc(0, M] (second index) . The nomencla-

ture together with the results of Table B.1 suggests an alternative notation for generic NPs where 

we may formally write 

generic cubic bcc[N, 0)  =  bcc[N, M]  , N  M (B.7a) 

generic rhombic bcc(0, M]  =  bcc[N, M]  , N  2M (B.7b) 

 

B.3.  Cubo-rhombic bcc Nanoparticles 

In the following we will discuss the detailed structure of true cubo-rhombic NPs bcc[N, M] de-

termined by corresponding structure parameters N, M and confined by the two densest mono-

layer families {1 0 0} and {1 1 0}. These NPs contain always an atom at there symmetry center. 

Starting from a generic cubic NP bcc[N, 0) with a polyhedral NP diameter D{100} = 2N d{100} the 

smallest enclosing rhombic NP bcc(0, M] has a polyhedral NP diameter D{110} = 2M d{110} with 

M = N according to Table B.1. Shrinking the rhombic bcc NP, i.e. for smaller M values given by  

M = N - m, m  0, the cubic and rhombic bcc NPs intersect yielding a cubo-rhombic NP  

bcc[N, M = N - m]. In the following we define this NP by sc[N, m) which is compatible with the 
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initial definition of a generic cubic bcc NP denoted sc[N, 0) in Sec. B.1. The constraints on M 

given in Table B.1 can be expressed by equivalent constraints on m yielding 

N/2  M  N  , 0  m  N/2  (B.8) 

where m values larger than N/2 result in generic rhombic bcc NPs. The building scheme corre-

sponds to the generic cubic NP bcc[N, 0) being truncated at its twelve edges by removing m  

{1 1 0} facet layers each. 

On the other hand, starting from a generic rhombic NP, bcc(0, M], with a polyhedral NP diame-

ter D{110} = 2M d{110} the smallest enclosing cubic bcc NP has a polyhedral NP diameter  

D{100} = 2N d{100} with N = 2M according to Table B.1. Shrinking the cubic bcc NP, i.e. for 

smaller N values given by N = 2M - n with n  0, the cubic and rhombic NPs intersect yielding 

also a cubo-rhombic NP bcc[N = 2M - n, M]. In the following we define this NP by bcc(n, M] 

which is compatible with the initial definition of a generic rhombic bcc NP denoted bcc(0, M] in 

Sec. A.1. The constraints on N given in Table B.1 can be expressed by equivalent constraints on 

n yielding 

M  N  2M  , 0  n  M cubo-rhombic A  (N even) (B.9) 

where n values larger than M result in generic cubic bcc NPs. The building scheme corresponds 

to the generic rhombic NP, sc(0, M], being truncated at its six 4-fold symmetry corners by re-

moving n {1 0 0} facet layers each. 

The two building schemes must yield the same cubo-rhombic NP bcc[N, M] where the two struc-

ture parameters N, M quantify the polyhedral NP diameters D{100} and D{110} according to 

D{100} = 2N d{100}  , D{110} = 2M d{110} (B.10) 

with the basic netplane distances d{100} and d{110} given by (B.2). Further, the relations 

M = N - m  , N = 2M - n (B.11a) 

from the two building schemes can be converted to 

n = 2M - N  , m = N - M (B.11b) 

N = n + 2m  , M = n + m (B.11c) 

This suggest an alternative set of structure parameters n, m which characterize the deviation of 

the cubo-rhombic NP bcc[N, M] from its generic envelope NPs, cubic bcc[N, 0) and rhombic 

bcc(0, M]. Thus, cubo-rhombic bcc NPs can also be denoted bcc(n, m). 
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The structure parameters n, m are also connected with geometric properties of the NP facets, in 

particular, with characteristic lengths of the facet edges. The cubo-rhombic bcc NPs, bcc[N, M]  

bcc(n, m), are confined by all six {1 0 0} facets of square shape with (n + 1)  (n + 1) atoms each 

and by all twelve {1 1 0} facets, see Fig. B.3. The {1 1 0} facets are hexagonal and contain  

2m + 1 parallel nearest neighbor atom rows of increasing/decreasing length in the sequence n a, 

(n+1)a, …, (n + m)a, …, (n+1)a, n a. Altogether, the bcc NPs are described by cubo-rhombic 

polyhedra offering 32 (n > 0, m > 0) corners with true cubic (n > 0, m = 0, eight corners) and true 

rhombic (n = 0, m > 0, 14 corners) being special cases. 

 

Figure B.3.  Atom ball model of the cubo-rhombic sc[7, 5]  bcc(3, 2) 

NP. The black lines sketch the square {1 0 0} and hexagonal {1 1 0} 

facet shapes. 

The confinement of a cubo-rhombic bcc[N, M]  bcc(n, m) NP by its generic envelope bcc NPs, 

cubic bcc[N, 0) and rhombic bcc(0, M] with N, M defined by B.11, is illustrated in Fig. B.4 for 

bcc[10, 7]  bcc(4, 3) with bcc[10, 0) and bcc(0, 7] forming the envelope bcc NPs.  
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(a)   (b)   (c)  

Figure B.4.  Atom ball models of a cubo-rhombic bcc[10, 7]  bcc(4, 3) 

NP with its confining generic cubic and rhombic NPs. (a) Initial bcc(4, 3) 

shown by yellow balls, (b) bcc(4, 3) inside generic bcc[10, 0), and (c) 

bcc(4, 3) inside generic bcc(0, 7]. The atoms outside bcc(4, 3) are shown 

by white balls. 

Altogether, the equivalence of structure parameters n, m and N, M according to (B.11) suggests 

alternative notations of cubo-rhombic bcc NPs introduced earlier. Apart from a notation by 

bcc[N, M], meaningful alternatives are bcc(n, m), bcc[N, m), and bcc(n, M] where the different 

bracketing denotes the different meanings of the two parameters in the notation. Table B.2 lists 

types and notations of all intersecting cubo-rhombic bcc NPs. 

Type bcc(n, m) bcc[N, M] bcc[N, m) bcc(n, M] 

Cubo-rhombic n > 0, m > 0 M < N < 2M 0 < m < N/2 0 < n < M 

Generic cubic n > 0, m = 0 N = M m = 0 n = M 

Generic rhombic n = 0, m > 0 N = 2M m = N/2 n = 0 

Atom (A) n = m = 0 N = M = 0 N = m = 0 n = M = 0 

 

Table B.2.  Types and notations of all intersecting and generic bcc NPs.  
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B.4.  Properties of Cubo-rhombic bcc Nanoparticles 

Structural properties characterizing cubo-rhombic bcc nanoparticles can be obtained by geomet-

ric consideration and simple algebra where we quote only results of the most important quanti-

ties. Structure parameters n, m and N, M, according to (B.11), i.e. 

n = 2M - N  , m = N - M (B.11b) 

N = n + 2m  , M = n + m (B.11c) 

with constraints listed in Table B.1 will be used interchangeably and in mixed combinations to 

simplify formal expressions. Note that according to (B.11) structure parameters n and N will al-

ways be both even or both odd numbers.  

The number of atoms forming a bcc(n, m) NP are given by the volume count denoted  Nvol(n, m) 

where simple algebra yields 

      

      

2

2

1
( , ) 2 2 1 2 2 1 1 1 2 1

2

1
2 1 2 1 1 1 2 1

2

volN n m n m n m n n n

M M n n n

         
 

       
 

 (B.12) 

with special cases 

Generic cubic    ( , 0) 2 1 1 1volN n n n n       

      4 2 1 2 2 1 1M N M N M N          (B.13) 

Generic rhombic    (0, ) 2 1 2 1 1volN m m m m       

       2 1 2 1 1N M N M N M          (B.14) 

The number of atoms on the outermost facets of a bcc(n, m) NP (forming the outer polyhedral 

shell confining the NP) are given by the facet count denoted Nshell(n, m) where simple algebra 

yields 

   
2 22 2( , ) 12 6 2 12 6 2 2shellN n m n m n M M N         (B.15) 

with special cases 

Generic cubic 2( ,0) 6 2shellN n n   

   
2

6 2 2M N    n > 0 (B.16) 

Generic rhombic 2(0, ) 12 2shellN m m   

   
2

12 2N M    m > 0 (B.17) 
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The distances between the center of a bcc(n, m) NP and its outer facet midpoints (facet dis-

tances) are given by R{hkl}(n, m), {h k l} = {1 0 0}, {1 1 0}, and {1 1 1}, which are connected 

with the polyhedral NP diameters D{hkl} according to 

{ } { }

1
( , )

2
hkl hklR n m D  (B.18) 

Thus, with (B.2), (B.3), (B.11) and a denoting the lattice constant of the bcc lattice we obtain 

   {100} {100}

1
( , ) 2 2

2 2

a
R n m N d n m    (B.19) 

   {1 1 0} {1 1 0}

1
( , ) 2

2 2

a
R n m M d n m    (B.20) 

   {111} {111}

1 3
( , ) 6

2 2
R n m M d a n m    (B.21) 

+  Note that all {1 1 1} facets reduce to one atom. Thus, distances R{111}(n, m) refer to cor-

ner rather than facet distances. 

The distances between the center of a bcc(n, m) NP and its two different types of corners (corner 

distances) are given by Rc1(n, m) (referring to each of six (n = 0) or 24 (n > 0) corners at {1 0 0} 

facets) and by Rc2(n, m) (referring to each of eight corners at {1 1 0}) where, with (B.11) and a 

denoting the lattice constant of the bcc lattice 

   
2 22 2

1( , ) 2 2 2 2
2 2

c

a a
R n m n m n N M N       (B.22) 

   2 111

3 3
( , ) ( , )

2 2
cR n m a n m a M R n m     (B.23) 

The areas of each of the{1 0 0} and {1 1 0} facets of a bcc(n, m) NP , measured by correspond-

ing corner atoms (facet areas), are given by A{100}(n, m) (referring to each of six facets ) and 

A{110}(n, m) (referring to each of twelve facets ) where, with a denoting the lattice constant of the 

bcc lattice 

 
22 2 2

{100}( , ) 2A n m a n a M N    (B.24) 

     2 2

{110}

1 1
( , ) 2 3

2 2
A n m a m n m a N M M N      (B.25) 
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C.  Nanoparticles with Face Centered Cubic (fcc) Lattice Structure 

The face centered cubic (fcc) lattice can be defined as a non-primitive simple cubic lattice by lat-

tice vectors R1, R2, R3 in Cartesian coordinates together with four lattice basis vectors r1 to r4 ac-

cording to 

     1 2 31,0,0 , 0,1,0 , 0,1,0R a R a R a    (C.1a) 

       1 2 3 40,0,0 , / 2 0,1,1 , / 2 1,0,1 , / 2 1,1,0r a r a r a r a     (C.1b) 

where a is the lattice constant. The two densest monolayer families of the fcc lattice are de-

scribed by six square shaped {1 0 0} and eight hexagonal {1 1 1} (highest density) netplanes 

where distances between adjacent parallel netplanes are given by 

d{100} = a/2 ,     d{111} = a/3 ,     d{110} = a/(22) (C.2) 

The point symmetry of the fcc lattice is characterized by Oh with symmetry centers at all atom 

sites and at the void centers of each elementary cell. 

Compact face centered cubic nanoparticles (NPs) are confined by finite sections of monolayers 

(facets) whose structure is described by different netplanes (h k l). If they exhibit central Oh sym-

metry and show an (h k l) oriented facet they must must also include all other symmetry related 

facets characterized by orientations of the complete {h k l} family. Thus, general fcc NPs of Oh 

symmetry are determined by facets whose orientation can be defined by those of different {h k l} 

families. (As an example, we mention the {1 1 1} family with its eight netplane orientations  

(1 1 1).) Further, according to the symmetry of the fcc host lattice possible NP centers can 

only be atom or Oh symmetry void sites of the lattice. This will be discussed at different levels of 

complication in the following. 

C.1.  Generic fcc Nanoparticles 

First, we consider generic fcc nanoparticles (NPs) of Oh symmetry which are confined by facets 

with orientations  of only one netplane family {h k l}. This allows to distinguish between differ-

ent generic NP types where we focus on those confined by {1 0 0} or {1 1 1} facets which corre-

spond to the densest monolayers of the fcc lattice and offer the flattest NP facets. 
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(a) Generic cubic fcc NPs are confined by all six {1 0 0} monolayers with distances  

D{100} = 2N d{100} between parallel monolayers (polyhedral NP diameters). Here we dis-

tinguish two NP types. 

Generic cubic A fcc NPs, denoted fcc[N, 0) (the notation of fcc NPs, in particular the 

bracketing, will be explained in Secs. C.2, 3) contain an atom at their symmetry center 

for even N and a void for odd N. They are confined by true square {1 0 0} facets. This 

yields facets with (N + 1) edge atoms each and eight polyhedral atom corners, see Fig. 

C.1a. 

Generic cubic B fcc NPs, denoted fcc[N, 1) contain an atom at their symmetry center for 

odd N and a void for even N. They are confined by capped square (octagonal) {1 0 0} 

facets with long edges of N atoms each and eight polyhedral atom corners capped by  

{1 1 1} microfacets, see Fig. C.1b. . 

(a)    (b)  

Figure C.1.  Atom ball models of generic cubic fcc NPs, (a) cubic A 

fcc[6, 0) and (b) cubic B fcc[7, 1). The black lines sketch the square and 

octagonal {1 0 0}as well as the triangular {1 1 1} facet shapes. 

(b) Generic octahedral fcc NPs are confined by all eight  

{1 1 1} monolayers with distances D{111} = K d{111} between parallel monolayers (polyhe-

dral NP diameters). These NPs contain an atom at their symmetry center for even K and 

a void void for odd K. Here we distinguish two NP types. 

Generic octahedral A fcc NPs, denoted fcc(0, K],are confined by true triagonal facets 

with (K + 1) edge atoms each six polyhedral atom corners, see Fig. C.2a.  

Generic octahedral B fcc NPs, denoted fcc(1, K], are confined by capped triagonal (hex-

agonal) {1 1 1} facets with long edges of N - 1 atoms each and six capped polyhedral 

atom corners with {1 0 0} microfacets. These NPs are not strictly generic since they are 
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derived from generic octahedral A, fcc(0, K] , by removing all six corner atoms. How-

ever, they will be useful in the discussion of Sec. C.2 and later. 

(a)  (b)  

Figure C.2.  Atom ball models of generic octahedral fcc NPs, (a) octahe-

dral A fcc(0, 9] and (b) octahedral B fcc(1, 11] . The black lines sketch 

the triangular {1 1 1} and square {1 0 0}facet shapes. 

(c) Generic cuboctahedral fcc NPs, denoted fcc(N, 2N] (the notation, in particular the 

bracketing, will be explained in Secs. C.2, 3), contain always an atom at their symmetry 

center. They are confined by the six {1 0 0} monolayers with distances D{100} = 2N d{100} 

as well as by the eight {1 1 1} monolayers with distances D{111} = 2N d{111} between par-

allel monolayers (polyhedral NP diameters). They are described by six square shaped  

{1 0 0} facets with (N + 1)  (N + 1) atoms each and by eight triangular shaped {1 1 1} 

facets with (n + 1) atom edges, see Fig. C.3b. 

 

Figure C.3.  Atom ball model of a generic cuboctahedral NP fcc(4, 8]. 

The black lines sketch the square {1 0 0} and triangular {1 1 1} facet 

shapes. 
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C.2.  Non-generic fcc Nanoparticles 

Non-generic fcc nanoparticles of Oh symmetry are confined by facets with orientations of several 

netplane families {hi ki li}. This can be considered as combining the confinements of the corre-

sponding generic NPs, NPi, determined by {hi ki li} with suitable polyhedral diameters, sharing 

their symmetry center and type (atom or void). As an example we discuss non-generic fcc nano-

particles which combine two generic nanoparticles NP1, NP2 of the types detailed in Sec. C.1. 

Thus, the resulting fcc NP contains only atoms inside both partner NPs. Here three possible sce-

narios can be distinguished, nanoparticle NP2 contains all atoms of NP1 (yielding generic NP1), 

NP1 contains all atoms of NP2 (yielding generic NP2), or NP1 and NP2 share only parts of their 

atoms (intersecting which yields true non-generic NPs). These scenarios are determined by the 

choice of the two netplane families {h k l} and by relationships between the corresponding poly-

hedral NP diameters D{hkl} defined by N and K. In the following, we restrict ourselves to non-ge-

neric fcc NPs defined by pairs of generic cubic and octahedral NPs. 

Non-generic fcc NPs with an atom at their symmetry center combine a generic cubic NP (cubic 

A, fcc[N, 0) with even N, or cubic B, fcc[N, 1) with odd N), with a generic octahedral NP (octa-

hedral A, B, fcc(0, K], fcc(1, K] with even K ) where polyhedral diameters amount to 

D{100} = 2N d{100} = N a,     D{111} = K d{111} = K a/3 (C.3) 

Thus, the smallest octahedral NP which surrounds a cubic A or B NP is defined with (C.2) by 

cubic A: D{111} = 3 D{100} and hence      K = 3N (C.4a) 

cubic B: D{111} = 3 D{100} - 2d{111}/2 and hence      K = 3N - 1 (C.4b) 

On the other hand, the smallest cubic NP surrounding an octahedral A, B NP is defined with 

(C.2) by 

octahedral A: D{100} = 3 D{111} and hence      N = K (C.5a) 

octahedral B: D{100} = 3 D{111} - 2d{100} and hence      N = K - 1 (C.5b) 

As a consequence, non-generic fcc NPs with an atom at their symmetry center combining ge-

neric cubic and rhombic NPs, NP1 / NP2, yield the three choices shown in Table C.1. 
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NP1 / NP2  NP1 in NP2 NP2 in NP1 

Cubic A / Octahedral A 

fcc[N, 0) / fcc(0, K] 
K  3N N  K 

Cubic B / Octahedral B 

fcc[N, 1) / fcc(1, K] 
K  3N - 1 N  K - 1 

Cubic A / Octahedral B 

fcc[N, 0) / fcc(1, K] 
K  3N N  K (<) 

Cubic B / Octahedral A 

fcc[N, 1) / fcc(0, K] 
K  3N - 1 N  K + 1 (<) 

 

Table C.1.  Constraints of structure parameters N, M for pairs of fcc NPs, 

NP1 and NP2, sharing an atom or void as their symmetry center. Entries 

labeled (<) refer to combinations NP1 / NP2 where NP2 never touches the 

surface of NP1.  

Non-generic fcc NPs with a void at their symmetry center combine a generic cubic NP (cubic A, 

C, fcc[N, 0) with odd N, or cubic B, fcc[N, 1) with even N), with a generic octahedral NP (octa-

hedral A, B, fcc(0, K], fcc(1, K] with odd K ) where, in complete analogy to the atom centered 

NPs, polyhedral diameters are given by (C.3). Further, smallest octahedral NPs surrounding a cu-

bic A or B NPs are defined by (C.4) and smallest cubic NPs surrounding octahedral A, B NPs by 

(C.5). This shows that Table 1 applies also to NPs with a void at their symmetry center if N, K 

are chosed accordingly. 

Table C.1 shows in particular that true non-generic fcc NPs, defined by pairs of generic cubic 

NPs, fcc[N, p), p = 0, 1, and octahedral NPs, fcc(q, K], q = 0, 1, refer to structure parameters N, 

K which bracket each other. As examples we mention 

N < K < 3N fcc[N, 0) / fcc(0, K] (C.6a) 

N + 1 < K < 3N - 1 fcc[N, 1) / fcc(1, K] (C.6c) 

These non-generic fcc NPs may be called cuboctahedral and denoted as fcc[N, M] combining a 

generic cubic (first index) with an octahedral NP (second index) where cubic A NPs combine 

with octahedral A and cubic B with octahedral B fcc NPs. 

The nomenclature together with the results of Table C.1 suggests an alternative notation for ge-

neric NPs where we may formally write 

generic cubic A, B fcc[N, p)  =  fcc[N, K] K  3N - p,  p = 0, 1, 2 (C.7a) 

generic octahedral A, B fcc(q, K]  =  fcc[N, K] N  K - q,  q = 0, 1 (C.7b) 
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C.3.  Cuboctahedral fcc Nanoparticles 

In the following we will discuss the detailed structure of true cuboctahedral NPs fcc[N, K] deter-

mined by corresponding structure parameters N, K and confined by the two densest monolayer 

families {1 0 0} and {1 1 1}. These NPs contain an atom at there symmetry center for even K 

while their symmetry center is void for odd K. 

First, we consider atom centered fcc NPs. Starting from a generic cubic A NP fcc[N, 0) with 

even N and a polyhedral NP diameter D{100} = 2N d{100} the smallest enclosing octahedral A NP 

fcc(0, K] has a polyhedral NP diameter D{111} = K d{111} with even K = 3N according to Table 

C.1. Shrinking the octahedral fcc NP, i.e. for smaller K values given by K = 3N - k, k = 0, 2, 4 … 

the cubic and octahedral fcc NPs intersect yielding a cuboctahedral NP fcc[N, K = 3N - k]. In 

the following we define this NP by fcc[N, k) which is compatible with the initial definition of a 

generic cubic fcc NP denoted fcc[N, 0) in Sec. C.1. The constraints on K given in Table C.1 can 

be expressed by equivalent constraints on k yielding 

N  K  3N  , 0  k  2N  with even k   (C.8a) 

where k values larger than 2N result in generic octahedral fcc NPs.  

Starting from a generic cubic B NP fcc[N, 1) with odd N and a polyhedral NP diameter  

D{100} = 2N d{100} the smallest enclosing octahedral B NP fcc(1, K] has a polyhedral NP diameter 

D{111} = K d{111} with even K = 3N - 1 according to Table C.1. Shrinking the octahedral fcc NP, 

i.e. for smaller K values given by K = 3N - k, k = 1, 3, 5 … the cubic and octahedral fcc NPs in-

tersect yielding also a cuboctahedral NP fcc[N, K = 3N - k] which we define by fcc[N, k). Here 

the constraints on K in Table C.1 lead to constraints on k according to 

N + 1  K  3N - 1  , 1  k  2N - 1  with odd k  (C.8b) 

where k values larger than 2N result in generic octahedral fcc NPs.  

As a result, the two building schemes for all possible values of N correspond to generic cubic A 

or B NPs, fcc[N, 0) or fcc[N, 1), being truncated at their eight edges by removing k/2 or (k - 1)/2 

{1 1 1} facet layers each. 

On the other hand, starting from a generic octahedral A NP, fcc(0, K] with even K = 3p, i.e. be-

ing also a multiple of 3 (or with K = 3p - 2) and a polyhedral NP diameter D{111} = K d{111} the 

smallest enclosing cubic A fcc NP fcc[N, 0) has a polyhedral NP diameter D{100} = 2N d{100} with 

even N = K according to Table C.1. Shrinking the cubic fcc NP, i.e. for smaller N values given 
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by N = K - n with n = 0, 2, 4 … the cubic and octahedral NPs intersect yielding also a cubocta-

hedral fcc[N = K - n, K] with even n. In the following we define this NP by fcc(n, K] which is 

compatible with the initial definition of a generic octahedral fcc NP denoted sc(0, K] in Sec. C.1. 

The constraints on N given in Table C.1 can be expressed by equivalent constraints on n yielding 

K/3  N  K  , 0  n  (2/3)K  ,    n even  (C.9a) 

where n values larger than (2/3)K result in generic cubic fcc NPs. 

For an octahedral B NP fcc(1, K] with even K = 3p -1 the smallest enclosing cubic NP is fcc[N, 

1) and has a polyhedral NP diameter D{100} = 2N d{100} with odd N = K - 1 according to Table 

C.1. Shrinking the cubic fcc NP, i.e. for N = K - n with n = 1, 3, 5 … the cubic and octahedral 

NPs intersect yielding also a cuboctahedral fcc[N = K - n, K] defined as fcc(n, K], however, 

with odd n. This leads to constraints on n, together with Table C.1  

(K + 1)/3  N  K - 1  , 1  n  (2K - 1)/3  ,    n odd  (C.9b) 

where n values larger than (2K - 1)/3 result in generic cubic fcc NPs.  

As a result, the building schemes for all possible values of K correspond to generic octahedral A 

or B NPs, fcc(0, K] or fcc(1, K], being truncated at their six 4-fold symmetry corners by remov-

ing n or (n - 1){1 0 0} facet layers each. 

The two building scenarios, starting from a generic octahedral or generic cubic NPs, must yield 

the same cuboctahedral NP fcc[N, M] where the two structure parameters N, K quantify the poly-

hedral NP diameters D{100} and D{111} according to 

D{100} = 2N d{100}  , D{111} = K d{11} (C.10) 

with the basic netplane distances d{100} and d{111} given by (C.2). Further, the relations 

N = K - n  , K = 3N - k  , (C.11a) 

from the two building schemes can be converted to 

n = K - N  , k = 3N - K (C.11b) 

2N = n + k  , 2K = 3n + k (C.11c) 

Next, we consider void centered fcc NPs whose treatment is completely analogous to the atom 

centered case. In fact, all derivations and relationships (C.8a) to (C.11c) are identical with those 

obtained for atom centered NPs except that all N or K values which are even with one centering 

will be odd with the other and viceversa. 
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Altogether, relation (C.11) suggest an alternative set of structure parameters n, k which charac-

terize the deviation of the cuboctahedral NP fcc[N, K] from its generic envelope NPs, cubic 

fcc[N, 0) or fcc[N, 1) and rhombic fcc(0, K] or fcc(1, K]. Thus, cuboctahedral NPs can also be 

denoted fcc(n, k). 

The structure parameters n, k are also connected with geometric properties of the NP facets, in 

particular, with characteristic lengths of the facet edges where we can distinguish two types of 

cuboctahedral fcc NPs, truncated octahedral and truncated cubic species. 

Truncated octahedral NPs, fcc[N, K] / fcc(n, k) with (C.11) are defined by 

N  K  2N  , 0  n  N  , N  k  2N  , i.e.  n  k  (C.12a) 

where the symmetry center is an atom site for even K (N, n, k all even or all odd) or void 

for odd K (N even and n, k odd or N odd and n, k even). These NPs are confined by all six 

{1 0 0} facets of square shape with (n + 1)  (n + 1) atoms each and by all eight {1 1 1} 

facets of hexagonal shape with alternating (n + 1) and (k - n + 2)/2 atom edges, see Fig. 

C.4. The polyhedral NPs offer 24 (n > 0, k > N) corners with true octahedral (n = 0, k = 2N, 

six corners) and generic cuboctahedral (n = k = N, twelve corners) being special cases. 

 

Figure C.4.  Atom ball model of a truncated octahedral NP fcc[5, 8]  

fcc(3, 7)  fcc(3, 2)o. The black lines sketch the square {1 0 0} and hex-

agonal {1 1 1} facet shapes. 

As a result of the building procedure, truncated octahedral fcc[N, K] NPs are each confined 

by two generic NPs, one octahedral fcc(0, K] or fcc(1, K] NP and one cubic fcc(N, 0) or 

fcc(N, 1). This is illustrated for the NP fcc[5, 8]  fcc(3, 2)o in Fig. C.5. 
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(a)   (b)   (c)  

Figure C.5.  Atom ball models of a truncated octahedral NP fcc[5, 8]  

fcc(3, 2)o with its confining generic cubic and octahedral NPs. (a) Initial  

fcc(3, 2)o shown by yellow balls, (b) fcc(3, 2)o inside generic fcc[5, 1), 

and (c) fcc(3, 2)o inside generic fcc(0, 8]. The atoms outside fcc(3, 2)o are 

shown by white balls. 

Further, Fig. C.6 shows the generic cuboctahedral NP fcc(4, 8]  fcc(4, 0)o with its confin-

ing generic cubic fcc[4, 0) and octahedral fcc(0, 8] NPs. 

(a)   (b)   (c)  

Figure C.6.  Atom ball models of a cuboctahedral NP fcc[4, 8]  fcc(4, 

0)o  fcc(0, 4)c with its confining generic cubic and octahedral NPs. (a) 

Initial fcc(4, 0)o shown by yellow balls, (b) fcc(4, 0)o inside generic 

fcc[4, 0), and (c) fcc(4, 0)o inside generic fcc(0, 8]. The atoms outside 

fcc(4, 0)o are shown by white balls. 

Truncated cubic NPs, fcc[N, K] / fcc(n, k) with (C.11) are defined by 

2N  K  3N  , N  n  2N  , 0  k  N  , i.e.  k  n  (C.12b) 

where the symmetry center is an atom site for even K (N, n, k all even or all odd) or void 

for odd K (N even and n, k odd or N odd and n, k even). They are confined by all six {1 0 

0} facets of octagonal shape with alternating (n - k + 2)/2 and (k + 1) atom edges and by all 

eight {1 1 1} facets of triangular shape with edges of k +1 atoms each , see Fig. C.7. The 

polyhedral NPs offer 24 (n > 0, k > 0) corners with cuboctahedral (n = 0, k > 0, twelve cor-

ners) and  true cubic (n > 0, k = 0, eight corners) being special cases. 
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Figure C.7.  Atom ball model of a truncated cubic NP, fcc[6, 14]   

fcc(8, 4)   fcc(2, 4)c. The black lines sketch the octagonal {1 0 0} and 

triangular {1 1 1} facet shapes. 

As a result of the building procedure, truncated cubic fcc[N, K] NPs are each confined by 

two generic NPs, one octahedral fcc(0, K] or fcc(1, K] NP and one cubic fcc(N, 0) or  

fcc(N, 1). This is illustrated for the NP fcc[6, 14]  fcc(2, 4)c in Fig. C.8. 

(a)   (b)   (c)  

Figure C.8.  Atom ball models of a cuboctahedral NP fcc[6, 14]  fcc(2, 

4)c with its confining generic cubic and octahedral NPs. (a) Initial  

fcc(2, 4)c shown by yellow balls, (b) fcc(2, 4)c inside generic fcc[6, 0), 

and (c) fcc(2, 4)c inside generic fcc(0, 14]. The atoms outside fcc(2, 4)c 

are shown by white balls. 

Altogether, the equivalence of structure parameters n, k and N, K according to (C.11) suggests 

alternative notations of cuboctahedral fcc NPs introduced earlier. Apart from a notation by  

fcc[N, K], meaningful alternatives are fcc(n, k), fcc[N, k), and fcc(n, K] where the different 

bracketing denotes the different meanings of the two parameters in the notation. Table C.2 lists 

types and notations of all cuboctahedral fcc NPs where atom centered NPs refer to even K values 

while for void centered NPs K values are odd. 
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Type fcc[N, M] fcc(n, k) fcc[N, k) fcc(n, K] 

Cuboctahedral,  

truncated octahedral 
N  K  2N 

n  k 

0  n  N 

N  k  2N 

N  k  2N 0  n  N 

Cuboctahedral,  

truncated cubic 
2N  K  3N 

n  k 

N  n  2N 

0  k  N 

0  k  N N  n  2N 

Cuboctahedral,  

generic 

K = 2N 

n = k 

n = k = N k = N n = K/2 

Generic cubic A K = 3N n > 0, k = 0 k = 0 n = K/3 

Generic cubic B K = 3N - 1 n > 0, k = 1 k = 1 n = (K - 2)/3 

Generic octahedral A N = K n = 0, k > 0 m = N/2 n = 0 

Generic octahedral B N = K - 1 n = 1, k > 0 m = (N-1)/2 n = 1 

Elementary cube (B) N = 1, K = 3 n = 1, k = 0 N = 1, k = 0 n = 1, K = 3 

Elementary oct. (B) N = K = 1 n = 0, k = 1 N = 1, k = 1 n = 0, K = 1 

Atom (A) N = K = 0 n = k = 0 N = k = 0 n = K = 0 

 

Table C.2.  Types and notations of all intersecting and generic fcc NPs.  

 

C.4.  Properties of Cuboctahedral fcc Nanoparticles 

Structural properties characterizing cuboctahedral fcc nanoparticles can be obtained by geomet-

ric consideration and simple algebra where we quote only results of the most important quanti-

ties. Structure parameters n, k and N, K, according to (C.11), i.e. 

n = K - N  , k = 3N - K 

2N = n + k  , 2K = 3n + k 

with constraints listed in Tables C.1, 2 will be used interchangeably and in mixed combinations 

to simplify formal expressions. Note that according to (C.11c) structure parameters n and k will 

always be both even or both odd numbers. 

As discussed in Section C.3, there are two types of cuboctahedral fcc nanoparticles, those of 

truncated octahedral and truncated cubic type, which are described by different shapes and, 

therefore different parameter expressions. 

Truncated octahedral fcc NPs are determined by (C.12a) 

N  K  2N  , 0  n  N  , N  k  2N  , i.e.  n  k 

For geometric convenience we define an alternative structure parameter 
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k’ = k - N (C.13) 

which transforms relations (C.11) to 

n = K - N  , k’ = 2N - K (C.14a) 

N = n + k’  , K = 2n + k’ (C.14b) 

allowing simplifications in some of the subsequent formulas. This will be expressed by an alter-

native nomenclature of these NPs as fcc(n, k) = fcc(n, k’)o. Note that according to (C14b) struc-

ture parameters K and k’ will always be both even or both odd numbers. 

Truncated cubic fcc NPs are determined by (C.12b) 

2N  K  3N  , N  n  2N  , 0  k  N  , i.e.  k  n 

For geometric convenience we define an alternative structure parameter 

n’ = n - N (C.15) 

which transforms relations (C.11) to 

n’ = K - 2N  , k = 3N - K (C.16a) 

N = n’ + k  , K = 3n’ + 2k (C.16b) 

allowing simplifications in some of the subsequent formulas.This will be expressed by an alter-

native nomenclature of these NPs as fcc(n, k) = fcc(n’, k)c. Note that according to (C.16a) struc-

ture parameters K and n’ will always be both even or both odd numbers. 

The two types of fcc NPs will be discussed separately in the following. 

 

C.4a.  Cuboctahedral fcc Nanoparticles, Truncated Octahedral Type 

The number of atoms forming a truncated octahedral fcc(n, k) NP are given by the volume count 

denoted  Nvol(n, k) where simple algebra yields 

       

         

2

2

1
( , ) 3 2 3 2 2 1 2 1

12

1
1 2 1 1 1 2 1

3

volN n k k n k n n n n k n

K K K N K N K N

          
 

             

 (C.17) 

with special cases 

Generic octahedral A    
21

(0, ) 2 2 2
12

volN k k k    
   

     
21

1 2 1 1
3

N N    
   (C.18) 
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Generic octahedral B    
21

(1, ) 5 5 2 6
12

volN k k k     
   

     
21

2 2 2 1 6
3

N N     
   (C.19) 

Generic cuboctahedral    
5

( , ) 2 1 1 1
3

volN n n n n n
 

    
 

 

     
5

2 1 1 1
3

N N N
 

    
 

 (C.20) 

The number of atoms on the outermost facets of a truncated octahedral fcc(n, m) NP (forming the 

outer polyhedral shell confining the NP) are given by the facet count denoted Nshell(n, m) where 

simple algebra yields 

   
2 22 2( , ) 3 6 2 4 6 2shellN n k k n n K K N k n          (C.21) 

with special cases 

Generic octahedral A 
2 2(0, ) 2 4 2shellN k k N     (C.22) 

Generic octahedral B    
2 2

(1, ) 3 4 4 1 4shellN k k N       (C.23) 

Generic cuboctahedral 
2 2( , ) 10 2 10 2shellN n n n N     (C.24) 

The distances between the center of a truncated octahedral fcc(n, k) NP and its outer facet mid-

points (facet distances) are given by R{hkl}(n, k), {h k l} = {1 1 1}, {1 0 0} and which are con-

nected with the polyhedral NP diameters D{hkl} according to 

{ } { }

1
( , )

2
hkl hklR n m D  (C.25) 

Thus, with (C.2), (C.3), (C.11) and a denoting the lattice constant of the fcc lattice we obtain 

   {111} {111}( , ) / 2 3
4 3

a
R n k K d n k k n     (C.26) 

 {100} {100}( , )
4

a
R n k N d n k    (C.27) 

The distances between the center of a truncated octahedral fcc(n, k) NP and its corners (corner 

distances) are given by Rc(n, k) (referring to each of six (k = n) or 24 (k > n) corners at {1 0 0} 

facets) where with (C.11) and a denoting the lattice constant of the fcc lattice 

   
2 22 2( , ) 4

4 2
c

a a
R n k k n n N K N k n        (C.28) 
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The areas of each of the{1 1 1} and {1 0 0} facets of a truncated octahedral fcc(n, k) NP, meas-

ured by corresponding corner atoms (facet areas), are given by A{111}(n, k) (referring to each of 

eight hexagonal (triangular) {1 1 1} facets) and A{100}(n, k) (referring to each of six {1 0 0} fac-

ets ) where, with (C.2), (C.3), (C.11) and a denoting the lattice constant of the fcc lattice 

   
2 22 2 2 2

(111)

3 1 3
( , ) 3 3 3

8 4 8
A n k a k n n a K K N

            
 (C.29) 

 
22 2 2

(100)

1 1
( , )

2 2
A n k a n a K N    (C.30) 

C.4b.  Cuboctahedral fcc Nanoparticles, Truncated Cubic Type 

The number of atoms forming a truncated cubic fcc(n, k) NP are given by the volume count de-

noted  Nvol(n, k) where simple algebra yields 

         

          

1 1
( , ) 2 1 1 2 2 1

2 3

1
1 2 2 1 1 3 3 2 2 3 1

3

volN n k k n k n k n k k k n k

N N N N K N K N K

            

           

 (C.31) 

with special cases 

Generic cubic A    
1

( ,0) 2 1 1
2

volN n n n n       

     1 2 2 1 1N N N       (C.32) 

Generic cubic B     
1

( ,1) 3 1 2 1 1
2

volN n n n n         

     1 2 2 1 1 1N N N        (C.33) 

Generic cuboctahedral    
5

( , ) 2 1 1 1
3

volN n n n n n
 

    
 

 

     
5

2 1 1 1
3

N N N
 

    
 

 (C.34) 

The number of atoms on the outermost facets of a truncated cubic fcc(n, m) NP (forming the 

outer polyhedral shell confining the NP) are given by the facet count denoted Nshell(n, m) where 

simple algebra yields 

     
2 22 2( , ) 3 2 1 12 2 3 1shellN n k k n k N N K n k         

 
 (C.35) 

with special cases 

Generic cubic A  
22( ,0) 3 2 3 2shellN n n K N      (C.36) 
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Generic cubic B  
2 2( ,1) 3 1 12shellN n n N    (C.37) 

Generic cuboctahedral 
2 2( , ) 10 2 10 2shellN n n n N     (C.38) 

The distances between the center of a truncated cubic fcc(n, k) NP and its outer facet midpoints 

(facet distances) are given by R{hkl}(n, k), {h k l} = {1 1 1}, {1 0 0} and which are connected 

with the polyhedral NP diameters D{hkl} according to 

{ } { }

1
( , )

2
hkl hklR n m D  (C.39) 

Thus, with (C.2), (C.3), (C.11) and a denoting the lattice constant of the fcc lattice we obtain 

   {111} {111}( , ) / 2 3
4 3

a
R n k K d n k n k     (C.40) 

 {100} {100}( , )
4

a
R n k N d n k    (C.41) 

The distances between the center of a truncated cubic fcc(n, k) NP and its corners (corner dis-

tances) are given by Rc(n, k) (referring to each of six (n = k) or 24 (n > k) corners at {1 0 0} fac-

ets) where with (C.11) and a denoting the lattice constant of the fcc lattice 

   
2 2 2( , ) 3 4 2 2

4 2
c

a a
R n k k n kn N K N n k        (C.42) 

The areas of each of the{1 1 1} and {1 0 0} facets of a truncated cubic fcc(n, k) NP, measured by 

corresponding corner atoms (facet areas), are given by A{111}(n, k) (referring to each of eight 

hexagonal (triangular) {1 1 1} facets) and A{100}(n, k) (referring to each of six {1 0 0} facets ) 

where, with (C.2), (C.3), (C.11) and a denoting the lattice constant of the fcc lattice 

 
22 2 2

(111)

3 3
( , ) 3

8 8
A n k a k a N K    (C.43) 

   
2

2 22 2 2

(100)

1
( , ) 2 3

4 2

a
A n k n k k a N N K

           
 (C.44) 
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III.  Conclusion 

The present work gives a full account of the shape and structure of ideal nanoparticles 

(NPs) forming compact polyhedral sections of the ideal cubic lattice where simple, body cen-

tered, and face centered variants are considered. We have studied particles of Oh symmetry 

which are confined by facets of densest and second densest monolayers of the lattice reflecting 

Miller index families {1 0 0}, {1 1 0} for sc and bcc as well as {1 1 1}, {1 0 0} for fcc. The 

structure evaluation identifies different types of generic NPs which serve for the definition of 

general polyhedral NPs. These can be classified according to integer valued structure parameters 

N, M (, K) which are connected with particle diameters along corresponding facet normal direc-

tions reflecting {h k l} monolayer families of the underlying lattice. An alternative classification 

is based on parameters n, m (, k) which can describe characteristic lengths of facet edges of the 

NPs where the parameters of the two classification are connected by linear transformations. De-

tailed structural properties of the general polyhedral NPs, such as shape, size, and surfaces, are 

discussed in analytical and numerical detail with visualization of characteristic examples. 

Clearly, the present results deal only with ideal cubic NPs and cannot account for all possi-

ble structures of the most general metal nanoparticles observed, for example, by electron micros-

copy [a13]. Realistic NPs may exhibit very different shapes, including less compact particles, 

and symmetry, including local structural disorder and deviations from (incompatibility with) 

crystal lattice structure in their inner core. This can only be examined in case-by-case studies 

where exact quantitative results are difficult to obtain. However, the present results can be used 

in an approximate way to estimate typical particle sizes of metal NPs as well as for a repository 

of possible structures of compact NPs with internal cubic lattice.  
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V.  Supplementary Information 

S.1.  Symmetry Centers 

The cubic NPs, sc(n, m), bcc(n, m), and fcc(n, m) of Oh symmetry contain atoms or high sym-

metry voids at their center depending on the lattice type and on the N, M, K, n, m, k as described 

in the following. 

The simple cubic lattice offers two different centers of Oh symmetry, an atom site and a high 

symmetry void as shown in Fig. S.1. 

(a)    (b)    

Figure S.1.  Oh symmetry centers of the simple cubic lattice, (a) center at 

atom site, (b) center at high symmetry void. The centers are emphasized by 

white balls and connected with their nearest neighbor atoms by dark sticks 

and black lines, respectively. 

This discriminates between two types of sc[N, M], sc(n, m) NPs, those about an atom center and 

those about a high symmetry void, as discussed in Sec. II.A.1 and spelled out in the following 

table. 

Center type N M n m 

Atom even any even any 

Void odd any odd any 

n = 2M - N  , m = N - M 
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The body centered cubic lattice offers only one center of Oh symmetry which coincides with an 

atom site as shown in Fig. S.2. 

 

Figure S.2.  Oh symmetry center of the body centered cubic lattice at atom 

site. The center is emphasized by a white ball and connected with its nearest 

neighbor atoms by black lines. 

This allows for only one type of bcc[N, M], bcc(n, m) NPs, about an atom center as discussed in 

Sec. II.B.1 where  n = 2M - N  ,    m = N - M . 

The face centered cubic lattice offers two different centers of Oh symmetry, an atom site and a 

high symmetry void as shown in Fig. S.3. 

(a)    (b)    

Figure S.3.  Oh symmetry centers of the face centered cubic lattice, (a) center 

at atom site, (b) center at high symmetry void. The centers are emphasized by 

white balls and connected with their nearest neighbor atoms by dark sticks 

and black lines, respectively. 
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This discriminates between two types of octahedral and cubic fcc[N, K], fcc(n, k) NPs, about an 

atom center and about a high symmetry void, as discussed in Sec. II.C.1 and spelled out in the 

following table. 

Center type N K n k 

Atom even even even even 

Atom odd even odd odd 

Void even odd odd odd 

Void odd odd even even 

n = K - N  , k = 3N - K 

 

S.2.  Nanoparticle Peeling and Dressing 

Taking off all atoms of the outermost {hkl} facet layer of a general cubic NP, denoted by struc-

ture parameters [N, M], (n, m) or [N, K], (n, k), ({hkl} peeling) leads to a smaller NP, denoted by 

[N’, M’], (n’, m’) or [N’, K’], (n’, k’) whose structure can be evaluated analytically. Further, add-

ing all atoms from possible nearest outermost {hkl} monolayer facets ({hkl} dressing) leads to a 

larger NP and can also be evaluated analytically as discussed below. Successive peeling steps 

can reduce the cubic NP to a primitive (0, 0), (1, 0), or (0, 1) NP. This provides a detailed analy-

sis of the internal structure of the NP. 

S.2.1.  Cubo-rhombic sc Nanoparticles 

Peeling and dressing a cubo-rhombic sc[N, M], sc(n, m) NP of simple cubic lattice struc-

ture can be expressed by transformed structure parameters N’, M’, n’, m’ which depend 

on the initial parameters M, N and are listed in the following tables. For the sake of brev-

ity the prefix “sc” has been omitted in all NP notations. 
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 {1 0 0} peeling /dressing 

Nanoparticle Peeled sc NP 

[N’, M’] / (n’, m’) 

Dressed sc NP 

[N’, M’] / (n’, m’) 

Cubo-rhombic 

M  + 2  N  2M - 2 

[N - 2, M] / (n + 2, m - 2) [N + 2, M] / (n - 2, m + 2) 

Generic cubic 

N = M,  m = 0 

[N - 2, M - 2] / (n - 2, 0) [N + 2, M] / (n - 2, 2) 

Cubo-rhombic 

N = M + 1,  m = 1 

[N - 2, M - 1] / (n, 0) [N + 2, M] / (n - 2, 3) 

Generic rhombic A 

N = 2M,  n = 0 

[N - 2, M] / (2, m - 2) [N, M] / (0, m) 

Generic rhombic B 

N = 2M - 1,  n = 1 

[N - 2, M] / (3, m - 2) [N + 2, M + 1] / (1, m + 1) 

n = 2M - N  , m = N - M  , N = n + 2m  , M = n + m  , M  N  2M 

 {1 1 0} peeling /dressing 

Nanoparticle Peeled sc NP 

[N’, M’] / (n’, m’) 

Dressed sc NP 

[N’, M’] / (n’, m’) 

Cubo-rhombic 

M   N  2M - 2 

[N, M - 1] / (n - 2, m + 1) [N, M + 1] / (n + 2, m - 1) 

Generic cubic 

N = M,  m = 0 

[N, M - 1] / (n - 2, 1) [N, M] / (n, 0) 

Generic rhombic A 

N = 2M,  n = 0 

[N - 2, M - 1] / (0, m - 1) [N, M + 1] / (2, m - 1) 

Generic rhombic B 

N = 2M - 1,  n = 1 

[N - 2, M - 1] / (1, m - 1) [N, M + 1] / (3, m - 1) 

n = 2M - N  , m = N - M  , N = n + 2m  , M = n + m  , M  N  2M 

 shell (joint {1 0 0} and {1 1 0}) peeling /dressing  

Nanoparticle Peeled sc NP 

[N’, M’] / (n’, m’) 

Dressed sc NP 

[N’, M’] / (n’, m’) 

Cubo-rhombic 

M + 2  N  2M - 1 

[N -2, M - 1] / (n, m - 1) [N + 2, M + 1] / (n, m + 1) 

Generic cubic 

N = M,  m = 0 

[N - 2, M - 2] / (n - 2, 0) [N + 2, M + 1] / (n, 1) 

Generic rhombic A 

N = 2M,  n = 0 

[N - 2, M - 1] / (0, m - 1) [N + 2, M + 1] / (0, m + 1) 

Generic rhombic B 

N = 2M - 1,  n = 1 

[N - 2, M - 1] / (1, m - 1) [N + 2, M + 1] / (1, m + 1) 

n = 2M - N  , m = N - M  , N = n + 2m  , M = n + m  , M  N  2M 
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S.2.2.  Cubo-rhombic bcc Nanoparticles 

Peeling and dressing a cubo-rhombic bcc[N, M], bcc(n, m) NP of body centered cubic lat-

tice structure can be expressed by transformed structure parameters N’, M’, n’, m’ which 

depend on the initial parameters M, N and are listed in the following tables. For the sake 

of brevity the prefix “bcc” has been omitted in all NP notations. 

 {1 0 0} peeling /dressing 

Nanoparticle Peeled bcc NP 

[N’, M’] / (n’, m’) 

Dressed bcc NP 

[N’, M’] / (n’, m’) 

Cubo-rhombic 

M  + 1  N  2M - 1 

[N - 1, M] / (n + 1, m - 1) [N + 1, M] / (n - 1, m + 1) 

Generic cubic 

N = M,  m = 0 

[N - 1, M - 1] / (n - 1, 0) [N + 1, M] / (n - 1, 1) 

Generic rhombic 

N = 2M,  n = 0 

[N - 1, M] / (1, m - 1) [N, M] / (0, m) 

n = 2M - N  , m = N - M  , N = n + 2m  , M = n + m  , M  N  2M 

 {1 1 0} peeling /dressing 

Nanoparticle Peeled bcc NP 

[N’, M’] / (n’, m’) 

Dressed bcc NP 

[N’, M’] / (n’, m’) 

Cubo-rhombic 

M  + 1  N  2M -2 

[N, M - 1] / (n - 2, m + 1) [N, M + 1] / (n + 2, m - 1) 

Generic cubic 

N = M,  m = 0 

[N, M - 1] / (n - 2, 1) [N, M] / (n, 0) 

Generic rhombic 

N = 2M,  n = 0 

[N - 2, M - 1] / (0, m - 1) [N, M + 1] / (2, m - 1) 

n = 2M - N  , m = N - M  , N = n + 2m  , M = n + m  , M  N  2M 

 shell (joint {1 0 0} and {1 1 0}) peeling /dressing  

Nanoparticle Peeled bcc NP 

[N’, M’] / (n’, m’) 

Dressed bcc NP 

[N’, M’] / (n’, m’) 

Cubo-rhombic 

M  + 1  N  2M -1 

[N - 1, M - 1] / (n - 1, m) [N + 1, M + 1]  / (n + 1, m) 

Generic cubic 

N = M,  m = 0 

[N - 1, M - 1] / (n - 1, 0) [N + 1, M + 1] / (n + 1, 0) 

Generic rhombic 

N = 2M,  n = 0 

[N - 2, M - 1] / (0, m - 1) [N + 1, M + 1] / (1, m) 

n = 2M - N  , m = N - M  , N = n + 2m  , M = n + m  , M  N  2M 
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S.2.3.  Cuboctahedral fcc Nanoparticles 

Peeling and dressing a cuboctahedral fcc[N, K], fcc(n, k) NP of face centerd cubic lattice 

structure can be expressed by transformed structure parameters N’, K’, n’, k’ which de-

pend on the initial parameters M, K and are listed in the following tables. For the sake of 

brevity the prefix “fcc” has been omitted in all NP notations. 

As discussed in Sec. C.3, there are two types of face centered cubic NPs which are distin-

guished by their shape, truncated octahedral and truncated cubic fcc[N, K], fcc(n, k), with 

N, K, n, k determined by relations (C.12a) and (C.12b), respectively. Peeling and dressing 

induce transitions between the two types, cubic to octahedral for peeling and octahedral 

to cubic for dressing, but do not affect corresponding transformations N, K, n, k  to  

N’, K’, n’, k’. 

 {1 0 0} peeling /dressing 

Nanoparticle Peeled fcc NP 

[N’, K’] / (n’, k’) 

Dressed fcc NP 

[N’, K’] / (n’, k’) 

Cuboctahedral 

N  K  3N - 3 

[N -1, K] / (n + 1, k - 3) [N + 1, K] / (n - 1, k + 3) 

Generic cubic A 

K = 3N,  k = 0 

[N - 1, K- 4] / (n - 3, 1) [N + 1, K] / (n - 1, 3) 

Generic cubic B 

K = 3N - 1,  k = 1 

[N - 1, K - 2] / (n - 1, 0) [N + 1, K] / (n - 1, 4) 

Generic cubic C 

K = 3N - 2,  k = 2 

[N - 1, K - 2] / (n - 1, 1) [N + 1, K] / (n - 1, 5) 

Generic octahedral A 

K = N,  n = 0 

[N - 1, K] / (1, k - 3) [N, K] / (0, k) 

Generic octahedral B 

K = N + 1,  n = 1 

[N - 1, K] / (2, k - 3) [N + 1, K] / (0, k + 3) 

Generic cuboctahedral 

K = 2N,  n = k 

[N - 1, K] / (n + 1, k - 3) [N + 1, K] / (n - 1, k + 3) 

n = K - N  , k = 3N - K  , 2N = n + k  , 2K = 3n + k  , N  K  3N 
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 {1 1 1} peeling /dressing 

Nanoparticle Peeled fcc NP 

[N’, K’] / (n’, k’) 

Dressed fcc NP 

[N’, K’] / (n’, k’) 

Cuboctahedral 

N + 2  K  3N - 2 

[N, K - 2] / (n - 2, k + 2) [N, K + 2] / (n + 2, k - 2) 

Generic cubic A 

K = 3N,  k = 0 

[N, K - 2] / (n - 2, 2) [N, K] / (n, 0) 

Generic cubic B 

K = 3N - 1,  k = 1 

[N, K - 2] / (n - 2, 3) [N, K] / (n, 1) 

Generic cubic C 

K = 3N - 2,  k = 2 

[N, K - 2] / (n - 2, 4) [N, K + 2] / (n + 2, 0) 

Generic octahedral A 

K = N,  n = 0 

[N - 2, K - 2] / (0, k - 4) [N, K + 2] / (2, k - 2) 

Generic octahedral B 

K = N + 1,  n = 1 

[N - 1, K - 2] / (0, k - 1) [N, K + 2] / (3, k - 2) 

Generic cuboctahedral 

K = 2N,  n = k 

[N, K - 2] / (n - 2, k + 2) [N, K + 2] / (n + 2, k - 2) 

n = K - N  , k = 3N - K  , 2N = n + k  , 2K = 3n + k  , N  K  3N 

 shell (joint {1 0 0} and {1 1 1}) peeling /dressing 

Nanoparticle Peeled fcc NP 

[N’, K’] / (n’, k’) 

Dressed fcc NP 

[N’, K’] / (n’, k’) 

Cuboctahedral 

N + 1  K  3N - 1 

[N - 1, K - 2] / (n - 1, k - 1) [N + 1, K + 2] / (n + 1, k + 1) 

Generic cubic A 

K = 3N,  k = 0 

[N - 1, K - 4] / (n - 3, 1) [N + 1, K + 2] / (n + 1,1) 

Generic cubic B 

K = 3N - 1,  k = 1 

[N - 1, K - 2] / (n - 1, 0) [N + 1, K + 2] / (n + 1,2) 

Generic cubic C 

K = 3N - 2,  k = 2 

[N - 1, K - 2] / (n - 1, 1) [N + 1, K + 2] / (n + 1,3) 

Generic octahedral A 

K = N,  n = 0 

[N - 2, K - 2] / (0, k - 4) [N + 1, K + 2] / (1, k + 1) 

Generic octahedral B 

K = N + 1,  n = 1 

[N - 1, K - 2] / (0, k - 1) [N + 1, K + 2] / (2, k + 1) 

Generic cuboctahedral 

K = 2N,  n = k 

[N - 1, K - 2] / (n - 1, k - 1) [N + 1, K + 2] / (n + 1, k + 1) 

n = K - N  , k = 3N - K  , 2N = n + k  , 2K = 3n + k  , N  K  3N 
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S.3.  Numerical Tables 

S.3.1.  Cubo-rhombic sc Nanoparticles 

Table 1.1.  Notation of a non-generic cubo-rhombic NP sc[N, M], sc(n, m) for given n, m accord-

ing to N = n + 2m ,  M = n + m. Structure parameters N, M describe the two generic envelope 

NPs, cubic sc[N, 0) and rhombic A sc(0, M] (n even) or rhombic B sc(1, M) (n odd) by polyhe-

dral diameters, see Sec. A.3. In contrast, n, m characterize the deviation of the cubo-rhombic NP 

sc[N, M] from its generic envelope NPs.  

List of [N, M] 

m\n |    0      1      2      3      4      5      6      7      8      9     10     11___ 

  0 | [ 0, 0][ 1, 1][ 2, 2][ 3, 3][ 4, 4][ 5, 5][ 6, 6][ 7, 7][ 8, 8][ 9, 9][10,10][11,11] 

  1 | [ 2, 1][ 3, 2][ 4, 3][ 5, 4][ 6, 5][ 7, 6][ 8, 7][ 9, 8][10, 9][11,10][12,11][13,12] 

  2 | [ 4, 2][ 5, 3][ 6, 4][ 7, 5][ 8, 6][ 9, 7][10, 8][11, 9][12,10][13,11][14,12][15,13] 

  3 | [ 6, 3][ 7, 4][ 8, 5][ 9, 6][10, 7][11, 8][12, 9][13,10][14,11][15,12][16,13][17,14] 

  4 | [ 8, 4][ 9, 5][10, 6][11, 7][12, 8][13, 9][14,10][15,11][16,12][17,13][18,14][19,15] 

  5 | [10, 5][11, 6][12, 7][13, 8][14, 9][15,10][16,11][17,12][18,13][19,14][20,15][21,16] 

  6 | [12, 6][13, 7][14, 8][15, 9][16,10][17,11][18,12][19,13][20,14][21,15][22,16][23,17] 

  7 | [14, 7][15, 8][16, 9][17,10][18,11][19,12][20,13][21,14][22,15][23,16][24,17][25,18] 

  8 | [16, 8][17, 9][18,10][19,11][20,12][21,13][22,14][23,15][24,16][25,17][26,18][27,19] 

  9 | [18, 9][19,10][20,11][21,12][22,13][23,14][24,15][25,16][26,17][27,18][28,19][29,20] 

 10 | [20,10][21,11][22,12][23,13][24,14][25,15][26,16][27,17][28,18][29,19][30,20][31,21] 

 11 | [22,11][23,12][24,13][25,14][26,15][27,16][28,17][29,18][30,19][31,20][32,21][33,22] 

 

Table 1.2.  Number of atoms inside the volume of an sc(n, m) NP, Nvol(n, m), (volume count) as 

defined by (A.17 - 20). 

List of Nvol(n, m) 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |      1      8     27     64    125    216    343    512    729   1000   1331   1728 

   1 |      7     32     81    160    275    432    637    896   1215   1600   2057   2592 

   2 |     33     88    179    312    493    728   1023   1384   1817   2328   2923   3608 

   3 |     87    184    329    528    787   1112   1509   1984   2543   3192   3937   4784 

   4 |    185    336    547    824   1173   1600   2111   2712   3409   4208   5115   6136 

   5 |    335    552    841   1208   1659   2200   2837   3576   4423   5384   6465   7672 

   6 |    553    848   1227   1696   2261   2928   3703   4592   5601   6736   8003   9408 

   7 |    847   1232   1713   2296   2987   3792   4717   5768   6951   8272   9737  11352 

   8 |   1233   1720   2315   3024   3853   4808   5895   7120   8489  10008  11683  13520 

   9 |   1719   2320   3041   3888   4867   5984   7245   8656  10223  11952  13849  15920 

  10 |   2321   3048   3907   4904   6045   7336   8783  10392  12169  14120  16251  18568 

  11 |   3047   3912   4921   6080   7395   8872  10517  12336  14335  16520  18897  21472 
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Table 1.3.  Number of atoms on the outermost facets of an sc(n, m) NP, Nshell(n, m), (facet count) 

as defined by (A.21 - 24). 

List of Nshell(n, m) 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |     --      8     26     56     98    152    218    296    386    488    602    728 

   1 |      6     24     54     96    150    216    294    384    486    600    726    864 

   2 |     26     56     98    152    218    296    386    488    602    728    866   1016 

   3 |     54     96    150    216    294    384    486    600    726    864   1014   1176 

   4 |     98    152    218    296    386    488    602    728    866   1016   1178   1352 

   5 |    150    216    294    384    486    600    726    864   1014   1176   1350   1536 

   6 |    218    296    386    488    602    728    866   1016   1178   1352   1538   1736 

   7 |    294    384    486    600    726    864   1014   1176   1350   1536   1734   1944 

   8 |    386    488    602    728    866   1016   1178   1352   1538   1736   1946   2168 

   9 |    486    600    726    864   1014   1176   1350   1536   1734   1944   2166   2400 

  10 |    602    728    866   1016   1178   1352   1538   1736   1946   2168   2402   2648 

  11 |    726    864   1014   1176   1350   1536   1734   1944   2166   2400   2646   2904 

 

Table 1.4.  Corner distances, Rc1(n, m), defining the distances from the center of a simple cubic 

sc(n, m) NP to its 24 (n > 0) and 6 (n = 0) corners, respectively, at {1 0 0} facets and Rc2(n, m), 

defining the distances to its 8 (m even) and 24 (m odd) corners, respectively, at {1 1 0} (and 8 

possible {1 1 1}) facets. The distances are defined by (A.29), (A.30) and all radii are normalized 

by the lattice constant a of the sc lattice. 

List of Rc1(n, m) / a 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |  0.000  0.866  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 

   1 |  1.000  1.658  2.449  3.279  4.123  4.975  5.831  6.690  7.550  8.411  9.274 10.137 

   2 |  2.000  2.598  3.317  4.093  4.899  5.723  6.557  7.399  8.246  9.097  9.950 10.805 

   3 |  3.000  3.571  4.243  4.975  5.745  6.538  7.348  8.170  9.000  9.836 10.677 11.522 

   4 |  4.000  4.555  5.196  5.895  6.633  7.399  8.185  8.986  9.798 10.618 11.446 12.278 

   5 |  5.000  5.545  6.164  6.837  7.550  8.292  9.055  9.836 10.630 11.435 12.247 13.067 

   6 |  6.000  6.538  7.141  7.794  8.485  9.206  9.950 10.712 11.489 12.278 13.077 13.883 

   7 |  7.000  7.533  8.124  8.761  9.434 10.137 10.863 11.608 12.369 13.143 13.928 14.722 

   8 |  8.000  8.529  9.110  9.734 10.392 11.079 11.790 12.520 13.266 14.027 14.799 15.580 

   9 |  9.000  9.526 10.100 10.712 11.358 12.031 12.728 13.444 14.177 14.925 15.684 16.454 

  10 | 10.000 10.524 11.091 11.694 12.329 12.990 13.675 14.379 15.100 15.835 16.583 17.342 

  11 | 11.000 11.522 12.083 12.679 13.304 13.955 14.629 15.322 16.031 16.756 17.493 18.241 
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List of Rc2(n, m) / a 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |  0.000  0.866  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 

   1 |  1.000  1.658  2.449  3.279  4.123  4.975  5.831  6.690  7.550  8.411  9.274 10.137 

   2 |  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 

   3 |  2.449  3.279  4.123  4.975  5.831  6.690  7.550  8.411  9.274 10.137 11.000 11.864 

   4 |  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 

   5 |  4.123  4.975  5.831  6.690  7.550  8.411  9.274 10.137 11.000 11.864 12.728 13.592 

   6 |  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 

   7 |  5.831  6.690  7.550  8.411  9.274 10.137 11.000 11.864 12.728 13.592 14.457 15.322 

   8 |  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 15.588 16.454 

   9 |  7.550  8.411  9.274 10.137 11.000 11.864 12.728 13.592 14.457 15.322 16.186 17.051 

  10 |  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 15.588 16.454 17.321 18.187 

  11 |  9.274 10.137 11.000 11.864 12.728 13.592 14.457 15.322 16.186 17.051 17.916 18.782 

 

S.3.2.  Cubo-rhombic bcc Nanoparticles 

Table 2.1.  Notation of a non-generic cubo-rhombic NP bcc[N, M], bcc(n, m) for given n, m ac-

cording to N = n + 2m ,  M = n + m. Structure parameters N, M describe the two generic envelope 

NPs, cubic sc[N, 0) and rhombic sc(0, M] by polyhedral diameters, see Sec. B.3. In contrast, n, m 

characterize the deviation of the cubo-rhombic NP bcc[N, M] from its generic envelope NPs.  

List of N : M 

m\n |    0      1      2      3      4      5      6      7      8      9     10     11___ 

  0 | [ 0, 0][ 1, 1][ 2, 2][ 3, 3][ 4, 4][ 5, 5][ 6, 6][ 7, 7][ 8, 8][ 9, 9][10,10][11,11] 

  1 | [ 2, 1][ 3, 2][ 4, 3][ 5, 4][ 6, 5][ 7, 6][ 8, 7][ 9, 8][10, 9][11,10][12,11][13,12] 

  2 | [ 4, 2][ 5, 3][ 6, 4][ 7, 5][ 8, 6][ 9, 7][10, 8][11, 9][12,10][13,11][14,12][15,13] 

  3 | [ 6, 3][ 7, 4][ 8, 5][ 9, 6][10, 7][11, 8][12, 9][13,10][14,11][15,12][16,13][17,14] 

  4 | [ 8, 4][ 9, 5][10, 6][11, 7][12, 8][13, 9][14,10][15,11][16,12][17,13][18,14][19,15] 

  5 | [10, 5][11, 6][12, 7][13, 8][14, 9][15,10][16,11][17,12][18,13][19,14][20,15][21,16] 

  6 | [12, 6][13, 7][14, 8][15, 9][16,10][17,11][18,12][19,13][20,14][21,15][22,16][23,17] 

  7 | [14, 7][15, 8][16, 9][17,10][18,11][19,12][20,13][21,14][22,15][23,16][24,17][25,18] 

  8 | [16, 8][17, 9][18,10][19,11][20,12][21,13][22,14][23,15][24,16][25,17][26,18][27,19] 

  9 | [18, 9][19,10][20,11][21,12][22,13][23,14][24,15][25,16][26,17][27,18][28,19][29,20] 

 10 | [20,10][21,11][22,12][23,13][24,14][25,15][26,16][27,17][28,18][29,19][30,20][31,21] 

 11 | [22,11][23,12][24,13][25,14][26,15][27,16][28,17][29,18][30,19][31,20][32,21][33,22] 
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Table 2.2.  Number of atoms inside the volume of a bcc(n, m) NP, Nvol(n, m), (volume count) as 

defined by (B.12 - 14). 

List of Nvol(n, m) 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |      1      9     35     91    189    341    559    855   1241   1729   2331   3059 

   1 |     15     59    145    285    491    775   1149   1625   2215   2931   3785   4789 

   2 |     65    169    339    587    925   1365   1919   2599   3417   4385   5515   6819 

   3 |    175    363    641   1021   1515   2135   2893   3801   4871   6115   7545   9173 

   4 |    369    665   1075   1611   2285   3109   4095   5255   6601   8145   9899  11875 

   5 |    671   1099   1665   2381   3259   4311   5549   6985   8631  10499  12601  14949 

   6 |   1105   1689   2435   3355   4461   5765   7279   9015  10985  13201  15675  18419 

   7 |   1695   2459   3409   4557   5915   7495   9309  11369  13687  16275  19145  22309 

   8 |   2465   3433   4611   6011   7645   9525  11663  14071  16761  19745  23035  26643 

   9 |   3439   4635   6065   7741   9675  11879  14365  17145  20231  23635  27369  31445 

  10 |   4641   6089   7795   9771  12029  14581  17439  20615  24121  27969  32171  36739 

  11 |   6095   7819   9825  12125  14731  17655  20909  24505  28455  32771  37465  42549 

 

Table 2.3.  Number of atoms on the outermost facets of a bcc(n, m) NP, Nshell(n, m), (facet count) 

as defined by (B.15 - 17). 

List of Nshell(n, m) 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |     --      8     26     56     98    152    218    296    386    488    602    728 

   1 |     14     44     86    140    206    284    374    476    590    716    854   1004 

   2 |     50    104    170    248    338    440    554    680    818    968   1130   1304 

   3 |    110    188    278    380    494    620    758    908   1070   1244   1430   1628 

   4 |    194    296    410    536    674    824    986   1160   1346   1544   1754   1976 

   5 |    302    428    566    716    878   1052   1238   1436   1646   1868   2102   2348 

   6 |    434    584    746    920   1106   1304   1514   1736   1970   2216   2474   2744 

   7 |    590    764    950   1148   1358   1580   1814   2060   2318   2588   2870   3164 

   8 |    770    968   1178   1400   1634   1880   2138   2408   2690   2984   3290   3608 

   9 |    974   1196   1430   1676   1934   2204   2486   2780   3086   3404   3734   4076 

  10 |   1202   1448   1706   1976   2258   2552   2858   3176   3506   3848   4202   4568 

  11 |   1454   1724   2006   2300   2606   2924   3254   3596   3950   4316   4694   5084 
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Table 2.4.  Corner distances, Rc1(n, m), defining the distances from the center of a body centered 

cubic bcc(n, m) NP to its 24 (n > 0) and 6 (n = 0) corners, respectively, at {1 0 0} facets and 

Rc2(n, m), defining the distances to its 8 corners at {1 1 0} facets. The distances are defined by 

(B.22), (B.23) and all radii are normalized by the lattice constant a of the sc lattice. 

List of Rc1(n, m) / a 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |  0.000  0.866  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 

   1 |  1.000  1.658  2.449  3.279  4.123  4.975  5.831  6.690  7.550  8.411  9.274 10.137 

   2 |  2.000  2.598  3.317  4.093  4.899  5.723  6.557  7.399  8.246  9.097  9.950 10.805 

   3 |  3.000  3.571  4.243  4.975  5.745  6.538  7.348  8.170  9.000  9.836 10.677 11.522 

   4 |  4.000  4.555  5.196  5.895  6.633  7.399  8.185  8.986  9.798 10.618 11.446 12.278 

   5 |  5.000  5.545  6.164  6.837  7.550  8.292  9.055  9.836 10.630 11.435 12.247 13.067 

   6 |  6.000  6.538  7.141  7.794  8.485  9.206  9.950 10.712 11.489 12.278 13.077 13.883 

   7 |  7.000  7.533  8.124  8.761  9.434 10.137 10.863 11.608 12.369 13.143 13.928 14.722 

   8 |  8.000  8.529  9.110  9.734 10.392 11.079 11.790 12.520 13.266 14.027 14.799 15.580 

   9 |  9.000  9.526 10.100 10.712 11.358 12.031 12.728 13.444 14.177 14.925 15.684 16.454 

  10 | 10.000 10.524 11.091 11.694 12.329 12.990 13.675 14.379 15.100 15.835 16.583 17.342 

  11 | 11.000 11.522 12.083 12.679 13.304 13.955 14.629 15.322 16.031 16.756 17.493 18.241 

 

List of Rc2(n, m) / a 

 m\n |      0      1      2      3      4      5      6      7      8      9     10     11 

   0 |  0.000  0.866  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 

   1 |  0.866  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 10.392 

   2 |  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 

   3 |  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 12.124 

   4 |  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 

   5 |  4.330  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 13.856 

   6 |  5.196  6.062  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 

   7 |  6.062  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 15.588 

   8 |  6.928  7.794  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 15.588 16.454 

   9 |  7.794  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 15.588 16.454 17.321 

  10 |  8.660  9.526 10.392 11.258 12.124 12.990 13.856 14.722 15.588 16.454 17.321 18.187 

  11 |  9.526 10.392 11.258 12.124 12.990 13.856 14.722 15.588 16.454 17.321 18.187 19.053 
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S.3.3a.  Cuboctahedral fcc Nanoparticles, Truncated Octahedral Type 

Table 3.1.  Notation of a non-generic cuboctahedral NP fcc[N, K], fcc(n, k) for given n, k ac-

cording to 2N = n + k ,  2K = 3n + k. Structure parameters N, K describe the two generic enve-

lope NPs, cubic fcc[N, 0), fcc[N, 1) and octahedral sc(0, K], sc(1, K] by polyhedral diameters, 

see Sec. C.3. In contrast, n, k characterize the deviation of the cuboctahedral NP fcc[N, M] from 

its generic envelope NPs. 

For fcc[N, K] NPs of the octahedral type, i.e. if N  K  2N, k  n, it is meaningful to use an aux-

iliary index k’ with k’ = (k - n)/2 resulting in a notation fcc(n, k’)o, see Sec. C.3, and yielding 

[N, K] :    N = n + k’ ,  K = 2n + k’ 

List of [N, K] 

 k’\n |    0      1      2      3      4      5      6      7      8      9     10     11___ 

    0 | [ 0, 0][ 1, 2][ 2, 4][ 3, 6][ 4, 8][ 5,10][ 6,12][ 7,14][ 8,16][ 9,18][10,20][11,22] 

    1 | [ 1, 1][ 2, 3][ 3, 5][ 4, 7][ 5, 9][ 6,11][ 7,13][ 8,15][ 9,17][10,19][11,21][12,23] 

    2 | [ 2, 2][ 3, 4][ 4, 6][ 5, 8][ 6,10][ 7,12][ 8,14][ 9,16][10,18][11,20][12,22][13,24] 

    3 | [ 3, 3][ 4, 5][ 5, 7][ 6, 9][ 7,11][ 8,13][ 9,15][10,17][11,19][12,21][13,23][14,25] 

    4 | [ 4, 4][ 5, 6][ 6, 8][ 7,10][ 8,12][ 9,14][10,16][11,18][12,20][13,22][14,24][15,26] 

    5 | [ 5, 5][ 6, 7][ 7, 9][ 8,11][ 9,13][10,15][11,17][12,19][13,21][14,23][15,25][16,27] 

    6 | [ 6, 6][ 7, 8][ 8,10][ 9,12][10,14][11,16][12,18][13,20][14,22][15,24][16,26][17,28] 

    7 | [ 7, 7][ 8, 9][ 9,11][10,13][11,15][12,17][13,19][14,21][15,23][16,25][17,27][18,29] 

    8 | [ 8, 8][ 9,10][10,12][11,14][12,16][13,18][14,20][15,22][16,24][17,26][18,28][19,30] 

    9 | [ 9, 9][10,11][11,13][12,15][13,17][14,19][15,21][16,23][17,25][18,27][19,29][20,31] 

   10 | [10,10][11,12][12,14][13,16][14,18][15,20][16,22][17,24][18,26][19,28][20,30][21,32] 

   11 | [11,11][12,13][13,15][14,17][15,19][16,21][17,23][18,25][19,27][20,29][21,31][22,33] 

 

Table 3.2.  Number of atoms inside the volume of an octahedral fcc(n, k’)o NP, Nvol(n, k’)o, (vol-

ume count) as defined by (C.17 - 20). For the definition of k’ see caption of Table 3.1. 

List of Nvol(n, k’)o 

 k’\n |      0      1      2      3      4      5      6      7      8      9     10     11 

    0 |      1     13     55    147    309    561    923   1415   2057   2869   3871   5083 

    1 |      6     38    116    260    490    826   1288   1896   2670   3630   4796   6188 

    2 |     19     79    201    405    711   1139   1709   2441   3355   4471   5809   7389 

    3 |     44    140    314    586    976   1504   2190   3054   4116   5396   6914   8690 

    4 |     85    225    459    807   1289   1925   2735   3739   4957   6409   8115  10095 

    5 |    146    338    640   1072   1654   2406   3348   4500   5882   7514   9416  11608 

    6 |    231    483    861   1385   2075   2951   4033   5341   6895   8715  10821  13233 

    7 |    344    664   1126   1750   2556   3564   4794   6266   8000  10016  12334  14974 

    8 |    489    885   1439   2171   3101   4249   5635   7279   9201  11421  13959  16835 

    9 |    670   1150   1804   2652   3714   5010   6560   8384  10502  12934  15700  18820 

   10 |    891   1463   2225   3197   4399   5851   7573   9585  11907  14559  17561  20933 

   11 |   1156   1828   2706   3810   5160   6776   8678  10886  13420  16300  19546  23178 
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Table 3.3.  Number of atoms on the outermost facets of an octahedral fcc(n, k’)o NP,  

Nshell(n, k’)o, as defined by (C.21 - 24). For the definition of k’ see caption of Table 3.1. 

List of Nshell(n, k’)o 

 k’\n |      0      1      2      3      4      5      6      7      8      9     10     11 

    0 |     --     12     42     92    162    252    362    492    642    812   1002   1212 

    1 |      6     32     78    144    230    336    462    608    774    960   1166   1392 

    2 |     18     60    122    204    306    428    570    732    914   1116   1338   1580 

    3 |     38     96    174    272    390    528    686    864   1062   1280   1518   1776 

    4 |     66    140    234    348    482    636    810   1004   1218   1452   1706   1980 

    5 |    102    192    302    432    582    752    942   1152   1382   1632   1902   2192 

    6 |    146    252    378    524    690    876   1082   1308   1554   1820   2106   2412 

    7 |    198    320    462    624    806   1008   1230   1472   1734   2016   2318   2640 

    8 |    258    396    554    732    930   1148   1386   1644   1922   2220   2538   2876 

    9 |    326    480    654    848   1062   1296   1550   1824   2118   2432   2766   3120 

   10 |    402    572    762    972   1202   1452   1722   2012   2322   2652   3002   3372 

   11 |    486    672    878   1104   1350   1616   1902   2208   2534   2880   3246   3632 

 

Table 3.4.  Corner distance, Rc(n, k’)o, defining the distance from the center of an octahedral 

fcc(n, k’)o NP to its 24 (n > 0, k’ > 0), 6 (n = 0, k’ > 0), and 12 (n > 0, k’ = 0) corners, respec-

tively. The distances are defined by (C.28). The radii are normalized by the lattice constant a of 

the fcc lattice. For the definition of k’ see caption of Table 3.1. 

List of Rc(n, k’)o / a 

 k’\n |      0      1      2      3      4      5      6      7      8      9     10     11 

    0 |  0.000  0.707  1.414  2.121  2.828  3.536  4.243  4.950  5.657  6.364  7.071  7.778 

    1 |  0.500  1.118  1.803  2.500  3.202  3.905  4.610  5.315  6.021  6.727  7.433  8.139 

    2 |  1.000  1.581  2.236  2.915  3.606  4.301  5.000  5.701  6.403  7.106  7.810  8.515 

    3 |  1.500  2.062  2.693  3.354  4.031  4.717  5.408  6.103  6.801  7.500  8.201  8.902 

    4 |  2.000  2.550  3.162  3.808  4.472  5.148  5.831  6.519  7.211  7.906  8.602  9.301 

    5 |  2.500  3.041  3.640  4.272  4.924  5.590  6.265  6.946  7.632  8.322  9.014  9.708 

    6 |  3.000  3.536  4.123  4.743  5.385  6.042  6.708  7.382  8.062  8.746  9.434 10.124 

    7 |  3.500  4.031  4.610  5.220  5.852  6.500  7.159  7.826  8.500  9.179  9.862 10.548 

    8 |  4.000  4.528  5.099  5.701  6.325  6.964  7.616  8.276  8.944  9.618 10.296 10.977 

    9 |  4.500  5.025  5.590  6.185  6.801  7.433  8.078  8.732  9.394 10.062 10.735 11.413 

   10 |  5.000  5.523  6.083  6.671  7.280  7.906  8.544  9.192  9.849 10.512 11.180 11.853 

   11 |  5.500  6.021  6.576  7.159  7.762  8.382  9.014  9.657 10.308 10.966 11.630 12.298 
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S.3.3b.  Cuboctahedral fcc Nanoparticles, Truncated Cubic Type 

Table 3.5.  Notation of a non-generic cuboctahedral NP fcc[N, K], fcc(n, k) for given n, k ac-

cording to 2N = n + k ,  2K = 3n + k. Structure parameters N, K describe the two generic enve-

lope NPs, cubic fcc[N, 0), fcc[N, 1) and octahedral sc(0, K], sc(1, K] by polyhedral diameters, 

see Sec. C.3. In contrast, n, k characterize the deviation of the cuboctahedral NP fcc[N, M] from 

its generic envelope NPs. 

For fcc[N, K] NPs of the cubic type, i.e. if 2N  K  3N, n  k, it is meaningful to use an auxil-

iary index n’ with n’ = (n - k)/2 resulting in a notation fcc(n’, k)c, see Sec. C.3, and yielding 

[N, K] :    N = n’ + k ,  K = 3n’ + 2k 

List of [N, K] 

 k\n’ |    0      1      2      3      4      5      6      7      8      9     10     11___ 

    0 | [ 0, 0][ 1, 3][ 2, 6][ 3, 9][ 4,12][ 5,15][ 6,18][ 7,21][ 8,24][ 9,27][10,30][11,33] 

    1 | [ 1, 2][ 2, 5][ 3, 8][ 4,11][ 5,14][ 6,17][ 7,20][ 8,23][ 9,26][10,29][11,32][12,35] 

    2 | [ 2, 4][ 3, 7][ 4,10][ 5,13][ 6,16][ 7,19][ 8,22][ 9,25][10,28][11,31][12,34][13,37] 

    3 | [ 3, 6][ 4, 9][ 5,12][ 6,15][ 7,18][ 8,21][ 9,24][10,27][11,30][12,33][13,36][14,39] 

    4 | [ 4, 8][ 5,11][ 6,14][ 7,17][ 8,20][ 9,23][10,26][11,29][12,32][13,35][14,38][15,41] 

    5 | [ 5,10][ 6,13][ 7,16][ 8,19][ 9,22][10,25][11,28][12,31][13,34][14,37][15,40][16,43] 

    6 | [ 6,12][ 7,15][ 8,18][ 9,21][10,24][11,27][12,30][13,33][14,36][15,39][16,42][17,45] 

    7 | [ 7,14][ 8,17][ 9,20][10,23][11,26][12,29][13,32][14,35][15,38][16,41][17,44][18,47] 

    8 | [ 8,16][ 9,19][10,22][11,25][12,28][13,31][14,34][15,37][16,40][17,43][18,46][19,49] 

    9 | [ 9,18][10,21][11,24][12,27][13,30][14,33][15,36][16,39][17,42][18,45][19,48][20,51] 

   10 | [10,20][11,23][12,26][13,29][14,32][15,35][16,38][17,41][18,44][19,47][20,50][21,53] 

   11 | [11,22][12,25][13,28][14,31][15,34][16,37][17,40][18,43][19,46][20,49][21,52][22,55] 

 

Table 3.6.  Number of atoms inside the volume of a cubic fcc(n’, k)c NP, Nvol(n’, k)c, (volume 

count) as defined by (C.31 - 34). For the definition of n’ see caption of Table 3.5. 

List of Nvol(n’, k)c 

 k\n’ |      0      1      2      3      4      5      6      7      8      9     10     11 

    0 |      1     14     63    172    365    666   1099   1688   2457   3430   4631   6084 

    1 |     13     62    171    364    665   1098   1687   2456   3429   4630   6083   7812 

    2 |     55    164    357    658   1091   1680   2449   3422   4623   6076   7805   9834 

    3 |    147    340    641   1074   1663   2432   3405   4606   6059   7788   9817  12170 

    4 |    309    610   1043   1632   2401   3374   4575   6028   7757   9786  12139  14840 

    5 |    561    994   1583   2352   3325   4526   5979   7708   9737  12090  14791  17864 

    6 |    923   1512   2281   3254   4455   5908   7637   9666  12019  14720  17793  21262 

    7 |   1415   2184   3157   4358   5811   7540   9569  11922  14623  17696  21165  25054 

    8 |   2057   3030   4231   5684   7413   9442  11795  14496  17569  21038  24927  29260 

    9 |   2869   4070   5523   7252   9281  11634  14335  17408  20877  24766  29099  33900 

   10 |   3871   5324   7053   9082  11435  14136  17209  20678  24567  28900  33701  38994 

   11 |   5083   6812   8841  11194  13895  16968  20437  24326  28659  33460  38753  44562 
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Table 3.7.  Number of atoms on the outermost facets of a cubic fcc(n’, k)c NP, Nshell(n’, k)c, 

(facet count) as defined by (C.35 - 38). For the definition of n’ see caption of Table 3.5. 

List of Nshell(n’, k)c 

 k\n’ |      0      1      2      3      4      5      6      7      8      9     10     11 

    0 |     --     14     50    110    194    302    434    590    770    974   1202   1454 

    1 |     12     48    108    192    300    432    588    768    972   1200   1452   1728 

    2 |     42    102    186    294    426    582    762    966   1194   1446   1722   2022 

    3 |     92    176    284    416    572    752    956   1184   1436   1712   2012   2336 

    4 |    162    270    402    558    738    942   1170   1422   1698   1998   2322   2670 

    5 |    252    384    540    720    924   1152   1404   1680   1980   2304   2652   3024 

    6 |    362    518    698    902   1130   1382   1658   1958   2282   2630   3002   3398 

    7 |    492    672    876   1104   1356   1632   1932   2256   2604   2976   3372   3792 

    8 |    642    846   1074   1326   1602   1902   2226   2574   2946   3342   3762   4206 

    9 |    812   1040   1292   1568   1868   2192   2540   2912   3308   3728   4172   4640 

   10 |   1002   1254   1530   1830   2154   2502   2874   3270   3690   4134   4602   5094 

   11 |   1212   1488   1788   2112   2460   2832   3228   3648   4092   4560   5052   5568 

 

Table 3.8.  Corner distance, Rc(n’, k)c, defining the distance from the center of a cubic fcc(n’, k)c 

NP to its 24 (n’ > 0, k > 0), 12 (n’ = 0, k > 0), and 8 (n’ > 0, k = 0) corners, respectively. The dis-

tances are defined by (C.42) and all radii are normalized by the lattice constant a of the fcc lat-

tice. For the definition of n’ see caption of Table 3.5. 

List of Rc(n’, k)c / a 

 k\n’ |      0      1      2      3      4      5      6      7      8      9     10     11 

    0 |  0.000  0.866  1.732  2.598  3.464  4.330  5.196  6.062  6.928  7.794  8.660  9.526 

    1 |  0.707  1.500  2.345  3.202  4.062  4.924  5.788  6.652  7.517  8.382  9.247 10.112 

    2 |  1.414  2.179  3.000  3.841  4.690  5.545  6.403  7.263  8.124  8.986  9.849 10.712 

    3 |  2.121  2.872  3.674  4.500  5.339  6.185  7.036  7.890  8.746  9.605 10.464 11.325 

    4 |  2.828  3.571  4.359  5.172  6.000  6.837  7.681  8.529  9.381 10.235 11.091 11.948 

    5 |  3.536  4.272  5.050  5.852  6.671  7.500  8.337  9.179 10.025 10.874 11.726 12.580 

    6 |  4.243  4.975  5.745  6.538  7.348  8.170  9.000  9.836 10.677 11.522 12.369 13.219 

    7 |  4.950  5.679  6.442  7.228  8.031  8.846  9.670 10.500 11.336 12.176 13.019 13.865 

    8 |  5.657  6.384  7.141  7.921  8.718  9.526 10.344 11.169 12.000 12.835 13.675 14.517 

    9 |  6.364  7.089  7.842  8.617  9.407 10.210 11.023 11.843 12.669 13.500 14.335 15.174 

   10 |  7.071  7.794  8.544  9.314 10.100 10.897 11.705 12.520 13.342 14.169 15.000 15.835 

   11 |  7.778  8.500  9.247 10.012 10.794 11.587 12.390 13.200 14.018 14.841 15.668 16.500 


