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Abstract. Most countries have started vaccinating people against COVID-19. However, due to limited produc-
tion capacities and logistical challenges it will take months/years until herd immunity is achieved.
Therefore, vaccination and social distancing have to be coordinated. In this paper, we provide some
insight on this topic using optimization-based control on an age-differentiated compartmental model.
For real-life decision-making, we investigate the impact of the planning horizon on the optimal vac-
cination/social distancing strategy. We find that in order to reduce social distancing in the long run,
without overburdening the health care system, it is essential to vaccinate the people with the highest
contact rates first. That is also the case if the objective is to minimize fatalities provided that the
social distancing measures are sufficiently strict. However, for short-term planning it is optimal to
focus on the high-risk group.
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1. Introduction. In early 2020, the outbreak of the severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) was declared a pandemic by the World Health Organization [62].
As the virus causes the respiratory illness coronavirus disease 2019 (COVID-19), many coun-
tries have been enforcing nonpharmaceutical countermeasures such as social distancing (also
called contact restrictions) and travel restrictions [34, 35]. Such countermeasures have a severe
negative impact on national and international economies [48] and the general quality of life
(in particular, mental health). Consequently, significant effort has been made to develop and
deploy vaccines. However, in some countries, the initial vaccine rollout has been slower than
anticipated, new strains of the virus are emerging, and public skepticism towards COVID-19
vaccines prevails [14, 39]. Furthermore, experts warn that nonpharmaceutical measures re-
main necessary [33, 50] even as the vaccines are being deployed. Therefore, there is still a
need for identifying strategies for safely relaxing nonpharmaceutical measures.
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1136 GRUNDEL ET AL.

One of the most popular methodologies for modeling the spread of a virus are so-called
compartmental models consisting of difference or differential equations [31]. Optimal control
of such models is an active research area [5, 9, 59], and optimal mitigation policies have been
proposed for several diseases, including dengue fever [23] and malaria [47]. A variety of ap-
proaches has been proposed for studying the impact of nonpharmaceutical measures on the
spread of SARS-CoV-2. They range from network-based over game-theoretical to data-driven
methods [49, 43, 11]. Since the beginning of the pandemic, many researchers have proposed
compartmental models for predicting the impact of countermeasures on the spread of SARS-
CoV-2 [25, 60]. Besides prediction, these models can be used to determine optimal mitigation
policies based on solving optimal control problems (OCPs). For instance, many authors have
proposed SARS-CoV-2 mitigation strategies based on optimal control of nonpharmaceutical
countermeasures (in particular, social distancing) [13, 37, 56, 27]. Nonpharmaceutical mea-
sures were used to attain a stable equilibrium with low case numbers in [15]. In [7], the
authors propose an on-off (also called bang-bang) social distancing policy for mitigating a
second wave. The subject of optimal vaccination has also been considered [45, 26]. Early
work on optimal vaccination involved age-uniform vaccination, and on-off policies were found
to be optimal [40]. Later, Matrajt et al. [41] presented optimal age-targeted vaccination poli-
cies in the absence of social distancing. They either consider the vaccination to be completed
instantaneously at the initial time or assume constant vaccination rates. When minimizing
deaths, they observe that for low vaccine efficacy, it is optimal to vaccinate the elderly. For
high vaccine efficacy, and when sufficiently many are vaccinated, it is optimal to vaccinate
the younger age groups which account for the most transmissions. Similarly, Hogan et al. [32]
consider optimal age-targeted vaccination where the entire age group is assumed to be vacci-
nated at a constant rate over the course of one month. Acu\~na-Zegarra et al. [3] use optimal
control to conclude that intense vaccination for a limited time period is optimal. Buckner,
Chowell, and Springborn [12] optimize time-varying age-targeted vaccination. In particu-
lar, they account for essential workers, e.g., health care professionals, who are unable to
significantly reduce their social interaction. They find that, depending on the objective func-
tion, either (1) younger essential workers are prioritized in order to control the spread of
SARS-CoV-2 or (2) senior essential workers are prioritized to control the mortality. Finally,
Bertsimas et al. [6] consider age- and region-differentiated vaccination tailored for a number
of states in the United States. They model the social distancing as a predefined function of
time which is fixed in advance. However, to the best of our knowledge, simultaneous optimal
control of vaccination and social distancing has not been considered previously.

Furthermore, most work on optimal SARS-CoV-2 mitigation involves open-loop strategies
where a single OCP is solved using a long-term horizon. However, due to the significant
uncertainty surrounding SARS-CoV-2 and COVID-19, open-loop strategies are not sufficient
because over time, the model parameters may change and the state of the pandemic will
deviate from that predicted by the model. These issues can be addressed by using model
predictive control (MPC) [29, 54]; see also [16] for continuous-time systems and [65] for the
relation between continuous- and discrete-time systems. In MPC, the current state of the
system is measured or estimated, an OCP is solved over a finite prediction and control horizon,
and the first part of the solution is implemented in practice before repeating the procedure
for a shifted horizon. This is referred to as a closed-loop strategy. It is similar to real-life
decision-making where plans, e.g., for contact and travel restrictions, are reevaluated at regular
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COORDINATION OF VACCINATION AND SOCIAL DISTANCING 1137

intervals. MPC is a well-established control methodology, which has been applied successfully
in several fields [24, 42, 53]. For applications of MPC in, e.g., power electronics, we refer
to [58, 17], in robotics to [64] and the references therein, and in energy to [10, 36]. Finally, a
suitable choice of the prediction horizon is essential; see, e.g., [63, 22].

In this work, we address four key questions related to coordinating social distancing and
vaccination: (1) How important are the availability and the success rate of the vaccine?
(2) Who should be vaccinated first? (3) How much can social distancing measures be relaxed
once the vaccines are available? (4) What is the minimal prediction horizon in the optimiza-
tion step that recovers the qualitative features of the long-term policy? In order to address
these questions, we present a novel compartmental model, which extends a recently developed
model [28] to account for vaccination. Based on this model, we present optimal simultane-
ous vaccination and social distancing policies involving optimal control and MPC. The model
accounts for vaccination failure, different levels of symptom severity, and age-dependent char-
acteristics of SARS-CoV-2 and COVID-19. In our case study, we choose parameters tailored
to the COVID-19 outbreak in Germany. However, we expect that the conclusions carry over
to other developed countries.

We observe that it is optimal to first vaccinate the middle-aged group which spreads the
disease the most. Subsequently, the elderly (the high-risk group) are vaccinated. In this
case, the contact restrictions can be lifted almost half a year earlier than without vaccination.
They can be lifted even earlier by increasing the number of successful vaccinations, which
depends on both the number of available vaccines and their success rate. Conversely, the
maximal occupancy of the intensive care units (ICUs), which is closely related to the number
of fatalities, can be reduced by prolonging the contact restrictions instead (without making
them more strict). These conclusions are based on a prediction horizon of 2 years in the
optimization step. We demonstrate that the same conclusions hold if a prediction horizon of
at least 8 weeks is used. If the planning horizon is too short, the elderly are vaccinated first.
However, this is short-sighted and requires stricter contact restrictions than if the middle-aged
group is vaccinated first.

The remainder of this paper is structured as follows. We present the compartmental model
in section 2 and describe the OCP in section 3. Section 4 is dedicated to the case study, and
the paper is concluded in section 5.

2. A compartmental model with social distancing and vaccination. In this section,
we extend the dynamical model tailored to COVID-19 proposed in [28] by incorporating
vaccination as an additional control input. To this end, all compartments are split into two
parts distinguishing vaccinated from nonvaccinated people.

Different vaccines have different properties. For simplicity, we focus on active vaccination,
i.e., the body is triggered to produce antibodies itself. As a consequence, this kind of vacci-
nation yields immunity but only if the patient has not been infected at time of vaccination.
Still, there might be patients whose bodies do not produce (a sufficient amount of) antibodies.
We assume that everyone has the same probability of vaccination failure and that a second
try would yield the same outcome. Therefore, we allow vaccination at most once per person.
These considerations motivate the following assumptions.
(A1) Everyone who is not known to have been infected can be vaccinated. Vaccination can

only be successful for people who have not been infected.
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1138 GRUNDEL ET AL.

(A2) No one is vaccinated twice.
(A3) Each vaccination (of a noninfected person) has the same probability of failure.
(A4) Successful vaccination yields immediate immunity (no future infection possible).

In [28], we proposed a SEITPHR model consisting of 11 compartments which are divided into
n\mathrm{g} age groups, n\mathrm{g} \in \BbbN . The compartments account for susceptible (S), exposed (or latent)
(E), infectious (I), tested (T ), hospitalized with and without requiring an ICU (P and H),
and detected and undetected removed people (RK and RU ). The term removed captures all
people who neither infect others nor need an ICU in the future, i.e., recovered, deceased, and
quarantined people without severe infection. In order to account for symptom severity, we
split I into IS , IM , and IA, where the superscripts S, M , and A indicate whether a person
has a severe course of infection, i.e., he or she will go to an ICU at some point in time; a mild
course, i.e., he or she will show symptoms and be put into quarantine and therefore will be
removed; or an asymptomatic one, i.e., he or she will not be detected at all. Our model does
not account for reinfection, i.e., recovered people cannot get infected again. Furthermore,
we do not distinguish between people with mild symptoms and people with severe symptoms
who refuse intensive care. In Appendix B, we consider optimal vaccination based on the
minimization of the total number of fatalities. There, for simplicity, we assume a constant
ratio between total number of people treated on an ICU and fatalities.

In the following, we describe the extended model, which is also shown in Figure 1. In order
to emphasize the effect of vaccination in combination with social distancing, we neglect mass
testing in this paper and, thus, drop the T compartments compared to [28]. However, keeping
assumption (A2) in mind, we split the SEIPHR model into two parts: the first one describes
the compartments of people who have not been vaccinated, while the second accounts for
vaccinated people only. For clarity the latter are marked by an additional superscript V .
Furthermore, we collect all infectious people in age group i \in \{ 1, . . . , n\mathrm{g}\} at time t \geq 0 via

Ii(t) = ISi (t) + IMi (t) + IAi (t) + IS,Vi (t) + IM,V
i (t) + IA,V

i (t).

The nonvaccinated part of the dynamics reads as

\.Si(t) =  - 
n\mathrm{g}\sum 
j=1

\delta (t)\beta ijSi(t)Ij(t) - \nu i(t)Si(t),(2.1a)

\.Ei(t) =

n\mathrm{g}\sum 
j=1

\delta (t)\beta ijSi(t)Ij(t) - (\gamma + \nu i(t))Ei(t),(2.1b)

\.ISi (t) = \pi S
i \gamma Ei(t) - (\eta S + \nu i(t))I

S
i (t),(2.1c)

\.IMi (t) = \pi M
i \gamma Ei(t) - (\eta M + \nu i(t))I

M
i (t),(2.1d)

\.IAi (t) = \pi A
i \gamma Ei(t) - (\eta A + \nu i(t))I

A
i (t),(2.1e)

\.RU
i (t) = \eta AIAi (t) - \nu iR

U
i (t),(2.1f)

\.Pi(t) = \eta SISi (t) - \rho Pi(t),(2.1g)

\.Hi(t) = \rho Pi(t) - \sigma Hi(t),(2.1h)

\.RK
i (t) = \eta MIMi (t) + \sigma Hi(t),(2.1i)D
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(a) Nonvaccinated part.

SV
i EV

i IM,V
i

IS,Vi

IA,V
i

P V
i HV

i
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i

δβij

πS
i γ

πM
i γ

πA
i γ
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σ

ηM

ηA

(1− q)νiSi
νiEi

νiI S
i

νiIM
i

νiI A
i

νiRU
i + qνiSi

(b) Vaccinated part.

Figure 1. Flow of the SEIPHR model for the ith age group. The controls associated with social distanc-
ing/vaccination are depicted with dashed red edges/dotted blue edges.

where the control \delta : [0,\infty [\rightarrow [0, 1] incorporates the average contact reduction as well as
the transmission probability and \nu i : [0,\infty [\rightarrow \BbbR \geq 0 denotes the vaccination rate within age
group i. Following assumption (A1) we do not allow to vaccinate people who have been
detected. Note that in our model exposed and infectious people are not yet detected. Those
who get detected are immediately put into quarantine, i.e., they are either removed (RK

and RV ) or sent to the respective pre-ICU compartment (P and P V ); the others might be
vaccinated. The parameter 1  - q \in [0, 1] describes the above-mentioned probability of a
vaccination failure; see assumption (A3). From here on, we refer to q as the success rate.
Furthermore, compartments H and P collect all people in ICUs and those who have been
detected but do not yet require intensive care, respectively. The parameters \beta = (\beta ij)

n\mathrm{g}

i,j=1 are
the age-dependent transmission rates. These depend both on the amount of contacts between
people of age group i and j as well as the probability that a contact of a susceptible and anD
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1140 GRUNDEL ET AL.

infectious individual results in a transmission. The inverse of \gamma is the mean incubation time,
i.e., the time from infection to becoming infectious. Furthermore, \pi S

i , \pi 
M
i , and \pi A

i denote
the age-dependent probabilities of having a severe, mild, or asymptomatic course of infection,
and \eta = (\eta S , \eta M , \eta A) consists of the rates with which infectious individuals stop infecting
susceptibles due to quarantine or recovery (including death). Severe cases move from the pre-
ICU compartments Pi to an ICU, i.e., compartment Hi, at rate \rho and are removed from this
compartment at rate \sigma . For a more detailed description and interpretation of the parameters,
we refer to [28]; for the actual parameter values used see Table 1 in section 4.

The vaccinated part is then given by

\.SV
i (t) = (1 - q)\nu i(t)Si(t) - 

n\mathrm{g}\sum 
j=1

\delta (t)\beta ijS
V
i (t)Ij(t),(2.2a)

\.EV
i (t) = \nu i(t)Ei(t) +

n\mathrm{g}\sum 
j=1

\delta (t)\beta ijS
V
i (t)Ij(t) - \gamma EV

i (t),(2.2b)

\.IS,Vi (t) = \nu i(t)I
S
i (t) + \pi S

i \gamma E
V
i (t) - \eta SIS,Vi (t),(2.2c)

\.IM,V
i (t) = \nu i(t)I

M
i (t) + \pi M

i \gamma EV
i (t) - \eta MIM,V

i (t),(2.2d)

\.IA,V
i (t) = \nu i(t)I

A
i (t) + \pi A

i \gamma E
V
i (t) - \eta AIA,V

i (t),(2.2e)

\.P V
i (t) = \eta SIS,Vi (t) - \rho P V

i (t),(2.2f)

\.HV
i (t) = \rho P V

i (t) - \sigma HV
i (t),(2.2g)

\.RV
i (t) = \nu i(t)R

U
i (t) + q\nu i(t)Si(t) + \eta AIA,V

i (t) + \eta MIM,V
i (t) + \sigma HV

i (t),(2.2h)

where the transmission is subject to assumptions (A1) and (A4). Note that we combine
RV

i = RK,V
i +RU,V

i since we do not need to distinguish between known and unknown removed
cases once they are vaccinated.

We emphasize that q does not represent the efficacy often mentioned in media, as, e.g., [50].
The latter considers two test groups---one which gets the vaccine and another which gets a
placebo. Then, only the patients who show symptoms are tested, and from these, one infers
the efficacy [52]. However, in our model, the parameter q describes the probability of the
patient being immune after the vaccination.

In this paper, we focus on age-differentiated vaccination in combination with homogeneous
contact restrictions among the age groups. The extension to heterogeneous social distancing
is straightforward as elaborated in [28].

For a concise notation, we collect all states in x(t) \in \BbbR n, controls in u(t) \in \BbbR m, and
parameters in p \in \BbbR \ell and write

\.x(t) = f(x(t), u(t), p), x(0) = x0(2.3)

with initial value x0. Furthermore, all compartments describe fractions of the total population,
i.e.,

\sum n
i=1 xi(t) = 1 for all t \geq 0, and the proportion of age group i is denoted by Ni,

i \in \{ 1, . . . , n\mathrm{g}\} . We assume that the countermeasures are kept constant over one week. Thus,
the control u is piecewise constant which ensures existence and uniqueness of the solution
of (2.3). Moreover, a brief discussion on equilibria of system (2.1)--(2.2) is given in Appendix A.D
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3. Optimal vaccination strategy. In this section, we formulate an OCP to determine a
coordinated social distancing and vaccination strategy that reduces the required social dis-
tancing while maintaining an ICU cap. To this end, we assume an amount of V \mathrm{m}\mathrm{a}\mathrm{x}, V \mathrm{m}\mathrm{a}\mathrm{x} \in \BbbN ,
units of the vaccine to become available each day, i.e., at time t \geq 0, the vaccine distribution
is subject to

n\mathrm{p}\mathrm{o}\mathrm{p} \cdot 
\int t

0

n\mathrm{g}\sum 
i=1

\nu i(s)Vi(s) ds \leq V \mathrm{m}\mathrm{a}\mathrm{x}t,

where

Vi(s) = Si(s) + Ei(s) + ISi (s) + IMi (s) + IAi (s) +RU
i (s)

collects all people in age group i available for vaccination at time instant s, and n\mathrm{p}\mathrm{o}\mathrm{p} \in \BbbN 
denotes the total population. Furthermore, we penalize social distancing by minimizing the
objective function

J(\delta ) =

\int tf

0
(1 - \delta (t))2 dt.

Figure 2 provides some intuition for J . The OCP is then given by

min
(\delta ,\nu )

J(\delta ) + \kappa \| \nu \| 22(3.1a)

subject to n\mathrm{p}\mathrm{o}\mathrm{p} \cdot 
n\mathrm{g}\sum 
i=1

Hi(t) +HV
i (t) \leq H\mathrm{m}\mathrm{a}\mathrm{x},(3.1b)

\.x(t) = f(x(t), u(t), p), x(0) = x0,(3.1c)

\delta (t) \in [0, 1],(3.1d)

n\mathrm{p}\mathrm{o}\mathrm{p} \cdot 
\int t

0

n\mathrm{g}\sum 
i=1

\nu i(s)Vi(s) ds \leq V \mathrm{m}\mathrm{a}\mathrm{x} \cdot t \forall t \geq 0,(3.1e)

\delta (t) = \delta (k\Delta t), t \in [k\Delta t, (k + 1)\Delta t[, k = 0, . . . ,K  - 1,(3.1f)

\nu (t) = \nu (k\Delta t), t \in [k\Delta t, (k + 1)\Delta t[, k = 0, . . . ,K  - 1,(3.1g)

Figure 2. The three steps of evaluating the objective function. The dotted red line denotes \delta (left), 1  - \delta 
(middle), and (1  - \delta )2 (right) for a given social distancing profile, \delta . The dashed black line corresponds to
no social distancing, and the objective is to minimize the blue shaded area. We minimize the area under the
squared deviation in order to discourage very strict contact restrictions.D
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1142 GRUNDEL ET AL.

where constraint (3.1b) caps the total number of required ICU beds. The positive parame-
ter \kappa \ll 1 weights the regularization term, which ensures that people are only vaccinated at
points in time when it affects the objective function or inequality constraints. For instance,
towards the end of the horizon, the number of susceptible people may become so low that the
epidemic can no longer sustain itself even in the absence of social distancing measures. In
this case, vaccination is not necessary. In (3.1f)--(3.1g), we assume the controls to be constant
over one week, i.e., \Delta t is one week, and K is the total number of weeks considered.

Remark 3.1. Note that the optimal solution of (3.1) strongly depends on the objective
function (3.1a). Different objectives yield different strategies. Here, we focus on reducing
contact restrictions and, thus, economic as well as psychological damage. Implicitly, we bound
the number of fatalities by enforcing the hard cap (3.1b) on the number of required ICUs. In
Appendix B we additionally investigate how to minimize the total number of fatalities while
keeping a constant level of social distancing.

4. Case study. In this case study, we investigate
(1) the importance of vaccine availability and efficacy,
(2) whom to vaccinate first,
(3) how much we can relax social distancing while distributing the vaccines, and
(4) the difference between short- and long-term planning

by analyzing numerical solutions to the OCP (3.1). We solve the OCPs using a direct single-
shooting approach [8] combined with the standard sequential quadratic programming [46]
algorithm implemented in fmincon in MATLAB. Furthermore, we compute the gradients of the
left-hand sides of the nonlinear inequality constraints (3.1b) and (3.1e) using a continuous
forward method (i.e., we numerically integrate the sensitivity equations forward in time). For
convenience, we refer to contact reductions by up to 20\% as light, between 20\% and 60\% as
strict, and we consider reductions by over 60\% a lockdown.

First, we consider long-term open-loop solutions. To this end, we develop time-varying
strategies over the entire time span of the pandemic (approximately 2 years) at once. Specifi-
cally, we compare solutions for different values of the vaccination success rate, q, the number
of vaccines supplied each day, V \mathrm{m}\mathrm{a}\mathrm{x}, and the ICU capacity, H\mathrm{m}\mathrm{a}\mathrm{x}.

Note that all simulations come along with uncertainties, e.g., resulting from not modeled
effects, inaccurate parameters, new developments. This model-plant mismatch particularly
causes problems for long-term simulations. In the context of mitigation of COVID-19 it
is essential to update model parameters based on newly acquired data in order to develop
adequate interventions. To this end, we also analyze short- to medium-term closed-loop
solutions (where the strategies are updated repeatedly on newly available measurements). This
emulates the real-life decision process where mitigation strategies are continuously updated
when new data becomes available.

Throughout the simulations, we use the (fixed) parameters shown in Table 1.

4.1. Long-term simulations. Results for the OCP (3.1) can be found in Figures 3 and 4.
Here, we chose q = 0.9 since the general expectation is that the success rate is quite high.
Furthermore, V \mathrm{m}\mathrm{a}\mathrm{x} = 100, 000 and H\mathrm{m}\mathrm{a}\mathrm{x} = 10, 000 are based on [1, 19].

The vaccination constraint (3.1e) is active until the contact restrictions are lifted. At that
point, the pandemic is contained without further interventions. Our solution suggests to not
vaccinate the high-risk group first but rather the middle-aged group. The objective of this is
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Table 1
Parameter values and references. For more details on the parameters see also [28, section 3].

Description Symbol Value Reference

Total population n\mathrm{p}\mathrm{o}\mathrm{p} 8.3 \cdot 107 [2]
Number of age groups n\mathrm{g} 3 --
Regularization parameter \kappa 10 - 3 --
Removal rate (severe) \eta S 0.2500 [28, 30]
Removal rate (mild) \eta M 0.2500 [28, 30]
Removal rate (asymptomatic) \eta A 0.1667 [61]
Rate of becoming infectious \gamma 0.1923 [38]
ICU admittance rate \rho 0.0910 [20]
ICU discharge rate \sigma 0.0952 [20]

Age-differentiated parameters

Age group i 1 2 3 Reference

Age range (in years) -- < 15 15 -- 59 \geq 60 --
Relative age group size Ni 0.1370 0.5776 0.2854 [2]
Probability of severe symptoms \pi S

i 0.0053 0.0031 0.0302 [55]
Probability of mild symptoms \pi M

i 0.1211 0.2201 0.2512 [55]
Probability of no symptoms \pi A

i 0.8737 0.7768 0.7186 [55]
Transmission rate (age group 1) \beta 1i 0.4612 [44, 51]
Transmission rate (age group 2) \beta 2i 0.4819 0.6304 [44, 51]
Transmission rate (age group 3) \beta 3i 0.1243 0.2944 0.1802 [44, 51]

Figure 3. Optimal vaccination strategy \nu  \star = (\nu  \star 
1 , \nu 

 \star 
2 , \nu 

 \star 
3 ) with vaccination success rate q = 0.9 and daily

available units V \mathrm{m}\mathrm{a}\mathrm{x} = 105; the dotted black line depicts V \mathrm{m}\mathrm{a}\mathrm{x}t. The vaccination process is stopped once all
contact restrictions are lifted (Figure 4) and the pandemic is contained without further interventions, i.e., after
approximately 40 weeks.

to minimize social distancing. Specifically, it allows us to relax the social distancing measures
earlier while still maintaining the hard infection cap modeled by the upper bound on the ICU
capacity. Hence, the elderly (high-risk group) get vaccinated once the social distancing is
significantly reduced, i.e., around week 36. In contrast, we demonstrate in Appendix B that if
the objective is to minimize fatalities, it is optimal to vaccinate the elderly first provided that
the social distancing measures are not too strict. However, in this case, the ICU occupancy
exceeds the capacity.

Furthermore, when no vaccine is available, an actual lockdown is optimal. Without vac-
cination, strict social distancing is required for 43 weeks. With vaccination, the strict social
distancing can be lifted approximately 20 weeks earlier, i.e., a reduction by almost 50\%. The
same conclusion applies to the ICU occupancies.D
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1144 GRUNDEL ET AL.

Figure 4. Optimal social distancing profile \delta (left) and ICU occupancy H =
\sum n\mathrm{g}

i=1 Hi + HV
i (right) with

and without vaccination. The dotted black lines mark strict social distancing, i.e., \delta \in [0.4, 0.8] (left) and H\mathrm{m}\mathrm{a}\mathrm{x}

(right).

Figure 5. Impact of H\mathrm{m}\mathrm{a}\mathrm{x}, i.e., the number of available ICUs, on the required social distancing with
vaccination success rate q = 0.9 and daily available units of vaccines V \mathrm{m}\mathrm{a}\mathrm{x} = 105.

Figure 5 (left) shows the optimal social distancing strategies for different ICU capacities,
H\mathrm{m}\mathrm{a}\mathrm{x}. Interestingly, the maximum amount of contact restrictions, \delta = 0.435, is (almost)
independent of H\mathrm{m}\mathrm{a}\mathrm{x}. Consequently, it is possible to reduce the total number of people who
become admitted to ICUs at the cost of longer but not stricter social distancing measures.
This is particularly important as the number of people in ICUs is closely related to the number
of fatalities. Figure 5 (right) visualizes the impact of the number of available ICUs on the
number of weeks when contact restrictions have to be enforced.

Moreover, the solutions with vaccination all enforce contact restrictions from the begin-
ning, whereas the solution without vaccination lets the pandemic evolve for some weeks before
implementing a strict lockdown. We explain this using Figure 6 which shows the optimal so-
cial distancing strategies with (\circ ) and without (+) vaccination (also shown in Figure 4). We
compare these two strategies to (1) enforcing contact restrictions in the beginning (\delta = 0.8)
without any vaccination (\bigtriangleup ) and (2) prohibiting them in the beginning (\delta = 1) and allowing
vaccination ( \star ). The key observation is that without social distancing in the beginning, a hard
lockdown is necessary regardless of whether a vaccine is available or not. However, when a
vaccine is available, some social distancing in the beginning avoids a harder lockdown later
because a significant amount of people are already vaccinated at this point. Furthermore, if
no vaccine is available, it is not beneficial to enforce social distancing early on because it only
slows down the natural vaccination (i.e., the immunity following an infection).D
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\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} J(\delta )
\circ \mathrm{v}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{e} 13.25
 \star \mathrm{v}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{e}, \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{h}\mathrm{i}\mathrm{b}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g} 14.03
+ \mathrm{n}\mathrm{o} \mathrm{v}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{e} 31.47
\bigtriangleup \mathrm{n}\mathrm{o} \mathrm{v}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{e}, \mathrm{e}\mathrm{n}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{g} 32.34

Figure 6. Impact of enforcing/prohibiting social distancing during the initial phase with H\mathrm{m}\mathrm{a}\mathrm{x} = 104 on
the optimal social distancing strategy \delta (left) and total amount, J(\delta ), of contact restrictions (right).

Figure 7. Impact of vaccination success rate q (left) and daily production rate V \mathrm{m}\mathrm{a}\mathrm{x} (right) on the total
time contact restrictions have to be implemented with ICU cap H\mathrm{m}\mathrm{a}\mathrm{x} = 104.

Figure 8. Impact of the amount of daily available units of vaccine V \mathrm{m}\mathrm{a}\mathrm{x} on the optimal social distancing
strategy \delta with vaccination success rate q = 0.9 and ICU cap H\mathrm{m}\mathrm{a}\mathrm{x} = 104.

According to [1], a realistic number of daily vaccines is V \mathrm{m}\mathrm{a}\mathrm{x} = 100, 000. However, at
the time of submitting this manuscript, no actual numbers are available. For this reason, we
investigate the impact of varying both the available number of vaccines as well as the success
rate on the social distancing and on the end time of the contact restrictions. The results
depicted in Figure 7 show that it is more important to increase the available amount of the
vaccines than the success rate.

Note that when increasing V \mathrm{m}\mathrm{a}\mathrm{x} (right), there is a threshold where the required amount of
strict social distancing increases before it decreases again. The reason can be seen in Figure 8.
For V \mathrm{m}\mathrm{a}\mathrm{x} = 200, 000, the contact reductions become classified as strict in the beginning,
whereas for lower and higher values, the contact reductions are still classified as light.D
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1146 GRUNDEL ET AL.

Figure 9. Impact of the amount of vaccination success rate q and daily available units of vaccine V \mathrm{m}\mathrm{a}\mathrm{x}

on the time until all restrictions are relaxed compared to the case without vaccine. Different markers denote
different amounts of vaccine V \mathrm{m}\mathrm{a}\mathrm{x}: \circ = 1.25 \cdot 104,  \star = 2.5 \cdot 104, \square = 5 \cdot 104, \bigtriangleup = 105, \times = 2 \cdot 105. The ICU
cap is set to H\mathrm{m}\mathrm{a}\mathrm{x} = 104.

Furthermore, Figure 9 provides some insight on how to improve the impact of a vaccine.
For instance, if the supply rate is small, e.g., V \mathrm{m}\mathrm{a}\mathrm{x} = 12, 500, improving the success rate q
does not help reducing the contact restrictions.

Once sufficiently many units of vaccine can be produced, it is possible to reduce the social
distancing by increasing the success rate.

Based on the results shown in Figures 7 and 9, we conclude that increasing the number of
successful vaccinations has the biggest impact on the social distancing profile. For instance,
if q = 0.5 and V \mathrm{m}\mathrm{a}\mathrm{x} = 100, 000, doubling V \mathrm{m}\mathrm{a}\mathrm{x} has a bigger impact than increasing q to 0.9.
Doubling V \mathrm{m}\mathrm{a}\mathrm{x} adds another 50, 000 successful vaccinations, whereas increasing q only adds
another 40, 000 successful vaccinations.

4.2. Consecutive short-term simulations. In order to simulate real-life decision-making
processes and to account for uncertainties as mentioned in the beginning of section 4, we use
MPC [16]. The main idea of MPC is to solve a sequence of OCPs of the form

min
(\delta ,\nu )

\int (k+K)\Delta t

k\Delta t
(1 - \delta (t))2 dt+ \kappa \| \nu \| 22(4.1a)

subject to n\mathrm{p}\mathrm{o}\mathrm{p} \cdot 
n\mathrm{g}\sum 
i=1

Hi(t) +HV
i (t) \leq H\mathrm{m}\mathrm{a}\mathrm{x},(4.1b)

\.x(t) = f(x(t), u(t), p), x(0) = x0,(4.1c)

\delta (t) \in [0, 1],(4.1d)

n\mathrm{p}\mathrm{o}\mathrm{p} \cdot 
\int t

k\Delta t

n\mathrm{g}\sum 
i=1

\nu i(s)Vi(s) ds \leq V \mathrm{m}\mathrm{a}\mathrm{x} \cdot (t - k\Delta t) + V k(4.1e)

\forall t \in [k\Delta t, (k +K)\Delta t],(4.1f)

\delta (t) = \delta (k\Delta t), t \in [k\Delta t, (k + 1)\Delta t[, k = 0, . . . ,K  - 1,(4.1g)

\nu (t) = \nu (k\Delta t), t \in [k\Delta t, (k + 1)\Delta t[, k = 0, . . . ,K  - 1(4.1h)

over a moving time window of length K\Delta t, where K \in \BbbN \geq 2 denotes the number of time steps
of length \Delta t > 0. Here, the parameter V k accounts for the units of vaccine that have been
saved in previous MPC steps. This scheme can be summarized as follows.D
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for k = 0 to \scrK  - 1
1. Measure/estimate current state x(k\Delta t) = xk at the kth time instant.
2. Solve the OCP (4.1) on the time window [k\Delta t, (k + K)\Delta t] to get an optimal

control u \star : [k\Delta t, (k +K)\Delta t]\rightarrow \BbbR m.
3. Implement the first portion of the solution uk| [k\Delta t,(k+1)\Delta t[ = u \star | [k\Delta t,(k+1)\Delta t[.
4. Increment k \leftarrow k + 1.

end

Here, \scrK = tf/\Delta t denotes the number of MPC steps, i.e., the number of OCPs of the form (4.1)
that have to be solved to arrive at a solution of (3.1). In our simulations, we set \Delta t to one
week.

We study the impact of different prediction horizon lengths K on the closed-loop solution.
This corresponds to a simulation of the whole pandemic, while the decision for the next week
is always made based on a forecast horizon of only K weeks. It is essential to choose the
prediction horizon sufficiently long; otherwise, the ICU caps might be violated due to time
delays within the model, e.g., caused by the incubation time. In our simulations, the smallest
possible integer value for the prediction horizon K that allows for maintaining the ICU cap
is 3 weeks. The impact of the choice of K \geq 4 on the objective function value is visualized in
Figure 10.

The longer the prediction, the closer the objective function value gets to the one corre-
sponding to the open-loop solution shown in the previous subsection. Moreover, the marginal
gain of horizon lengths larger than eight weeks is negligible. Therefore, if a prediction horizon
of eight weeks is used, the strategy does not suffer from the short-sightedness [4] of operating
on a limited time window (but with significantly reduced uncertainty) while being able to
adapt to newly acquired data.

The main difference compared to the MPC investigation in [28] is that here the prediction
horizon length crucially affects the optimal control. In particular, the choice of K is essential
to answer the question whom to vaccinate first. Optimal vaccination and social distancing
strategies depending on the prediction horizon length are depicted in Figures 11 and 12,
respectively.

If the prediction horizon is small, it is optimal to vaccinate the high-risk group only
(Figure 11), since they directly affect the number of required ICUs. Similar (open-loop)

Figure 10. Impact of prediction horizon length K in weeks on objective function value J(\delta ), i.e., on the
required amount of social distancing, compared to the open-loop (OL) solution. For K < 3 the ICU cap is
violated (short-sightedness of MPC).D
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1148 GRUNDEL ET AL.

Figure 11. Impact of prediction horizon length K on vaccination strategy. For short prediction horizons
the high-risk groups are vaccinated first (immediate impact); for long prediction horizons the people with most
contacts are vaccinated first in order to relax the social distancing in the long run.

Figure 12. Impact of prediction horizon length K on social distancing and ICU capacities. Short prediction
horizons might yield necessity of a (short) lockdown.

strategies are obtained if the number of fatalities is minimized (see Appendix B). Furthermore,
the contact restrictions are severe but are lifted comparatively early (Figure 12). For longer
prediction horizons, the people with the highest contact rates are vaccinated first, and the
restrictions are not as severe. In particular, the vaccination strategies for K = 8 and K = 12
coincide. Furthermore, for these prediction horizons, the contact restrictions are not as strict
as in the open-loop policy, they develop more smoothly, and they can be lifted monotonically.
Note that with prediction horizon length K = 12 weeks, the social distancing around week 13
is quite relaxed (\delta \geq 0.6). As a result more restrictions have to be enforced around week 22.

5. Conclusions and outlook. In this paper, we address the four questions related to
simultaneous vaccination and social distancing set out in the introduction. We address them
by extending a previous compartmental model to include vaccination. Based on this model,
we use optimal control and MPC to compute time-varying vaccination and social distancing
profiles which minimize the necessary amount of social distancing. Our simulations show
that contact restrictions can be lifted almost half a year earlier as compared to a scenario
without vaccination. This is achieved by first vaccinating the middle-aged group which is
most responsible for spreading the virus. Thereafter, the elderly, who are most vulnerable
to COVID-19, are vaccinated. Furthermore, we find that the contact restrictions can be
lifted even earlier by increasing the number of successful vaccinations, which depends on both
the number of available vaccines and the efficacy. We also observe that the maximal ICU
occupancy can be reduced by extending the contact restrictions and that it is not necessary to
make them more strict. Additionally, we demonstrate that if the objective is to minimize the
total number of fatalities and contacts are not sufficiently restricted, it is optimal to vaccinateD
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the elderly first; see Appendix B. The above conclusions assume that long-term planning
is possible, e.g., over a 2-year period. This is not possible in practice, but we demonstrate
that optimal closed-loop profiles obtained with an 8-week prediction horizon are qualitatively
similar to those obtained with a 2-year horizon. However, if too short horizons are used, only
the elderly are vaccinated, and more social distancing is necessary.

In future work, we will account for the uncertainty of the model parameters and use
uncertainty quantification techniques to assess their impact on the policies presented in this
paper.

Appendix A. Equilibria. In this appendix, we briefly discuss equilibria of the model
presented in section 2, i.e., we are interested in points (\=x, \=u) \in \BbbR n \times \BbbR m with

f(\=x, \=u, p) = 0.(A.1)

Furthermore, we address the relation between stability of an equilibrium and herd immunity,
i.e., a point during the epidemic when sufficiently many people have become immune such
that the spread dies out.

Herd immunity can be characterized in terms of the basic reproduction number \scrR NGM
0 ,

i.e., the largest eigenvalue of the next generation matrix ; for details we refer to [18, 57]. We
say that herd immunity has set in if \scrR NGM

0 < 1. The next generation matrix relates the
inflow and the outflow of all infected compartments. Thus, it depends on both the state \=x
and the control \=u. In particular, for smaller \delta , i.e., stricter social distancing and, hence, less
inflow to the infected compartments, herd immunity sets in earlier; see also Figure 13 (right).

To investigate equilibria, note that in our model people move unidirectionally from Si

to Ri, i.e., either RU
i , R

K
i , or RV

i , and stay there; see (2.1)--(2.2) and Figure 1. Moreover,
since births and transitions among age groups are neglected and, hence, Si(t) \leq Si(0) for all
t \geq 0 and i \in \{ 1, . . . , n\mathrm{g}\} , condition (A.1) can only be satisfied if there are no transitions
among compartments. Consequently, there only exist disease-free equilibria, i.e., only Si, S

V
i ,

RK
i , RU

i , and RV
i might be nonempty. Clearly, (\=x, \=u) with \=x = (S1, . . . , Sn\mathrm{g} , 0n - n\mathrm{g}), and\sum n\mathrm{g}

i=1 Si = 1 is a disease-free equilibrium. In the following we consider
\sum n\mathrm{g}

i=1 Si < 1 and
distinguish three cases depending on the vaccination strategy. First, if people are vaccinated
all the time, i.e., mini \nu i(t) > 0 for all t, then compartments Si and RU

i have to be zero as well,
and, thus,

\sum 
i S

V
i +RK

i +RV
i = 1. Second, if there is no vaccination at all, i.e., \nu i \equiv 0 for all i,

all vaccinated compartments stay empty, and, therefore,
\sum 

i Si + RK
i + RU

i = 1. The third
case is a vaccination stop at some time t2, i.e., mini \nu i(t) > 0 for t \in [t1, t2) and maxi \nu i(t) = 0
for t \geq t2. Here, one can infer

\sum 
i Si +SV

i +RK
i +RU

i +RV
i = 1. Note that in a deterministic

model like ours the compartments do not empty in finite time, e.g., Ii(t) > 0 for all t \geq 0 if
Ii(0) > 0.

Stability of an equilibrium can be characterized in terms of the largest real part of ei-
genvalues of the Jacobian \nabla xf(\=x, \=u, p). If the latter is negative, the equilibrium is stable;
otherwise it is not. In order to study the stability numerically, we consider the equilibrium \=x
with S2 \in [0, 1] and RU

2 = RK
2 = 0.5(1 - S2) (and the remaining compartments being empty).

Note that the R compartments do not affect the dynamics, i.e., the ratio RU
2 /R

K
2 is irrelevant.

Figure 13 (left) depicts the largest real part of eigenvalues of the Jacobian \nabla xf(\=x, \=u, p) with
constant social distancing and without vaccination, i.e., \=u \equiv (\delta , \nu ) with \nu = 0.D
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1150 GRUNDEL ET AL.

Figure 13. Stability of equilibrium \=x (left) and basic reproduction number \scrR \mathrm{N}\mathrm{G}\mathrm{M}
0 (right): If herd immunity

has set in, i.e., S = S2 is sufficiently small, the equilibrium point is stable; otherwise adding infected people
might cause an outbreak. The vertical dotted black lines indicate herd immunity. By \sigma (A) we denote the
spectrum of a matrix A.

If S2 is small, i.e., sufficiently many people have been exposed, the equilibrium is stable;
otherwise adding infected people to the system might cause (another) outbreak. The vertical
dotted black lines indicate herd immunity depending on the contact restrictions. Moreover,
Figure 13 (right) shows that stability of the equilibrium depends on whether herd immunity
has been achieved or not. Note that the real part of the leading eigenvalue of the Jacobian is
strictly positive once the reproduction number \scrR \mathrm{N}\mathrm{G}\mathrm{M}

0 is larger than one.
Moreover, once S2 is sufficiently small (below approximately 0.3), the system has reached

a robust invariant set, i.e., even without enforcing countermeasures, there will not be another
outbreak. The investigation of invariant regions and robust sets is outside the scope of this
paper. For a set-based approach to maintain hard infection caps (during an outbreak of
dengue fever) we refer to [21].

Appendix B. Minimizing the total number of fatalities. In this appendix, we present
optimal vaccination policies based on minimizing the total number of people who have left
ICUs over a period of 2 years. In our model, this number is proportional to the total number of
fatalities; see section 2. We assume a constant level of social distancing, and we demonstrate
that the qualitative nature of the optimal vaccination policies changes depending on the level
of social distancing.

The optimal vaccination profiles are obtained by solving the OCP

min
\nu 

HC(tf ) + \kappa \| \nu \| 22(B.1a)

subject to \.HC(t) =

ng\sum 
i=1

\sigma (Hi(t) +HV
i (t)), HC(0) = 0,(B.1b)

\.x(t) = f(x(t), u(t), p), x(0) = x0,(B.1c)

n\mathrm{p}\mathrm{o}\mathrm{p} \cdot 
\int t

0

n\mathrm{g}\sum 
i=1

\nu i(s)Vi(s) ds \leq V \mathrm{m}\mathrm{a}\mathrm{x} \cdot t,(B.1d)

\delta (t) = \delta c \forall t \geq 0,(B.1e)

\nu (t) = \nu (k\Delta t), t \in [k\Delta t, (k + 1)\Delta t[, k = 0, . . . ,K  - 1.(B.1f)D
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Here, HC(t) is the cumulative number of people who have left ICUs up until time t, and its
temporal evolution is given by (B.1b). The objective is to minimize this quantity at the end of
a 2-year time period plus a regularization term, and we choose \kappa = 5 \cdot 10 - 6 which is negligible
compared to HC(tf ). Furthermore, (B.1c)--(B.1d) are the SEIPHR model (2.1)--(2.2) and
the constraint on the number of available vaccines, respectively. Finally, the level of social
distancing is specified in (B.1e), and the vaccination profile is constrained to be constant over
time intervals of one week by (B.1f).

Figure 14 shows the optimal vaccination profiles for \delta c = 0.70 (left) and \delta c = 0.72 (right).
For \delta c = 0.70, the people in age group 2 are vaccinated before the elderly as was the case when
minimizing the amount of social distancing in section 4.1 and when sufficiently long prediction
horizons were used in section 4.2. In this case, roughly 280,000 were admitted to ICUs (the
objective function value is 280,956). For \delta c = 0.72, the elderly are vaccinated before the adults
as is the case when very short prediction horizons were used in section 4.2. For this profile,
around 300,000 went to ICUs (and the objective function value is 300,238). Furthermore,
Figure 15 shows the number of hospitalized. The peak value is lower when \delta c = 0.7 and the
adults are vaccinated first. This is due to the stricter social distancing measures and because
adults, who have the highest contact rates, are vaccinated first.

If \delta c is above 0.72, the profiles are qualitatively similar to that obtained with \delta c = 0.72,
and if \delta c is below 0.70, the profiles are similar to that obtained with \delta c = 0.70. Presumably,
the two qualitatively different profiles become equally optimal for some value of \delta c between
0.70 and 0.72. However, because of the presence of at least two local minima, investigating

Figure 14. Optimal age-differentiated vaccination profiles for children (i = 1), adults (i = 2), and elderly
(i = 3) given different levels of social distancing. Here, we consider a vaccination success rate of q = 0.9 and
a daily number of available vaccines of V \mathrm{m}\mathrm{a}\mathrm{x} = 105.

Figure 15. The amount of social distancing (left) and the number of hospitalized (right) corresponding to
the optimal vaccination profiles shown in Figure 14.D

ow
nl

oa
de

d 
07

/1
5/

21
 to

 2
.2

00
.1

03
.1

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1152 GRUNDEL ET AL.

this further is numerically challenging. Therefore, based on the qualitative nature of the
optimal vaccination profiles in Figure 15, we compare two heuristic profiles for vaccinating
either the elderly or the adults first. In both cases, children are vaccinated last. The heuristic
vaccination profiles are based on the remaining number of vaccines at time tk,

V\mathrm{r}\mathrm{e}\mathrm{m},k =
V \mathrm{m}\mathrm{a}\mathrm{x}

n\mathrm{p}\mathrm{o}\mathrm{p}
tk+1  - 

\int tk

0

ng\sum 
i

\nu i(s)Vi(s)ds.(B.2)

The first term is the number of vaccines available at time tk+1, and the second term is the total
number of vaccines administered until time tk. In the first profile, the elderly (age group 3)
are vaccinated first. Furthermore, we consider piecewise constant vaccination rates which are
constant over periods of one week as for the optimal vaccination profiles. Consequently,

\nu 3(t) =

\Biggl\{ V\mathrm{r}\mathrm{e}\mathrm{m},k

V3(tk)(tk+1 - tk)
, V3(tk) > \alpha N3,

0 otherwise,
(B.3a)

\nu 2(t) =

\Biggl\{ V\mathrm{r}\mathrm{e}\mathrm{m},k

V2(tk)(tk+1 - tk)
, V3(tk) \leq \alpha N3 and V2(tk) > \alpha N2,

0 otherwise,
(B.3b)

\nu 1(t) =

\Biggl\{ V\mathrm{r}\mathrm{e}\mathrm{m},k

V1(tk)(tk+1 - tk)
, V3(tk) \leq \alpha N3 and V2(tk) \leq \alpha N2 and V1(tk) > \alpha N1,

0 otherwise
(B.3c)

for t \in [tk, tk+1[. The objective is to vaccinate 100(1 - \alpha ) percent of each age group. As Vi(t) is
monotonically nonincreasing, the above profile is guaranteed to satisfy the constraint (B.1d).
In the second profile, the adults (age group 2) are vaccinated first, i.e.,

\nu 2(t) =

\Biggl\{ V\mathrm{r}\mathrm{e}\mathrm{m},k

V2(tk)(tk+1 - tk)
, V2(tk) > \alpha N2,

0 otherwise,
(B.4a)

\nu 3(t) =

\Biggl\{ V\mathrm{r}\mathrm{e}\mathrm{m},k

V3(tk)(tk+1 - tk)
, V2(tk) \leq \alpha N2 and V3(tk) > \alpha N3,

0 otherwise,
(B.4b)

\nu 1(t) =

\Biggl\{ V\mathrm{r}\mathrm{e}\mathrm{m},k

V1(tk)(tk+1 - tk)
, V2(tk) \leq \alpha N2 and V3(tk) \leq \alpha N3 and V1(tk) > \alpha N1,

0 otherwise
(B.4c)

for t \in [tk, tk+1[.
Figure 16 shows the value of the objective function in (B.1a) obtained with the two

heuristic vaccination profiles.
For the optimal profiles, only a given percentage of each age group is vaccinated before

starting to vaccinate the next. Therefore, we choose \alpha = 0.1. For the heuristic profiles, there
is a cross-over point around \delta c = 0.7. For values above, lower objective function values are
obtained by vaccinating the elderly first and vice versa. When \delta c becomes sufficiently low, the
two heuristic profiles result in the same objective function values. Figure 16 suggests that the
objective function for the optimal strategy is not differentiable at the cross-over point. WeD
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Figure 16. Values of the objective function in (B.1a) obtained by vaccinating the elderly first using (B.3)
and by vaccinating the adults first using (B.4). The vaccination success rate is q = 0.9, and the daily number
of available vaccines is V \mathrm{m}\mathrm{a}\mathrm{x} = 105.

believe that it is optimal to vaccinate the elderly first because in this scenario the epidemic
spreads too fast for vaccination of adults to prevent too many casualties. Although the
objective function values corresponding to the optimal vaccination profiles shown in Figure 14
are below the values obtained with the heuristic profiles, we expect that the conclusions carry
over because of the similarity between the profiles.
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